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Abstract

We present a process algebra with conditional expressions of which the conditions
concern the enabledness of actions in the context in which a process is placed. With
those conditions, it becomes easy to model preferential choices. A preferential choice
of a process is a choice whereby certain alternatives are excluded if at least one of
the other alternatives is permitted by the context in which the process is placed.
Preferential choices are often modelled rather indirectly using a priority mechanism.
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1 Introduction

In Ref. [1], we started an investigation into the potentialities of conditional
expressions in the setting of the algebraic theory about processes known as
ACP [2,3]. The primary intention of the investigation is to find basic ways to
increase expressiveness. The main extensions of ACP introduced in Ref. [1]
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are ACPc (ACP with conditional expressions), ACPcs (ACPc with signals) and
ACPcr (ACPc with retrospective conditions).

In the current paper, we proceed with the investigation started in Ref. [1]. We
present ACPcc, a variant of ACPc in which the conditions concern the enabled-
ness of actions in the context in which a process is placed. Such conditions
are called coordination conditions in this paper because they are primarily
intended for coordination of processes that proceed in parallel. The merit of
ACPcc is primarily the following. If a process has different alternatives to pro-
ceed, some may be preferred in the sense that the others should be excluded if
at least one of the preferred alternatives is permitted by the context in which
the process is placed. Such preferential choices are often modelled rather indi-
rectly using a priority mechanism, see e.g. Ref. [4], but can easily be modelled
in ACPcc.

In Ref. [5], ACP has been extended with a priority mechanism. However,
this priority mechanism, although suitable for dealing with interrupts, is un-
suitable for modelling preferential choices, because it does not feature local
pre-emption in the sense of Ref. [4]. The priority mechanism used in Ref. [4]
to model preferential choices does feature local pre-emption. Such a priority
mechanism can be added to ACP as well. However, the solution to model pref-
erential choices with a priority mechanism featuring local pre-emption lacks
the property that there is a close connection with a simple explanation of pref-
erential choices, such as the explanation given in the preceding paragraph. By
modelling preferential choices with coordination conditions, a close connection
with the simple explanation given in the preceding paragraph can be achieved.
This forms part of our motivation to develop ACPcc.

Features for preferential choices are found in programming languages and pro-
cess algebraic formalisms. To the best of our knowledge, the first programming
language with a construct for preferential choices is occam [6]. The occam pro-
gramming language is based on CSP [7,8]. However, the construct for prefer-
ential choices included in occam, which is known as the PRI ALT construct, has
no counterpart in CSP. A counterpart of the PRI ALT construct in an extension
of CSP, with a formal semantics in CSP-style, is introduced for the first time
in Ref. [9].

A counterpart of the PRI ALT construct in an extension of CCS [10,11], with a
formal semantics in CCS-style, is introduced for the first time in Ref. [12]. It
appears that the counterpart of the PRI ALT construct introduced in Ref. [12],
which is known as the priority choice operator, has inspired the addition of
priority guards to CCS in Ref. [13]. In the latter paper, the basic idea is to
take action prefixes of the form U :a, where a is an action and U is a finite set
of actions, called a priority guard. This is meant to indicate that performing
a is blocked if at least one of the actions in U is enabled by the context. In
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other words, performing a is made conditional on a condition concerning the
enabledness of actions by altering the syntax of action prefixes. An obvious
alternative for altering the syntax of action prefixes is adding an operator for
making behaviour conditional, together with operators for making conditions
out of other conditions. This is more in the spirit of process algebras with
general sequential composition instead of action prefixing, like ACP. All this
brings us to believe that it is worthwhile to elaborate on the modelling of
preferential choices in the setting of ACPc.

The presentation of ACPcc includes the axioms of ACPcc and the main models
of ACPcc. Those models are based on labelled transition systems of which the
labels consist of a condition and an action, called conditional transition sys-
tems, and a variant of bisimilarity in which a transition of one of the related
transition systems may be simulated by a set of transitions of the other tran-
sition system, called splitting bisimilarity. The presented models cover finitely
branching processes as well as infinitely branching processes. We also extend
ACPcc with a preferential choice operator to show that it is easy to give defin-
ing equations for a preferential choice operator in the presence of conditional
expressions of which the conditions are coordination conditions. This exten-
sion of ACPcc can be viewed as an application of ACPcc that remains entirely
within the domain of process algebra.

What is attained is primarily an extension of ACP that provides the possibil-
ity to model preferential choices in such a way that a close connection with
a simple explanation of preferential choices is achieved. In attaining this re-
sult, the introduction of coordination conditions is considered to be crucial.
Coordination conditions make it possible to abstract from the details of the
mechanism by which a process is brought to proceed at each stage according
to the enabledness of actions in the context in which it is placed. In the case of
a priority mechanism featuring local pre-emption, for example, the modelling
of a process that begins by making a preferential choice depends upon the
process of which it happens to be a subprocess. In the case of coordination
conditions, the modelling of a process that begins by making a preferential
choice concerns that preferential choice only.

The coordination conditions of ACPcc are similar to the priority guards added
to CCS in Ref. [13]. Priority guards can be regarded as coordination conditions
of a simple form which can only be used together with action prefixing. More-
over, unlike the priority guards, the coordination conditions do not assume
CCS-style communication. Therefore, we consider coordination conditions an
improvement on priority guards.

The preferential choice operator added to ACPcc is similar to the priority
choice operator added to CCS in Ref. [12]. The preferential choice operator is
defined for all possible operands, whereas syntactic restrictions are imposed on
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the operands of the priority choice operator of Ref. [12]. Moreover, unlike the
priority choice operator, the preferential choice operator does not assume CCS-
style communication. Therefore, we consider the preferential choice operator
an improvement on the priority choice operator. Note that, because it is not
defined for all possible operands, the priority choice operator violates the basics
of an algebraic approach. The modelling of preferential choices in Ref. [4]
mentioned above is based on Ref. [12] and works only under the same syntactic
restrictions.

The structure of this paper is as follows. First of all, we introduce PAcc
δ , a sim-

ple precursor of ACPcc that does not support communication (Section 2). After
that, we introduce conditional transition systems and splitting bisimilarity of
conditional transition systems (Section 3) and the full splitting bisimulation
models of PAcc

δ , the main models of PAcc
δ (Section 4). Following this, we have a

closer look at splitting bisimilarity based on structural operational semantics
(Section 5). Next, we move from PAcc

δ to ACPcc (Section 6) and adapt the
full splitting bisimulation models of PAcc

δ to full splitting bisimulation models
of ACPcc (Section 7). Then, we extend ACPcc with guarded recursion (Sec-
tion 8). Thereupon, we extend ACPcc with the preferential choice operator
(Section 9). Following this, we give examples of the use of coordination con-
ditions and the preferential choice operator (Section 10). Finally, we make
some remarks about related work and mention some options for future work
(Section 11).

Some familiarity with the field of Boolean algebra is desirable. The definitions
of all notions concerning Boolean algebras that are used in this paper can, for
example, be found in Ref. [14].

2 PAδ with Coordination Conditions

PAδ is a subtheory of ACP that does not support communication (see e.g.
Ref. [3]). In this section, we present an extension of PAδ with encapsulation,
pre-abstraction and guarded commands, called PAcc

δ . Encapsulation was origi-
nally incorporated in ACP to encapsulate actions of a process from communi-
cation with actions from the outside (see Ref. [2]). Pre-abstraction was added
to ACP in Ref. [15] as a limited kind of abstraction: the actions from which
is abstracted are identified, but they remain observable as internal actions. 1

Guarded commands are conditional expressions of the form ζ :→ p, where ζ
and p are expressions representing a condition and a process, respectively.
Guarded commands were added to ACP for the first time in Ref. [17].

1 This limited kind of abstraction was not given a name in Ref. [15]. The name
pre-abstraction originates from Ref. [16].
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In PAcc
δ , just as in PAδ or ACP extended with pre-abstraction, it is assumed

that a fixed but arbitrary finite set of actions A, with δ 6∈ A and t ∈ A, has
been given. Action t is the internal action that replaces all occurrences of
actions from which is abstracted by means of pre-abstraction. Henceforth, we
write Aδ for A ∪ {δ}.

If it is permitted by the context in which a process is placed to perform
an action a, we say that a is enabled in that context. In PAcc

δ , we consider
conditions concerning the enabledness of actions. More precisely, conditions
are taken from the quotient algebra of the free Boolean algebra over {Ea | a ∈
A} by the equivalence induced by the equation Et = >. Henceforth, we write
C for this algebra and also for the domain of this algebra. The intuition is
that Ea holds if action a is enabled in the context present. Because no context
can prevent the internal action t from being performed, t is enabled in any
context. The elements of C are called coordination conditions.

The algebraic theory PAcc
δ has two sorts:

• the sort P of processes ;
• the sort C of conditions.

The algebraic theory PAcc
δ has the following constants and operators to build

terms of sort P:

• the deadlock constant δ : P;
• for each a ∈ A, the action constant a : P;
• the binary alternative composition operator + : P×P → P;
• the binary sequential composition operator · : P×P → P;
• the binary guarded command operator :→ : C×P → P;
• the binary parallel composition operator ‖ : P×P → P;
• the binary left merge operator bb : P×P → P;
• for each H ⊆ A \ {t}, the unary encapsulation operator ∂H : P → P;
• for each I ⊆ A, the unary pre-abstraction operator tI : P → P.

The algebraic theory PAcc
δ has the following constants and operators to build

terms of sort C:

• the bottom constant ⊥ : C;
• the top constant > : C;
• for each a ∈ A, the enabledness constant Ea : C;
• the unary complement operator − : C → C;
• the binary join operator t : C×C → C;
• the binary meet operator u : C×C → C;
• for each H ⊆ A \ {t}, the unary encapsulation operator ∂H : C → C;
• for each I ⊆ A, the unary pre-abstraction operator tI : C → C.
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Terms of sorts P and C are built as usual for a many-sorted signature (see
e.g. Refs. [18,19]). Throughout the paper, we assume that there are infinitely
many variables of sort P, including x, y, z, x1, y1, x2, y2, . . . , and infinitely many
variables of sort C, including φ, ψ, χ, φ1, ψ1, φ

′
1, ψ

′
1, φ2, ψ2, φ

′
2, ψ

′
2, . . . .

We use infix notation for the binary operators. The following precedence con-
ventions are used to reduce the need for parentheses. The operators to build
terms of sort C bind stronger than the operators to build terms of sort P.
The operator + binds weaker than all other binary operators to build terms
of sort P and the operators · and :→ bind stronger than all other binary
operators to build terms of sort P. The operator · binds weaker than :→ .

Let p and q be closed terms of sort P, ζ and ξ be closed terms of sort C,
a ∈ A, H ⊆ A \ {t}, and I ⊆ A. Intuitively, the constants and operators to
build terms of sort P can be explained as follows:

• δ can neither perform an action nor terminate successfully;
• a first performs action a unconditionally and then terminates successfully;
• p+ q behaves either as p or as q, but not both;
• p · q first behaves as p, but when p terminates successfully it continues by

behaving as q;
• ζ :→ p behaves as p under condition ζ;
• p ‖ q behaves as the process that proceeds with p and q in parallel;
• p bb q behaves the same as p ‖ q, except that it starts with performing an

action of p;
• ∂H(p) behaves the same as p, except that actions from H are blocked.
• tI(p) behaves the same as p, except that it performs the internal action t

whenever p would perform an action in I.

Intuitively, the constants and operators to build terms of sort C can be ex-
plained as follows:

• Ea is a condition that holds if action a is enabled in the context present;
• ⊥ is a condition that never holds;
• > is a condition that always holds;
• −ζ is the opposite of ζ;
• ζ t ξ is ζ or ξ;
• ζ u ξ is both ζ and ξ;
• ∂H(ζ) is ζ with all enabledness conditions Ea with a ∈ H replaced by ⊥;
• tI(ζ) is ζ with all enabledness conditions Ea with a ∈ I replaced by >.

In PAcc
δ , the enabledness of actions is affected only by encapsulation and pre-

abstraction. Encapsulation places a process in a context in which the encap-
sulated actions are disabled and pre-abstraction places a process in a context
in which the pre-abstracted actions are enabled.
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Table 1
Axioms of Boolean algebras

φ t ⊥ = φ BA1

φ t −φ = > BA2

φ t ψ = ψ t φ BA3

φ t (ψ u χ) = (φ t ψ) u (φ t χ) BA4

φ u > = φ BA5

φ u −φ = ⊥ BA6

φ u ψ = ψ u φ BA7

φ u (ψ t χ) = (φ u ψ) t (φ u χ) BA8

Some earlier extensions of ACP include conditional expressions of the form
p � ζ � q; see e.g. Ref. [20]. This notation with triangles originates from
Ref. [21]. We treat conditional expressions of the form p � ζ � q, where p
and q are terms of sort P and ζ is a term of sort C, as abbreviations. That is,
we write p� ζ � q for ζ :→ p+−ζ :→ q.

The axioms of PAcc
δ are the axioms of Boolean Algebras (BA) given in Table 1

and the additional axioms given in Table 2. Several axioms given in Table 2
are actually axiom schemas: a stands for an arbitrary element of Aδ, c stands
for an arbitrary element of A, H stands for an arbitrary subset of A \ {t}, and
I stands for an arbitrary subset of A.

The axioms of BA given in Table 1 have been taken from Ref. [22]. Several
alternatives for this axiomatization can be found in the literature. If we use
basic laws of BA other than axioms BA1–BA8 in a step of a derivation, we
will refer to them as applications of BA and not give their derivation from
axioms BA1–BA8.

The axioms of PAcc
δ include the axioms of PAδ (A1–A7 and M1–M4), the usual

axioms for encapsulation (D1–D4) and the usual axioms for pre-abstraction
(I1–I4), see e.g. Ref. [16]. Axioms GC1–GC8 have been taken from Ref. [20],
but in the case of GC5 and GC8 with adaptation to conditional expressions
of the form ζ :→ p. Axioms ET, GC11E, GC12E, ED1–ED7 and EI1–EI7 are
new. Axiom ET expresses that the internal action t is enabled in any context.
GC11E is not, like GC1–GC8, merely the adaptation of an axiom taken from
Ref. [20] to conditional expressions of the form ζ :→ p. That adaptation alone
would yield φ instead of ∂H(φ) in the right-hand side of GC11E. The reason for
the additional adaptation is that encapsulation places a process in a context
in which the encapsulated actions are disabled. Similarly, the reason for the
appearance of tH(φ) in the right-hand side of GC12E is that pre-abstraction
places a process in a context in which the pre-abstracted actions are enabled.
The defining axioms of encapsulation and pre-abstraction on conditions are
ED1–ED7 and EI1–EI7, respectively.

We will use the sum notation
∑
i∈I pi, where I = {i1, . . . , in} and pi1 , . . . , pin

are terms of sort P, for pi1 + . . .+pin . The convention is that
∑
i∈I pi stands for

δ if I = ∅. Note that the sum notation is not used for alternative composition
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Table 2
Axioms of PAcc

δ

x+ y = y + x A1

(x+ y) + z = x+ (y + z) A2

x+ x = x A3

(x+ y) · z = x · z + y · z A4

(x · y) · z = x · (y · z) A5

x+ δ = x A6

δ · x = δ A7

x ‖ y = x bb y + y bb x M1

a bb x = a · x M2

a · x bb y = a · (x ‖ y) M3

(x+ y) bb z = x bb z + y bb z M4

∂H(a) = a if a 6∈ H D1

∂H(a) = δ if a ∈ H D2

∂H(x+ y) = ∂H(x) + ∂H(y) D3

∂H(x · y) = ∂H(x) · ∂H(y) D4

tI(a) = a if a 6∈ I I1

tI(a) = t if a ∈ I I2

tI(x+ y) = tI(x) + tI(y) I3

tI(x · y) = tI(x) · tI(y) I4

Et = > ET

> :→ x = x GC1

⊥ :→ x = δ GC2

φ :→ δ = δ GC3

φ :→ (x+ y) = φ :→ x+ φ :→ y GC4

φ :→ (x · y) = φ :→ x · y GC5

φ :→ (ψ :→ x) = φ u ψ :→ x GC6

φ t ψ :→ x = φ :→ x+ ψ :→ x GC7

φ :→ x bb y = φ :→ (x bb y) GC8

∂H(φ :→ x) = ∂H(φ) :→ ∂H(x) GC11E

tI(φ :→ x) = tI(φ) :→ tI(x) GC12E

∂H(⊥) = ⊥ ED1

∂H(>) = > ED2

∂H(Ec) = Ec if c 6∈ H ED3

∂H(Ec) = ⊥ if c ∈ H ED4

∂H(−φ) = −∂H(φ) ED5

∂H(φ t ψ) = ∂H(φ) t ∂H(ψ) ED6

∂H(φ u ψ) = ∂H(φ) u ∂H(ψ) ED7

tI(⊥) = ⊥ EI1

tI(>) = > EI2

tI(Ec) = Ec if c 6∈ I EI3

tI(Ec) = > if c ∈ I EI4

tI(−φ) = −tI(φ) EI5

tI(φ t ψ) = tI(φ) t tI(ψ) EI6

tI(φ u ψ) = tI(φ) u tI(ψ) EI7

over an infinite set of alternatives.

An interesting subtheory of PAcc
δ is BPAcc

δ . This subtheory is obtained by
removing the parallel composition operator, the left merge operator, the en-
capsulation operators and the pre-abstraction operators from the signature of
PAcc

δ and removing all axioms in which these operators occur from the ax-
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ioms of PAcc
δ – in other words, the axioms of BPAcc

δ are BA1–BA8, A1–A7,
GC1–GC7, ET.

To prove a statement for all closed terms of sort P from the language of
BPAcc

δ , it is sufficient to prove it for all basic terms. The set B of basic terms
is inductively defined by the following rules:

• δ ∈ B;
• if ζ is a closed term of sort C and a ∈ A, then ζ :→ a ∈ B;
• if ζ is a closed term of sort C, a ∈ A and p ∈ B, then ζ :→ a · p ∈ B;
• if p, q ∈ B, then p+ q ∈ B.

The basic terms are exactly the closed terms of sort P from the language of
BPAcc

δ of the form

∑
i<n

ζi :→ ai · pi +
∑
i<m

ξi :→ bi ,

where a0, . . . , an−1, b0, . . . , bm−1 ∈ A, ζ0, . . . , ζn−1, ξ0, . . . , ξm−1 are closed terms
of sort C and p0, . . . , pn−1 are basics terms (n,m ≥ 0). We can prove that all
closed terms of sort P from the language of BPAcc

δ are derivably equal to a
basic term.

Lemma 1 (Elimination for BPAcc
δ ) For all closed terms p of sort P from

the language of BPAcc
δ , there exists a basic term q ∈ B such that BPAcc

δ ` p =
q.

PROOF. The term rewriting system consisting of axioms A4–A7 and GC1–
GC7 oriented from left to right is strongly normalizing. This can be proved by
using the method of lexicographical path ordering of Kamin and Lévy (see e.g.
Ref. [23]), making the signature one-sorted, taking the ordering :→ > · > +,
:→ > δ, :→ > u, and giving the lexicographical status for the first argument
to · and the lexicographical status for the second argument to :→. Moreover,
it is easy to see that each normal form is a basic term. 2

We can also prove that all closed terms of sort P from the language of PAcc
δ

are derivably equal to a basic term.

Lemma 2 (Elimination for PAcc
δ ) For all closed terms p of sort P from

the language of PAcc
δ , there exists a basic term q ∈ B such that PAcc

δ ` p = q.

PROOF. In the proof use is made of the weight of a term p, written |p|. It
is inductively defined as follows: |30| = 1 for constants 30, |31(p)| = |p| for
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unary operators 31, |p32 q| = |p|+ |q| for binary operators 32 not in {+,t},
and |p32 q| = max{|p|, |q|} for 32 in {+,t}.

The term rewriting system consisting of all axioms of PAcc
δ , except BA1–BA8

and A1–A3, oriented from left to right is strongly normalizing. This can be
proved by using the method of lexicographical path ordering of Kamin and
Lévy, making the signature one-sorted, ranking the operators ‖ and bb by the
sum of the weights of their arguments as in Ref. [24], taking the ordering
. . . > ‖3 > bb3 > ‖2 > bb2 > :→ > · > +, :→ > δ, :→ > u, ∂H > :→, ∂H > ⊥,
∂H > −, ∂H > t, tI > :→, tI > t, tI > >, tI > −, tI > t, for all H ⊆ A \ {t}
and I ⊆ A, and giving the lexicographical status for the first argument to ·
and the lexicographical status for the second argument to :→. Moreover, it is
easy to see that each normal form is a basic term. 2

Moreover, we can prove that PAcc
δ is a conservative extension of BPAcc

δ .

Lemma 3 (Conservative extension) If p and q are closed terms of sort P
from the language of BPAcc

δ , then BPAcc
δ ` p = q iff PAcc

δ ` p = q.

PROOF. The implication from left to right follows immediately from the fact
that the axioms of BPAcc

δ are included in the axioms of PAcc
δ . The implication

from right to left is proved as follows. Let p and q be closed terms of sort
P from the language of BPAcc

δ such that PAcc
δ ` p = q. Because it is left-

linear and non-overlapping (see e.g. Ref. [23]), the term rewriting system used
in the proof of Lemma 2 is confluent modulo axioms A1–A3 and BA1–BA8.
Consequently, the reductions of p and q by means of this term rewriting system
yields the same normal form modulo axioms A1–A3 and BA1–BA8. Moreover,
the reductions of p and q only use axioms A4–A7 and GC1–GC7, oriented from
left to right, because the additional operators of PAcc

δ do not occur in p and
q, and no rewrite rule introduces occurrences of those operators that were not
already there in its left-hand side. Hence, the reduction of p into its normal
form followed by the reverse of the reduction of q into its normal form is a
proof of p = q in BPAcc

δ . 2

The preceding three lemmas will be useful in the completeness proof of PAcc
δ

for the full splitting bisimulation models of PAcc
δ that will be introduced in

Section 4.

Terms of sort C are interpreted in C as usual (see e.g. Ref. [14]), the association
of operations with the extra-Boolean operators ∂H and tI excepted. With
the operator ∂H is associated the unique endomorphism of C extending the
function ∂H on {Ea | a ∈ A} defined by ∂H(Ea) = ⊥ if a ∈ H and ∂H(Ea) = Ea
if a 6∈ H; and with the operator tI is associated the unique endomorphism of
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C extending the function tI on {Ea | a ∈ A} defined by tI(Ea) = > if a ∈ I
and tI(Ea) = Ea if a 6∈ I. It follows automatically that axioms BA1–BA8,
ED1–ED7 and EI1–EI7 constitute a sound and complete axiomatization of
the expansion of C with the operations ∂H and tI defined above. Henceforth,
we loosely write C for this expansion of C. In the above, and in subsequent
sections, the constants and operators to build terms of sort C are also used at
the meta level as names for the elements of C and operations on C associated
with them.

We proceed to the presentation of the structural operational semantics of PAcc
δ .

The following relations on closed terms of sort P from the language of PAcc
δ

are used:

• for each ` ∈ (C \ {⊥})× A, a binary relation `−→;

• for each ` ∈ (C \ {⊥})× A, a unary relation `−→
√

.

We write p
[α] a−−→ q instead of (p, q) ∈ (α,a)−−−→ and p

[α] a−−→
√

instead of p ∈
(α,a)−−−→

√
. The relations `−→

√
and `−→ can be explained as follows:

• p
[α] a−−→

√
: p is capable of performing action a under condition α and then

terminating successfully;

• p
[α] a−−→ q: p is capable of performing action a under condition α and then

proceeding as q.

The structural operational semantics of PAcc
δ is described by the transition

rules given in Table 3. We will return to this structural operational semantics
in Section 5.

3 Transition Systems and Splitting Bisimilarity for PAcc
δ

In this section, we introduce conditional transition systems and splitting bisim-
ilarity of conditional transition systems. In Section 4, we will make use of
conditional transition systems and splitting bisimilarity of conditional transi-
tion systems to construct models of PAcc

δ . In Section 5, we will show that the
structural operational semantics presented in Section 2 induces a conditional
transition system for each closed term of sort P from the language of PAcc

δ .

Conditional transition systems are labelled transition systems of which the
labels consist of a condition different from ⊥ and an action. Labels of this kind
are sometimes called guarded actions. Henceforth, we write C− for C \ {⊥}.

A conditional transition system T consists of the following:
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Table 3
Transition rules for PAcc

δ

a
[>] a−−−→

√

x
[φ] a−−−→

√

x+ y
[φ] a−−−→

√
y

[φ] a−−−→
√

x+ y
[φ] a−−−→

√
x

[φ] a−−−→ x′

x+ y
[φ] a−−−→ x′

y
[φ] a−−−→ y′

x+ y
[φ] a−−−→ y′

x
[φ] a−−−→

√

x · y [φ] a−−−→ y

x
[φ] a−−−→ x′

x · y [φ] a−−−→ x′ · y

x
[φ] a−−−→

√

ψ :→ x
[φuψ] a−−−−−→

√ φ u ψ 6= ⊥
x

[φ] a−−−→ x′

ψ :→ x
[φuψ] a−−−−−→ x′

φ u ψ 6= ⊥

x
[φ] a−−−→

√

x ‖ y [φ] a−−−→ y

y
[φ] a−−−→

√

x ‖ y [φ] a−−−→ x

x
[φ] a−−−→ x′

x ‖ y [φ] a−−−→ x′ ‖ y

y
[φ] a−−−→ y′

x ‖ y [φ] a−−−→ x ‖ y′

x
[φ] a−−−→

√

x bb y [φ] a−−−→ y

x
[φ] a−−−→ x′

x bb y [φ] a−−−→ x′ ‖ y

x
[φ] a−−−→

√

∂H(x) [∂H(φ)] a−−−−−−→
√ a 6∈ H, ∂H(φ) 6= ⊥

x
[φ] a−−−→ x′

∂H(x) [∂H(φ)] a−−−−−−→ ∂H(x′)
a 6∈ H, ∂H(φ) 6= ⊥

x
[φ] a−−−→

√

tI(x)
[tI(φ)] a−−−−−→

√ a 6∈ I, tI(φ) 6= ⊥
x

[φ] a−−−→ x′

tI(x)
[tI(φ)] a−−−−−→ tI(x′)

a 6∈ I, tI(φ) 6= ⊥

x
[φ] a−−−→

√

tI(x)
[tI(φ)] t−−−−−→

√ a ∈ I, tI(φ) 6= ⊥
x

[φ] a−−−→ x′

tI(x)
[tI(φ)] t−−−−−→ tI(x′)

a ∈ I, tI(φ) 6= ⊥

• a set S of states ;
• a set `−→ ⊆ S × S, for each ` ∈ C− × A;
• a set `−→

√
⊆ S, for each ` ∈ C− × A;

• an initial state s0 ∈ S.

If (s, s′) ∈ `−→ for some ` ∈ C−×A, then we say that there is a transition from s

to s′. We usually write s
[α] a−−→ s′ instead of (s, s′) ∈ (α,a)−−−→ and s

[α] a−−→
√

instead

of s ∈ (α,a)−−−→
√

. Furthermore, we write −→ for the family of sets ( `−→)`∈C−×A and

−→
√

for the family of sets ( `−→
√

)`∈C−×A.

The relations `−→
√

and `−→ can be explained as follows:

• s
[α] a−−→

√
: in state s, it is possible to perform action a under condition α,

and by doing so to terminate successfully;

• s
[α] a−−→ s′: in state s, it is possible to perform action a under condition α,

12



and by doing so to make a transition to state s′.

A conditional transition system may have states that are not reachable from
its initial state by a number of transitions. Connected conditional transition
systems are transition systems without unreachable states.

Let T = (S,−→,−→
√
, s0) be a conditional transition system. Then the reacha-

bility relation of T is the smallest relation →→ ⊆ S × S such that:

• s→→ s;
• if s `−→ s′ and s′ →→ s′′, then s→→ s′′.

We write RS(T ) for {s ∈ S | s0 →→ s}. T is called a connected conditional
transition system if S = RS(T ). Henceforth, we only consider connected condi-
tional transition systems. This often calls for extraction of the connected part
of a conditional transition system that is composed of connected conditional
transition systems.

Let T = (S,−→,−→
√
, s0) be a conditional transition system that is not nec-

essarily connected. Then the connected part of T , written Γ(T ), is defined as
follows:

Γ(T ) = (S ′,−→′,−→
√′, s0) ,

where

S ′ = RS(T ) ,

and for every ` ∈ C− × A:

`−→′ = `−→∩ (S ′ × S ′) ,

`−→
√′ = `−→

√
∩ S ′ .

It is assumed that for each infinite cardinal κ a fixed but arbitrary set Sκ with
the following properties has been given:

• the cardinality of Sκ is greater than or equal to κ;
• if S1, S2 ⊆ Sκ, then S1 ] S2 ⊆ Sκ and S1 × S2 ⊆ Sκ. 2

2 We write A ]B for the disjoint union of sets A and B, i.e. A ]B = (A× {∅}) ∪
(B × {{∅}}). We write µ1 and µ2 for the associated injections µ1 : A→ A ]B and
µ2 :B → A ]B, defined by µ1(a) = (a, ∅) and µ2(b) = (b, {∅}).

13



Let κ be an infinite cardinal. Then CTSκ is the set of all connected conditional
transition systems T = (S,−→,−→

√
, s0) such that S ⊂ Sκ and the branching

degree of T is less than κ, i.e. for all s ∈ S, the cardinality of the set {(`, s′) ∈
(C− × A)× S | (s, s′) ∈ `−→} ∪ {` ∈ C− × A | s ∈ `−→

√
} is less than κ. 3

The condition S ⊂ Sκ guarantees that CTSκ is indeed a set.

A conditional transition system is said to be finitely branching if its branching
degree is less than ℵ0. Otherwise, it is said to be infinitely branching.

Remark 4 We consider both finitely branching and infinitely branching con-
ditional transition systems. Infinitely branching conditional transition systems
cannot be described by means of the constants and operators of PAcc

δ , not even
together with guarded recursion (see Section 8). Like in Ref. [1], we prefer to
consider not only finitely branching conditional transition systems in order to
make later generalizations possible. For example, we are semantically prepared
for removing the restriction that the set A of actions is finite and introducing
an operator for alternative composition over an infinite set of alternatives.

Conditional transition systems that differ only with respect to the identity of
the states are isomorphic.

Let T1 = (S1,−→1,−→
√

1, s
0
1) and T2 = (S2,−→2,−→

√
2, s

0
2) be conditional tran-

sition systems. Then T1 and T2 are isomorphic, written T1
∼= T2, if there exists

a bijective function b : S1 → S2 such that:

• b(s0
1) = s0

2;

• s1
`−→1 s

′
1 iff b(s1)

`−→2 b(s
′
1);

• s `−→
√

1 iff b(s) `−→
√

2.

Henceforth, we always consider two conditional transition systems essentially
the same if they are isomorphic.

Remark 5 The set CTSκ is independent of Sκ. By that we mean the follow-
ing. Let CTSκ and CTS′κ result from different choices for Sκ. Then there exists
a bijection b : CTSκ → CTS′κ such that for all T ∈ CTSκ, T ∼= b(T ).

Bisimilarity has to be adapted to the setting with guarded actions. In the
definition given below, we use a well-known notion from the field of Boolean
algebra: the partial order relation v on C defined by

α v β iff α t β = β .

3 In Ref. [1], the definition of CTSκ is given for an arbitrary set of atomic conditions.
In the case where the set {Ea | a ∈ A} is taken as the set of atomic conditions, that
definition and the definition given here are essentially the same.
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Moreover, we use the notation
⊔
A, where A = {α1, . . . , αn} ⊆ C, for α1t . . .t

αn.

Let T1 = (S1,−→1,−→
√

1, s
0
1) ∈ CTSκ and T2 = (S2,−→2,−→

√
2, s

0
2) ∈ CTSκ (for

an infinite cardinal κ). Then a splitting bisimulation B between T1 and T2 is
a binary relation B ⊆ S1 × S2 such that B(s0

1, s
0
2) and for all s1, s2 such that

B(s1, s2):

• if s1
[α] a−−→1 s

′
1, then there is a set CS ′2 ⊆ C−×S2 such that α v ⊔

dom(CS ′2)

and for all (α′, s′2) ∈ CS ′2, s2
[α′] a−−−→2 s

′
2 and B(s′1, s

′
2);

4

• if s2
[α] a−−→2 s

′
2, then there is a set CS ′1 ⊆ C−×S1 such that α v ⊔

dom(CS ′1)

and for all (α′, s′1) ∈ CS ′1, s1
[α′] a−−−→1 s

′
1 and B(s′1, s

′
2);

• if s1
[α] a−−→

√
1, then there is a set C ′ ⊆ C− such that α v ⊔

C ′ and for all

α′ ∈ C ′, s2
[α′] a−−−→

√
2;

• if s2
[α] a−−→

√
2, then there is a set C ′ ⊆ C− such that α v ⊔

C ′ and for all

α′ ∈ C ′, s1
[α′] a−−−→

√
1.

Two conditional transition systems T1, T2 ∈ CTSκ are splitting bisimilar, writ-
ten T1 ⇔ T2, if there exists a splitting bisimulation B between T1 and T2. Let
B be a splitting bisimulation between T1 and T2. Then we say that B is a
splitting bisimulation witnessing T1 ⇔ T2.

It is easy to see that ⇔ is an equivalence on CTSκ. Let T ∈ CTSκ. Then we
write [T ]⇔ for {T ′ ∈ CTSκ | T ⇔ T ′}, i.e. the ⇔ -equivalence class of T . We
write CTSκ/⇔ for the set of equivalence classes {[T ]⇔ | T ∈ CTSκ}.

In Section 4, we will use CTSκ/⇔ as domain of a structure that is a model
of PAcc

δ . As domain of a structure, CTSκ/⇔ must be a set. That is the case
because CTSκ is a set. The latter is guaranteed by considering only conditional
transition systems of which the set of states is a subset of Sκ.

Remark 6 The question arises whether Sκ is large enough if its cardinality
is greater than or equal to κ. This question can be answered in the affirmative.
Let T = (S,−→,−→

√
, s0) be a connected conditional transition system of which

the branching degree is less than κ. Then there exists a connected conditional
transition system T ′ = (S ′,−→′,−→

√′, s0′) of which the branching degree is less
than κ such that T ⇔ T ′ and the cardinality of S ′ is less than κ.

It is easy to see that, if we would consider conditional transition systems
with unreachable states as well, each conditional transition system would be
splitting bisimilar to its connected part. This justifies the choice to consider

4 If for some sets A and B, R ⊆ A × B, then we write dom(R) for the domain of
the relation R, i.e. dom(R) = {a ∈ A | ∃b ∈ B • (a, b) ∈ R}.
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only connected conditional transition systems. It is easy to see that isomorphic
conditional transition systems are splitting bisimilar. This justifies the choice
to consider conditional transition systems essentially the same if they are
isomorphic.

The name splitting bisimulation is used because a transition of one of the
related transition systems may be simulated by a set of transitions of the other
transition system. Splitting bisimulation should not be confused with split
bisimulation [25]. We think that splitting bisimulation can be reformulated
in a style that is similar to the style in which probabilistic bisimulation is
formulated in Ref. [26]. We refrain from such a reformulation because it would
require the introduction of various auxiliary notions and notations. At the
end of this section, we sketch how splitting bisimilarity is related to ordinary
bisimilarity.

Remark 7 At first sight, splitting bisimulation resembles (early and late)
symbolic bisimulation as introduced in Ref. [27]. However, the resemblance
is incidental. Symbolic bisimulation concerns symbolic transition systems. The
states of a symbolic transition system play the role of open terms and the tran-
sitions are labelled by “symbolic guarded actions” which evaluate to guarded
actions, with > or ⊥ as condition, for each assignment of values to free vari-
ables. Thus, the concrete transitions from a state are assignment dependent.
Splitting bisimulation concerns conditional transition systems in which vari-
ables ranging over values play no part at all. The differences between standard
bisimulation and splitting bisimulation find their origin in the fact that a tran-
sition of one of the related conditional transition systems may be simulated by
a set of transitions of the other conditional transition system. The differences
between standard bisimulation and symbolic bisimulation find their origin in
the fact that a state of one of the related symbolic transition systems may cor-
respond to different states of the other symbolic transition system under differ-
ent assignments of values to free variables. Taking these different origins into
account, it is surprising that splitting bisimulation resembles symbolic bisim-
ulation at first sight. However, the resemblance is disturbed by the following
difference between splitting bisimulation and symbolic bisimulation: splitting
bisimulation is a binary relation on states, whereas symbolic bisimulation is
a family of binary relation on states indexed by a set of Boolean expressions.
Being such indexed families of relations happens to be the essence of symbolic
bisimulations.

In the remainder of this section, we sketch how splitting bisimilarity is related
to ordinary bisimilarity.

Let T = (S,−→,−→
√
, s0) ∈ CTSκ (for an infinite cardinal κ). We write 'T for

the maximal splitting bisimulation witnessing T ⇔ T (such a relation always
exists). It is easy to see that 'T is an equivalence relation on S. It identifies
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states of T that can simulate the conditional transitions of each other. The
condition-normal form of T , written CN(T ), is defined as follows:

CN(T ) = (S,−→′,−→
√′, s0) ,

where for every (α, a) ∈ C− × A:

(α,a)−−−→′ =
{
(s, s′)

∣∣∣ ∃β • s
[β] a−−→ s′ ∧

α =
⊔{
β′

∣∣∣ ∃s′′ • (
s′ 'T s

′′ ∧ s [β′] a−−−→ s′′
)}}

,

(α,a)−−−→
√′ =

{
s

∣∣∣ ∃β • s
[β] a−−→

√
∧ α =

⊔{
β′

∣∣∣ s [β′] a−−−→
√}}

.

It is easy to see that CN(T ) ∈ CTSκ and T ⇔ CN(T ). We have T = CN(T )
iff T has the following properties:

• if s1
[α] a−−→ s′1, s1

[β] a−−→ s′′1 and s′1 'T s
′′
1, then α = β;

• if s1
[α] a−−→

√
and s1

[β] a−−→
√

, then α = β.

We say that T is condition-normal if T = CN(T ).

Let T1 = (S1,−→1,−→
√

1, s
0
1) ∈ CTSκ and T2 = (S2,−→2,−→

√
2, s

0
2) ∈ CTSκ (for

an infinite cardinal κ). Then a bisimulation B between T1 and T2 is a binary
relation B ⊆ S1 × S2 such that B(s0

1, s
0
2) and for all s1, s2 such that B(s1, s2):

• if s1
`−→1 s

′
1, then there is a s′2 ∈ S2 such that s2

`−→2 s
′
2 and B(s′1, s

′
2);

• if s2
`−→2 s

′
2, then there is a s′1 ∈ S1 such that s1

`−→1 s
′
1 and B(s′1, s

′
2);

• s1
`−→
√

1 iff s2
`−→
√

2.

Two conditional transition systems T1, T2 ∈ CTSκ are bisimilar, written
T1 ↔ T2, if there exists a bisimulation B between T1 and T2. We have
CN(T1) ⇔ CN(T2) iff CN(T1) ↔ CN(T2). So, splitting bisimilarity and ordi-
nary bisimilarity coincide on condition-normal conditional transition systems.
It is worth mentioning that we do not have this result if we replace s′ 'T s

′′

by s′ = s′′ in the definition of CN.

4 Full Splitting Bisimulation Models of PAcc
δ

In this section, we introduce the full splitting bisimulation models of PAcc
δ .

They are models in which equivalence classes of conditional transition sys-
tems modulo splitting bisimilarity are taken as processes. The qualification
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“full” originates from Ref. [28]. It expresses that there exist other splitting
bisimulation models, but each of them is isomorphically embedded in a full
splitting bisimulation model.

There is a full splitting bisimulation model of PAcc
δ for each infinite cardinal. To

obtain the full splitting bisimulation model of PAcc
δ for a fixed infinite cardinal

κ, we associate the set CTSκ/⇔ with the sort P, an element of CTSκ/⇔ with
each of the constants δ and a (a ∈ A), and an operation on CTSκ/⇔ with
each of the operators + , · , :→ , ‖ , bb , ∂H (H ⊆ A \ {t}) and tI (I ⊆ A). 5

We begin by associating elements of CTSκ and operations on CTSκ with these
constants and operators. The result of this is subsequently lifted to CTSκ/⇔.

It is assumed that for each infinite cardinal κ a fixed but arbitrary choice
function chκ : (P(Sκ)\∅) → Sκ such that for all S ∈ P(Sκ)\∅, chκ(S) ∈ S has
been given. The function chκ is used whenever there is a need to get a fresh
state from Sκ.

We will use the abbreviation s a−→ s′ os′′ for s a−→ s′∨(s a−→
√
∧s′ = s′′). Usually,

s′′ is a state that takes the place of s′ in the case of termination. This is useful
where termination has to be turned into a state, as with parallel composition
of conditional transition systems.

We associate with each constant c mentioned above an element ĉ of CTSκ and
with each operator f mentioned above an operation f̂ on CTSκ as follows.

• δ̂ = ({s0}, ∅, ∅, s0) ,

where

s0 = chκ(Sκ) .

• â = ({s0}, ∅,−→
√
, s0) ,

where

s0 = chκ(Sκ) ,
(>,a)−−−→

√
= {s0} ,

and for every (α, a′) ∈ (C− × A) \ {(>, a)}:

(α,a′)−−−→
√

= ∅ .

5 In this paper, we loosely include the operation associated with the operator :→
in the operations on CTSκ/⇔. Actually, it is an operation from C × CTSκ/⇔ to
CTSκ/⇔.
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• Let Ti = (Si,−→i,−→
√
i, s

0
i ) ∈ CTSκ for i = 1, 2. Then

T1 +̂ T2 = Γ(S,−→,−→
√
, s0) ,

where

s0 = chκ(Sκ \ (S1 ] S2)) ,

S = {s0} ∪ (S1 ] S2) ,

and for every (α, a) ∈ C− × A:

(α,a)−−−→ =
{
(s0, µ1(s))

∣∣∣ s0
1

[α] a−−→1 s
}

∪
{
(s0, µ2(s))

∣∣∣ s0
2

[α] a−−→2 s
}

∪
{
(µ1(s), µ1(s

′))
∣∣∣ s [α] a−−→1 s

′
}

∪
{
(µ2(s), µ2(s

′))
∣∣∣ s [α] a−−→2 s

′
}
,

(α,a)−−−→
√

=
{
s0

∣∣∣ s0
1

[α] a−−→
√

1

}
∪

{
s0

∣∣∣ s0
2

[α] a−−→
√

2

}
∪

{
µ1(s)

∣∣∣ s [α] a−−→
√

1

}
∪

{
µ2(s)

∣∣∣ s [α] a−−→
√

2

}
.

• Let Ti = (Si,−→i,−→
√
i, s

0
i ) ∈ CTSκ for i = 1, 2. Then

T1 ·̂ T2 = Γ(S,−→,−→
√
, s0) ,

where

S = S1 ] S2 ,

s0 = µ1(s
0
1) ,

and for every (α, a) ∈ C− × A:

(α,a)−−−→ =
{
(µ1(s), µ1(s

′))
∣∣∣ s [α] a−−→1 s

′
}

∪
{
(µ1(s), µ2(s

0
2))

∣∣∣ s [α] a−−→
√

1

}
∪

{
(µ2(s), µ2(s

′))
∣∣∣ s [α] a−−→2 s

′
}
,

(α,a)−−−→
√

=
{
µ2(s)

∣∣∣ s [α] a−−→
√

2

}
.

• Let α ∈ C and T = (S,−→,−→
√
, s0) ∈ CTSκ. Then

α :̂→ T = Γ(S,−→′,−→
√′, s0) ,
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where for every (α′, a) ∈ C− × A:

(α′,a)−−−→′ =
{
(s0, s′)

∣∣∣ ∃β •
(
s0 [β] a−−→ s′ ∧ α′ = α u β

)}
∪

{
(s, s′)

∣∣∣ s [α′] a−−−→ s′ ∧ s 6= s0
}
,

(α′,a)−−−→
√′ =

{
s0

∣∣∣ ∃β •
(
s0 [β] a−−→

√
∧ α′ = α u β

)}
∪

{
s

∣∣∣ s [α′] a−−−→
√
∧ s 6= s0

}
.

• Let Ti = (Si,−→i,−→
√
i, s

0
i ) ∈ CTSκ for i = 1, 2. Then

T1 ‖̂ T2 = (S,−→,−→
√
, s0) ,

where

s0 = (s0
1, s

0
2) ,

s
√

= chκ(Sκ \ (S1 ∪ S2)) ,

S = ((S1 ∪ {s
√
})× (S2 ∪ {s

√
})) \ {(s

√
, s

√
)} ,

and for every (α, a) ∈ C− × A:

(α,a)−−−→ =
{
((s1, s2), (s

′
1, s2))

∣∣∣ (s′1, s2) ∈ S ∧ s1
[α] a−−→1 s

′
1 o s

√}
∪

{
((s1, s2), (s1, s

′
2))

∣∣∣ (s1, s
′
2) ∈ S ∧ s2

[α] a−−→2 s
′
2 o s

√}
,

(α,a)−−−→
√

=
{
(s1, s

√
)

∣∣∣ s1
[α] a−−→

√
1

}
∪

{
(s

√
, s2)

∣∣∣ s2
[α] a−−→

√
2

}
.

• Let Ti = (Si,−→i,−→
√
i, s

0
i ) ∈ CTSκ for i = 1, 2. Suppose that T1 ‖̂ T2 =

(S,−→,−→
√
, s0) where S = ((S1 ∪ {s

√
}) × (S2 ∪ {s

√
})) \ {(s

√
, s

√
)} and

s
√

= chκ(Sκ \ (S1 ∪ S2)). Then

T1 b̂b T2 = Γ(S ′,−→′,−→
√
, s0′) ,

where

s0′ = chκ(Sκ \ S) ,

S ′ = {s0′} ∪ S ,

and for every (α, a) ∈ C− × A:

(α,a)−−−→′ =
{
(s0′, (s, s0

2))
∣∣∣ s0

1
[α] a−−→1 s o s

√}
∪ (α,a)−−−→ .
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• Let T = (S,−→,−→
√
, s0) ∈ CTSκ. Then

∂̂H(T ) = Γ(S,−→′,−→
√′, s0) ,

where for every (α, a) ∈ C− × (A \H):

(α,a)−−−→′ =
{
(s, s′)

∣∣∣ ∃α′ • (
s

[α′] a−−−→ s′ ∧ α = ∂H(α′)
)}

,

(α,a)−−−→
√′ =

{
s

∣∣∣ ∃α′ • (
s

[α′] a−−−→
√
∧ α = ∂H(α′)

)}
,

and for every (α, a) ∈ C− ×H:

(α,a)−−−→′ = ∅ ,

(α,a)−−−→
√′ = ∅ .

• Let T = (S,−→,−→
√
, s0) ∈ CTSκ. Then

t̂I (T ) = Γ(S,−→′,−→
√′, s0) ,

where for every (α, a) ∈ C− × ((A \ I) \ {t}):

(α,a)−−−→′ =
{
(s, s′)

∣∣∣ ∃α′ • (
s

[α′] a−−−→ s′ ∧ α = tI(α
′)

)}
,

(α,a)−−−→
√′ =

{
s

∣∣∣ ∃α′ • (
s

[α′] a−−−→
√
∧ α = tI(α

′)
)}

,

and for every α ∈ C−:

(α,t)−−−→′ =
{
(s, s′)

∣∣∣ ∃α′, a •
(
s

[α′] a−−−→ s′ ∧ a ∈ I ∪ {t} ∧ α = tI(α
′)

)}
,

(α,t)−−−→
√′ =

{
s

∣∣∣ ∃α′, a •
(
s

[α′] a−−−→
√
∧ a ∈ I ∪ {t} ∧ α = tI(α

′)
)}

,

and for every (α, a) ∈ C− × (I \ {t}):

(α,a)−−−→′ = ∅ ,

(α,a)−−−→
√′ = ∅ .

In the definition of alternative composition on CTSκ, the connected part of
a conditional transition system is extracted because the initial states of the
conditional transition systems T1 and T2 may be unreachable from the new
initial state. The new initial state is introduced because, in T1 and/or T2, there
may exist a transition back to the initial state. In the definition of sequential
composition on CTSκ, the connected part of a conditional transition system
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is extracted because the initial state of the conditional transition system T2

may be unreachable from the initial state of the conditional transition system
T1, due to absence of termination in T1.

Remark 8 The elements of CTSκ and the operations on CTSκ defined above
are independent of chκ. Different choices for chκ lead for each constant to
isomorphic elements of CTSκ and lead for each operator to operations on
CTSκ with isomorphic results.

We can easily show that splitting bisimilarity is a congruence with respect to
alternative composition, sequential composition, guarded command, parallel
composition, left merge, encapsulation and pre-abstraction.

Lemma 9 (Congruence) Let κ be an infinite cardinal. Then for all
T1, T2, T

′
1, T

′
2 ∈ CTSκ and α ∈ C, T1 ⇔ T ′1 and T2 ⇔ T ′2 imply T1+̂T2 ⇔ T ′1+̂T

′
2,

T1 ·̂ T2 ⇔ T ′1 ·̂ T ′2, α :̂→ T1 ⇔ α :̂→ T ′1, T1 ‖̂ T2 ⇔ T ′1 ‖̂ T ′2, T1 b̂b T2 ⇔ T ′1 b̂b T ′2,
∂̂H(T1)⇔ ∂̂H(T ′1) and t̂I (T1)⇔ t̂I (T ′1).

PROOF. Let Ti = (Si,−→i,−→
√
i, s

0
i ) and T ′i = (S ′i,−→′

i,−→
√′
i, s

0
i
′) for i = 1, 2.

Let R1 and R2 be splitting bisimulations witnessing T1 ⇔ T ′1 and T2 ⇔ T ′2,
respectively. Then we construct relations R+̂, R̂·, R:̂→, R‖̂, Rb̂b, R∂̂H

and R t̂I
,

as follows:

• R+̂ = ({(s0, s0′)}∪µ1(R1)∪µ2(R2))∩ (S×S ′), where S and S ′ are the sets
of states of T1 +̂ T2 and T ′1 +̂ T ′2, respectively, and s0 and s0′ are the initial
states of T1 +̂ T2 and T ′1 +̂ T ′2, respectively;

• R̂· = (µ1(R1) ∪ µ2(R2)) ∩ (S × S ′), where S and S ′ are the sets of states of
T1 ·̂ T2 and T ′1 ·̂ T ′2, respectively;

• R:̂→ = R1 ∩ (S × S ′), where S and S ′ are the sets of states of α :̂→ T1 and
α :̂→ T ′1, respectively;

• R‖̂ = {((s1, s2), (s
′
1, s

′
2)) ∈ S × S ′ | (s1, s

′
1) ∈ R1 ∪ R

√
, (s2, s

′
2) ∈ R2 ∪ R

√
},

where S and S ′ are the sets of states of T1 ‖̂T2 and T ′1 ‖̂T ′2, respectively, and
R
√

= {(chκ(Sκ \ (S1 ∪ S2)), chκ(Sκ \ (S ′1 ∪ S ′2)))};
• Rb̂b = ({(s0, s0′)} ∪ R‖̂) ∩ (S × S ′), where S and S ′ are the sets of states

of T1 b̂b T2 and T ′1 b̂b T ′2, respectively, and s0 and s0′ are the initial states of

T1 b̂b T2 and T ′1 b̂b T ′2, respectively;

• R
∂̂H

= R1 ∩ (S × S ′), where S and S ′ are the sets of states of ∂̂H(T1) and

∂̂H(T ′1), respectively;
• R t̂I

= R1 ∩ (S × S ′), where S and S ′ are the sets of states of t̂I (T1) and

t̂I (T ′1), respectively.

Here, we write µi(Ri) for {(µi(s), µi(s′)) | Ri(s, s
′)}, where µi is used to denote

both the injection of Si into S1]S2 and the injection of S ′i into S ′1]S ′2. Given
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the definitions of alternative composition, sequential composition, guarded
command, parallel composition, left merge, encapsulation and pre-abstraction,
it is easy to see that R+̂, R̂·, R:̂→, R‖̂, Rb̂b, R∂̂H

and R t̂I
are splitting bisim-

ulations witnessing T1 +̂ T2 ⇔ T ′1 +̂ T ′2, T1 ·̂ T2 ⇔ T ′1 ·̂ T ′2, α :̂→ T1 ⇔ α :̂→ T ′1,

T1 ‖̂ T2 ⇔ T ′1 ‖̂ T ′2, T1 b̂b T2 ⇔ T ′1 b̂b T ′2, ∂̂H(T1)⇔ ∂̂H(T ′1) and t̂I (T1)⇔ t̂I (T ′1),
respectively. 2

The full splitting bisimulation models Pcc
κ , one for each infinite cardinal κ, are

the expansions of C with: 6

• for the sort P, a non-empty set P ;
• for the constant δ, an element δ̃ of P ;
• for each constant a (a ∈ A), an element ã of P ;
• for the operator + , an operation +̃ : P × P → P ;
• for the operator · , an operation ·̃ : P × P → P ;
• for the operator :→ , an operation :̃→ : C × P → P;
• for the operator ‖ , an operation ‖̃ : P × P → P ;

• for the operator bb , an operation b̃b : P × P → P ;

• for each operator ∂H (H ⊆ A \ {t}), an operation ∂̃H : P → P ;
• for each operator tI (I ⊆ A), an operation t̃I : P → P ;

where those ingredients are defined as follows:

P = CTSκ/⇔ ,

δ̃ = [ δ̂ ]⇔ ,

ã = [ â ]⇔ ,

[T1 ]⇔ +̃ [T2 ]⇔ = [T1 +̂ T2 ]⇔ ,

[T1 ]⇔ ·̃ [T2 ]⇔ = [T1 ·̂ T2 ]⇔ ,

α :̃→ [T1 ]⇔ = [α :̂→ T1 ]⇔ ,

[T1 ]⇔ ‖̃ [T2 ]⇔ = [T1 ‖̂ T2 ]⇔ ,

[T1 ]⇔ b̃b [T2 ]⇔ = [T1 b̂b T2 ]⇔ ,

∂̃H([T1 ]⇔) = [ ∂̂H(T1) ]⇔ ,

t̃I ([T1 ]⇔) = [ t̂I (T1) ]⇔ .

Alternative composition, sequential composition, guarded command, parallel
composition, left merge, encapsulation and pre-abstraction on CTSκ/⇔ are
well-defined because ⇔ is a congruence with respect to the corresponding
operations on CTSκ.

The structures Pcc
κ are models of PAcc

δ .

6 Here, the expansions involve the addition of a domain because they go from a
one-sorted algebra to a two-sorted algebra.
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Theorem 10 (Soundness) For each infinite cardinal κ, we have Pcc
κ |=

PAcc
δ .

PROOF. Because Pcc
κ is an expansion of C, it is not necessary to show that

the axioms of BA are sound. The soundness of all remaining axioms follows
easily from the definitions of the ingredients of Pcc

κ . 2

The axioms of PAcc
δ constitute a complete axiomatization of the full splitting

bisimulation models.

Theorem 11 (Completeness) Let κ be an infinite cardinal. Then we have,
for all closed terms p and q of sort P from the language of PAcc

δ , Pcc
κ |= p = q

implies PAcc
δ ` p = q.

PROOF. By Lemma 2, for each closed term p of sort P from the language of
PAcc

δ , there is a closed term q of sort P from the language of BPAcc
δ such that

p = q is derivable from the axioms of PAcc
δ ; and by Lemma 3, all equations

between closed terms of sort P from the language of BPAcc
δ that can be derived

from the axioms of PAcc
δ can be derived from the axioms of BPAcc

δ . Therefore,
it is sufficient to prove that the axioms of BPAcc

δ constitute a complete axiom-
atization of the restrictions of the full splitting bisimulation models of PAcc

δ

to the constants and operators of BPAcc
δ . To prove this, we adapt the proof of

completeness of the axioms of BPAτ for the graph models of BPAτ given in
Ref. [24].

We use two functions relating basic terms and finite acyclic elements of CTSκ.
We write CTSfa

κ for the set of all finite acyclic elements of CTSκ. Let cts :B →
CTSfa

κ be a function such that for all p ∈ B, cts(p) is a representative of the
interpretation of p in Pcc

κ , and let term:CTSfa
κ → B be a function such that for

all T = (S,−→,−→
√
, s0) ∈ CTSfa

κ , term(T ) is term(s0), where for every state

s ∈ S, term(s) =
∑

1≤i≤n αi :→ ai · term(si) +
∑

1≤j≤m βj :→ bj if s
[α1] a1−−−−→ s1,

. . . , s
[αn] an−−−−→ sn and s

[β1] b1−−−→
√

, . . . , s
[βm] bn−−−−→

√
are all transitions from state

s, and for every α ∈ C, α is a closed term of sort C of which the value in C is
α. It is clear that the functions cts and term are not uniquely defined, but it
is easy to see that BPAcc

δ ` term(cts(p)) = p for all p ∈ B.

We proceed with the crucial step of the proof. We introduce a reduction rela-
tion �� on the set of finite acyclic elements of CTSκ. The one-step reductions
are sharing of double states as in Ref. [24], and two variants of joining of tran-

sitions: (a) replacing s
[α] a−−→ s′′ and s

[β] a−−→ s′′ by s
[αtβ] a−−−−→ s′′ and (b) replacing

s
[α] a−−→

√
and s

[β] a−−→
√

by s
[αtβ] a−−−−→

√
. The one-step reduction relation � on

CTSfa
κ is defined by T � T ′ iff T reduces to T ′ by one of the above-mentioned
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one-step reductions. We write �� for the reflexive and transitive closure of
�, and �� for the reflexive and transitive closure of � ∪ �−1.

The following are important properties of �:

(1) �� is strongly normalizing;
(2) for all T, T ′ ∈ CTSfa

κ , T �� T ′ implies T ⇔ T ′;
(3) for all T, T ′ ∈ CTSfa

κ that are in normal form, T ⇔ T ′ implies T = T ′;
(4) for all T, T ′ ∈ CTSfa

κ , T � T ′ implies BPAcc
δ ` term(T ) = term(T ′).

Verifying properties 1, 2 and 4 is trivial. Property 3 can be verified by proving
the property

for all T ∈ CTSfa
κ that are in normal form, any splitting bisimulation

between T and itself is the identity relation,

together with property 3 simultaneously by induction on the number of tran-
sitions of the conditional transition systems concerned. This is similar to the
proof of Theorem 2.12 from Ref. [24], but is easier.

It follows immediately from properties 1, 2 and 3 that, for all T, T ′ ∈ CTSfa
κ ,

T ⇔ T ′ iff T �� T ′. From this, property 4, the fact that Pcc
κ |= p = q implies

cts(p) ⇔ cts(q) and the fact that BPAcc
δ ` term(cts(p)) = p for all p ∈ B,

it follows immediately that for all basic terms p and q, Pcc
κ |= p = q implies

BPAcc
δ ` p = q. This results extends to all closed terms p and q of sort P from

the language of BPAcc
δ by Lemma 1. 2

As to be expected, the full splitting bisimulation models are related by iso-
morphic embeddings.

Theorem 12 (Isomorphic Embedding) Let κ and κ′ be infinite cardinals
such that κ < κ′. Then Pcc

κ is isomorphically embedded in Pcc
κ′.

PROOF. The proof is analogous to the proof of the corresponding property
for the full splitting bisimulation models of ACPc given in Ref. [1]. 2

5 SOS-Based Splitting Bisimilarity for PAcc
δ

It is customary to associate transition systems with closed terms (of sort
P) from the language of an ACP-like theory about processes by means of
structural operational semantics and to identify closed terms if their associated
transition systems are equivalent by a bisimilarity-based notion of equivalence.
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The structural operational semantics of PAcc
δ presented in Section 2 deter-

mines a conditional transition system for each closed term of sort P from the
language of PAcc

δ . These transition systems are special in the sense that their
states are closed terms of sort P from the language of PAcc

δ .

Let p be a closed term of sort P from the language of PAcc
δ . Then the transi-

tion system of p induced by the structural operational semantics of PAcc
δ , writ-

ten CTS(p), is the connected conditional transition system Γ(S,−→,−→
√
, s0),

where:

• S is the set of closed terms of sort P from the language of PAcc
δ ;

• (α,a)−−−→ ⊆ S × S and
(α,a)−−−→

√
⊆ S, for each α ∈ C \ {⊥} and a ∈ A, are the

smallest subsets of S × S and S, respectively, for which the transition rules
from Table 3 hold;

• s0 ∈ S is the closed term p.

Let p and q be closed terms of sort P from the language of PAcc
δ . Then we say

that p and q are splitting bisimilar, written p⇔ q, if CTS(p)⇔ CTS(q).

Clearly, the structural operational semantics does not give rise to infinitely
branching conditional transition systems. For each closed term p of sort P
from the language of PAcc

δ , there exists a T ∈ CTSℵ0 such that CTS(p) ∼= T . In
Section 4, it has been shown that it is possible to consider infinitely branching
conditional transition systems as well.

Remark 13 Let p be a closed term of sort P from the language of PAcc
δ .

Then [ CTS(p) ]⇔ is the interpretation of p in the full splitting bisimulation
models of PAcc

δ . In other words, the structural operational semantics of PAcc
δ

just provides a way to associate with each closed term of sort P a representa-
tive of the interpretation of that term in the full splitting bisimulation models
of PAcc

δ . With the incorporation of communication below, it becomes trouble-
some to present a structural operational semantics. Therefore, we focus in
this paper with respect to semantics on the full splitting bisimulation models.
The structural operational semantics of PAcc

δ is presented as well, because it
is considered to be intuitively clear.

6 ACP with Coordination Conditions

In order to support communication, we generalize the parallel composition
operator of PAcc

δ , resulting in ACPcc.

Just as in PAcc
δ , it is assumed that a fixed but arbitrary finite set of actions

A, with δ 6∈ A and t ∈ A, has been given. In ACPcc, it is further assumed that
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a fixed but arbitrary commutative and associative communication function
| :Aδ×Aδ → Aδ, such that δ |a = δ and t |a = δ for all a ∈ Aδ, has been given.
The function | is regarded to give the result of synchronously performing any
two actions for which this is possible, and to be δ otherwise.

The theory ACPcc has the constants and operators of PAcc
δ , with the exception

of the left merge operator, and in addition:

• for each E ⊆ A with t ∈ E, the unary enabledness update operator ΨE :C →
C.

Let ζ be a closed term of sort C, and let E ⊆ A with t ∈ E. Intuitively, the
enabledness update operators can be explained as follows:

• ΨE(ζ) is ζ with all enabledness conditions Ea with a 6∈ E replaced by ⊥ and
all enabledness conditions Ea with a ∈ E replaced by >.

In PAcc
δ , the enabledness of actions is affected only by encapsulation and pre-

abstraction. In ACPcc, the enabledness of actions is affected by parallel compo-
sition with another process as well. Parallel composition with another process
places a process in a context in which each a ∈ A is either enabled or disabled,
depending upon the capability of the other process to perform an action b ∈ A
such that a | b is an enabled action in the context in which the whole is placed.

The axioms of ACPcc are the axioms of PAcc
δ , with axioms M1–M4 and GC8

replaced by axioms CME and EE1–EE7 from Table 4. Several axioms given
in Table 4 are actually axiom schemas: a1, b1, a

′
1, b

′
1, a2, b2, a

′
2, b

′
2, . . . stand for

arbitrary elements of Aδ, c stands for an arbitrary element of A, and E stands
for an arbitrary subset of A that contains t. In axiom schema CME, for every
U, V,W ⊆ A with t ∈ U, V,W , ΦU,V,W iff for all u ∈ A \ {t}:

u ∈ V ⇔ ∃j < n′ • (ΨW (ζ ′j) = > ∧ u | a′j ∈ U)

∨ ∃j < m′ • (ΨW (ξ′j) = > ∧ u | b′j ∈ U)

and

u ∈ W ⇔ ∃i < n • (ΨV (ζi) = > ∧ ai | u ∈ U)

∨ ∃i < m • (ΨV (ξi) = > ∧ bi | u ∈ U) .

The axioms of ACPcc do not include axioms CM1–CM9 of ACP (see e.g.
Ref. [2]), i.e. the axioms of ACP for parallel composition, left merge and
communication merge, and axioms GC8–GC10 of ACPc (see e.g. Ref. [1]), i.e.
the additional axioms of ACPc for left merge and communication merge. The
reason for this is that these axioms cause problems. The point is that applying
them leads to changes of the context in which the processes involved in the
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Table 4
Axioms for ACPcc

x =
∑
i<n

φi :→ ai · xi +
∑
i<m

ψi :→ bi ∧ y =
∑
j<n′

φ′j :→ a′j · yj +
∑
j<m′

ψ′j :→ b′j ⇒

x ‖ y =
∑

t∈U⊆A,t∈V⊆A,t∈W⊆A,
ΦU,V,W

⊔u∈U Eu u ⊔u∈A\U −Eu :→(∑
i<n

ΨV (φi) :→ ai · (xi ‖ y) +∑
i<m

ΨV (ψi) :→ bi · y +∑
j<n′

ΨW (φ′j) :→ a′j · (x ‖ yj) +∑
j<m′

ΨW (ψ′j) :→ b′j · x+∑
i<n,j<n′

ΨV (φi) uΨW (φ′j) :→ (ai | a′j) · (xi ‖ yj) +∑
i<m,j<n′

ΨV (ψi) uΨW (φ′j) :→ (bi | a′j) · yj +∑
i<n,j<m′

ΨV (φi) uΨW (ψ′j) :→ (ai | b′j) · xi +∑
i<m,j<m′

ΨV (ψi) uΨW (ψ′j) :→ (bi | b′j)
)

CME

ΨE(⊥) = ⊥ EE1

ΨE(>) = > EE2

ΨE(Ec) = ⊥ if c 6∈ E EE3

ΨE(Ec) = > if c ∈ E EE4

ΨE(−φ) = −ΨE(φ) EE5

ΨE(φ t ψ) = ΨE(φ) tΨE(ψ) EE6

ΨE(φ u ψ) = ΨE(φ) uΨE(ψ) EE7

parallel composition are placed. This point will be illustrated below, but first
CME, the axiom schema that replaces CM1–CM9 and GC8–GC10 in ACPcc,
is explained.

Consider processes p, q and p ‖ q. The process p and the context in which p ‖ q
is placed form parts of the context in which q is placed; and the process q
and the context in which p ‖ q is placed form parts of the context in which p
is placed. Any subset of A that includes t may be the set of all actions that
are enabled in the context in which p ‖ q is placed. Suppose that U ⊆ A with
t ∈ U is the set of all actions that are enabled in the context in which p ‖ q is
placed. Furthermore, suppose that V ⊆ A with t ∈ V and W ⊆ A with t ∈ W
are the sets of all actions that are enabled in the contexts in which p and q,
respectively, are placed. Then the following must hold for all a ∈ A \ {t}:

• a ∈ V iff q, with exactly the actions in W enabled, can perform an action b
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such that a | b ∈ U (because a is enabled in q together with the context in
which p ‖ q is placed);

• a ∈ W iff p, with exactly the actions in V enabled, can perform an action b
such that a | b ∈ U (because a is enabled in p together with the context in
which p ‖ q is placed).

V and W determine whether the conditions under which p and q can perform
their initial actions evaluate to > or ⊥. In the case of p, for example, the basis
is that Ea evaluates to > if a ∈ V , and ⊥ otherwise. All this is made precise
in axiom schema CME. Notice that V and W need not exist for each U : the
behaviour of p and q may inhibit proper mutual enabling of actions for p ‖ q.
In such cases, p ‖ q is considered to be incapable of doing anything. In other
words, if V and W do not exist for some U , p ‖ q is considered to behave the
same as δ in the event of U being the set of all actions that are enabled in the
context in which p ‖ q is placed.

We proceed with giving a few examples. In the examples, we take A such that
A = A ∪ {a | a ∈ A} ∪ {t} for some set A such that t 6∈ A. Moreover, we take
| : Aδ × Aδ → Aδ such that, for all a ∈ A and b ∈ A, a | a = t, a | b = δ if
b 6= a, a | b = δ if b 6= a, and t | b = δ. This kind of communication is what we
call CCS-style communication. We start with giving an example of processes
p and q of which the behaviour inhibits proper mutual enabling of actions for
p ‖ q, whatever actions are enabled in the context in which p ‖ q is placed.
Consider the processes p ≡ Ea :→ b and q ≡ −Eb :→ a. The behaviour of these
processes inhibits proper mutual enabling of actions for p‖ q whatever actions
are enabled in the context in which p ‖ q is placed: if a is enabled by q, then b
is enabled by p and consequently a is not enabled by q; and if a is not enabled
by q, then b is not enabled by p and consequently a is enabled by q. Hence,
we have

Ea :→ b ‖ −Eb :→ a= δ . (1)

More precisely, for all U ⊆ A with t ∈ U , there do not exist V,W ⊆ A
with t ∈ V and t ∈ W such that ΦU,V,W . Using this, equation (1) follows
immediately from CME. We proceed with giving an example of processes p
and q of which the behaviour does not inhibit proper mutual enabling of
actions for p ‖ q, whatever actions are enabled in the context in which p ‖ q is
placed. Consider the processes p ≡ Ea :→ b+ c and q ≡ a+ Eb :→ c. There is a
unique proper mutual enabling, viz. the mutual enabling in which exactly the
actions a and c are enabled by q, and exactly the actions b and c are enabled
by p. Hence, we have
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(Ea :→ b+ c) ‖ (a+ Eb :→ c)

= b · (a+ c) + c · (a+ c) + a · (b+ c) + c · (b+ c) + t . (2)

More precisely, for all U ⊆ A with t ∈ U , ΦU,V,W iff V = {a, c} and W = {b, c}.
Using this, equation (2) follows easily from CME, EE4, GC1, GC7 and BA.
Finally, we give an example of processes p and q of which the behaviour is such
that there are two proper mutual enablings of actions for p‖q, whatever actions
are enabled in the context in which p ‖ q is placed. Consider the processes
p ≡ Ea :→b+−Ea :→c and q ≡ Eb :→a+−Eb :→c. There are two proper mutual
enablings, viz. the mutual enabling in which only the action a is enabled by q
and only the action b is enabled by p, and the mutual enabling in which only
the action c is enabled by q and only the action c is enabled by p. Hence, we
have

(Ea :→ b+−Ea :→ c) ‖ (Eb :→ a+−Eb :→ c)

= b · a+ a · b+ c · c+ c · c+ t . (3)

More precisely, for all U ⊆ A with t ∈ U , ΦU,V,W iff V = {a} and W = {b}
or V = {c} and W = {c}. Using this, equation (3) follows easily from CME,
EE3, EE4, EE5, GC1, GC2, GC7 and BA.

Axioms similar to the axioms of ACP and ACPc for parallel composition
are too much to expect for ACPcc. The mutual enabling of actions involved
in the parallel composition of two processes is a matter which can only be
resolved by looking at the processes as a whole. As a case in point, let us
consider the process ∂H((a + b) ‖ Ea :→ b), where H = {a, a, b, b}, with CCS-
style communication. Using CME, we derive as intended

∂H((a+ b) ‖ Ea :→ b) = ∂H(a · b+ b · b+ b · (a+ b) + t) = t .

If we could use axioms CM1–CM9 of ACP, then we would be able to derive
∂H((a + b) ‖ Ea :→ b) = ∂H(a bb Ea :→ b + b bb Ea :→ b + Ea :→ b bb (a + b) + a |
Ea :→ b+ b | Ea :→ b). Applying CM4, CM8 and CM9 leads to splitting up the
context in which Ea :→ b is placed. The main problem with that is the loss
in b bb Ea :→ b and b | Ea :→ b of the enabling of a by a + b. If we could use
axioms GC8–GC10 of ACPc as well, then we would even be able to derive
∂H((a+ b) ‖ Ea :→ b) = ∂H(Ea :→ (a · b+ b · b+ b · (a+ b) + t)) = δ. Applying
GC8–GC10 leads to moving the condition Ea outwards. The problem with that
is that it gets lost that the condition Ea concern the enabledness of action a
in a different context.

Note that, in the example just given, axioms CM1–CM3 and CM5–CM7 do
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not cause any problem. In fact, we can extend ACPcc with the auxiliary op-
erators bb and | and axioms CM1–CM3 and CM5–CM7. However, we cannot
obtain a finite axiomatization of the parallel composition operator ‖ in that
way, whereas the usual reason to introduce bb and | is to obtain such a finite
axiomatization.

Like in the case of PAcc
δ , we can prove that all closed terms of sort P from the

language of ACPcc are derivably equal to a basic term.

Lemma 14 (Elimination for ACPcc) For all closed terms p of sort P from
the language of ACPcc, there exists a basic term q ∈ B such that ACPcc ` p =
q.

PROOF. CME is in the shape of an implication. Let CME′ be the equation
obtained from CME by taking the right-hand side of this implication and
replacing every occurrence of x and y by the right-hand side of the equation
for x and y, respectively, at the left-hand side of this implication. Let CME′′ be
CME′ with the conditions ⊔u∈U Euu ⊔u∈A\U −Eu moved inward (applying GC4)
and combined with the conditions ΨV (ζi)uΨW (ζ ′j), ΨV (ξi)uΨW (ζ ′j), ΨV (ζi)u
ΨW (ξ′j) and ΨV (ξi) u ΨW (ξ′j) (applying GC6). The term rewriting system
consisting of all axioms of ACPcc, except BA1–BA8 and A1–A3 and with
CME replaced by CME′′, oriented from left to right is strongly normalizing.
This can be proved by using the method of lexicographical path ordering
of Kamin and Lévy, making the signature one-sorted, taking the ordering
. . . > ‖ > :→ > · > +, :→ > δ, :→ > u, ∂H > :→, ∂H > ⊥, ∂H > −, ∂H > t,
tI > :→, tI > t, tI > >, tI > −, tI > t, ‖ > a, ‖ > Ea, ‖ > −, ‖ > ΨE,
for all H ⊆ A \ {t}, I ⊆ A, a ∈ A and E ⊆ A with t ∈ E, and giving the
lexicographical status for the first argument to · and the lexicographical status
for the second argument to :→. Moreover, it is easy to see that each normal
form is a basic term. 2

We can also prove that ACPcc is a conservative extension of BPAcc
δ .

Lemma 15 (Conservative extension) If p and q are closed terms of sort
P from the language of BPAcc

δ , then BPAcc
δ ` p = q iff ACPcc ` p = q.

PROOF. The proof is analogous to the proof of Lemma 3. 2

The preceding two lemmas will be useful in the completeness proof of ACPcc

for the full splitting bisimulation models of ACPcc that will be introduced in
Section 7.
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Remark 16 The priority guards added to CCS in Ref. [13] are similar to the
coordination conditions of ACPcc, but subject to the restriction that CCS-style
actions must be taken. Take CCS-style actions, i.e. A = A∪ {a | a ∈ A} ∪ {t}
for some set A such that t 6∈ A. Let a, b ∈ A, a1, . . . , an ∈ A \ {t}, and let
p and q be terms of sort P. Then −(Ea1 t . . . t Ean) :→ a · p, where a = a,
is written {a1, . . . , an} : a . p with priority guards. The following shows an
inconvenience of priority guards: −(Ea1 t . . . t Ean) :→ (a · p + b · q) must be
written {a1, . . . , an} :a.p+{a1, . . . , an} :b.q with priority guards. The following
shows a limitation of priority guards: ζ :→ a · p, where ζ is of a form different
from −(Ea1t . . . t Ean), cannot be written with priority guards. A consequence
of the limitations of priority guards is that splitting bisimilarity can be replaced
by the simpler strong offer bisimilarity of Ref. [13].

Remark 17 ACPcc includes pre-abstraction, but not abstraction. Abstraction
is usually based on observation equivalence [11] or branching bisimulation
equivalence [29], which both abstract from both the structure of finitary internal
activity and its presence. That way, a process without internal actions can be
equivalent to a process with internal actions. For example, a · b = a · t · b under
observation equivalence and branching bisimulation equivalence. However, a · b
cannot always be replaced by a · t · b in ACPcc: with CCS-style communication,
a · b ‖ −(Ea t Eb) :→ c = a · b · c, but a · t · b ‖ −(Ea t Eb) :→ c 6= a · b · c.

Terms of sort C are interpreted in C as in the case of PAcc
δ , the association of

operations with the extra-Boolean operators ΨE excepted. With the operator
ΨE is associated the unique endomorphism of C extending the function ΨE

on {Ea | a ∈ A} defined by ΨE(Ea) = > if a ∈ E and ΨE(Ea) = ⊥ if a 6∈
E. It follows automatically that axioms BA1–BA8, ED1–ED7, EI1–EI7 and
EE1–EE7 constitute a sound and complete axiomatization of the expansion
of C with the operations ∂H , tI defined in Section 2 and ΨE defined above.
Henceforth, we loosely write C for this expansion of C.

Associating transition systems with closed terms of sort P from the language
of ACPcc by means of structural operational semantics is troublesome (see also
Remark 21). Moreover, the structural operational semantics of ACPcc would
just provide a way to associate with each closed term of sort P a representative
of the interpretation of that term in the full splitting bisimulation models of
ACPcc, which are presented in Section 7. For these reasons, we refrain from
presenting the structural operational semantics of ACPcc.

7 Full Splitting Bisimulation Models of ACPcc

In this section, we adapt the full splitting bisimulation models of PAcc
δ to

ACPcc. In order to cover communication, the operation on CTSκ/⇔ associated

32



with the operator ‖ has to be adapted.

Like before, we begin by associating an operation ‖̂
′
on CTSκ with the operator

‖.

• Let Ti = (Si,−→i,−→
√
i, s

0
i ) ∈ CTSκ for i = 1, 2. Then

T1 ‖̂
′
T2 = Γ(S,−→,−→

√
, s0) ,

where

s0 = (s0
1, s

0
2) ,

s
√

= chκ(Sκ \ (S1 ∪ S2)) ,

S = ((S1 ∪ {s
√
})× (S2 ∪ {s

√
})) \ {(s

√
, s

√
)} ,
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and for every (α, a) ∈ C− × A:

(α,a)−−−→ =
{
((s1, s2), (s

′
1, s2))

∣∣∣ (s′1, s2) ∈ S ∧∨
α′∈C−,

t∈U,V,W⊆A

(
s1

[α′] a−−−→1 s
′
1 o s

√
∧

Φ′
U,V,W (s1, s2) ∧

⊔u∈U Eu u ⊔u∈A\U −Eu = α ∧

ΨV (α′) = >
)}

∪
{
((s1, s2), (s1, s

′
2))

∣∣∣ (s1, s
′
2) ∈ S ∧∨

α′∈C−,
t∈U,V,W⊆A

(
s2

[α′] a−−−→2 s
′
2 o s

√
∧

Φ′
U,V,W (s1, s2) ∧

⊔u∈U Eu u ⊔u∈A\U −Eu = α ∧

ΨW (α′) = >
)}

∪
{
((s1, s2), (s

′
1, s

′
2))

∣∣∣ (s′1, s
′
2) ∈ S ∧∨

α′,β′∈C−,a′,b′∈A,
t∈U,V,W⊆A

(
s1

[α′] a′−−−→1 s
′
1 o s

√
∧ s2

[β′] b′−−−→2 s
′
2 o s

√
∧

Φ′
U,V,W (s1, s2) ∧

⊔u∈U Eu u ⊔u∈A\U −Eu = α ∧

ΨV (α′) uΨW (β′) = > ∧ a′ | b′ = a
)}

,

(α,a)−−−→
√

=
{
(s1, s

√
)

∣∣∣ s1
[α] a−−→

√
1

}
∪

{
(s

√
, s2)

∣∣∣ s2
[α] a−−→

√
2

}
∪

{
(s1, s2)

∣∣∣∨
α′,β′∈C−,a′,b′∈A,

t∈U,V,W⊆A

(
s1

[α′] a′−−−→
√

1 ∧ s2
[β′] b′−−−→

√
2 ∧

Φ′
U,V,W (s1, s2) ∧

⊔u∈U Eu u ⊔u∈A\U −Eu = α ∧

ΨV (α′) uΨW (β′) = > ∧ a′ | b′ = a
)}

.

and for every U, V,W ⊆ A with t ∈ U, V,W and for every (s1, s2) ∈ S,
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Φ′
U,V,W (s1, s2) iff for all u ∈ A \ {t}:

u ∈ V ⇔

∃α′′, a′′, s′′ •
(
s2

[α′′] a′′−−−−→2 s
′′ ∧ΨW (α′′) = > ∧ u | a′′ ∈ U

)
∨ ∃α′′, a′′ •

(
s2

[α′′] a′′−−−−→
√

2 ∧ΨW (α′′) = > ∧ u | a′′ ∈ U
)

and

u ∈ W ⇔

∃α′′, a′′, s′′ •
(
s1

[α′′] a′′−−−−→1 s
′′ ∧ΨV (α′′) = > ∧ a′′ | u ∈ U

)
∨ ∃α′′, a′′ •

(
s1

[α′′] a′′−−−−→
√

1 ∧ΨV (α′′) = > ∧ a′′ | u ∈ U
)
.

We can show that splitting bisimilarity is a congruence with respect to parallel
composition.

Lemma 18 (Congruence) Let κ be an infinite cardinal. Then for all T1, T2,

T ′1, T
′
2 ∈ CTSκ, T1 ⇔ T ′1 and T2 ⇔ T ′2 imply T1 ‖̂

′
T2 ⇔ T ′1 ‖̂

′
T ′2.

PROOF. Although parallel composition as considered in the setting of ACPcc

differs from parallel composition as considered in the setting of PAcc
δ , a witness-

ing splitting bisimulation can be constructed in the same way as in the proof of
Lemma 9. It is straightforward to show that the constructed relation is a split-
ting bisimulation indeed. However, it is not so easy as in the proof of Lemma 9.
The most important complication is that we have to verify whether the con-
structed relation, say R, has the following property: R((s1, s2), (s

′
1, s

′
2)) implies

Φ′
U,V,W (s1, s2) iff Φ′

U,V,W (s′1, s
′
2) for all U, V,W ⊆ A with t ∈ U, V,W . 2

The full splitting bisimulation models Pcc
κ
′ of ACPcc, one for each infinite

cardinal κ, are the restrictions of the full splitting bisimulation models Pcc
κ

of PAcc
δ to the constants and operators of BPAcc

δ expanded with an adapted

operation ‖̃
′
on CTSκ/⇔ for the operator ‖. The operation ‖̃

′
is defined as

follows:

[T1 ]⇔ ‖̃
′
[T2 ]⇔ = [T1 ‖̂

′
T2 ]⇔ .

The operation ‖̃
′
on CTSκ/⇔ is well-defined because ⇔ is a congruence with

respect to the operation ‖̂
′
on CTSκ.

The structures Pcc
κ
′ are models of ACPcc.
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Theorem 19 (Soundness) For each infinite cardinal κ, we have Pcc
κ
′ |=

ACPcc.

PROOF. Because all changes with respect to Pcc
κ concern the operation as-

sociated with the operator ‖, it is sufficient to show that axiom schema CME
from Table 4 is sound. The soundness of CME follows easily from the defini-
tions of the ingredients of Pcc

κ . 2

The axioms of ACPcc constitute a complete axiomatization of the full splitting
bisimulation models.

Theorem 20 (Completeness) Let κ be an infinite cardinal. Then we have,
for all closed terms p and q of sort P from the language of ACPcc, Pcc

κ |= p = q
implies ACPcc ` p = q.

PROOF. By Lemma 14, for each closed term p of sort P from the language
of ACPcc, there is a closed term q of sort P from the language of BPAcc

δ such
that p = q is derivable from the axioms of ACPcc; and by Lemma 15, all
equations between closed terms of sort P from the language of BPAcc

δ that
can be derived from the axioms of ACPcc can be derived from the axioms of
BPAcc

δ . Therefore, it is sufficient to prove that the axioms of BPAcc
δ constitute

a complete axiomatization of the restrictions of the full splitting bisimulation
models of ACPcc to the constants and operators of BPAcc

δ . In the proof of
Theorem 11, it is shown that the axioms of BPAcc

δ constitute a complete
axiomatization of the restrictions of the full splitting bisimulation models of
PAcc

δ to the constants and operators of BPAcc
δ . Because the restrictions of the

full splitting bisimulation models of PAcc
δ to the constants and operators of

BPAcc
δ coincide with the restrictions of the full splitting bisimulation models

of ACPcc to the constants and operators of BPAcc
δ , the proof is completed. 2

It is easy to see that Theorem 12 goes through for Pcc
κ
′.

In this section, the full splitting bisimulation models Pcc
κ of PAcc

δ have been
adapted to obtain the full splitting bisimulation models Pcc

κ
′ of ACPcc. Hence-

forth, we loosely write Pcc
κ for Pcc

κ
′.

Remark 21 Associating transition systems with closed terms of sort P from
the language of ACPcc by means of structural operational semantics is trou-
blesome. The main problem is to define by means of transition rules, for every
U, V,W ⊆ A with t ∈ U, V,W , a binary relation on closed terms of sort P that

corresponds to Φ′
U,V,W as in the definition of ‖̂

′
above. This requires, among
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other things, stretching the style of structural operational semantics. Transi-
tion rule schemas, i.e. transition rules in which meta-variables standing for
arbitrary members of some set occur, are quite usual. However, here a “transi-
tion rule schema schema”, i.e. a transition rule schema in which “meta-meta-
variables” standing for arbitrary members of some set occur, is needed. These
meta-meta-variables stand for sets that serve as index sets of indexed families
of meta-variables. A complicated side-condition, involving both meta-variables
and meta-meta-variables, is needed as well.

8 Guarded Recursion

In order to allow for the description of (potentially) non-terminating processes,
we add guarded recursion to ACPcc.

A recursive specification over ACPcc is a set of recursive equations E = {X =
tX | X ∈ V } where V is a set of variables and each tX is a term of sort P from
the language of ACPcc that only contains variables from V . We write V(E)
for the set of all variables that occur on the left-hand side of an equation in E.
A solution of a recursive specification E is a set of processes (in some model
of ACPcc) {PX | X ∈ V(E)} such that the equations of E hold if, for all
X ∈ V(E), X stands for PX .

Let t be a term of sort P from the language of ACPcc containing a variable
X. We call an occurrence of X in t guarded if t has a subterm of the form
a · t′ containing this occurrence of X. A recursive specification over ACPcc is
called a guarded recursive specification if all occurrences of variables in the
right-hand sides of its equations are guarded or it can be rewritten to such
a recursive specification using the axioms of ACPcc and the equations of the
recursive specification. We are only interested in models of ACPcc in which
guarded recursive specifications have unique solutions.

For each guarded recursive specification E and each variable X ∈ V(E), we
introduce a constant of sort P standing for the unique solution of E for X.
This constant is denoted by 〈X|E〉. We often write X for 〈X|E〉 if E is clear
from the context. In such cases, it should also be clear from the context that
we use X as a constant.

We will also use the following notation. Let t be a term of sort P from the
language of ACPcc and E be a guarded recursive specification over ACPcc.
Then we write 〈t|E〉 for t with, for all X ∈ V(E), all occurrences of X in t
replaced by 〈X|E〉.

The additional axioms for recursion are given in Table 5. Both RDP and
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Table 5
Axioms for recursion
〈X|E〉 = 〈tX |E〉 if X = tX ∈ E RDP

E⇒X = 〈X|E〉 if X ∈ V(E) RSP

RSP are axiom schemas. Side conditions are added to restrict the variables,
terms and guarded recursive specifications for which X, tX and E stand. The
additional axioms for recursion are known as the recursive definition principle
(RDP) and the recursive specification principle (RSP). The equations 〈X|E〉 =
〈tX |E〉 for a fixed E express that the constants 〈X|E〉 make up a solution of
E. The conditional equations E ⇒ X = 〈X|E〉 express that this solution is
the only one.

In the full splitting bisimulation models of ACPcc, guarded recursive specifi-
cations over ACPcc have unique solutions.

Theorem 22 (Unique solutions) For each infinite cardinal κ, guarded re-
cursive specifications over ACPcc have unique solutions in Pcc

κ .

PROOF. In Ref. [30], a proof of uniqueness of solutions of guarded recursive
specifications in the graph models of ACPτ is given. That proof can easily
be adapted to the full bisimulation models of ACP introduced in Ref. [28].
The proof consists of the following three steps: (i) proving that two transition
systems are bisimilar if at least one of them is finitely branching and all their
finite projections are bisimilar; (ii) proving, using the result of step (i), that
every guarded recursive specification has a solution that is finitely branching;
(iii) proving, using the result of step (i), that the solution from step (ii) is
bisimilar to any other solution. Steps (ii) and (iii) remain essentially the same
in the case of conditional transition systems and splitting bisimilarity. It is
straightforward to define a normal form of elements of CTSκ such that: (a) each
element of CTSκ is splitting bisimilar to its normal form and (b) two elements
of CTSκ are splitting bisimilar iff their normal forms are bisimilar (cf. the last
two paragraphs of Section 3). This enables us to adapt step (i) easily to the
case of conditional transition systems and splitting bisimilarity. 2

Thus, the full splitting bisimulation models Pcc
κ
′′ of ACPcc with guarded recur-

sion are simply the expansions of the full splitting bisimulation models Pcc
κ of

ACPcc obtained by associating with each constant 〈X|E〉 the unique solution
of E for X in the full splitting bisimulation model concerned.
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Table 6
Axioms for preferential choice

δ +→ x = x PC1

a · x+→ y = a · x+−Ea :→ y PC2

(x+ y) +→ z = x+→ (y +→ z) + y +→ (x+→ z) PC3

φ :→ x+→ y = φ :→ (x+→ y) +−φ :→ y PC4

9 Preferential Choice

In the presence of conditional expressions of which the conditions concern the
enabledness of actions in the context in which a process is placed, it is easy to
give defining equations for a preferential choice operator. In this section, we
extend ACPcc with the binary preferential choice operator +→ : P×P → P.

Let p and q be closed terms of sort P. Intuitively, the preferential choice
operator can be explained as follows:

• p+→ q behaves as p if the context in which it is placed permits it to behave
as p, and as q otherwise.

The additional axioms for preferential choice are the axioms given in Table 6.
Axiom PC2 is actually an axiom schema: a stand for an arbitrary element of
A.

From the axioms of ACPcc and axioms PC1–PC4, we can easily derive that the
equation (φ:→a·x+ψ:→b·y)+→z = φ:→a·x+ψ:→b·y+−((φuEa)t(ψuEb)):→z.
The following generalization of this result gives a full picture of the preferential
choice operator.

Proposition 23 (Characterization) From the axioms of ACPcc and ax-
ioms PC1–PC4, the following is derivable for all n,m ≥ 0, for all a0, . . . , an−1,
b0, . . . , bm−1 ∈ A:

(∑
i<n

φi :→ ai · xi +
∑
i<m

ψi :→ bi
)

+→ y

=
∑
i<n

φi :→ ai · xi +
∑
i<m

ψi :→ bi

+−(
⊔
i<n(φi u Eai

) t ⊔
i<m(ψi u Ebi)) :→ y .

PROOF. Easy, by induction on n+m. 2

A corollary of Proposition 23 is that the preferential choice operator is asso-
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ciative.

Corollary 24 (Associativity) For all closed terms p, q, r of sort P from the
language of ACPcc extended with preferential choice, p+→ (q+→r) = (p+→q)+→r
is derivable from the axioms of ACPcc and axioms PC1–PC4.

Another corollary of Proposition 23 is that all occurrences of the preferential
choice operator can be eliminated from closed terms.

Corollary 25 (Elimination) For all closed terms p of sort P from the lan-
guage of ACPcc extended with preferential choice, there exists a closed term q
of sort P from the language of ACPcc such that p = q is derivable from the
axioms of ACPcc and axioms PC1–PC4.

Remark 26 The priority choice operator added to CCS in Ref. [12] is similar
to the preferential choice operator of ACPcc, but subject to the restrictions that
CCS-style actions must be taken and the initial actions of the operands of the
priority choice operator must be input actions. Take CCS-style actions, i.e.
A = A∪ {a | a ∈ A} ∪ {t} for some set A such that t 6∈ A. An action a ∈ A is
called an input action if a ∈ A. Let a, b ∈ A \ {t}, and let p and q be terms of
sort P. If both a and b are input actions, then a ·p+→ b · q is written a . p+→ b . q
with priority choice as well. Otherwise, a · p +→ b · q cannot be written with
priority choice. Note that a · p +→ b · q can be written a . p + {a} : b . q with
priority guards, also if not both a and b are input actions.

Remark 27 Preferential choices do not need the full expressiveness of ACPcc.
The additional expressiveness is among other things found in terms of the form
EauEb :→ (a ·p+b ·q). Terms of this form express that there is a proper choice:
if not both a and b are enabled, then there is not really a choice. The additional
expressiveness is also found in terms of the form a · p+Eb :→ c · q. An example
using a term of this form is given in Section 10.

The full bisimulation models of ACPcc with preferential choice are the expan-
sions of the full bisimulation models Pcc of ACPcc obtained by first associating
with the operator +→ a corresponding operation on CTSκ and then lifting the
result of this to CTSκ/⇔. This calls for extraction of the initial guarded actions
of a conditional transition system.

Let T = (S,−→,−→
√
, s0) ∈ CTSκ. Then the initial guarded actions of T ,

written I(T ), is the set {(α, a) ∈ C− × A | ∃s ∈ S • s0 [α] a−−→ s ∨ s0 [α] a−−→
√
}.

We proceed with associating with the operator +→ an operation +̂→ on CTSκ
as follows.
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• Let Ti = (Si,−→i,−→
√
i, s

0
i ) ∈ CTSκ for i = 1, 2. Then

T1 +̂→ T2 = Γ(S,−→,−→
√
, s0) ,

where

s0 = chκ(Sκ \ (S1 ] S2)) ,

S = {s0} ∪ (S1 ] S2) ,

and for every (α, a) ∈ C− × A:

(α,a)−−−→ =
{
(s0, µ1(s))

∣∣∣ s0
1

[α] a−−→1 s
}

∪
{
(s0, µ2(s))

∣∣∣ ∃β •
(
s0
2

[β] a−−→2 s ∧

α = −(
⊔

(α′,a′)∈I(T1)(α
′ u Ea′)) u β

)}
∪

{
(µ1(s), µ1(s

′))
∣∣∣ s [α] a−−→1 s

′
}

∪
{
(µ2(s), µ2(s

′))
∣∣∣ s [α] a−−→2 s

′
}
,

(α,a)−−−→
√

=
{
s0

∣∣∣ s0
1

[α] a−−→
√

1

}
∪

{
s0

∣∣∣ ∃β •
(
s0
2

[α] a−−→
√

2 ∧

α = −(
⊔

(α′,a′)∈I(T1)(α
′ u Ea′)) u β

)}
∪

{
µ1(s)

∣∣∣ s [α] a−−→
√

1

}
∪

{
µ2(s)

∣∣∣ s [α] a−−→
√

2

}
.

We can show that splitting bisimilarity is a congruence with respect to pref-
erential choice.

Lemma 28 (Congruence) Let κ be an infinite cardinal. Then for all
T1, T2, T

′
1, T

′
2 ∈ CTSκ, T1 ⇔ T ′1 and T2 ⇔ T ′2 imply T1 +̂→ T2 ⇔ T ′1 +̂→ T ′2.

PROOF. Although preferential choice differs from alternative composition
(being a non-preferential choice), a witnessing splitting bisimulation can be
constructed in the same way as in the proof of Lemma 9. It is straightforward
to show that the constructed relation is a splitting bisimulation indeed. As
compared with alternative composition, all we have to do more is to show
that T1 ⇔ T ′1 implies

⊔
(α′,a′)∈I(T1)(α

′ u Ea′) =
⊔

(α′,a′)∈I(T ′1)(α
′ u Ea′). 2

The operation +̃→ on CTSκ/⇔ is defined as follows:

[T1 ]⇔ +̃→ [T2 ]⇔ = [T1 +̂→ T2 ]⇔ .
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10 Examples

In this section, we give an example of the use of the preferential choice operator
and an example of the use of coordination conditions where the preferential
choice operator is inadequate.

The first example is adapted from Ref. [5]. The example concerns a printer
with a control panel. The printer will print an infinite sequence 〈c0, c1, c2, . . .〉
of characters from a finite set of characters C, but can be interrupted by
means of the control panel. The control panel has two buttons, a start button
to indicate that the printing must be started and a stop button to indicate that
the printing must be stopped. Whenever a button is pushed, a corresponding
message is sent to the printer. The printer prints characters from the infinite
sequence, but can also receive messages from the control panel. The recursive
specification of the control panel is as follows:

C = b(start) · s(start) · C + b(stop) · s(stop) · C ;

and the recursive specification of the printer is as follows (i ≥ 0):

P = W0 ,

Wi = r(start) · Pi + r(stop) ·Wi ,

Pi = (r(start) · Pi + r(stop) ·Wi) +→ p(ci) · Pi+1 .

In this example, we take | : Aδ × Aδ → Aδ such that s(start) | r(start) =
c(start) and s(stop) | r(stop) = c(stop), and in all other cases it
yields δ. The whole system is described by tI(∂H(C ‖ P )), where H =
{s(start), r(start), s(stop), r(stop)} and I = {c(start), c(stop)}.

In the recursive specification of the printer, the preferential choice operator
is used in the equation for Pi to describe that receiving a message from the
control panel must be given preference to printing a character. It follows from
the axioms for preferential choice that the preferential choice operator can be
eliminated from this equation. This yields the following equation:

Pi = r(start) · Pi + r(stop) ·Wi +−(Er(start) t Er(stop)) :→ p(ci) · Pi+1 .

From the axioms of ACPcc, the additional axioms for preferential choice and
RSP, we can derive that tI(∂H(C ‖P )) is the solution of the following recursive
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specification (i ≥ 0):

Z = Zw
0 ,

Zw
i = b(start) · t · Zp

i + b(stop) · t · Zw
i ,

Zp
i = b(start) · t · Zp

i + b(stop) · t · Zw
i + p(ci) · Zp

i+1 .

This shows that the reaction to button pushing is immediate: printing of char-
acters never takes place between button pushing and the reaction to button
pushing.

The second example concerns a sender of messages and two receivers. The
sender will send an infinite sequence 〈m0,m1,m2, . . .〉 of messages from a finite
set of messages M . Each message from M is either secure or not. One receiver,
say R, receives only the messages that are secure and files them after receipt.
The other receiver, say R′, receives only the messages that are not secure and
discards them after receipt. Whenever receiver R is ready to receive a message,
but the message that the sender is ready to send is not secure, receiver R sends
a request to receiver R′ to take over the receipt of the message. Receiver R′

receives messages only after receipt of a request from receiver R. The recursive
specification of the sender is as follows (i ≥ 0):

S = S0 ,

Si = s(mi) · Si+1 ;

the recursive specifications of the two receivers are as follows:

R =
∑

m∈SM

r(m) · f(m) ·R +
⊔

m′∈M\SM

Er(m′) :→ sr ·R ,

R′ = rr ·
∑

m′∈M\SM

r(m′) ·R′ .

In this example, we take | : Aδ ×Aδ → Aδ such that s(m) | r(m) = c(m) for all
m ∈M and sr | rr = cr , and in all other cases it yields δ. Moreover, we write
SM for the set of all messages from M that are secure. The whole system is
described by tI(∂H(S ‖ (R‖R′))), where H = {s(m), r(m) | m ∈M}∪{sr , rr}
and I = {c(m) | m ∈M} ∪ {cr}.

From the axioms of ACPcc and RSP, we can derive that tI(∂H(S ‖ (R ‖ R′)))
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is the solution of the following recursive specification (i ≥ 0):

Z = Z0 ,

Zi = t · f(mi) · Zi+1 if mi ∈ SM ,

Zi = t · Zi+1 if mi 6∈ SM .

This shows that all messages from the infinite sequence 〈m0,m1,m2, . . .〉 are
either filed or discarded. In other words, no deadlock occurs.

Note that R cannot be specified by means of the preferential choice operator:
the coordination condition needed concerns the enabledness of actions that do
not belong to the initial actions of R, whereas the preferential choice operator
concerns the disabledness of actions that belong to the initial actions of a
process.

11 Concluding Remarks

We have presented ACPcc, an extension of ACP with conditional expressions of
which the conditions concern the enabledness of actions in the context in which
a process is placed. The presentation includes the axioms of ACPcc and the
main models of ACPcc. To the best of our knowledge, there is almost no work
in the field of process algebra on conditions of this kind. The closest related
are the priority guards added to CCS in Ref. [13]. However, priority guards
are much simpler, are restricted to CCS-style communication, and can only be
used in combination with action prefixing. There are several extensions of ACP
that include conditional expressions of some kind. ACPcc is a variant of a recent
extension of ACP with conditional expressions called ACPc [1,31], which in
turn is based on earlier extensions of ACP with conditional expressions that
can be found in Refs. [20,32,33].

A striking point of ACPcc is that its axioms do not include axioms similar
to the axioms of ACP for parallel composition (axioms CM1–CM9, see e.g.
Ref. [3]). Such axioms are too much to expect: the mutual enabling of actions
involved in the parallel composition of two processes is a matter which can
only be resolved by looking at the processes as a whole. The same need of
a global approach makes it troublesome to associate transition systems with
closed terms in the style of structural operational semantics.

We do not have a clear notion of the applications of ACPcc. We have treated
an application of ACPcc that remains within the domain of process algebra:
the extension of ACPcc with a preferential choice operator. This operator
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generalizes the priority choice operator added to CCS in Ref. [12].

ACPcc includes pre-abstraction, but not abstraction. Abstraction is usu-
ally based on observation equivalence [11] or branching bisimulation equiv-
alence [29], which both abstract from both the structure of finitary internal
activity and its presence. That way, a process without internal actions can be
equivalent to a process with internal actions. This is undesirable in the setting
of ACPcc. Orthogonal bisimulation equivalence [34], an equivalence introduced
recently, abstracts from the structure of finitary internal activity, but not from
its presence. This equivalence looks to be better suited to the setting of ACPcc.

One option for future work is development of an extension of ACPcc with
abstraction based on orthogonal bisimulation equivalence. Another option for
future work is investigation into ways to combine the kind of conditions con-
sidered in ACPcc with other kinds of conditions, in particular with the retro-
spective conditions of ACPcr [1].
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