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Abstract

This paper primarily reports on semantic aspects of how a formal specification of the PCTE interfaces
has been achieved in a situation where only a combination of existing formalisms could meet the needs.
The motivations for combining a VDM specification language with a language of temporal logic, for
translating the resulting language, called VVSL, to an extended COLD-K and for translating it also
(partially) to the language of the logic MPLω are briefly outlined. The main experiences from this work
on combination and transformation of formalisms are presented. Some important experiences with the
application of VVSL to the formal specification of the PCTE interfaces and otherwise are also mentioned.
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1 Introduction

A large software system often needs a precise specification of its intended behaviour. A precise specification
provides a reference point against which the correctness of the system concerned can be established — either
by verifying it a posteriori, or preferably by developing it hand in hand with a correctness proof. A precise
specification also makes it easier to reason about the system. Moreover, it is possible to reason about the
system before its development is undertaken. This possibility opens up a way to increase the confidence
that the system will match the inherently informal, user’s requirements. If a change to an existing software
system is contemplated, then the consequences of the change have to be taken into account. But without a
precise specification, it is often difficult to grasp the consequences of a change.

In order to achieve precision, a specification must be written in a formal specification language. A formal
specification language needs a mathemetically precise and complete description of the semantics of the
language.

In practice, the creation of a precise specification is sometimes doomed to fail by absence of a formal
specification language that meets the needs. In some cases, the problem may be solved by combining several
languages. However, it is not sufficient to combine the languages syntactically. In order to achieve a formal
specification, they must also be combined semantically. This means that the semantic bases of the languages
have to be integrated. This is generally hard, since the bases of many languages are not organized in an
orthogonal and elementary way. Besides, they tend to have different mathematical origins. This paper
reports about these matters from the experiences with VVSL [Mid89d].

1.1 Background

VVSL is a specification language which combines two other languages both syntactically and semantically.
It is the specification language that has been used in the ESPRIT project “VDM for Interfaces of the PCTE”
(abbreviated to VIP). This project was concerned with describing in a mathematically precise manner the
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PCTE interfaces [PCT86], using a VDM specification language as far as possible. The PCTE interfaces have
been defined as a result of the ESPRIT project “A Basis for a Portable Common Tool Environment”. The
PCTE interfaces aim to support the coordination and integration of software engineering tools. They address
topics such as an object management system, a common user interface and distribution. The objectives in
producing a formal specification of the PCTE interfaces can be summarised as follows:

• to support implementors of PCTE, tool builders using PCTE primitives, etc. by giving them access
to a precise description of the interfaces;

• to identify weaknesses in the PCTE interfaces and to suggest improvements;

• to provide a basis for long-term evolution of PCTE.

These objectives provided the main reasons for structuring the specification of the interfaces:

• Unstructured, the specification will be too large to have any chance of being reasonably understand-
able by its intended ‘users’. Division into ‘functional units’ with well-defined interfaces enhances
understandability.

• Weaknesses in the current design should be identified and improvements suggested. Composing the
functional units from instantiations of a small number of orthogonal and generic ‘underlying semantic
units’ supports such improvements.

• PCTE is currently rather language (C) and operating-system (UNIX) specific. Evolution away from
these influences will improve PCTE. Isolating the language- and operating-system-oriented parts sup-
ports such evolution.

For structuring specifications, VVSL has modularization constructs and parameterization constructs. They
are very similar to those of the kernel design language COLD-K [Jon89b]. The modularization mechanism
permits two modules to have parts of their state in common, including hidden parts. After appraisal of
the current trends in modular structuring with respect to the specification of the PCTE interfaces, the
structuring features of COLD-K were in high favour with the VIP project. A short survey of the current
trends in modular structuring is given in an appendix.

In VDM specification languages, operations may yield results which depend on a state and may change that
state. Operations are always regarded as atomic, i.e. not to interact with some environment during execution.
Therefore, intermediate states do not contain essential details about the behaviour of an operation. Only
the initial state and final state matter. In the case of the PCTE interfaces, not all operations are as isolated
as this. For some operations, termination, final state and/or results partly depend on the interference of
concurrently executed operations through a partially shared state. In these cases, intermediate states do
contain essential details about the behaviour of the operation concerned. Although it may be considered
inelegant to have such details externally visible, many aspects of this kind cannot be regarded as being
internal in the case of the PCTE interfaces. Adding a rely- and a guarantee-condition (which can be used
to express simple safety properties) to the usual pre- and post-condition pair of operations, as proposed
in [Jon83], was found to be inadequate for specifying the PCTE operations. At least some of the additional
expressive power, that is usually found in languages of temporal logic, was considered necessary.

In VVSL, a language for structured VDM specifications is combined with a language of temporal logic in
order to support implicit specification of non-atomic operations. The language of temporal logic has been
inspired by various temporal logics based on linear and discrete time [LPZ85, HM87, BK85, Fis87]. The
design of VVSL aimed at obtaining a well-defined combination that can be considered a VDM specification
language with additional syntactic constructs which are only needed in the presence of non-atomic operations
and with an appropriate interpretation of both atomic and non-atomic operations which covers the original
VDM interpretation.

VVSL without its modularization and parameterization constructs is referred to as flat VVSL. The struc-
turing sublanguage of VVSL consists of the modularization and parameterization constructs complementing
flat VVSL.
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In the VIP project, VVSL has been provided with a well-defined semantics by defining a translation to
COLD-K extended with constructs which are required for translation of the VVSL constructs that are only
needed in the presence of non-atomic operations. The report [BM88] contains both the definition of this
translation and the definition of the COLD-K extensions. In a follow-up project, VVSL has been provided
with a well-defined semantics in another way. In [Mid89c], flat VVSL has been given a logical semantics by
defining a translation to the language of the logic MPLω [KR89]. In [Mid90], the structuring sublanguage of
VVSL has been given a semantics by defining a translation to the terms of a calculus, which is obtained by
putting a variant of lambda calculus, called λπ-calculus [Fei89], on top of a specialization of a general model
of specification modules, called Description Algebra [Jon89a]. MPLω, Description Algebra and λπ-calculus
are also used for the formal definition of COLD-K in [FJKR87].

1.2 Structure of the Paper

Sections 2, 3 and 4 deal informally with the combination of a VDM specification language with a language of
temporal logic in VVSL. Section 2 presents some features of the VDM specification language; only features
that are strongly involved in the combination are treated. Section 3 outlines the motivation for combining
the two languages and sketches how this is actually done. Section 4 describes the temporal language in some
detail.

Sections 5 and 6 introduce the transformations to the extended COLD-K and the language of MPLω.
Section 5 outlines the motivation for transforming VVSL to the extended COLD-K and gives as an example
the translation to COLD-K for the operation definitions of the VDM specification language that has been
incorporated in VVSL. Section 6 outlines the motivation for transforming flat VVSL to the language of
MPLω and gives as an example the interpretation in MPLω for the logical expressions of flat VVSL.

Sections 7, 8 and 9 deal with formal aspects of the combination. Section 7 sketches the extensions of
COLD-K that are required for transforming full VVSL to a COLD-K-like language. Sections 8 and 9 give as
examples the translation to the extended COLD-K for the temporal formulae and the operation definitions
of VVSL. For comparison, the interpretation in MPLω is also given.

2 VVSL: the VDM Specification Language

2.1 Connections with other VDM Specification Languages

The major VDM specification languages are presented in [BJ82] (VDM specification language with domain-
theoretic semantics) and [Jon86] (VDM specification language with set-theoretic semantics). The latter
VDM specification language is closely related to Z [Spi88]. The forthcoming standard VDM specification
language BSI/VDM SL [BSI92] unifies the major VDM specification languages. A proposal for the formal
semantics of BSI/VDM SL is presented in [Lar92]. In the first version of this proposal, the semantics of the
STC VDM Reference Language defined in [Mon85] and the proposal for modularization and parameteriza-
tion in BSI/VDM SL presented in [Bea88] were taken as the starting point. Inadequacies of the predecessors
of this proposal for modularization and parameterization were the main reason to choose something quite
different for modularization and parameterization in VVSL. The chosen modularization and parameteri-
zation constructs are very similar to those of COLD-K; which is manifest in the translation rules given
in [Mid89d]. Meanwhile modularization has been removed from the proposal for the formal semantics of
BSI/VDM SL.

The flat VDM specification language that has been incorporated in VVSL is roughly a restricted version of
BSI/VDM SL. It is very similar to the language used in [Jon86]. One can define types, functions working
on values of these types, state variables which can take values of these types, and operations which may
interrogate and modify the state variables. In the remainder of this section, a short introduction to state
variables and (atomic) operations is given. For a more complete presentation, see e.g. [Jon86].
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2.2 State Variables and Operations

In the VDM specification language that has been incorporated in VVSL, like in other VDM specification
languages, operation is a general name for imperative programs and meaningful parts thereof (e.g. proce-
dures). Unlike functions, operations may yield results which depend on a state and may change that state.
The states concerned have a fixed number of named components, called state variables, attached to them.
In all states, a value is associates with each of these state variables. Operations change states by modifying
the value of state variables. Each state variable can only take values from a fixed type. State variables
correspond to programming variables of imperative programs.

State Variables
A state variable is interpreted as a function from states to values, that assigns to each state the value taken
by the state variable in that state.

A state variable is declared by a variable definition of the following form:

v : t .

It introduces a name for the state variable and defines the type from which the state variable can take
values.
A state invariant and an initial condition, of the form

invEinv and initEinit ,

respectively, can be associated with a collection of variable definitions. The state invariant is a restriction
on what values the state variables can take in any state. The initial condition is a restriction on what values
the state variables can take initially, i.e. before any modification by operations.

Operations
An operation is interpreted as an input/output relation, i.e. a relation between ‘initial’ states, tuples of
argument values, ‘final’ states and tuples of result values.

An operation is implicitly specified by an operation definition of the following form:

op(x1 : t1 , . . . , xn : tn) xn+1 : tn+1 , . . . , xm : tm
ext rd v1 : t ′1 , . . . , rd vk : t ′k ,wr vk+1 : t ′k+1 , . . . ,wr vl : t ′l
pre Epre

post Epost .

The header introduces a name for the specified operation and defines the types of its arguments and results.
The header also introduces names for the argument values and result values to be used within the body.
The external clause indicates which state variables are of concern to the behaviour of the operation and also
indicates which of those state variables may be modified by the operation. The pre-condition defines the
inputs, i.e. the combinations of initial state and tuples of argument values, for which the operation should
terminate, and the post-condition defines the possible outputs, i.e. combinations of final state and tuple of
result values, from each of these inputs. Operations are potentially non-deterministic: the post-condition
may permit more than one output from the same input. The pre-condition may be absent, in which case
the operation should terminate for all inputs (i.e. it is equivalent to the pre-condition true). In the post-

condition, one refers to the value of a state variable v in the initial state by ↼−v and to its value in the final
state by v .

An initial state may lead to a final state via some intermediate states. However, one cannot refer to these
intermediate states in operation definitions. The underlying idea is that intermediate states do not contain
essential details about the behaviour of the operation being defined, since operations are always regarded
as being atomic, i.e. not to interact with some environment during execution. Atomic operations may
certainly be implemented as combinations of sub-operations, provided that the whole remains insensitive to
interference.
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3 VVSL: Combining VDM and Temporal Logic

3.1 Motivation

Sometimes, operations are not as isolated as this. An important case that occurs in practice is that termi-
nation and/or the possible outputs depend on both the input and the interference of concurrently executed
operations through state variables. In that case, intermediate states do contain essential details about the
behaviour of the operation being defined. Although it is usually considered inelegant to have such details
visible, it happens in practice. The PCTE interfaces constitute a striking example. A language of temporal
logic seems a useful language for specifying such non-atomic operations implicitly.

In VVSL, a formula from a language of temporal logic can be used as a dynamic constraint associated with a
collection of state variable definitions or as an inter-condition associated with an operation definition. With
a dynamic constraint, global restrictions can be imposed on the set of possible histories of values taken by
the state variables being defined. With an inter-condition, restrictions can be imposed on the set of possible
histories of values taken by the state variables during the execution of the operation being defined in an
interfering environment.

The temporal language has been inspired by a temporal logic from Lichtenstein, Pnueli and Zuck that
includes operators referring to the past [LPZ85], a temporal logic from Moszkowski that includes the chop
operator [HM87], a temporal logic from Barringer and Kuiper that includes transition propositions [BK85]
and a temporal logic from Fisher with models in which finite stuttering can not be recognized [Fis87].
The operators referring to the past, the chop operator and the transition propositions obviate the need to
introduce auxiliary state variables acting as history variables, control variables and scheduling variables,
respectively. The above-mentioned temporal logics are all based on linear and discrete time. Temporal
logics based on linear and discrete time are further explored and better understood with respect to their
adequacy for specifying interacting parts of imperative programs than temporal logics based on branching
time [EH86] and temporal logics based on real time [BKP86, Sta88]. Therefore temporal logics based on
branching or real time have not influenced the temporal language of VVSL directly. For more details on the
temporal language, see Section 4. In the remainder of this section, it is sketched how the VDM specification
language and the language of temporal logic are combined in VVSL.

3.2 Computations

For atomic operations, it is appropriate to interpret them as input/output relations. This so-called relational
interpretation is the usual one for VDM specification languages. For non-atomic operations, such an inter-
pretation is no longer appropriate, since intermediate states contain essential details about the behaviour
of the operation; e.g. the possible outputs depend on the input as well as the interference of concurrently
executed operations through state variables. Non-atomic operations require an operational interpretation
as sets of computations which represent possible histories of values taken by the state variables during
execution of the operation concerned in possible interfering environments.

A computation of an operation is a non-empty finite or infinite sequence of states and connecting labelled
transitions. The transition labels indicate which transitions are effected by the operation itself and which
are effected by the environment. The transitions of the former kind are called internal steps, those of the
latter kind are called external steps. In every step some state variables that are relevant for the behaviour
of the operation have to change, unless the step is followed by infinitely many steps where such changes do
not happen. In other words, ‘finite stuttering’ is excluded. In the case of an internal step, the state variables
which change can only be write variables. In the case of an external step, they can be read variables and
write variables. The computation can be seen as generated by the operation and the environment working
interleaved but labelled from the viewpoint of the operation.

The introduction of transition labels for distinguishing between internal and external steps is significant.
Such a distinction is essential to achieve an open semantics of a non-atomic operation, i.e. a semantics which
models the behaviour of the operation in all possible environments. The kind of transition labelling, which
is presented here, is introduced by Barringer, Kuiper and Pnueli in [BKP84].
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The exclusion of finite stuttering corresponds to the view that if nothing actually happens then one can
not tell that time has passed, unless nothing happens for an infinitely long time. It makes computations
much like computations in ‘real time’ models based on the view that things happen at a finite rate, viz. the
model of the temporal logic of the reals with the ‘finite variability’ restriction [BKP86] and the model of
the temporal logic for ‘conceptual state specifications’ with the ‘local finiteness’ restriction [Sta88].

3.3 Inter-conditions

In full VVSL, an operation is implicitly specified by an operation definition of the following form:

op(x1 : t1 , . . . , xn : tn) xn+1 : tn+1 , . . . , xm : tm
ext rd v1 : t ′1 , . . . , rd vk : t ′k ,wr vk+1 : t ′k+1 , . . . ,wr vl : t ′l
pre Epre

post Epost

inter ϕinter .

That is, an inter-condition is added to the usual operation definition. This inter-condition defines the
possible computations of the operation.

For atomic operations, only the relational interpretation is relevant. Therefore the relational interpretation
of an operation is maintained in VVSL. This interpretation is characterized by the external clause (for
atomic operations), the pre-condition and the post-condition. The operation has in addition the operational
interpretation, which is mainly characterized by the external clause (for non-atomic operations) and the
inter-condition. The inter-condition is a temporal formula which must hold initially for the computations
from the operational interpretation. This corresponds to a notion of validity for temporal formulae which is
‘anchored’ at the initial state of the computation (see [MP89]). The inter-condition can be used to express
that the operation is atomic. However, this may also be indicated by leaving out the inter-condition. This
means that atomic operations can be implicitly specified as in other VDM specification languages. The
possible computations of an atomic operation have at most one transition and their transitions are always
internal steps.

The computations from the operational interpretation must agree with the relational interpretation. To be
more precise, its finite computations must have a first and last state between which the input/output relation
according to the relational interpretation holds and its infinite computations must have a first state which
belongs to the domain of this relation. The inter-condition expresses a restriction on the set of computations
that agree with the relational interpretation. The requirement on the infinite computations means that the
pre-condition does not always define the inputs for which the operation necessarily terminates (in any valid
interpretation). For non-atomic operations, the pre-condition defines the inputs for which the operation
possibly terminates. In other words, it defines the inputs for which termination may not be ruled out
completely by interference.

For non-atomic operations the values taken by a read variable in the initial state and the final state must be
allowed to be different, since a read variable may be changed by the environment. This has as a consequence
that the external clause does not contribute to the characterization of the relational interpretation of non-
atomic operations. It contributes only to the characterization of the operational interpretation. Read
variables cannot be changed during an internal step but can be changed during external steps. Write
variables can be changed during any step. Only read and write variables are relevant for the behaviour.

With the combined possibilities of the external clause and the inter-condition, non-atomic operations can
be defined while maintaining as much of the VDM style of specification as possible.

The pre-condition of a non-atomic operation only defines the inputs for which the operation possibly termi-
nates. This allows that the operation only terminates due to interference of concurrently executed operations.
Moreover, the post-condition of a non-atomic operation will be rather weak in general, for inputs must often
be related to many outputs which should only occur due to certain interference of concurrently executed
operations. The inter-condition is mainly used to describe which interference is required for termination
and/or the occurrence of such outputs.
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Apart from finite stuttering, the operational interpretation of interfering operations characterized by a rely-
and a guarantee-condition, as proposed in [Jon83], can also be characterized by an inter-condition of the
following form:

inter 2((is-E ⇒ ©ϕrely) ∧ (is-I ⇒ ©ϕguar )),

where the temporal formulae ϕrely and ϕguar are the original rely- and guarantee-condition with each oc-

currences of an expression ↼−v replaced by the temporal term -© v . Rely- and guarantee-conditions can only
be used to express invariance properties of state changes in steps made by the environment of the operation
concerned and invariance properties of state changes in steps made by the operation itself. This is often
inadequate; e.g. for operations that should wait until something occurs, such as some PCTE primitives.

3.4 Dynamic Constraints

In full VVSL, a dynamic constraint , of the form

dynϕdyn ,

can be associated with a collection of variable definitions. A dynamic constraint is a restriction on what
histories of values taken by the state variables can occur.

The role of dynamic constraints is similar to that of state invariants. State invariants impose restrictions on
what values the state variables can take. Therefore they should be preserved by the relational interpretation
of all operations. Dynamic constraints impose restrictions on what histories of values taken by the state
variables can occur. Likewise they should be preserved by the operational interpretation of all operations.
A dynamic constraint is a temporal formula which must hold always for the computations of any operation.

4 VVSL: the Language of Temporal Logic

In this section a short overview is given of the language of temporal logic that can be used in VVSL. The
temporal language is treated in isolation, i.e. the connections with the remainder of VVSL (sketched in
Section 3) are reduced as far as possible.

4.1 Temporal Formulae

The syntax of the temporal language is outlined by the following production rules from the complete grammar
of VVSL, which is given in Chapter 3 of [BM88]:

ϕ ::= is-I | is-E | τ | τ1 = τ2 | ϕ1 ;ϕ2 | ©ϕ | ϕ1Uϕ2 | -©ϕ | ϕ1Sϕ2 |
¬ϕ | ϕ1 ∨ ϕ2 | ∃x ∈ t · ϕ | let x : t 4 τ inϕ ,

τ ::= e | © τ | -© τ | f (τ1 , . . . , τn) .

In order to be a well-formed temporal formula, a temporal term τ (third alternative of first production rule)
must have type B (which denotes the set of boolean values).

4.2 Computations

Computations are rather loosely described in Section 3. More accuracy is needed for a description of the
intended meaning of temporal formulae.

A model of a complete VVSL specification is a structureA in which, among other things, a special pre-defined
name State is associated with a non-empty set StateA (of states).

A (labelled) computation w.r.t. A is a pair 〈σ, λ〉 where σ is a non-empty finite or infinite sequence over
StateA and λ is a sequence over the set {I,E} (of transition labels) whose length is 1 less than the length
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of σ, if σ is finite, and is infinite otherwise.
The transitions labels correspond directly to the two transition propositions is-I (is internal step) and is-E
(is external step).

The usual representation of a finite computation 〈〈s0 , . . . , sn〉, 〈l0 , . . . , ln−1 〉〉 is

s0
l0→ s1→· · ·→sn−1

ln−1→ sn ,

and the usual representation of an infinite computation 〈〈s0 , s1 , . . .〉, 〈l0 , l1 , . . .〉〉 is

s0
l0→ s1

l1→ · · ·.

If γ = s0
l0→ s1→· · ·→sn−1

ln−1→ sn then the length of γ, |γ|, is defined to be the number of states in γ, i.e.
|γ| = n + 1 . If γ is infinite, we write |γ| = ω.

Furthermore, the notations pref (γ, i) and suff (γ, i) are used to denote s0
l0→ s1→· · ·→si−1

li−1→ si and

si
li→ si+1→· · ·→sn−1

ln−1→ sn (in the finite case) or si
li→ si+1

li+1→ · · · (in the infinite case), respectively.

4.3 Satisfaction of Temporal Formulae

The notation 〈γ, i〉 |=g ϕ will be used to indicate the truth of temporal formula ϕ at position i in computation
γ under assignment g . By an assignment is meant a function which assigns to each value name (i.e. variable
in the mathematical sense) a value belonging to the appropriate type.

The meaning of the temporal formulae is now outlined by the inductive rules for the temporal operators ;
(chop), © (next), U (until), -© (previous) and S (since) from the definition of satisfaction:

〈γ, i〉 |=g ϕ1 ;ϕ2 iff for some j , i ≤ j < |γ|, 〈pref (γ, j ), i〉 |=g ϕ1 and 〈suff (γ, j ), 0 〉 |=g ϕ2 ,
or |γ| = ω and 〈γ, i〉 |=g ϕ1 ,

〈γ, i〉 |=g ©ϕ iff i + 1 < |γ| and 〈γ, i + 1 〉 |=g ϕ,

〈γ, i〉 |=g ϕ1Uϕ2 iff for some k , i ≤ k < |γ|, 〈γ, k〉 |=g ϕ2 and
for every j , i ≤ j < k , 〈γ, j 〉 |=g ϕ1 ,

〈γ, i〉 |=g -©ϕ iff i > 0 and 〈γ, i − 1 〉 |=g ϕ,

〈γ, i〉 |=g ϕ1Sϕ2 iff for some k , 0 ≤ k ≤ i , 〈γ, k〉 |=g ϕ2 and
for every j , k < j ≤ i , 〈γ, j 〉 |=g ϕ1 .

The rules for the logical connectives and quantifiers are as usual.

The notations 3ϕ (eventually), 2ϕ (henceforth) and their counterparts for the past are defined as abbre-
viations:

3ϕ
4
= true U ϕ,

2ϕ
4
= ¬(3¬ϕ),

-3ϕ
4
= true S ϕ,

-2ϕ
4
= ¬(-3¬ϕ).

5 Transforming VVSL to COLD-K

5.1 Motivation

COLD-K provides modularization and parameterization mechanisms which are adequate for writing large
specifications in state-based styles and have firm mathematical foundations. This modularization mecha-
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nism permits two modules to have parts of their state in common, including hidden parts. COLD-K is
a formal specification language which is meant to be used as the kernel of user-oriented versions of the
language (attuned to e.g. different styles of specification or different implementation languages), each being
an extension with features of a purely syntactic nature. A VDM specification language that is restricted to
first-order functions can be considered to be a user-oriented version of COLD-K.

This means that by giving a translation from the flat VDM specification language that have been incorpo-
rated in VVSL to COLD-K, one gets ‘for free’ suitable features for structuring VDM specifications. Besides,
it is obvious that for the most part this translation is relatively easy. In other words, apart from the
constructs for the definition of non-atomic operations, to provide VVSL with a well-defined semantics by
defining a translation to COLD-K is an attractive approach in case a well-defined semantics must be made
available at short notice.

Because of the combination with a language of temporal logic, the situation is more complicated. The
additional constructs cannot be translated to COLD-K. COLD-K has to be extended first. It is far from
obvious that COLD-K can be extended straightforwardly to a suitable basis for full VVSL, but insoluble
problems are not to be expected either. This complication makes the approach less attractive, but it remains
a reasonable alternative under the constraints of the VIP project which hardly allow to develop a semantic
basis for VVSL.

5.2 Translation rules

The translation from VVSL constructs to COLD-K constructs has been defined by means of schematic
production rules, called translation rules. Presenting the definition of the translation in this way, emphasizes
the syntactic nature of the translation.

The left-hand side of a translation rule is a VVSL construct enclosed by the special brackets 〈[, ]〉, which may
contain variables for subconstructs. The right-hand side is a COLD-K construct, which may contain these
variables enclosed by the special brackets 〈[, ]〉 for subconstructs (except for variables ranging over constructs
solely consisting of an identifier , which may occur without enclosing brackets). The left-hand side and
right-hand side of a translation rule are separated by the arrow =..

The translations of a VVSL construct C are the terminal productions of 〈[C ]〉. In general, the translation is
not unique.

The special brackets 〈[, ]〉 denote a translation operator which maps meaningful VVSL constructs to mean-
ingful COLD-K constructs. The resemblance of the special brackets with the ‘semantic brackets’ [[, ]] is
intentional. It is meant to strengthen the intuition of translation operators as meaning functions. In the
complete definition of the translation, an auxiliary translation operator is used, which is denoted there by
the special brackets {[, ]}. Thus the translation of the declarative aspects of definitions and the translation
of the definitional aspects of definitions could be split.

5.3 Example

An example of a VVSL construct with straightforward translation to COLD-K is the operation definition
for atomic operations. The translation is outlined by the following translation rules from the complete
definition of the translation from VVSL to the extended COLD-K, which is given in Chapter 3 of [BM88]:

〈[op(x1 : t1 , . . . , xn : tn) xn+1 : tn+1 , . . . , xm : tm
ext rd v1 : t ′1 , . . . , rd vk : t ′k , wr vk+1 : t ′k+1 , . . . ,wr vl : t ′l pre E1 post E2 ]〉 =.
proc op: t1 × · · · × tn → t mod vk+1 :→ t ′k+1 , . . . , vl :→ t ′l
axiom
forall x1 : t1 , . . . , xn : tn (〈[E1 ]〉 = true ⇒ (〈 op(x1 , . . . , xn) 〉 true))
axiom
forall x1 : t1 , . . . , xn : tn
(〈[E1 ]〉 = true ⇒ ([ let xn+1 : tn+1 , . . . , xm : tm ; xn+1 , . . . , xm := op(x1 , . . . , xn) ] 〈[E2 ]〉 = true)).
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Especially the COLD-K modification rights construct and its assertion constructs corresponding to the box
and diamond operators of dynamic logic [Har84] make this translation straightforward. Acquainted with
dynamic logic, the resemblance with the definition of satisfaction for operation definitions in Appendix C
of [Jon86] seems clear. However, the box and diamond operators of dynamic logic are not exactly those of
COLD-K. This means that it is not trivial to show that this translation captures the intended meaning of
operation definitions, although it may be intuitively clear.

6 Transforming VVSL to the Language of MPLω

6.1 Motivation

For various VVSL constructs, translation to COLD-K is not straightforward. Amongst the less obvious
to translate are the logical expressions. Because their value can be either true, false or undefined , the
classical meaning of the logical connectives and quantifiers has to be extended. This must be done as in
LPF (see [Che86, Jon86]):

¬E is true if E is false
is false if E is true
is undefined otherwise,

E ∨ E ′ is true if E is true or E ′ is true
is false if E is false and E ′ is false
is undefined otherwise,

∃x ∈ t · E is true if for some value c of type t , E is true when x is interpreted as c
is false if for each value c of type t , E is false when x is interpreted as c
is undefined otherwise.

The other logical connectives and quantifiers are expressible by ¬, ∨ and ∃ in the classical way.

The approach to the translation of logical expressions is connected with the treatment of three-valued
predicates in classical two-valued logic which is described in [Bli88].

The translation is outlined by the following translation rules from the complete definition of the translation
from VVSL to the extended COLD-K, which is given in Chapter 3 of [BM88]:

〈[¬E ]〉 =.
some y1 :B
(forall y2 :B ((〈[E ]〉 = true ⇔ y2 = false) and (〈[E ]〉 = false ⇔ y2 = true) ⇔ y1 = y2 )),

〈[E1 ∨ E2 ]〉 =.
some y1 :B
(forall y2 :B
((〈[E1 ]〉 = true or 〈[E2 ]〉 = true ⇔ y2 = true) and
(〈[E1 ]〉 = false and 〈[E2 ]〉 = false ⇔ y2 = false) ⇔ y1 = y2 )),

〈[∃ x ∈ t · E ]〉 =.
some y1 :B
(forall y2 :B
((exists x : t (〈[E ]〉 = true) ⇔ y2 = true) and
(forall x : t (〈[E ]〉 = false) ⇔ y2 = false) ⇔ y1 = y2 )).

In order to express “the unique y of sort T such that assertion A holds” in COLD-K one has to write
some y ′: T (forall y : T (A ⇔ y ′ = y)).

With this in mind it is intuitively clear that this translation captures the intended meaning for all cases
that should not yield an undefined result. The other cases are not intuitively clear. In order to show (even
informally) that the translation captures the intended meaning completely, the translation from VVSL to
COLD-K has to be composed with the translation from COLD-K to the language of MPLω or a complete
proof system for a ‘COLD-K logic’ (with COLD-K assertions as formulae) has to be devised. The first alter-
native results in a direct interpretation in MPLω. This means that it provides an interpretation accessible
to a larger public. After all, MPLω is well related to classical first-order logic.

For various other VVSL constructs, it is also difficult to show that the translation to COLD-K captures the
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intended meaning. Further translation to MPLω seems needed in all cases.

6.2 Example

The interpretation of logical expressions in MPLω is context dependent. The notation [[E ]]C~s,y is used to
denote the MPLω formula expressing the fact that the evaluation of the logical expression E in a context
where we have visible names as given by C and state(s) ~s yields value y .
B is used as a special sort symbol representing the domain of boolean values, and tt and ff are used as special
constant symbols representing the boolean values.

The interpretation of logical expressions in MPLω is outlined by the following defining equations from the
complete definition of the interpretation of flat VVSL in MPLω, which is given in [Mid89c]:

[[¬E ]]C~s,y := ∀y ′:B(([[E ]]C~s,tt ↔ y ′ = ff ) ∧ ([[E ]]C~s,ff ↔ y ′ = tt)↔ y ′ = y),

[[E1 ∨ E2 ]]C~s,y := ∀y ′:B(([[E1 ]]C~s,tt ∨ [[E2 ]]C~s,tt ↔ y ′ = tt) ∧ ([[E1 ]]C~s,ff ∧ [[E2 ]]C~s,ff ↔ y ′ = ff )↔ y ′ = y),

[[∃ x ∈ t · E ]]C~s,y := ∀y ′:B((∃x ′: tC ([[E ]]
C∪{d}
~s,tt )↔ y ′ = tt) ∧ (∀x ′: tC ([[E ]]

C∪{d}
~s,ff )↔ y ′ = ff )↔ y ′ = y).

In each of these equations, y ′ is a fresh variable symbol of MPLω. In the last equation, x ′ is a fresh variable
symbol of MPLω corresponding to the value name x (this correspondence is fixed in the ‘declaration’ d).

Although there is a striking resemblance between the translation to COLD-K and the interpretation in
MPLω, there is a big difference. It is easy to show that for all cases that should yield an undefined result,
the right-hand sides of these equations are logically equivalent to ∀y ′:B(y ′ 6= y), which is in turn equivalent
to ¬(y↓), i.e. y is undefined.

7 COLD-K Extensions

In Section 3, it is sketched how a VDM specification language is combined with a language of temporal
logic in VVSL. In order to formalize this, an extended COLD-K as well as the translation of the additional
constructs to the extended language have been defined. In this section, the extensions of COLD-K are
sketched. In Sections 8 and 9, the translation to the extended COLD-K for the temporal formulae and the
operation definitions of VVSL is outlined.

The required COLD-K extensions relate to the mathematical foundations, the language constructs, and
their meaning. They are formally defined in Chapter 4 of [BM88]. In this section, only aspects with a close
connection to the temporal language of VVSL are briefly outlined. Some familiarity with the mathematical
foundations of COLD-K is assumed. They are given in [KR89, Jon89a, Fei89].

7.1 The Mathematical Foundations

Roughly, modules in COLD-K (called classes) correspond to presentations of MPLω theories, called class
descriptions. These theory presentations are of a special kind, since there are always special standard
symbols with associated axioms. There are the special sort symbol State representing the state space, the
special function symbol s0 representing the initial state, and special predicate symbols of several kinds
representing relations on states. This allows program variables to correspond to functions with an argument
of sort State and procedures to correspond to predicates with two arguments of sort State. For the extended
COLD-K, we have to generalize from class descriptions. That is, additional special standard symbols are
needed.

The following additional symbols are introduced:

1. Comp: a special sort symbol; representing the domain of computations.
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2. stn (for all n < ω): a special function symbol; stn(c) represents the (n + 1 )-th state of computation c.

3. intn (for all n < ω): a special predicate symbol; intn(c) indicates that the (n + 1 )-th state transition
in computation c is an internal transition.

4. extn (for all n < ω): a special predicate symbol; extn(c) indicates that the (n + 1 )-th state transition
in computation c is an external transition.

5. CComp: a set of variable symbols, which are called computation symbols and represent computations.

6. compp (for all p ∈ CProc): a special predicate symbol; compp(x1 , . . . , xn , c, y1 , . . . , ym) indicates that
the procedure call p(x1 , . . . , xn) (executing interleaved with an environment) can generate computation
c yielding objects y1 , . . . , ym .

7.2 The Language Constructs and their Meaning

The additional constructs are mainly assertions and expressions concerning computations. For the most
part, they have COLD-K assertions and expressions concerning states as counterparts. The production
rules for temporal assertions comprise the production rules for COLD-K assertions and production rules for
assertions corresponding to the temporal formulae of VVSL. Similarly, the production rules for temporal
expressions comprise the production rules for COLD-K expressions and production rules for expressions
corresponding to the temporal terms of VVSL.

A temporal assertion or temporal expression has a context-dependent meaning. Like a COLD-K assertion
or expression, the meaning in given context is a MPLω formula. The notation [[P ]]Cc,k is used to denote the
MPLω formula that expresses the fact that the temporal assertion P holds at position k in computation c,
in a context where we have visible symbols C . In [BM88] the notation form(P ,C , c, k) is used instead of
[[P ]]Cc,k . The former notation is in the style of [FJKR87]. However, the latter notation is in conformance to
the one used to denote the MPLω formulae corresponding to temporal formulae from the temporal language
of VVSL. The notation close(ϕ,C ) is used to denote the existential closure of MPLω formula ϕ with respect
to the variable symbols that occur free in ϕ but are not in C . In [BM88] the notation cform(P ,C , c, k) is
used for close([[P ]]Cc,k ,C ). The existential closure of MPLω formulae is used to deal properly with the liberal
scope rules for the names introduced by the let-expression of COLD-K.

Furthermore, the notation prefix (c, c′, k) is used to denote the formula that expresses the fact that compu-
tation c′ is the prefix of computation c ending at the (k + 1 )-th state of c, and the notation suffix (c, c′, k)
to denote the formula that expresses the fact that computation c′ is the suffix of computation c starting at
the (k + 1 )-th state of c.

The interpretation of temporal assertions in MPLω is outlined by the following defining equations from
the complete definition of the interpretation of the temporal assertions and temporal expressions in MPLω,
which is given in Chapter 4 of [BM88]:

[[P chop Q ]]Cc,k :=
∃c1 :Comp ∃c2 :Comp
(
∨

n(prefix (c, c1 ,n) ∧ suffix (c, c2 ,n)) ∧ close([[P ]]Cc1 ,k ,C ) ∧ close([[Q ]]Cc2 ,0 ,C )) ∨∧
n(stn(c)↓) ∧ close([[P ]]Cc,k ,C ),

[[next P ]]Cc,k := stk+1 (c)↓ ∧close([[P ]]Cc,k+1 ,C ),

[[P until Q ]]Cc,k :=
∨

n(stk+n(c)↓ ∧close([[Q ]]Cc,k+n ,C ) ∧
n−1∧
m=0

(close([[P ]]Cc,k+m ,C ))),

[[prev P ]]Cc,k := close([[P ]]Cc,k−1 ,C ) if k > 0 ,

⊥ otherwise,

[[P since Q ]]Cc,k :=
k∨

l=0

(close([[Q ]]Cc,k−l ,C ) ∧
l−1∧
m=1

(close([[P ]]Cc,k−m ,C ))).
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In the first equation, c1 and c2 are fresh computation symbols.

It is clear that the interpretation of these temporal assertions in MPLω is conformable to the intended
meaning of the corresponding temporal formulae of VVSL described in Section 4. This means that the tem-
poral language of VVSL and the temporal assertion language added to COLD-K are very closely connected.
Because the extension of COLD-K with a temporal assertion language is only meant to obtain a semantic
basis for full VVSL, it makes no sense to devise a rather different temporal assertion language.

Amongst the interesting temporal assertions that do not correspond to temporal formulae of VVSL are the
temporal assertions of the form [X ]P , where X is an expression (statement) and P is a temporal assertion.
This makes the temporal assertion sublanguage of the extended COLD-K resembling process logic [HK82].

The other additional constructs are also constructs concerning computations which have original COLD-K
constructs as counterparts: an extension of the constrained procedure bodies of COLD-K to non-atomic
procedures and an extension of the axioms of COLD-K to computations.

8 Transforming Temporal Formulae

In this section the translation of the temporal formulae of VVSL to the temporal assertions of the extended
COLD-K is outlined. For comparison, the direct interpretation in MPLω is also sketched.

8.1 Translation to the Extended COLD-K

The translation to the extended COLD-K for the temporal formulae is simple, due to the extension of
COLD-K with corresponding temporal assertions.

The intended meaning of temporal formulae as described in Section 4 does not cover undefinedness. Like
logical expressions, their value can be either true, false or undefined . The intention is actually that the logical
connectives and quantifiers distinguish between false and undefined as described for logical expressions in
Section 6, while the temporal operators identify false and undefined . Extending the meaning of the temporal
operators in the same way as the classical logical operators would yield very obscure results.

The translation is outlined by the following translation rules from the complete definition of the translation
from VVSL to the extended COLD-K, which is given in Chapter 3 of [BM88]:

〈[ϕ1 ; ϕ2 ]〉 =.
some y1 :B (forall y2 :B (((〈[ϕ1 ]〉 = true chop 〈[ϕ2 ]〉 = true) ⇔ y2 = true) ⇔ y1 = y2 )),

〈[© ϕ]〉 =.
some y1 :B (forall y2 :B (((next 〈[ϕ1 ]〉 = true) ⇔ y2 = true) ⇔ y1 = y2 )),

〈[ϕ1 U ϕ2 ]〉 =.
some y1 :B (forall y2 :B (((〈[ϕ1 ]〉 = true until 〈[ϕ2 ]〉 = true) ⇔ y2 = true) ⇔ y1 = y2 )),

〈[ -© ϕ]〉 =.
some y1 :B (forall y2 :B (((prev 〈[ϕ1 ]〉 = true) ⇔ y2 = true) ⇔ y1 = y2 )),

〈[ϕ1 S ϕ2 ]〉 =.
some y1 :B (forall y2 :B (((〈[ϕ1 ]〉 = true since 〈[ϕ2 ]〉 = true) ⇔ y2 = true) ⇔ y1 = y2 )).

Because the temporal language of VVSL and the temporal assertion language added to COLD-K are very
closely connected, this translation trivially captures the intended meaning. However it is not explanatory.
It may seem that a direct interpretation of temporal formulae in MPLω (sketched below) is preferable.
However, that interpretation does not fit together with the use of COLD-K as the starting point of a
suitable semantic basis for full VVSL. In other words, the indirect interpretation of the temporal language
in MPLω is needed to be able to do the same for the VDM specification language (which is motivated in
Section 5).
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8.2 Interpretation in MPLω

As indicated above, almost no additional effort is required to obtain a direct interpretation of temporal
formulae in MPLω.

This is outlined by the following defining equations from the complete definition of the interpretation of flat
VVSL in MPLω, which is given in [Mid89c]:

[[ϕ1 ; ϕ2 ]]Cc,k ,y :=
∀y ′:B
(((∃c1 :Comp ∃c2 :Comp

(
∨

n(prefix (c, c1 ,n) ∧ suffix (c, c2 ,n)) ∧ [[ϕ1 ]]Cc1 ,k ,tt ∧ [[ϕ2 ]]Cc2 ,0 ,tt) ∨∧
n(stn(c)↓) ∧ [[ϕ1 ]]Cc,k ,tt)↔ y ′ = tt)↔ y ′ = y),

[[© ϕ]]Cc,k ,y := ∀y ′:B((stk+1 (c)↓ ∧ [[ϕ]]Cc,k+1 ,tt ↔ y ′ = tt)↔ y ′ = y),

[[ϕ1 U ϕ2 ]]Cc,k ,y := ∀y ′:B((
∨

n(stk+n(c)↓ ∧ [[ϕ2 ]]Cc,k+n,tt ∧
n−1∧
m=0

([[ϕ1 ]]Cc,k+m,tt))↔ y ′ = tt)↔ y ′ = y),

[[ -© ϕ]]Cc,k ,y := ∀y ′:B(([[ϕ]]Cc,k-1 ,tt ↔ y ′ = tt)↔ y ′ = y) if k > 0

ff = y otherwise,

[[ϕ1 S ϕ2 ]]Cc,k ,y := ∀y ′:B((

k∨
l=0

([[ϕ2 ]]Cc,k−l ,tt ∧
l−1∧
m=1

([[ϕ1 ]]Cc,k−m,tt))↔ y ′ = tt)↔ y ′ = y).

In each of these equations, y ′ is a fresh variable symbol of MPLω. In the first equation, c1 and c2 are fresh
computations symbols.

Owing to the close connection between the temporal formulae of VVSL and the temporal assertions of
the extended COLD-K, there is almost no resemblance between the translation to the extended COLD-K
and the interpretation in MPLω. Intuitively, the former mainly solves some rather elementary differences
between VDM specification languages and COLD-K and the latter mainly assigns (logical) meaning.

9 Transforming Definitions of (Non-atomic) Operations

In this section the translation of the operation definitions for non-atomic operations to the procedure defini-
tions and axioms of the extended COLD-K is outlined. For comparison, the direct interpretation in MPLω

is also sketched.

9.1 Translation to the Extended COLD-K

The translation to the extended COLD-K for the operation definitions for non-atomic operations is simple,
due to the extensions of COLD-K with corresponding constructs: for expressing modification rights, an
extension of the constrained procedure bodies of COLD-K to non-atomic procedures is added, and for
characterizing computations, an extension of the axioms of COLD-K to computations is added.

The translation is outlined by the following translation rules from the complete definition of the translation
from VVSL to the extended COLD-K, which is give in Chapter 3 of [BM88]:

〈[op(x1 : t1 , . . . , xn : tn) xn+1 : tn+1 , . . . , xm : tm
ext rd v1 : t ′1 , . . . , rd vk : t ′k , wr vk+1 : t ′k+1 , . . . ,wr vl : t ′l pre E1 post E2 inter ϕ]〉 =.
proc op: t1 × · · · × tn → t mod ext v1 :→ t ′1 , . . . , vk :→ t ′k int vk+1 :→ t ′k+1 , . . . , vl :→ t ′l
axiom
forall x1 : t1 , . . . , xn : tn (〈[E1 ]〉 = true ⇒ (〈 op(x1 , . . . , xn) 〉 true))
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axiom
forall x1 : t1 , . . . , xn : tn
(〈[E1 ]〉 = true ⇒ ([ let xn+1 : tn+1 , . . . , xm : tm ; xn+1 , . . . , xm := op(x1 , . . . , xn) ] 〈[E2 ]〉 = true))

caxiom
forall x1 : t1 , . . . , xn : tn (〈[E1 ]〉 = true ⇒ (〈 op(x1 , . . . , xn) 〉 true until not(next true)))
caxiom
forall x1 : t1 , . . . , xn : tn
(〈[E1 ]〉 = true ⇒ ([ let xn+1 : tn+1 , . . . , xm : tm ; xn+1 , . . . , xm := op(x1 , . . . , xn) ] 〈[ϕ]〉 = true)).

Here shows the lack of integration inherent to the use of COLD-K as the starting point of a semantic
basis for full VVSL. As far as modification rights are concerned, definitions of atomic operations and defi-
nitions of non-atomic operations must be translated to different kinds of constrained procedure bodies. A
smooth generalization of the original kind was not possible. For the same reason, two kinds of axioms are
distinguished.

Semantically, this means that the indirect interpretation is actually twofold, while the original one can be
derived from the new one. A single direct interpretation in MPLω (sketched below) seems more appropriate.

9.2 Interpretation in MPLω

The direct interpretation of operation definitions (for atomic operations and non-atomic operations) in
MPLω is much simpler than the indirect one. It consists of a formula corresponding to the external clause
and a formula corresponding to each of the conditions from the definition.

The interpretation is outlined by the following defining equations from the complete definition of the inter-
pretation of flat VVSL in MPLω, which is given in [Mid89c]:

[[op(x1 : t1 , . . . , xn : tn) xn+1 : tn+1 , . . . , xm : tm
ext rd v1 : t ′1 , . . . , rd vk : t ′k , wr vk+1 : t ′k+1 , . . . ,wr vl : t ′l pre E1 post E2 inter ϕ]]C :=
{ϕ1 , . . . , ϕ4},

where:

ϕ1 = ∀x ′1 : tC1 , . . . , x
′
n : tCn , c:Comp, x ′n+1 : tCn+1 , . . . , x

′
m : tCm

(opC
tC1 ×···×tCn →tCn+1×···×tCm

(x ′1 , . . . , x
′
n , c, x

′
n+1 , . . . , x

′
m)→

vmodC ({v1 , . . . , vk}, {vk+1 , . . . , vl}, c)),

ϕ2 = ∀s:State, x ′1 : tC1 , . . . , x
′
n : tCn

([[E1 ]]
C∪{d1 ,...,dn}
〈s〉,tt →

∃c:Comp, x ′n+1 : tCn+1 , . . . , x
′
m : tCm

(st0 (c) = s ∧ ¬(
∧

k (stk (c)↓)) ∧ opC
tC1 ×···×tCn →tCn+1×···×tCm

(x ′1 , . . . , x
′
n , c, x

′
n+1 , . . . , x

′
m))),

ϕ3 = ∀s:State, x ′1 : tC1 , . . . , x
′
n : tCn

([[E1 ]]
C∪{d1 ,...,dn}
〈s〉,tt →

∀c:Comp, x ′n+1 : tCn+1 , . . . , x
′
m : tCm

(st0 (c) = s ∧ ¬(
∧

k (stk (c)↓)) ∧
opC

tC1 ×···×tCn →tCn+1×···×tCm
(x ′1 , . . . , x

′
n , c, x

′
n+1 , . . . , x

′
m)→

∃t : State(
∨

k (stk (c) = t ∧ ¬(stk+1 (c)↓)) ∧ [[E2 ]]
C∪{d1 ,...,dm}
〈s,t〉,tt ))),

ϕ4 = ∀s:State, x ′1 : tC1 , . . . , x
′
n : tCn

([[E1 ]]
C∪{d1 ,...,dn}
〈s〉,tt →

∀c:Comp, x ′n+1 : tCn+1 , . . . , x
′
m : tCm

(st0 (c) = s ∧ opC
tC1 ×···×tCn →tCn+1×···×tCm

(x ′1 , . . . , x
′
n , c, x

′
n+1 , . . . , x

′
m)→ [[ϕ]]

C∪{d1 ,...,dm}
c,0 ,tt )).

In these equations, x ′i is a fresh variable symbol of MPLω corresponding to the value name xi (this corre-
spondence is fixed in the declaration di). s and t are fresh state symbols (i.e. variable symbols representing
states), and c is a fresh computation symbol.
The notation vmodC (R,W , c) is used to denote the formula that expresses the fact that during each step in
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computation c variables from R ∪W are changed and during internal steps variables other than variables
from W are not changed.

These formulae reflect the intended meaning clearly. Formulae ϕ1 , ϕ2 and ϕ3 generalize the interpretation
of external clause, pre-condition and post-condition from pairs of states to computations. Formulae ϕ3 and
ϕ4 are similar, but the former (corresponding to the post-condition) deals only with the first and last state
of computations and the latter (corresponding to the inter-condition) deals with computations as a whole.

The direct interpretation shows the integration which is made possible by the use of MPLω as the starting
point of a semantic basis for full VVSL. Definitions of both atomic and non-atomic operations are translated
to formulae of the same shape. Atomic operations are not treated differently from non-atomic ones. They
are considered to have the default inter-condition © true ⇒ (is-I ∧©¬© true).

Semantically, this means that the direct interpretation is not twofold. Only the new one is left, but the
original can be derived from it by abstracting from the intermediate states.

10 Experiences with the Application of VVSL

In the VIP project, VVSL has been used for the formal specification of the PCTE interfaces. Some experi-
ences with this application of VVSL seem worth mentioning.

The division of the PCTE interfaces into functional units with well-defined interfaces, which could be reached
by the use of the modularization and parameterization constructs of VVSL, has made the complexity explicit
that is inherent in PCTE. This complexity was kept implicit in [PCT86].

The composition of these functional units from instantiations of a small number of orthogonal and generic
underlying semantic units, requires the presence of suitable underlying semantic units. Devising them has
revealed what the PCTE way of looking at coordination and integration of software engineering tools exactly
is. This way of looking was hided from outsiders in [PCT86].

Experienced specifiers were used to have only a local definition mechanism available as structuring feature.
For them, it was rather difficult to master a new style that takes advantage of the available modularization
and parameterization mechanisms. Unexperienced specifiers could master such a style much easier.

Although the temporal language of VVSL was designed for use in the VIP project, it is a temporal language
of general utility. In working on the formal specification of the PCTE interfaces, several frequently occurring
patterns of inter-conditions were recognized. Some ‘notational conventions’ were added to get the syntax
tailored to those patterns.

In a follow-up project, VVSL has also been used to formalize many of the basic concepts of the relational
data model, an abstract external interface of a relational database management system and an abstract
internal interface for the same system [Mid89b, Mid89a]. These formalizations are meant to provide for
examples of the use of VVSL that are accessible to a larger public than the formal specification of the
PCTE interfaces.

The idea of composing functional units from instantiations of a small number of orthogonal and generic
underlying semantic units is elaborated in these specifications. A firm conclusion is that this approach
not only supports adaptability of the specification concerned. It also supports reusability of its parts
and it enhances comprehensibility. There is a strong connection between these effects and the goals of
modularization techniques which are identified in [FJ90].1 The related idea of using separation of state-
independent aspects and state-dependent ones as a guideline in the division into functional units is also
elaborated in these specifications. The impression is that the use of this guideline strengthens the effects
mentioned above. For example, the specification might be understood more globally.

Also in working on the formal specification of the internal interface [Mid89a], several frequently occurring
patterns of inter-conditions were recognized. These patterns differ considerably from the frequently occurring

1 In [FJ90], these goals lead the authors to suggest criteria which should govern the choice of modular structure in a specifi-
cation: comprehensibility of individual modules, suitability of modules for re-use, and intuitive clarity of the modular structure.
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patterns which were recognized in on the formal specification of the PCTE interfaces.

11 Conclusions and Final Remarks

The language obtained by combining a language for structured VDM specifications with a language of
temporal logic as sketched in this paper, has proved suitable for the formal specification of the PCTE
interfaces [VIP88a, VIP88b]. VVSL, in particular the temporal language that can be used in VVSL, has
been improved in the course of the work on the formal specification of the PCTE interfaces based on the
feedback by the specifiers about their actual needs. This led to various preliminary versions of VVSL. This
paper is concerned with the the final version. The preliminary versions of VVSL were also developed by the
author. It is worth mentioning that the preliminary version of VVSL described in [Mid87] and the language
described under the name EVDM in [Oli88] are the very same.

To provide VVSL with a wel-defined semantics by defining a translation to an extended COLD-K turned
out to be a viable approach. A well-defined semantics was available in time. However, it has two important
and related disadvantages:

• for various language constructs, it is difficult to show that the formally defined semantics of VVSL
corresponds to the intended meaning;

• the formally defined semantics of VVSL is inaccessible to most people for which it was primarily meant
(e.g. writers of informal introductions or reference manuals for VVSL, builders of tools for VVSL and
specifiers finding ambiguities and incompletenesses in their introduction or reference manual).

In order to overcome these disadvantages, VVSL is also provided with an equivalent semantics by defining
an interpretation in roughly the ‘nucleus’ of COLD-K, which consists of MPLω, Description Algebra and
λπ-calculus, in a follow-up project. Flat VVSL has now been provided with a well-defined logical semantics
by defining an interpretation in the logic MPLω. It seems accessible to a much larger public; the only
prerequisite is familiarity with classical first order logic. The impression is that the interpretation in MPLω

is better suited to all people for which a formal definition of VVSL is meant. For the new semantics of
the structuring sublanguage, the prerequisites are familiarity with classical lambda calculus and Description
Algebra or a similar model of specification modules (e.g. the models presented in [Wir86] or [BHK90]). It
is not clear whether this alternative approach would have been usable for the VIP project; in particular it
is doubtful whether a well-defined semantics would have been available in time.

The situation faced by the VIP project is in no way unique. In such situations, a relatively general semantic
framework for specification languages is clearly missing. The framework should consist of a few orthogonal
elements, based on assumptions which are generally met by specification languages, and some rules for
composing the semantic basis for a particular specification language from instantiations of these elements.
The elements of the general framework must be rather elementary to be usable in such a framework,
but preferably not more elementary than strictly necessary. COLD-K is not such a general framework.
Orthogonality is present, but it is far from elementary enough. The reason why its use for VVSL was no
failure, should not be sought in its generality (illustrated in Section 9). The nucleus of COLD-K may be a
first approximation. Orthogonality and genericity is present, but it may be partly too elementary.
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Appendix

Short Survey of Current Trends in Modular Structuring

A common assumption in most current theoretical work on modularization and parameterization, e.g.
in [ST85], [BHK90], [Ren89], and [Jon89a, Fei89], is that a specification language has building blocks of
structured specifications, which correspond to theory presentations in the language of an underlying logic.
This assumption is trivially met by most existing languages for structured property-oriented specifications
like Clear [BG80], the Larch Shared Language [GH86] and ASL [Wir86]. It is also met by existing languages
for structured model-oriented (including state-based) specifications like Z [Spi88], the Larch/CLU Interface
Language [Win87] and COLD-K [FJKR87, Part II].

Various potential meanings of a specification are considered. The most interesting and important ones are
theory presentations, theories and model classes. Usually, language constructs for building large structured
specifications from smaller ones, correspond to operations on theory presentations, theories or model classes.
In [Wir86], which contains a definition and an analysis of ASL, is shown that a model based on theory
presentations is very useful and that there is a strong connection between this model and the model based on
model classes which is regarded as the standard model of ASL. In [FJKR87], the modularization constructs of
COLD-K are given a meaning using a model based on theory presentation, called Class Algebra. In [Spi88],
the modularization constructs of Z are given a meaning using a model based on model classes. In [BG80],
the modularization constructs of Clear are given a meaning using a model based on theories. The Larch
Shared Language is an exceptional specification language in this respect. In [GH86], its modularization
constructs correspond to purely syntactic manipulations on specification texts.

In the models of modular specifications of Clear and COLD-K, the origins of names are taken into account in
the treatment of name clashes in the composition of theories and theory presentations respectively. Usually
it is assumed that in case of name clashes the same name is intended to denote the same thing.

The primitive operations of models of modular specifications which are proposed in connection with partic-
ular work on modularization, generally include operations for combination, hiding and renaming . Hiding
and renaming are sometimes combined and called deriving . Combination provides for an import mechanism
and hiding provides for an export mechanism. Renaming provides for control of name clashes. Roughly
speaking, there are no essential differences between the various models after restriction to these operations,
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except the minor differences which are inherent in the choice to base the model on theory presentations,
theories or model classes, and the differences due to the different treatment of name clashes. Major differ-
ences, if present, are in additional operations, e.g. operations for restrictions on allowable models that are
not expressible in the underlying logic. These remarks do not apply to work in which modularization is
tightly coupled to term-generated or initial models by restricting to them in advance, such as in the work
presented in [EM85]. If the origin of names is not taken into account in the treatment of name clashes, then
the operations for combination, hiding and renaming turn out to be mathematically simple. Otherwise,
some complexity seems unavoidable. [BHK90] gives equational axioms of models of modular specifications,
called module algebras, which provide operations for combination, hiding and renaming.

Semantically, parameterized specifications are usually viewed as functions on theory presentations, theories
or model classes. Syntactically, a version of typed lambda calculus with parameter restriction, like the λπ-
calculus introduced in [Fei89], is often used for parameterization of structured specifications and application
of parameterized specifications. A lambda calculus based approach to parameterization is also pursued in
the theoretical work presented in [ST88] and [Ren89]. Such an approach is also used to provide for a param-
eterization mechanism in various existing languages for structured specifications including ASL [Wir86] and
COLD-K [FJKR87]. In [BG80] a different approach is used for Clear; parameterized specifications are viewed
as morphisms in a category (of ‘based theories’). However, the definition of application in [San84] (giving a
set theoretic semantics for Clear) seems close to a construction that simulates a variant of β-conversion.
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