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Abstract

Flat VVSL is an extension of a VDM specification language wherein operations,
which interfere through a shared state, can be specified in a VDM-like style with
the use of inter-conditions in addition to pre- and post-conditions. Inter-conditions
are temporal formulae. Firstly, this paper explains the role of inter-conditions in
the specification of interfering operations and describes the temporal formulae that
can be used. Secondly, it describes the interpretation of operation definitions and
temporal formulae in an infinitary logic of partial functions, called MPLω. The pur-
pose of this is to show how a VDM specification language is semantically combined
with a temporal language. An overview of MPLω and the VSSL specific aspects of
its use for logical semantics is also given.

1 Introduction

A large software system often needs a precise specification of its intended behaviour.
A precise specification provides a reference point against which the correctness of the
system concerned can be established — either by verifying it a posteriori, or preferably
by developing it hand in hand with a correctness proof. A precise specification also makes
it easier to reason about the system. Moreover, it is possible to reason about the system
before its development is undertaken. This possibility opens up a way to increase the
confidence that the system will match the inherently informal user’s requirements. If
a change to an existing software system is contemplated, then the consequences of the
change have to be taken into account. But without a precise specification, it is often
difficult to grasp the consequences of a change.

In order to achieve precision, a specification must be written in a formal specification
language, that is a specification language with a well-defined semantics. This means
that a specification language needs a precise and complete description of the semantics
of the language and its mathematical foundations. In practice, the creation of a precise
specification is sometimes doomed to fail by absence of a formal specification language that
meets the needs. The ESPRIT project “VDM for Interfaces of the PCTE”, abbreviated
to VIP, was faced with this situation. In the case of this project, the problem could be
solved by combining existing languages (syntactically and semantically). This led to a
language called VVSL, for VIP VDM Specification Language.
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VVSL is a language for modularly structured specifications which combines a VDM
specification language and a language of temporal logic. Important differences between
VVSL and the main VDM specification languages are:

• the addition of the inter-condition to the usual pre- and post-condition pair of
operation definitions in VDM style, to support implicit specification of operations
which interfere through a partially shared state;

• the provision of modularization and parameterization mechanisms which are ad-
equate for writing large state-based specifications in VDM style and have a firm
mathematical foundation.

The inter-condition is a formula from a language of temporal logic. With the use of
the inter-condition, operations which interfere through a partially shared state can be
defined while maintaining as much of the VDM style of specification as possible. The
modularization and parameterization mechanisms permit two modules to have parts of
their state in common, including hidden parts. They also allow requirements to be put
on the modules to which a parameterized module may be applied.

The VIP project, which commenced in November 1986 and finished in December
1988, was concerned with describing in a mathematically precise manner the PCTE in-
terfaces [1], using a VDM specification language as far as possible. The PCTE interfaces
have been defined as a result of the ESPRIT project “A Basis for a Portable Common Tool
Environment”. The PCTE interfaces aim to support the coordination and integration of
software engineering tools.

The major VDM specification languages are presented in [2] and [3]. The forthcoming
standard VDM specification language BSI/VDM SL [4] unifies the major VDM speci-
fication languages. [5] is a revision of [3] adapted to the proposed concrete syntax of
BSI/VDM SL. In VDM specification languages, operations may yield results which de-
pend on a state and may change that state. They are always regarded as ‘atomic’, i.e.
not to interact with some environment during execution.

In the case of the PCTE interfaces, not all operations are as isolated as this. For
some operations, termination, final state and/or results partly depend on the interference
of concurrently executed operations through a partially shared state. In these cases,
intermediate states do contain essential details about the behaviour of the operation
concerned. Although it may be considered inelegant to have such details externally visible,
many aspects of this kind cannot be regarded as being internal in the case of the PCTE
interfaces. Adding a rely- and a guarantee-condition (which can be used to express simple
safety properties) to the usual pre- and post-condition pair, as proposed in [6], was found
to be inadequate for specifying the PCTE operations. At least some of the additional
expressive power, that is usually found in languages of temporal logic, was considered
necessary. Therefore, it was decided to design a language for structured specifications
that combines a VDM specification language with a language of temporal logic in order
to support implicit specification of non-atomic operations.

The design of VVSL aimed at obtaining a language for VDM specifications with addi-
tional constructs which are only needed in the presence of non-atomic operations and with
an appropriate interpretation of both atomic and non-atomic operations which covers the
original VDM interpretation. All of this was to be supported by a well-defined semantics.
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This is mainly accomplished by adding the inter-condition to the usual pre- and post-
condition pair of operation definitions, and interpreting operations as sets of ‘computa-
tions’. Computations represent possible successions of state changes during execution of
the operation concerned, distinguishing between state changes effected by the operation
itself and state changes effected by its interfering environment. With the inter-condition,
restrictions can be imposed on the computations of the operation concerned which cannot
be expressed in the usual pre- and post-condition.

The inter-condition can be used to express that the operation is atomic. However,
this may also be indicated by leaving out the inter-condition. This means that atomic
operations can be implicitly specified as in other VDM specification languages. Besides,
for atomic operations, the new interpretation is equivalent to the original VDM interpre-
tation.

The temporal language that can be used in VVSL has been inspired by various tem-
poral logics based on linear and discrete time [7, 8, 9, 10]. The language obtained by
combining a language for structured VDM specifications with this language of temporal
logic, as sketched above, has proved suitable for the formal specification of the PCTE
interfaces [11, 12]. The paper [13] presents the main experiences from the work on VVSL
with respect to combining a VDM specification language and a temporal language seman-
tically.

VVSL without its modularization and parameterization constructs is referred to as
flat VVSL. In Part I of [14], flat VVSL has been given a logical semantics by defining a
translation to the language of a many-sorted infinitary logic of partial functions, called
MPLω [15]. The flat VDM specification language incorporated in flat VVSL is very
similar to the language used in [3]. One can define types, functions working on values of
these types, state variables which can take values of these types, and (atomic) operations
which may interrogate and modify the state variables. For an introduction to this flat
VDM specification language, see [3] or [5] (the concrete syntax in [5] differs slightly).
It is roughly a restricted version of the emerging standard VDM specification language
BSI/VDM SL [4].

The structuring sublanguage of VVSL consists of the modularization and parame-
terization constructs complementing flat VVSL. For an overview of the structuring sub-
language of VVSL, a concise description of its semantic foundations and an example of
its use, see [16]. In a way, the somewhat sketchy paper [17] (and its precursor [18]) are
superseded by the current paper and [16].

Structure of the Paper

Section 2 explains how VVSL supports implicit specification of atomic and non-atomic
operations. This includes a brief description of the language of temporal logic that can be
used in inter-conditions. Sections 3, 4 and 5 deal with formal aspects of combining a VDM
specification language with a language of temporal logic. Section 3 gives an overview of
the logic MPLω, which is used to provide flat VVSL with a logical semantics. Section 4
introduces symbols and special formulae used in the definition of the logical semantics.
Section 5 describes the interpretation of operation definitions and temporal formulae in
MPLω.
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2 Implicit Specification of Operations in VVSL

2.1 Atomic Operations

In the flat VDM specification language incorporated in flat VVSL, like in other VDM
specification languages, operation is a general name for imperative programs and mean-
ingful parts thereof (e.g. procedures). Unlike functions, operations may yield results which
depend on a state and may change that state. The states concerned have a fixed number
of named components, called state variables, attached to them. In all states, a value is
associated with each of these state variables. Operations change states by modifying the
value of state variables. Each state variable can only take values of a fixed type. State
variables correspond to programming variables of imperative programs.

State Variables
A state variable is interpreted as a function from states to values, that assigns to each
state the value taken by the state variable in that state. A state variable is declared by
a variable definition of the following form:

v : t .

It introduces a name for the state variable and defines the type from which the state
variable can take values. A state invariant and an initial condition, of the form

inv Einv and init Einit ,

respectively, can be associated with a collection of variable definitions. The state invariant
is a restriction on what values the state variables can take in any state. The initial
condition is a restriction on what values the state variables can take initially, i.e. before
any modification by operations.

Example:
The concepts of a varying database and a varying database schema are formalized with
state variables that can be thought of as taking at any point in time the current database
value and the current database schema value respectively. Together they constitute the
changing state of a database management system. The intention that the current database
schema always applies to the current database, is formalized with a state invariant. The
intention that the current database schema and the current database are initially empty,
is formalized with an initial condition.

state
curr dbschema: Database schema

curr database: Database
inv is valid instance(curr database, curr dbschema)
init curr dbschema = empty schema ∧ curr database = empty database.

curr dbschema (the current database schema) is a state variable that can take database
schemas as values. curr database (the current database) is a state variable that can
take databases as values. The associated state invariant restricts the values these state
variables can take such that the current database is always a valid instance of the current
database schema. The associated initial condition restricts the values these state variables
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can take before any modification by operations to the empty database schema and empty
database.

Operations
An operation is interpreted as an input/output relation, i.e. a relation between initial
states, tuples of argument values, final states and tuples of result values. An operation is
implicitly specified by an operation definition of the following form:

op(x1: t1, . . . , xn : tn) xn+1: tn+1, . . . , xn ′ : tn ′

ext rd v1: t ′1, . . . , rd vm : t ′m ,wr vm+1: t ′m+1, . . . ,wr vm ′ : t ′m ′

pre Epre

post Epost .

The header introduces a name for the specified operation and defines the types of its
arguments and results. The header also introduces names for the argument values and
result values to be used within the body. The external clause indicates which state
variables are of concern to the behaviour of the operation and also indicates which of those
state variables may be modified by the operation. The pre-condition defines the inputs,
i.e. the combinations of initial state and tuples of argument values, for which the operation
should terminate, and the post-condition defines the possible outputs, i.e. combinations of
final state and tuple of result values, from each of these inputs. Operations are potentially
non-deterministic: the post-condition may permit more than one output from the same
input. The pre-condition may be absent, in which case the operation should terminate
for all inputs (i.e. it is equivalent to the pre-condition true). In the post-condition, one

refers to the value of a state variable v in the initial state by ↼−v and to its value in the
final state by v .

Example:
A command for altering one of the relations stored in the current database by insertion,
is formalized with an operation. This command may belong to the data manipulation
interface of a relational database management system.

INSERT (rnm: Relation nm, q : Query)
ext rd curr dbschema: Database schema,wr curr database: Database
pre is wf (mk-Union(mk-Reference(rnm), q), curr dbschema)

post let dbsch: Database schema 4
↼−−−−−−−−−−
curr dbschema and

db: Database 4
↼−−−−−−−−−
curr database and

r : Relation 4 eval(mk-Union(mk-Reference(rnm), q), dbsch, db) and
db ′: Database 4 update(db, rnm, r) in

curr database = if is valid instance(db ′, dbsch) then db ′ else db.

This operation will produce no results, but it will normally change the state. Only the
current database may be modified by the operation. INSERT (rnm, q) should terminate
for a query q such that query mk-Union(mk-Reference(rnm), q) is well-formed with re-
spect to the current database schema. In that case it must modify the current database
by updating the rnm relation to the relation resulting from the evaluation of the latter
query in the current database according to the current database schema, unless the up-
dated database is no longer a valid instance of the current database schema in which case
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it will not modify the current database.

Interference
An initial state may lead to a final state via some intermediate states. However, one
cannot refer to these intermediate states in operation definitions in VDM style. The
underlying idea is that intermediate states do not contain essential details about the be-
haviour of the operation being defined, since operations are always regarded as being
atomic, i.e. not to interact with some environment during execution. Atomic operations
may certainly be implemented as combinations of sub-operations, provided that the whole
remains insensitive to interference.

Sometimes, operations are not as isolated as this. An important case that occurs
in practice is that termination and/or the possible outputs depend on both the input
and the interference of concurrently executed operations through state variables. In that
case, intermediate states do contain essential details about the behaviour of the operation
being defined. Although it is usually considered inelegant to have such details visible,
it happens in practice. A language of temporal logic seems useful for specifying such
non-atomic operations implicitly.

Flat VVSL is a flat VDM specification language with additional syntactic constructs
which are only needed in the presence of non-atomic operations and with an appropriate
interpretation of both atomic and non-atomic operations which covers the original VDM
interpretation.

2.2 Non-atomic Operations

In flat VVSL, a formula from a language of temporal logic can be used as an inter-
condition associated with an operation definition. With an inter-condition, restrictions
can be imposed on the set of possible histories of values taken by the state variables during
the execution of the operation being defined in an interfering environment.

The temporal language has been inspired by a temporal logic from Lichtenstein,
Pnueli and Zuck that includes operators referring to the past [7], a temporal logic from
Moszkowski that includes the ‘chop’ operator [8], a temporal logic from Barringer and
Kuiper that includes ‘transition propositions’ [9] and a temporal logic from Fisher with
models in which ‘finite stuttering’ cannot be recognized [10]. The operators referring to
the past, the chop operator and the transition propositions obviate the need to intro-
duce auxiliary state variables acting as history variables, control variables and scheduling
variables, respectively. The exclusion of finite stuttering corresponds to the view that
if nothing actually happens then one cannot tell that time has passed, unless nothing
happens for an infinitely long time. It makes computations much like computations in
‘real time’ models based on the view that things happen at a finite rate (e.g. the model
of the temporal logic of the reals with the ‘finite variability’ restriction [19]). In this
subsection, the role of the temporal formulae in operation definitions is explained. In the
next subsection, the temporal language is briefly described.

Computations
For atomic operations, it is appropriate to interpret them as input/output relations. This
so-called relational interpretation is the usual one for VDM specification languages. For
non-atomic operations, such an interpretation is no longer appropriate, since intermediate
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states contain essential details about the behaviour of the operation; e.g. the possible out-
puts depend on the input as well as the interference of concurrently executed operations
through state variables. Non-atomic operations require an operational interpretation as
sets of computations which represent possible histories of values taken by the state vari-
ables during execution of the operation concerned in possible interfering environments.

A computation of an operation is a non-empty finite or infinite sequence of states and
connecting labelled transitions. The transition labels indicate which transitions are ef-
fected by the operation itself and which are effected by the environment. The transitions
of the former kind are called internal steps , those of the latter kind are called external
steps . In every step some state variables that are relevant for the behaviour of the op-
eration have to change, unless the step is followed by infinitely many steps where such
changes do not happen. In other words, finite stuttering is excluded. In the case of an
internal step, the state variables which change can only be write variables. In the case of
an external step, they can be read variables and write variables. The computation can be
seen as generated by the operation and the environment working interleaved but labelled
from the viewpoint of the operation.

The introduction of transition labels for distinguishing between internal and external
steps is significant. Such a distinction is essential to achieve an ‘open’ semantics of a
non-atomic operation, i.e. a semantics which models the behaviour of the operation in all
possible environments.

Inter-conditions
In flat VVSL, an operation is implicitly specified by an operation definition of the following
form:

op(x1: t1, . . . , xn : tn) xn+1: tn+1, . . . , xn ′ : tn ′

ext rd v1: t ′1, . . . , rd vm : t ′m ,wr vm+1: t ′m+1, . . . ,wr vm ′ : t ′m ′

pre Epre

post Epost

interϕinter .

That is, an inter-condition is added to the usual operation definition. The inter-condition
defines the possible computations of the operation.

For atomic operations, only the relational interpretation is relevant. Therefore the
relational interpretation of an operation is maintained in flat VVSL. This interpretation
is characterized by the external clause (for atomic operations), the pre-condition and the
post-condition. The operation has in addition the operational interpretation, which is
mainly characterized by the external clause (for non-atomic operations) and the inter-
condition. The inter-condition is a temporal formula which must hold initially for the
computations from the operational interpretation. This corresponds to a notion of validity
for temporal formulae which is ‘anchored’ at the initial state of the computation. The
inter-condition may be absent, which indicates that the operation is atomic. This means
that atomic operations are implicitly specified like in other VDM specification languages.
The possible computations of an atomic operation have at most one transition and their
transitions are always internal steps.

The computations from the operational interpretation must agree with the relational
interpretation. To be more precise, its finite computations must have a first and last
state between which the input/output relation according to the relational interpretation
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holds and its infinite computations must have a first state which belongs to the domain of
this relation. The inter-condition expresses a restriction on the set of computations that
agree with the relational interpretation. The requirement on the infinite computations
means that the pre-condition does not always define the inputs for which the operation
necessarily terminates (in any valid interpretation). For non-atomic operations, the pre-
condition defines the inputs for which the operation possibly terminates. In other words, it
defines the inputs for which termination may not be ruled out completely by interference.

For non-atomic operations the values taken by a read variable in the initial state and
the final state must be allowed to be different, since a read variable may be changed by the
environment. This has as a consequence that the external clause does not contribute to the
characterization of the relational interpretation of non-atomic operations. It contributes
only to the characterization of the operational interpretation. Read variables cannot
be changed during an internal step but can be changed during external steps. Write
variables can be changed during any step. Only read and write variables are relevant
for the behaviour. With the combined possibilities of the external clause and the inter-
condition, non-atomic operations can be described while maintaining as much of the VDM
style of specification as possible.

The pre-condition of a non-atomic operation only defines the inputs for which the
operation possibly terminates. This allows that the operation only terminates due to
interference of concurrently executed operations. Moreover, the post-condition of a non-
atomic operation will be rather weak in general, for inputs must often be related to many
outputs which should only occur due to certain interference of concurrently executed
operations. The inter-condition is mainly used to describe which interference is required
for termination and/or the occurrence of such outputs.

Apart from finite stuttering, the operational interpretation of interfering operations
characterized by a rely- and a guarantee-condition, as proposed in [6], can also be charac-
terized by an inter-condition of the following form (the temporal operators are described
in the next subsection):

inter 2((is-E ⇒ ©©©ϕrely) ∧ (is-I ⇒ ©©©ϕguar)),

where the temporal formulae ϕrely and ϕguar are the original rely- and guarantee-condition

with each occurrence of an expression ↼−v replaced by the temporal term ©©−©v . Rely- and
guarantee-conditions can only be used to express invariance properties of state changes
in steps made by the environment of the operation concerned and invariance properties
of state changes in steps made by the operation itself. This is often inadequate; e.g. for
operations that should wait until something occurs. An example will be given following
the description of the temporal language.

2.3 Temporal Language of VVSL

The syntax of the temporal language is outlined by the following production rules from
the complete grammar of VVSL:

ϕ ::= is-I | is-E | τ | τ1 = τ2 | ϕ1;ϕ2 | ©©©ϕ | ϕ1Uϕ2 | ©©−©ϕ | ϕ1Sϕ2 |
¬ϕ | ϕ1 ∨ ϕ2 | ∃x ∈ t · ϕ | let x : t 4 τ inϕ ,
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τ ::= e | ©©©τ | ©©−©τ | f (τ1, . . . , τn) .

In order to be a well-formed temporal formula, a temporal term τ (third alternative of
first production rule) must have type B (the boolean type).

In the following informal description of the temporal operators, the positions within
a computation are taken as points in time. This corresponds to the simple view that
the i -th state of the computation (if it exists) is reached at the i -th point in time. The
meaning of the temporal operators is explained for a fixed but arbitrary computation
(which is only mentioned explicitly for the chop operator “;”) at a certain point in time.
This point in time is treated as ‘now’, i.e. the current point in time. The meaning of the
temporal operators is as follows:

is-I: Holds now if there is a next point in time and the next point in time is reached
by an internal step.

is-E: Holds now if there is a next point in time and the next point in time is reached
by an external step.

ϕ1;ϕ2: Holds now if either the computation is infinite and ϕ1 holds now or it is possible
to divide the computation at some future point in time into two subcomputa-
tions in a way that makes ϕ1 hold now for the first subcomputation and ϕ2

hold initially for the second one.

©©©ϕ: Holds now if there is a next point in time and ϕ holds at the next point in
time.

ϕ1 U ϕ2: Holds now if ϕ2 holds now or at some future point in time and ϕ1 holds at all
points in time until then (if any).

©©−©ϕ: Holds now if there is a previous point in time and ϕ holds at the previous point
in time.

ϕ1 S ϕ2: Holds now if ϕ2 holds now or at some past point in time and ϕ1 holds at all
points in time since then (if any).

©©©τ : Evaluates now to the value to which τ evaluates at the next point in time if
there is a next point in time and is undefined otherwise.

©©−©τ : Evaluates now to the value to which τ evaluates at the previous point in time
if there is a previous point in time and is undefined otherwise.

The evaluation of a temporal formula ϕ yields true if ϕ holds now, and it yields false
or neither-true-nor-false otherwise. The logical connectives and quantifiers distinguish
between false and neither-true-nor-false as in LPF [20] (see also section 3.2), but the
temporal operators identify false and neither-true-nor-false. So the three-valuedness can
be safely ignored when only the temporal operators are considered.

The notations 3ϕ (meaning “eventually ϕ”), 2ϕ (meaning “henceforth ϕ”) and their
counterparts for the past can be defined as abbreviations:

3ϕ := true U ϕ, −3ϕ := true S ϕ,
2ϕ := ¬ ( 3¬ϕ), −2ϕ := ¬ (−3¬ϕ).
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The notations ϕ1 ∧ ϕ2, ϕ1 ⇒ ϕ2, ϕ1 ⇔ ϕ2 and ∀x ∈ t · ϕ can be defined as abbreviations
in the usual way.

For each computation of an atomic operation the following temporal formula holds
initially:

©©©true ⇒ (is-I ∧ ©©©¬ ©©©true).

2.4 Example of Specification with Inter-condition

A request on behalf of a transaction for locking a subset of a stored relation for read
access, is formalized with a non-atomic operation. This request may belong to an internal
interface of a database management system which handles concurrent access to stored
relations by multiple transactions.

RDLOCK (tnm: Transaction nm, rnm: Relation nm, sf : Simple wff ) st : Status
ext rd curr dbschema: Database schema,wr curr acctable: Access table
pre in-use(curr acctable, tnm) ∧ in use(curr dbschema, rnm) ∧

is wf (sf , structure(curr dbschema, rnm))
post let acc: Access 4 mk-Access(READ, rnm, sf ) in

(st = GRANTED ⇔ granted(tnm, acc, curr acctable))
inter let acc: Access 4 mk-Access(READ, rnm, sf ) in

((¬ ©©−©true ⇒
is-I ∧ ©©©(curr acctable = add to waits( ©©−©curr

acctable, tnm, acc))) ∧
( ©©−©true ⇒ is-E)) U
(¬ conflicts(tnm, acc, curr acctable, curr dbschema) ∧ is-I ∧
©©©(curr acctable = add to grants( ©©−©curr acctable, tnm, acc) ∧

st = GRANTED ∧ ¬ ©©©true)) ∨
(deadlock liable(tnm, acc, curr acctable, curr dbschema) ∧
st = REJECTED ∧ ¬ ©©©true).

This operation will normally produce a status as result and it will normally change the
state. Only the current access table may be modified by this operation, but the current
database schema is also relevant for the behaviour of RDLOCK . RDLOCK (tnm, rnm, sf )
should be able to terminate for a transaction name tnm that is in use according to the
current access table, a relation name rnm that is in use according to the current database
schema, and a simple formula sf that is well-formed with respect to the structure of the
rnm relation schema from the current database schema. Finally, if it terminates, then it
yields granted as status iff the requested access is granted to tnm according to the current
access table. RDLOCK is a non-atomic operation. During execution, one of the following
occurs:

• Eventually the read access requested by tnm will not conflict with the granted and
waiting accesses of other transactions according to the current access table, the next
state is the final state and is reached by an internal step which changes the current
access table by adding the requested access to the granted accesses of tnm. In this
case, granted will be the status. Until then all steps were external, except the initial
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step which only changes (if it is not also the final step) the current access table by
adding the requested access to the waiting accesses of tnm.

• Initially the read access requested by tnm is liable for deadlock according to the cur-
rent access table and the initial state is also the final state (i.e. nothing is changed).
In this case, rejected will be the status.

So RDLOCK waits until the requested access does not conflict with granted and waiting
accesses of other transactions or rejects it immediately. A requested access is rejected if
it would otherwise be waiting for itself indirectly.

2.5 Related Approaches

What matters to the users (persons, programs or whatever) of a software system are the
operations that the system can execute and the observable effects of their execution. A
software system may provide for concurrent execution of multiple operations in a multi-
user environment. If the system provides for concurrent execution, then it may arise that
some of its operations are intentionally made sensitive to interference by concurrently
executed operations. Some operations of the PCTE interfaces are of this kind.

The execution of an operation that is sensitive to interference through shared state
components terminates in a state and/or yields a result that depends on intermediate
state changes effected by the concurrent execution of other operations. Its execution may
even be suspended to wait for an appropriate state change (which may additionally lead to
non-termination). If such an operation is specified by means of a pre- and post-condition
only, then it is not described which interference is required for the occurrence of many final
states and/or yielded results. For example, the earlier specification of RDLOCK without
the inter-condition permits that nothing happens but the return of the status REJECTED
(unless the requested access was previously granted to the transaction concerned).

Rely- and guarantee-condition pairs, as proposed by Jones in [6] for specifying in-
terference, can be regarded as as abbreviations of simple inter-conditions. Their main
limitation is the inadequacy in case synchronization with concurrently executed opera-
tions is required. Synchronization is often needed (also for RDLOCK ). Stølen adds in [21]
a wait-condition to the rely- and guarantee-condition pairs to make it possible to deal with
synchronization. It appears that this recent addition permits that many non-atomic op-
erations are adequately specified, but it is certain that auxiliary state variables must be
employed. Because internal steps and external steps can only be related via the auxiliary
state variables, the specifications concerned will fail to mirror the intuition behind the
operations.

Specifying interference with inter-conditions can be done close to the way it is naturally
discussed. Moreover, anything that can be specified with rely-, guarantee- and wait-
conditions (with or without auxiliary state variables) can also be specified with inter-
conditions. It is argued in [21] that it is less intricate to reason about shared-state
interference with rely-, guarantee- and wait-conditions. The examples show that the
intricacy is still present, but it has been shoved away by relying on the judicious use of
auxiliary state variables.
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3 The Logic MPLω

3.1 Overview of MPLω

MPLω is the logic used to provide flat VVSL with a logical semantics. It is a many-
sorted infinitary first-order logic of partial functions with equality and definedness. Its
typical features are obtained by mere additions to language and proof system of classical
first-order logic. Consequently, classical reasoning is not invalidated. The language, proof
system and interpretation of MPLω are introduced by Koymans and Renardel de Lavalette
in [15].

Sort symbols are interpreted as domains of values. There is a standard equality pred-
icate symbol =S (used in infix notation) for every sort symbol S . Every function symbol
has a type S1 × · · · × Sn → Sn+1 and every predicate symbol has a type S1 × · · · × Sn ,
where S1, . . . , Sn+1 are sort symbols. We write f : S1×· · ·×Sn → Sn+1 and P : S1×· · ·×Sn

to indicate this. Si (1 ≤ i ≤ n) corresponds to the i -th argument domain and Sn+1

corresponds to the result domain.
Functions generally are partial functions. Hence, not every function application will be

denoting. The logic MPLω adopts an approach to solve the problem with non-denoting
terms in formulae, which stays within the realm of classical, two-valued logics. Non-
denoting terms make atomic formulae that are logically false. In other words, when a
formula cannot be classified as true, it is inexorably classified as false. In this way, the
assumption of the ‘excluded middle’ does not have to be given up.

Denoting terms and non-denoting terms can be distinguished. There is a standard
definedness predicate symbol ↓S (used in postfix notation) for every sort symbol S . t↓S
means that t is denoting (for terms t of sort S ). There is also a standard constant symbol
↑S , called undefined, for every sort symbol S . ↑S is the constantly non-denoting term of
sort S .

If A0,A1,A2, . . . are countably many formulae, then the formula
∧

n An can be formed.
This allows a large class of recursive and inductive definitions of functions and predicates
to be expressed as formulae of MPLω. This was first sketched in [15] and later worked
out in detail by Renardel de Lavalette in [22].

If A is a formula, then the term ιx : S (A) can be formed. Its intended meaning is
the unique value x of sort S that satisfies A if such a unique value exists and undefined
otherwise. This means that not every description will be denoting. Descriptions can
be eliminated: it is possible to translate formulae containing descriptions into logically
equivalent formulae without descriptions.

Free variables may be non-denoting, but in ∀x : S (A) and ∃x : S (A), x is always denot-
ing. So we have t↓S ↔ ∃x : S (x =S t). Owing to the different treatment of free variables
and bound variables, frequent reasoning about non-denoting terms can be avoided.

The atomic formula t1 =S t2 is false whenever t1 or t2 is non-denoting. So =S does
not satisfy ↑S=S↑S . t1 'S t2, which abbreviates (t1↓S ∨ t2↓S )→ t1 = t2, is true whenever
both t1 and t2 are non-denoting. So 'S satisfies t 'S t for all terms t of sort S .

The formation rules for MPLω are the usual formation rules with an additional rule for
descriptions and with the rule for binary conjunctions replaced by the rule for countably
infinite conjunctions from Lω [23] (classical first-order logic with countably infinite con-
junctions). Furthermore, the types of function and predicate symbols must be respected
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in the formation of terms and atomic formulae. The sort of bound variables in descrip-
tion terms and quantified formulae is always clear by the presence of a sort indication : S
following ιx , ∀x , or ∃x .

The equality and definedness predicate symbols and the undefined constant symbols
are used without subscript when this causes no ambiguity.

The proof system of MPLω presented in [15] resembles a Gentzen-type sequent calculus
for Lω. The rules for the quantifiers are slightly adapted. This is due to the treatment of
free and bound variables: free variables may not denote and bound variables always do.
The non-logical axioms consists of additional axioms for the standard non-logical symbols
and an additional axiom for descriptions. The usual axioms for equality are slightly
adapted, because non-denoting terms are never equal. Thus, reasoning only differs from
classical reasoning with respect to variables and equality. These differences are direct
consequences of embodying non-denoting terms.

The formulae that contain only sort, function and predicate symbols from a certain
set Σ constitute the language of MPLω over Σ . The structures used for interpretation of
the language of MPLω over Σ consist of an interpretation of every symbol in Σ as well
as an interpretation of each of the equality, definedness and undefined symbols associated
with the sort symbols in Σ . The structures with the intended interpretation of the equal-
ity, definedness and undefined symbols are called standard structures. Furthermore, the
classical interpretation of the connectives and quantifiers is used. However, free variables
may be non-denoting. The interpretation of the language in standard structures is sound
with respect to the proof system. The proof system is complete with respect to the in-
terpretation of the language in standard structures. A proof of these properties is given
in [15].

Other interesting properties of MPLω are:

• MPLω can be reduced to L=
ω , classical first-order logic with countably infinite con-

junctions and equality.

• MPL, the finitary fragment of MPLω, is obtained from MPLω by replacing countable
conjunctions by binary conjunctions. MPLω is a conservative extension of MPL.

A proof of these properties is given in [22].
Many results of MPLω carry over to its finitary fragment. Besides, MPL can be

reduced to L=, classical (finitary) first-order logic with equality. This demonstrates the
lack of interference between countably infinite conjunctions and the other special features
of MPLω.

3.2 Connections with LPF

MPLω is a two-valued logic of partial functions. Several logics of partial functions have
been developed in a three-valued setting. In particular, the logical expression sublanguage
of BSI/VDM SL is the language of the three-valued logic of partial functions, called
LPF [20].

In LPF, non-denoting terms make atomic formulae that are logically neither-true-nor-
false. Thus, the assumption of the excluded middle is given up. The classical connectives
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and quantifiers have counterparts in LPF. Each behaves according to its classical truth-
condition and falsehood-condition; only if neither of them meets, it will yield neither-
true-nor-false. This is Kleene’s way of extending the classical connectives and quantifiers
to the three-valued case [24]. In addition, there are two connectives which have no clas-
sical counterparts: a nullary connective designating neither-true-nor-false and a unary
connective for definedness of formulae. Perhaps, the use of LPF leads to concise specifi-
cations. However, classical reasoning cannot be used out of the positive fragment of LPF.
In particular, the deduction theorem does not hold in LPF. The departures from classical
reasoning are mainly consequences of the fact that, unlike formulae of MPLω, formulae of
LPF inherit the possibility of being non-denoting.

Because VVSL is a language for structured VDM specifications combined with a lan-
guage of temporal logic, the logical expression sublanguage of VVSL coincides the one
of BSI/VDM SL. Like the other parts of flat VVSL, this part is provided with a logical
semantics by interpretation in the language of MPLω. The approach to this interpreta-
tion, which is actually an interpretation of the language of LPF in the language of MPLω,
is connected with the layered approach to handle partial functions adopted in the logic
PPλ [25]. It should be remarked that LPF can be reduced to MPLω in the following
sense: formulae of LPF can be translated to formulae of MPLω and what can be proved
remains the same after translation. This demonstrates that three-valued logics such as
LPF are not necessary to deal with partial functions. In a forhtcoming paper, it is shown
that reasoning in LPF can be taken for being derived from reasoning in MPLω.

4 Symbols and Special Formulae for VVSL

4.1 Symbols

In the definition of MPLω, only a few assumptions about symbols are made. Thus, symbols
may be actualized in many ways. For the use of MPLω in the formal definition of flat
VVSL, this is done in a way which also takes into account the semantic foundations of
the modularization and parameterization constructs complementing flat VVSL, which are
presented in [16]. Symbols are actualized using identifiers, origins and types. The types
of symbols are in turn built from indicators for the different kinds of types (sort, obj, func
and pred) and sort symbols.

In full VVSL, name clashes may occur in the composition of modules. In order to solve
this name clash problem in a satisfactory way, the origin of each occurrence of a name
should be available. This is explained in detail in [14]. Mainly due to parameterization,
origins cannot simply be viewed as pointers to the definitions of the names. A name
defined in a parameterized module should have different origins for different instantiations
of the parameterized module. This means that in addition to origin constants, origin
variables (which can later be instantiated with fixed origins) and composite origins are
needed.

We assume three disjoint countably infinite sets OCon, OVar and Ident of origin constants ,
origin variables and identifiers , respectively.

The set Orig of origins is the smallest set including OCon and OVar and closed under
construction of finite sequences.
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Symbols are actualized according to the following rules:

• each sort symbol S is a triple 〈i , a, sort〉,

• each function symbol f : S1×· · ·×Sn → Sn+1 is a triple 〈i , a, 〈func, S1, . . . , Sn , Sn+1〉〉,

• each predicate symbol P : S1 × · · · × Sn is a triple 〈i , a, 〈pred, S1, . . . , Sn〉〉,

• each variable symbol x of sort S is a triple 〈i , a, 〈obj, S 〉〉,

where i ∈ Ident and a ∈ Orig. Sym denotes the set of all symbols that are actualized in
this way.

We write ι(w), ω(w) and τ(w), where w = 〈i , a, t〉 is a symbol from Sym, for i , a and t ,
respectively.

This actualization of symbols for MPLω is implicit in the remainder of this paper. It
originates from Description Algebra, which is introduced by Jonkers in [26]. In this pa-
per, only flat VVSL is considered. This implies that the origins of symbols can be safely
ignored except in the treatment of modification rights of operations (which is too closely
coupled with the modularization and parameterization mechanisms of full VVSL).

Not all symbols from Sym can be freely used in the interpretation of VVSL. Different
categories of symbols must be distinguished. This gives rise to VVSL specific restrictions
on the ways in which symbols may be built from identifiers, origins and types.

We assume three disjoint countably infinite subsets of Ident: the set UIdent, the set PIdent,
and the set CIdent. Symbols with an identifier from UIdent and PIdent correspond to user-
defined or pre-defined names, respectively. Symbols with an identifier from CIdent corre-
spond to VVSL types. A symbol w is a special symbol iff ι(w) /∈ UIdent∪PIdent∪CIdent.

The categories of symbols corresponding to user-defined or pre-defined names of types
and functions can be introduced.

A VVSL type symbol is a sort symbol S that is no special symbol.

A VVSL function symbol is a function symbol f : S1 × · · · × Sn → Sn+1 with an identifier
from UIdent∪PIdent, such that the sort symbols S1, . . . , Sn+1 are VVSL type symbols.

Sort symbols for the state space and the computation space allow function symbols
and predicate symbols which correspond to names of state variables and operations, re-
spectively. The sort symbols for the state space and the computation space as well as
various associated function and predicate symbols are special symbols. The origin of all
these symbols is 〈〉.

The state sort symbol State and the computation sort symbol Comp are special sort sym-
bols with different identifiers. The initial state symbol s0:→ State is a special function
symbol. The state selection function symbols stn :Comp → State (for all n < ω) are spe-
cial function symbols with different identifiers. The internal transition predicate symbols
intn :Comp and the external transition predicate symbols extn :Comp (for all n < ω) are
special predicate symbols with different identifiers.

Having introduced symbols for the state space and the computation space, the categories
of symbols corresponding to user-defined names of state variables and operations can also
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be introduced.

A VVSL state variable symbol is a function symbol v : State → S with an identifier from
UIdent, such that the sort symbol S is a VVSL type symbol.

A VVSL operation symbol is a predicate symbol op: S1× . . .×Sn×Comp×Sn+1× . . .×Sm

with an identifier from UIdent, such that the sort symbols S1, . . . , Sm are VVSL type sym-
bols.

Variable symbols ranging over all values of a VVSL type (for any VVSL type), variable
symbols ranging over all states and variable symbols ranging over all computations are
also needed.

A value symbol is an object symbol x such that the sort of x is a VVSL type symbol.
A state symbol is an object symbol s such that the sort of s is State, and a computation
symbol is an object symbol c such that the sort of c is Comp. The origin of all state and
computation symbols is also 〈〉.

The write variables specified for an operation, indicate that the operation leaves all
state variables other than the ones mentioned as write variables unmodified. In the logical
semantics, it has to be made explicit what exactly is left unmodified. In full VVSL, this
may expand by module composition. Because of this it turns out to be convenient to have
modification predicate symbols for any collection of write variables.

The modification predicate symbols modl : State× State (for all l ∈ Orig∗) are special pred-
icate symbols with the same identifier. The origin of modl is l .

The indication VVSL is usually dropped when referring to a category of symbols.

4.2 Special Formulae

A computation can be viewed as a non-empty finite or countably infinite sequence of
states and connecting transitions which are labelled to distinguish between internal and
external transitions:

• The special function symbol stn (n < ω) is used for the partial function which maps
each computation to its (n + 1)-th state (if it exists).

• The special predicate symbol intn (n < ω) is used for the predicate which holds
for a computation if there exists a (n + 1)-th state transition and it is moreover an
internal transition.

• The special predicate symbol extn (n < ω) is used for the predicate which holds
for a computation if there exists a (n + 1)-th state transition and it is moreover an
external transition.

This intuition is captured by the formula Compax of MPLω, which relates the sorts State
and Comp with the functions and predicates stn , intn and extn (n < ω). This formula
states that the n-th state of computation c exists if the (n +1)-th state of c exists, that the
n-th transition of c exists iff the (n + 1)-th state of c exists, and that the n-th transition
of c is not both internal and external. Furthermore, it states that if, for each n, the n-th
state of computation c1 and the n-th state of computation c2 are the same (in case it
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exists for either one), and the n-th transition of c1 and the n-th transition of c2 are both
internal or both external, then c1 and c2 are the same. It is defined as follows:

Compax :=
∀c:Comp

(st0(c)↓ ∧ ∧
n(stn+1(c)↓ → stn(c)↓) ∧∧

n((stn+1(c)↓ ↔ intn(c) ∨ extn(c)) ∧ ¬(intn(c) ∧ extn(c)))) ∧
∀c1:Comp, c2:Comp

(
∧

n(stn(c1) ' stn(c2) ∧ (intn(c1)↔ intn(c2)) ∧ (extn(c1)↔ extn(c2)))→
c1 = c2),

where c, c1, c2 ∈ MComp .

Let S be the sort symbol that is used for the set of values belonging to type T .
Then for each state variable of type T , a corresponding function symbol of type State
→ S is used for the function which maps each state to the value taken by the state
variable in that state. States that are not distinguishable by means of the state variables
are not required to be really equal. Equality of states is not considered important; the
values taken by the state variables is what matters.

Let Si be the sort symbol that is used for the set of values belonging to type Ti , for
1 ≤ i ≤ m. Then for each operation with argument types T1, . . . ,Tn and result types
Tn+1, . . . ,Tm , a corresponding predicate symbol of type S1 × · · · × Sn × Comp×Sn+1 ×
· · · × Sm is used for the predicate which holds for values x1, . . . , xn , computation c and
values xn+1, . . . , xm if c is a computation of the operation for arguments x1, . . . , xn that
yields results xn+1, . . . , xm .

Each operation definition mentions a set of write variables. This indicates that all
state variables other than the variables mentioned as write variables are left unmodified
by the operation. In full VVSL, what is exactly left unmodified may expand by module
composition. To accommodate this, a binary predicate modl on states is introduced for
any finite sequence l of origins. modl(s1, s2) is intended to express that state s1 can be
transformed into state s2 by modifying only state variables with origins in l . On the
definition of a state variable v , a formula is associated with v . This formula states that,
for l with the origin of v not in l , in the transition from state s1 to state s2 the state
variable v is left unmodified if modl(s1, s2) holds. Varmod(v) is defined as an abbreviation
of this formula. For a state variable symbol v , the formula Varmod(v) is defined by

Varmod(v) :=
∧

l∈(Orig−{ω(v)})∗
(∀s1: State, s2: State(modl(s1, s2)→ v(s1) ' v(s2))),

where s1, s2 ∈ MState .

Varmod(v) is used to guarantee that state variable v cannot be modified without the
appropriate modification rights.

For the computations of an operation, the set of write variables leads to the restriction
that in internal transitions all state variables other than the write variables must be left
unmodified. Each operation definition also mentions a set of read variables. The set of
read variables and the set of write variables together indicate that only state variables
mentioned as read variables or write variables are of concern to the behaviour of the
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operation. For the computations of an operation, this leads to the restriction that in every
transition at least some state variable from the read variables or the write variables must
be modified, unless the transition is followed by infinitely many transitions where this does
not happen. Modcomp(R,W , c) is defined as an abbreviation of the formula expressing
these two restrictions. For sets R and W of state variable symbols, and computation
symbol c, the formula Modcomp(R,W , c) is defined by

Modcomp(R,W , c) :=
∧

n(intn(c)→ modl(stn(c), stn+1(c))) ∧∧
n(

∧
v∈R∪W

(v(stn(c)) ' v(stn+1(c)))→
∧

m(
∧

v∈R∪W
(v(stn+m(c)) ' v(stn+m+1(c))))),

where l is defined as follows:
Let {ω(v) | v ∈W } = {a1, . . . , ak}, where a1, . . . , ak are ordered according to
some fixed linear order on Orig . Then l = 〈a1, . . . , ak〉.

So Modcomp(R,W , c) expresses that internal transitions in computation c leave state
variables other than the state variables W unmodified, and no two consecutive states in
computation c are the same after projection to the state variables R ∪W , unless c is
infinite and all following states are the same.

The formulae, that are abbreviated by Varmod(v) and Modcomp(R,W , c), capture
the main aspects of the mechanism of modification rights provided in VVSL by means of
the external clause in operation definitions.

The following abbreviations of formulae are used in the interpretation of temporal
formulae. For computation symbols c, c ′, the formulae Prefixk(c, c ′) and Suffixk(c, c ′)
(k < ω) are defined by

Prefixk(c, c ′) :=
k∧

m=0

( stm(c) ' stm(c ′) ∧
(intm(c)↔ intm(c ′)) ∧ (extm(c)↔ extm(c ′))) ∧

¬(stk+1(c ′)↓),

Suffixk(c, c ′) :=
∧

n( stk+n(c) ' stn(c ′) ∧
(intk+n(c)↔ intn(c ′)) ∧ (extk+n(c)↔ extn(c ′))).

Prefixk(c, c ′) is a formula stating that computation c ′ is the prefix of computation c
ending at the (k + 1)-th state of c. Suffixk(c, c ′) is a formula stating that computation
c ′ is the suffix of computation c starting at the (k + 1)-th state of c. That the intuitions
of prefix and suffix are captured by these formulae, follows from the last conjunct of the
axiom characterizing computations (i.e. the formula abbreviated by Compax). Because
no constructor functions for the (possibly infinite) computations are available, there are
no simpler equivalent formulae.
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5 Interpretation of Operation Definitions and Tem-

poral Formulae

The context of a construct consists of all symbols corresponding to names introduced by
definitions in which scope the construct occurs.

The special notation used in this section is precisely described in chapter 6 of [14]. In
this paper only short informal descriptions are given.

• [[e]]C~s,y (~s = 〈s1, . . . , sn〉, with n ≤ 2) expresses the fact that, in a context C , the
evaluation of the expression e in state(s) ~s yields value y ;

• [[E ]]C~s,y (~s = 〈s1, . . . , sn〉, with n ≤ 2) expresses the fact that, in a context C , the
evaluation of the logical expression E in state(s) ~s yields truth value y ;

• [[ϕ]]Cc,k ,y expresses the fact that, in a context C , the evaluation of the temporal
formula ϕ in computation c at position k yields truth value y (outlined in subsec-
tion 5.2);

• tC is the sort symbol corresponding to the type name t in context C ;

• vC
S is the function symbol v ′: State→ S corresponding to the state variable name v

in context C ;

• opC
S1×···×Sn⇒Sn+1×···×Sm

is the predicate symbol op ′: S1 × . . . × Sn × Comp×Sn+1 ×
. . .× Sm corresponding to the operation name op in context C .

Furthermore, tt , ff :→ B are used to denote the function symbols associated with the basic
type B of VVSL.

5.1 Operation Definitions

The interpretation of definitions is defined by a function I mapping definition D and
context C to the set of formulae of MPLω that constitute the axioms corresponding to
the definition D in a context C . Instead of I(D ,C ), we write [[D ]]C . The interpretation
of operation definitions is defined in terms of the interpretation of logical expressions and
temporal formulae.

The operation definition

op(x1: t1, . . . , xn : tn) xn+1: tn+1, . . . , xm : tm
ext rd v1: t ′1 , . . . , rd vk : t ′k , wr vk+1: t ′k+1 , . . . ,wr vl : t ′l
pre E1

post E2

inter ϕ

introduces the name op for an operation from argument types t1, . . . , tn to result types
tn+1, . . . , tm . It defines op indirectly in terms of an external clause, a pre-condition E1,
a post-condition E2 and an inter-condition ϕ that must be satisfied. Informally, it de-
fines op as an operation such that, for all values x1, . . . , xm belonging to types t1, . . . , tm ,
respectively:
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1. if c is a computation of the operation op for arguments x1, . . . , xn that yields results
xn+1, . . . , xm , then no step of c leaves all of the state variables v1, . . . , vl unmodified
(unless this will last forever), but internal steps leave state variables other than
vk+1, . . . , vl unmodified;

2. if evaluation of the logical expression E1 yields true in some state s , then the op-
eration op has a terminating computation with initial state s for the arguments
x1, . . . , xn ;

3. if evaluation of the logical expression E1 yields true in some state s , c is a terminating
computation with initial state s of the operation op for arguments x1, . . . , xn that
yields results xn+1, . . . , xm , and t is the final state of computation c, then evaluation
of the logical expression E2 yields true in the states 〈s , t〉;

4. if evaluation of the logical expression E1 yields true in some state s and c is a
computation with initial state s of the operation op for arguments x1, . . . , xn that
yields results xn+1, . . . , xm , then evaluation of the temporal formula ϕ yields true at
the first position in computation c.

This is made precise as follows (the formulae ϕ1, ϕ2, ϕ3, and ϕ4 correspond to points 1,
2, 3, and 4, respectively):

[[op(x1: t1, . . . , xn : tn) xn+1: tn+1, . . . , xm : tm
ext rd v1: t ′1 , . . . , rd vk : t ′k , wr vk+1: t ′k+1 , . . . ,wr vl : t ′l
pre E1

post E2

inter ϕ]]C :=
{ϕ1, . . . , ϕ4},

where:

ϕ1 = ∀x ′1: tC1 , . . . , x
′
n : tCn , c:Comp, x ′n+1: tCn+1, . . . , x

′
m : tCm

(opC
tC1 ×···×tCn ⇒tCn+1×···×tCm

(x ′1, . . . , x
′
n , c, x

′
n+1, . . . , x

′
m)→

Modcomp({v1CtC1 , . . . , vk
C
tC
k
}, {vk+1

C
tC
k+1
, . . . , vl

C
tC
l
}, c)),

ϕ2 = ∀s : State, x ′1: tC1 , . . . , x
′
n : tCn

([[E1]]
C∪{x ′

1,...,x
′
n}

〈s〉,tt →
∃c:Comp, x ′n+1: tCn+1, . . . , x

′
m : tCm

(st0(c) = s ∧ ¬(
∧

k(stk(c)↓)) ∧
opC

tC1 ×···×tCn ⇒tCn+1×···×tCm
(x ′1, . . . , x

′
n , c, x

′
n+1, . . . , x

′
m))),

ϕ3 = ∀s : State, x ′1: tC1 , . . . , x
′
n : tCn

([[E1]]
C∪{x ′

1,...,x
′
n}

〈s〉,tt →
∀c:Comp, x ′n+1: tCn+1, . . . , x

′
m : tCm

(st0(c) = s ∧ ¬(
∧

k(stk(c)↓)) ∧
opC

tC1 ×···×tCn ⇒tCn+1×···×tCm
(x ′1, . . . , x

′
n , c, x

′
n+1, . . . , x

′
m)→

∃t : State(
∨

k(stk(c) = t ∧ ¬(stk+1(c)↓)) ∧ [[E2]]
C∪{x ′

1,...,x
′
m}

〈s,t〉,tt ))),
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ϕ4 = ∀s : State, x ′1: tC1 , . . . , x
′
n : tCn

([[E1]]
C∪{x ′

1,...,x
′
n}

〈s〉,tt →
∀c:Comp, x ′n+1: tCn+1, . . . , x

′
m : tCm

(st0(c) = s ∧ opC
tC1 ×···×tCn ⇒tCn+1×···×tCm

(x ′1, . . . , x
′
n , c, x

′
n+1, . . . , x

′
m)→

[[ϕ]]
C∪{x ′

1,...,x
′
m}

c,0,tt )).

In these formulae, x ′i is a fresh value symbol corresponding to the value name xi
(1 ≤ i ≤ n). s , t are fresh state symbols and c is a fresh computation symbol.

These formulae reflect the intended meaning clearly. Formulae ϕ1, ϕ2 and ϕ3 generalize
the interpretation of external clause, pre-condition and post-condition from pairs of states
to computations. Formulae ϕ3 and ϕ4 are similar, but the former (corresponding to the
post-condition) deals only with the first and last state of computations and the latter
(corresponding to the inter-condition) deals with computations as a whole.

This interpretation shows the integration which is made possible by the use of MPLω

as the starting point of a semantic basis for VVSL. Definitions of both atomic and non-
atomic operations are translated to formulae of the same shape. Atomic operations are
not treated differently from non-atomic ones. For atomic operations, computations have
at most one internal step and no external steps. This can be expressed by inter ©©©true
⇒ (is-I ∧ ©©©¬ ©©©true), but is usually indicated by the absence of an inter-condition.
In case of atomic operations, the interpretation as sets of computations is essentially the
same as the relational interpretation that is usually adopted for atomic operations.

5.2 Temporal Formulae

The interpretation of temporal formulae is defined by a function I which maps temporal
formula ϕ, context C , computation c, natural number k and term y of MPLω to the
formula of MPLω expressing the fact that, in a context C , the evaluation of the temporal
formula ϕ in computation c at position k yields truth value y . Instead of I(ϕ,C , c, k , y),
we write [[ϕ]]Cc,k ,y . The interpretation of temporal terms is defined analogously. The
interpretation of temporal formulae is defined in terms of the interpretation of temporal
terms and the interpretation of temporal terms is defined in terms of the interpretation
of expressions. In the remainder of this section the interpretation of temporal formulae
and temporal terms is outlined by giving selected examples of the rules from the complete
definition.

The evaluation of the internal temporal formula is-I yields:

• true, if there is an internal step from the current position in the computation,

• false, otherwise.

This is reflected by:

[[is-I]]Cc,k ,y := intk(c)↔ y = tt .

The evaluation of the chop temporal formula ϕ1 ; ϕ2 yields:

• true, if it is possible to divide the computation at some future position into two
subcomputations such that evaluation of ϕ1 yields true at the current position in
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the first subcomputation and the evaluation of ϕ2 yields true at the first position in
the second subcomputation;

• true, if the computation is infinite and evaluation of ϕ1 yields true at the current
position in the computation;

• false, otherwise.

This is reflected by:

[[ϕ1 ; ϕ2]]
C
c,k ,y :=

(∃c1:Comp ∃c2:Comp
(
∨

n(Prefixn(c, c1) ∧ Suffixn(c, c2)) ∧ [[ϕ1]]
C
c1,k ,tt

∧ [[ϕ2]]
C
c2,0,tt

) ∨∧
n(stn(c)↓) ∧ [[ϕ1]]

C
c,k ,tt)↔ y = tt .

In this formula, c1, c2 are fresh computation symbols.

The evaluation of the until temporal formula ϕ1 U ϕ2 yields:

• true, if evaluation of the temporal formula ϕ2 yields true at the current or some
future position in the computation and evaluation of the temporal formula ϕ1 yields
true at all positions until that one;

• false, otherwise.

This is reflected by:

[[ϕ1 U ϕ2]]
C
c,k ,y :=∨

n(stk+n(c)↓ ∧ [[ϕ2]]
C
c,k+n,tt ∧

n−1∧
m=0

([[ϕ1]]
C
c,k+m,tt))↔ y = tt .

The evaluation of the previous temporal term ©©−©τ can yield:

• any value that can be yielded by evaluation of the temporal term τ at the previous
position in the computation, if there is a previous position;

• no value, otherwise.

This is reflected by:

[[ ©©−©τ ]]Cc,k ,y := [[τ ]]Cc,k-1,y if k > 0,
⊥ otherwise.

6 Final Remarks

This paper shows how operations, which interfere through a partially shared state, can be
implicitly specified in a VDM-like style with the use of an inter-condition in addition to
the usual pre- and post-conditions. The inter-condition is a formula from a language of
temporal logic. This means that the addition implies a combination of a VDM specifica-
tion language and a language of temporal logic. This paper also shows how the semantic
aspects of the combination are dealt with formally in the case of flat VVSL, viz. by
defining an interpretation of the combined language in the logic MPLω.
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The complete definition of the interpretation of flat VVSL in MPLω, which is pre-
sented in [14], is reasonably accessible. The only prerequisite is familiarity with classical
first order logic. The logical approach to semantics of specification languages seems to
be promising. A logical semantics emphasizes an important prospective aspect of specifi-
cations, viz. the provision of an adequate basis for reasoning conveniently about what is
specified. Besides, it is a common assumption in most current theoretical work on modu-
lar structuring of specifications that the basic building blocks of structured specifications
correspond to theory presentations in the language of some underlying logic.

In Parts I and II of [14], full VVSL is provided with a semantics by defining an inter-
pretation in roughly the ‘nucleus’ of COLD-K [27], which consists of MPLω, the algebra
DA (for Description Algebra) [26] and λπ-calculus (a version of lambda calculus) [28].
DA is a general algebraic model for modular structuring of specifications which is suit-
able for state-based specifications. It is closely related to MA (for Module Algebra) [29].
λπ-calculus, a variant of typed lambda calculus with parameter restriction in lambda ab-
stractions, is used to deal with parameterization. The parameter restriction feature is like
in ASL [30]. This feature makes it possible to put requirements on the modules to which
a parameterized module may be applied.

The main examples of the use of VSSL are the formal specification of the PCTE
interfaces [11, 12] and the formal specification of an air traffic control system by Praxis
Systems plc (Bath, England). In Parts III and IV of [14], VVSL is used to formalize
underlying concepts and abstract interfaces of relational database management systems.
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