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Abstract

VVSL is a mathematically well-defined VDM-like specification language
with features for (1) modular structuring and (2) specifying operations which
interfere through a partially shared state. This paper gives an short overview
of these features. Thereafter, the VVSL specification of an access handler
interface given in [1] is outlined. The purpose is to clarify the extent to which
the description of interfaces to software systems can be improved by the special
features of VVSL. This issue is further discussed. The access handler interface
concerned is a hypothetical interface which is meant to provide for a way of
looking at transaction management.

1 Introduction

In [1], the author presents a definition of the syntax and semantics of VVSL, a lan-
guage for modularly structured specifications which combines a VDM specification
language and a language of temporal logic. VVSL (VIP VDM Specification Lan-
guage) is a specification language designed in the ESPRIT project VIP (VDM for
Interfaces of the PCTE) [2, 3]. That project was concerned with describing in a
mathematically precise manner the interfaces of the PCTE (Portable Common Tool
Environment) [4], using the notation offered by the software development method
VDM (Vienna Development Method) [5] as far as possible.

Important differences between VVSL and the main VDM specification languages
are:

1. operations which interfere through a partially shared state (hereafter called
non-atomic operations) can be implicitly specified in a VDM-like style with
the use of inter-conditions — which are formulae from a language of temporal
logic — in addition to the usual pre- and post-conditions;

2. large state-based specifications can be modularly structured by means of mod-
ularization and parameterization mechanisms which permit two modules to
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have parts of their state in common, including hidden parts, and allow re-
quirements to be put on the modules to which a parameterized module may
be applied.

The main examples of the use of VSSL are the formal specification of the PCTE
interfaces in the project VIP [6, 7]1 and the formal specification of an air traffic con-
trol system by Praxis Systems plc (Bath, England). Some experiences with the for-
mal specification of the PCTE interfaces are mentioned in [10]. In [1], VVSL has also
been used to formalize many of the underlying concepts of relational database man-
agement systems and two abstract interfaces for such systems. Relational database
management systems are sufficiently familiar to most people involved in the con-
struction of software systems to allow them to concentrate on the formalizations
rather than on the examples used for the formalizations. Both interfaces are complex
enough to demonstrate the usefulness of the modularization and parameterization
mechanisms provided by VVSL. Besides, the specification of the second interface
illustrates the use of inter-conditions.

The second interface is a hypothetical internal interface of relational database
management systems which handles concurrent access to stored relations by mul-
tiple transactions. Its specification in [1] can serve as a starting-point for further
formalization in the areas of transaction management. An outline of that specifica-
tion is given in this paper. It is meant to clarify the extent to which the description
of interfaces to software systems can be improved by the mechanisms provided by
VVSL for modular structuring and inter-conditions (in addition to pre- and post-
conditions) for specifying interference of operations. It is also meant to show how
the special features of VVSL are used.

A short overview of modular structuring in VVSL and specifying interfering op-
erations with inter-conditions is given in Sections 2 and 3. Section 4 summarizes in
brief what is formalized, using VVSL, in [1] and describes the scope of the formal-
ization of the access handler interface. The specification of this interface is outlined
in Section 5. Its main module is treated in more detail in Section 6. In Section 7,
the need for specifications like this one and the usefulness of the special features of
VVSL are discussed.

2 Modular structuring in VVSL

In this section, a short overview of modular structuring in VVSL is given. VVSL can
be considered to be a language for flat VDM specifications extended for non-atomic
operations together with a language for modularization and parameterization that
is put on top of it, both syntactically and semantically.

The modularization and parameterization constructs of VVSL are like those of
COLD-K (Common Object-oriented Language of Design, K stands for Kernel) [11]
and have the same semantic basis. Description Algebra, an algebraic model of speci-
fication modules introduced by Jonkers in [12], is used as the semantic foundation of

1VVSL has been improved in the course of the work on the formal specification of the PCTE
interfaces based on the feedback by the specifiers about their actual needs. This led to various
preliminary versions of VVSL. They were also developed by the author. It is worth mentioning
that the preliminary version of VVSL described by the author in [8] and the language described
under the name EVDM by Oliver in [9] are the very same.



the modularization constructs. λπ-calculus, a variant of classical lambda calculus in-
troduced by Feijs in [13], is used as the semantic foundation of the parameterization
constructs.

2.1 Features for modular structuring

In VVSL, modules can be adapted and combined by means of renaming , importing ,
and exporting . The basic modularization concepts of decomposition and information
hiding are supported by importing and exporting, respectively. Renaming provides
for control of name clashes in the composition of modules. The usual flat VDM
specifications are used as the basic building blocks. Like any module, they are
essentially interpreted as presentations of logical theories. For these flat VDM spec-
ifications, the models of the logical theory coincide with the models according to the
original interpretation. Modules can also be parameterized over modules, by means
of abstraction, and these parameterized modules can be instantiated for given mod-
ules, by means of application. The concept of reusability is primarily supported by
abstraction and application.

VVSL is a language for model-oriented, state-based specification. Effective sep-
aration of concerns often motivates the hiding of state variables from a module
(access to state variables is permitted only via exported operations), in particular
where a suitable modular structuring of the specification requires that the same state
variables are accessed from several modules. For the adequacy of a modularization
mechanism for the modular structuring of specifications of many existing software
systems, it is indispensable that it permits two or more modules to have hidden state
variables in common. The modularization mechanism provided by VVSL permits
such common hidden state variables.

Defining types in a VDM-like style introduces subtype relationships with accom-
panying implicit conversions. If a type is defined as a subtype of another type, then
the introduced subtype relationship is pragmatically a relationship between an “ab-
stract data type” and its “representation”. A modularization mechanism that does
not hide such representations is not very useful. The modularization mechanism
provided by VVSL hides representations.

For the adequacy of a parameterization mechanism for practical applications, it
is highly desirable that it makes it possible to put requirements on the modules to
which a parameterized module may be applied. The parameterization mechanism
provided by VVSL allows such requirements to be put.

The modularization and parameterization constructs of VVSL are:

module D end: The basic module construct. Its visible names are the names intro-
duced by the definitionsD. Its formulae represent the properties characterizing
the types, state variables, functions and operations which may be associated
with these names according to the definitions. If this construct occurs as an
importing module, then the visible names from the imported module, that are
used but not introduced in it, are treated as if they are introduced.

rename R in M : The renaming construct has the same meaning as the module M ,
except that the names have been changed according to the renaming R.

import M1 into M2 : The import construct combines the two modules M1 and
M2 . Its visible names are the visible names of both modules. The formulae



representing the properties characterizing what is denoted by these names (as
well as hidden ones, if present) are also combined.

export S from M : The export construct restricts the visible names of module M to
those which are also in the signature S , leaving all other names hidden. The
formulae remain the same.

abstract m1 : M1 , . . . ,mn : Mn of M : The abstraction construct parameterizes the
module M . Usually, the module names m1 , . . . ,mn occur in M . The visible
names and formulae of the abstraction module depend upon what these mod-
ule names stand for. That is, m1 , . . . ,mn act as formal parameters. What the
actual parameters may be is restricted by the parameter restriction modules
M1 , . . . ,Mn . The visible names of the actual parameter corresponding to mi

must include the visible names of the parameter restriction module Mi . Like-
wise the properties represented by its formulae must include those represented
by the formulae of Mi .

apply M to M1 , . . . ,Mn : The application construct instantiates the parameterized
module M . The modules M1 , . . . ,Mn act as actual parameters. This means
that the meaning of the application module is the meaning of M when its
formal parameters stand for M1 , . . . ,Mn . If some actual parameter does not
satisfy the parameter restriction associated with the corresponding formal pa-
rameter, then the meaning is undefined.

The definitions of the basic module construct may be free. A free definition is a
definition in which the keyword free occurs following its header. A free definition
introduces a free name and a non-free definition introduces a defined name. A free
name is a name which is supposed to be defined elsewhere. This means that, in case
of a free name, the body of the definition (empty if a type name or a state variable
name) must be considered to describe assumptions about the function or operation
denoted by the name.

In case of name clashes, the union of the formulae of the imported module and
the importing module of the import construct may lead to undesirable changes in
the properties represented by the formulae. Therefore, a restriction applies to visible
names. Visible names are allowed to clash, provided that the name can always be
traced back to at most one non-free definition. Name clashes of hidden names can be
regarded as being avoided by automatic renamings, in case the name can be traced
back to more than one non-free definition. Otherwise they are not avoided. This
makes it possible for two modules to have hidden state variables in common.

For another presentation of modular structuring in VVSL, see [14]. That paper
gives an overview of the structuring sublanguage of VVSL and a concise description
of its semantic foundations. It also presents a variation on a “challenge problem” of
Fitzgerald and Jones [15] as an example of the use of VVSL’s structuring sublan-
guage.

2.2 Example of modular structuring in VVSL

In this subsection, the formalization of the underlying concepts of relational database
systems given in [1] is outlined. The outline of the formalization comprises a skeleton



of its modular structure and a very brief informal explanation of the modelling in
each module. The skeleton has been obtained from the specification by replacing
the collection of definitions in each basic module construct and the signature in each
export construct by “· · ·”.

In the definitions concerned, relation names, attributes, and values are regarded
as primitive concepts about which a few assumptions have to be made. The mod-
ules RELATION NM, ATTRIBUTE and VALUE contain the assumptions
concerned. Relation names and attributes have no a priori properties. For values,
it is assumed that any finite set of values constitutes a domain.

Finite sets of attributes, one-to-one maps between these attribute sets, etc. are
repeatedly used (e.g. as arguments of functions on tuples, relations, tuple structures
and so on). The supplementary type and function definitions, which are closely
connected, are collected in one module, viz. ATTR SUPPL.

In the module TUPLE, tuples are defined as maps from attributes to values.
Tuple predicates are defined as maps from tuples to truth values. A tuple predicate
is used to select tuples from some relation.

In the module RELATION, relations are defined as sets of tuples. All tuples
from a relation must have the same attributes (i.e. they must have the same domain).

In the module DATABASE, databases are defined as maps from relation names
to relations.

In the module TUPLE STRUCTURE, tuple structures are defined as maps
from attributes to domains. A tuple structure is used to present structural con-
straints on all tuples from some relation.

In the module RELATION SCHEMA, relation schemas are defined as com-
posite values with a tuple structure and a set, whereof the elements are called keys,
as components. A relation schema is used to present intra-relational constraints on
some named relation. Each key presents a uniqueness constraint on the relation
concerned.

In the module DATABASE SCHEMA, database schemas are defined as com-
posite values with a map from relation names to relation schemas and a set, whereof
the elements are called inclusions, as components. A database schema is used to
present intra-relational constraints on the named relations of some database as well
as inter-relational constraints on the database. Each inclusion presents a referential
constraint between two named relations in the database concerned.

RELATION NM is

module · · · end
and

ATTRIBUTE is

module · · · end
and

VALUE is

module · · · end
and



ATTR SUPPL is

abstractX: ATTRIBUTE of

importX into

module · · · end
and

TUPLE is

abstractX: ATTRIBUTE, Y: VALUE of

import apply ATTR SUPPL to X , Y into

module · · · end
and

RELATION is

abstractX: ATTRIBUTE, Y: VALUE of

import apply TUPLE to X,Y into

module · · · end
and

DATABASE is

abstractX: RELATION NM, Y: ATTRIBUTE, Z: VALUE of

importX , apply RELATION to Y,Z into

module · · · end
and

TUPLE STRUCTURE is

abstractX: ATTRIBUTE, Y: VALUE of

import apply ATTR SUPPL to X , Y into

module · · · end
and

RELATION SCHEMA is

abstractX: ATTRIBUTE, Y: VALUE of

import

apply RELATION to X,Y , apply TUPLE STRUCTURE to X,Y
into

module · · · end
and

DATABASE SCHEMA is

abstractX: RELATION NM, Y: ATTRIBUTE, Z: VALUE of

import

apply DATABASE to X,Y,Z , apply RELATION SCHEMA to Y,Z
into

module · · · end

The definitions in the basic modules that occur as importing modules, are in terms
of concepts defined in the imported modules concerned. For example, relations and
functions on relations are defined in terms of tuples and functions on tuples. So
TUPLE is imported into the basic module concerned.

The export construct is not used. This means that everything is visible —
nothing is hidden. The reason is that none of the concepts defined in the above
modules is regarded as an auxiliary concept.



3 Specifying interfering operations in VVSL

In this section, a short overview of specifying interfering operations with inter-
conditions is given. VVSL can be considered to be an extension of a VDM specifi-
cation language wherein operations which interfere through a partially shared state,
can be specified while maintaining the VDM style of specification where possible.
This is mainly accomplished by adding an inter-condition to the body of the usual
operation definition — which consists of an external clause, a pre-condition, and a
post-condition.

The inter-condition is a formula from a temporal language. This language has
been inspired by a temporal logic from Lichtenstein, Pnueli and Zuck that includes
operators referring to the past [16], a temporal logic from Moszkowski that includes
the “chop” operator [17], a temporal logic from Barringer and Kuiper that includes
“transition propositions” [18] and a temporal logic from Fisher with models in which
“finite stuttering” cannot be recognized [19]. The operators referring to the past,
the chop operator and the transition propositions obviate the need to introduce
auxiliary state variables acting as history variables, control variables and scheduling
variables, respectively.

3.1 Specifying interference with inter-conditions

An operation is implicitly specified by an operation definition. The definition con-
sists of a header and a body. The header introduces a name for the specified opera-
tion and defines the types of its arguments and results. The header also introduces
names for the argument values and result values to be used within the body. The
body consists an external clause, a pre-condition, a post-condition, and an inter-
condition. The external clause indicates which state variables are of concern to the
behaviour of the operation and also indicates which of those state variables may
be modified by the operation. The pre-condition defines the inputs (combinations
of initial state and argument values) for which the operation possibly terminates
(see below). The post-condition defines the possible outputs (combinations of final
state and result values) from each of these inputs. The inter-condition defines the
possible computations of the operation from each of these inputs.

These computations represent the successions of state changes that can be gen-
erated by the operation concerned working interleaved with an interfering environ-
ment, distinguishing between state changes effected by the operation itself and state
changes effected by its interfering environment. The state changes of the former
kind are called internal steps , those of the latter kind are called external steps .

The pre-condition of an operation only defines the inputs for which the operation
possibly terminates, i.e. for which its possible computations include finite ones. This
allows that the operation only terminates due to certain interference of concurrently
executed operations. Moreover, the post-condition of an operation will be rather
weak in case of sensitivity to interference, for inputs must often be related to many
outputs which should only occur due to certain interference of concurrently executed
operations. The inter-condition is mainly used to describe which interference is
required for termination and/or the occurrence of such outputs.

The inter-condition is a formula from the temporal language outlined in the next
subsection. It can be used to express that the operation is atomic — computations



of atomic operations have at most one internal step and no external steps. How-
ever, this may also be indicated by leaving out the inter-condition. This means
that atomic operations can be implicitly specified as in other VDM specification
languages. Besides, for atomic operations, the new interpretation is equivalent to
the original VDM interpretation.

The operation definition

op(x1 : T1 , . . . , xi : Ti) xi+1 : Ti+1 , . . . , xn : Tn

ext rd v1 : T ′1 , . . . , rd vj : T ′j ,wr vj+1 : T ′j+1 , . . . ,wr vm : T ′m
preEpre

postEpost

interϕinter

introduces the name op for an operation from argument types T1 , . . . ,Ti to result
types Ti+1 , . . . ,Tn . It defines op as an operation such that, for all values x1 , . . . , xn
belonging to types T1 , . . . ,Tn , respectively:

1. if c is a computation of the operation op for arguments x1 , . . . , xi that yields
results xi+1 , . . . , xn , then no step of c leaves all of the state variables v1 , . . . , vm
unmodified (unless this will last forever), but internal steps leave state variables
other than vj+1 , . . . , vm unmodified;

2. if evaluation of the logical expression Epre yields true in some state s , then the
operation op has a terminating computation with initial state s for arguments
x1 , . . . , xi ;

3. if evaluation of the logical expression Epre yields true in some state s , c is a
terminating computation with initial state s of the operation op for arguments
x1 , . . . , xi that yields results xi+1 , . . . , xn , and t is the final state of computation
c, then evaluation of the logical expression Epost yields true in the states 〈s , t〉;

4. if evaluation of the logical expression Epre yields true in some state s and c is
a computation with initial state s of the operation op for arguments x1 , . . . , xi
that yields results xi+1 , . . . , xn , then evaluation of the temporal formula ϕinter

yields true at the first position in computation c.

An example will be given following the next subsection.
For another presentation of the specification of interfering operations based on

inter-conditions, see [20]. That paper explains the role of inter-conditions in the
specification of interfering operations. It also deals with the formal aspects of com-
bining a VDM specification language with a temporal language.

3.2 The temporal language

The evaluation of a temporal formula yields true, false or neither-true-nor-false.
The meaning of the logical connectives and quantifiers is as in LPF [21]. They
distinguish between false and neither-true-nor-false. The temporal operators identify
false and neither-true-nor-false. So the three-valuedness can be safely ignored when
only the temporal operators are considered. The meaning of the temporal operators
is explained by the following informal evaluation rules:



is-I: Evaluation yields true if there is an internal step from the current position
in the computation.

is-E: Evaluation yields true if there is an external step from the current position
in the computation.

ϕ1 ;ϕ2 : Evaluation yields true if it is possible to divide the computation at some
future position into two subcomputations such that evaluation of ϕ1 yields
true at the current position in the first subcomputation and the evaluation
of ϕ2 yields true at the first position in the second subcomputation, or
the computation is infinite and evaluation of ϕ1 yields true at the current
position in the computation.

©ϕ: Evaluation yields true if there is a next position in the computation and
evaluation of the temporal formula ϕ yields true at that position.

ϕ1 U ϕ2 : Evaluation yields true if evaluation of the temporal formula ϕ2 yields true
at the current or some future position in the computation and evaluation
of the temporal formula ϕ1 yields true at all positions until that one.

-©ϕ: Evaluation yields true if there is a previous position in the computation
and evaluation of the temporal formula ϕ yields true at that position.

ϕ1 S ϕ2 : Evaluation yields true if evaluation of the temporal formula ϕ2 yields true
at the current or some past position in the computation and evaluation
of the temporal formula ϕ1 yields true at all positions since that one.

© τ : Evaluation yields the value that is yielded by evaluation of the temporal
term τ at the next position in the computation. In case there is no next
position, evaluation is undefined.

-© τ : Evaluation yields the value that is yielded by evaluation of the temporal
term τ at the previous position in the computation. In case there is no
previous position, evaluation is undefined.

The notations 3ϕ (meaning “eventually ϕ”), 2ϕ (meaning “henceforth ϕ”) and
their counterparts for the past can be defined as abbreviations:

3ϕ := true U ϕ, -3ϕ := true S ϕ,
2ϕ := ¬(3¬ϕ), -2ϕ := ¬(-3¬ϕ).

3.3 Example of specification with inter-condition

The use of inter-conditions for specifying interference is illustrated below, using an
interruptable “wait-and-lock” command as an example.

The state variable locked is used to indicate which objects are currently locked.
The state variable signal is used for interruption of commands. In the external
clause is expressed that the state variables locked and signal are relevant for the
behaviour of WLOCK , but that it can only change locked . In the pre-condition is
expressed that WLOCK (obj ) should possibly terminate for any initial state (i.e. it
should terminate in at least one environment). In the post-condition is expressed
that, if it terminates, finally obj is locked or signal is up. In the inter-condition is
expressed that one of the following occurs:



• Eventually it will lock obj at a point in time that obj is not locked and it will
terminate immediately thereafter. Until then all steps have to be external.

• It will terminate at a point in time that signal is up. Until then all steps have
to be external.

WLOCK (obj : Object)
ext rd signal : B ,

wr locked : Object-set
pre true

post obj ∈ locked ∨ signal
inter is-E U (obj /∈ locked ∧ is-I ∧ ©(obj ∈ locked ∧ ¬© true)) ∨

is-E U (signal ∧ ¬© true)

Note that the inter-condition excludes non-termination of WLOCK (obj ): it nor-
mally waits until the object to be locked is not locked, but it will be interrupted if
it would otherwise be waiting forever.

4 Interfaces for database management systems

This section is an introduction to the outline of the VVSL specification of an access
handler interface given in Sections 5 and 6. A brief summery of what is formalized,
using VVSL, in [1] is given and the scope of the formalization of the access handler
interface is described.

4.1 Formalizations in VVSL

In [1], the author presents VVSL specifications of two interfaces for relational
database management systems (RDBMS’s).

One interface comprises commands for data manipulation and data definition
according to the concepts of the relational data model (RDM). It should be regarded
as an external interface: the commands are made available directly to the users of
the RDBMS. It is abstract in the sense that it does not deal with details of actual
interfaces like concrete syntax of commands, their embedding in a host language,
concrete representation of the data objects yielded by query commands, etc.

Its specification covers many of the basic RDM concepts, including the ones
which are considered fundamental in [22]. The modular structure of the specification
isolates the formalization of the RDM concepts from the formalization of the external
RDBMS interface. This means that large parts of the specification can be re-used in
specifications of other possible external RDBMS interfaces and even various internal
RDBMS interfaces.

In formalizing the RDM concepts, relations are viewed as sets of maps. Origi-
nally, relations were viewed as sets of sequences [23]. The consequences of choosing
one view over the other are illustrated in [24]. In the set-of-maps view of a relation,
its tuples are maps from attributes to values (all with the same domain). Restriction
to a finite universe of values for the attributes of tuples allows extensive use of maps
in formalizing RDM concepts.



The other interface comprises commands for handling concurrent access to stored
relations by multiple transactions. This interface should be regarded as an inter-
nal interface: the commands are not made available directly to the users of the
RDBMS. In any existing RDBMS, the execution of the high-level data manipula-
tion commands of its external interface (either by interpretation or via compilation)
gives rise to the issue of lower-level access handling commands of an internal interface
which is comparable to the specified internal interface.

Its specification covers concepts associated with concurrency control for data-
bases and in-progress transaction backup. It does not cover the concepts that are
needed for solving concurrency control and transaction backup problems (e.g. locking
protocols and log protocols are not formalized). However, it can serve as a starting-
point for further formalization in this area.

The specified external interface does not deal with concurrency at all. This is
in accordance with the view that it should appear to any user of the RDBMS as if
each command is executed in isolation. The specified internal interface deals with
concurrency. The Access Handler (AH), which supports this internal interface, al-
lows that access handling commands issued on behalf of various data manipulation
commands are executed in an interleaved way. Moreover, according to the speci-
fication, it provides for an interleaving by which it appears as if each of the data
manipulation commands is executed in isolation. Thus, the AH can be used for a
correct implementation of the RDBMS with concurrent execution of data manipu-
lation commands in a multi-user environment.

4.2 Scope of the formalization of an AH interface

The formalization of an access handler interface in [1] deals with a hypothetical
internal interface of an RDBMS. This hypothetical interface is meant to provide for
a way of looking at transaction management. It may be regarded as an idealization
of comparable internal interfaces of existing RDBMS’s, but naturally it reflects the
taste and biases of the author.

The formalization covers concepts associated with the following facets of trans-
action management in database systems: concurrency control for databases [25, 26]
and in-progress transaction backup [27, 28]. Some formalized concepts are precisely
defined instances of concepts, which are widely used in this area but which are usu-
ally only vaguely described. Even nameless concepts described by expressions like
“the dynamic syntactic information about the transactions issuing access requests”
had to be formalized. Other formalized concepts are generalizations of concepts,
which are mostly used in theoretical work on transaction management but which
are often not pertinent for practice. For example, many concepts are based on
assumptions that preclude dynamic creation of transactions. However, in existing
systems, AH interfaces provide for dynamic transaction creation. Some formalized
concepts are abstractions of concepts which are used in this area, since the original
concepts were too concrete to underlie the intended interface. The points made in
this paragraph are relevant to the discussion in Section 7.1.

Concerning concurrency control, the view has been taken that the AH interface
should completely hide the mechanism used for scheduling of the access requests
issued on behalf of various transactions. For example, the AH interface should
not include commands for locking. A main reason for this choice is that it leads



to an interface which reflects the essential characteristics of concurrency control
for databases instead of the details of a particular mechanism supporting it. Such
an interface seems more suitable to provide for a way of looking at transaction
management. Another reason for this choice is that it gives rise to an interface
which, as far as concurrency control is concerned, can be defined in terms of a small
collection of underlying concepts that are relatively simple and general.

One usually distinguishes two purposes of transaction-oriented database recov-
ery: in-progress transaction backup and crash recovery (see e.g. [27]). In-progress
transaction backup is wanted to be able to undo the updates of the database made
by a particular transaction in the event that the transaction cannot complete due to
an error which allows its abortion in a controlled manner. Crash recovery is wanted
to be able to undo the updates made by any transaction that was incomplete at the
time of a crash — an error which does not allow its abortion in a controlled manner
— and to redo the updates made by any completed transaction whose effects were
lost due to the crash. A choice has been made not to take crash recovery into ac-
count. A useful treatment of crash recovery would require a multitude of low-level
concepts to be formalized.

An access handler for access to a relational database may handle access to either
single tuples of stored relations, subsets of stored relations or entire stored relations.
For the formalization of an abstract AH interface a choice from these “units of
access” has been made in favour of subsets of stored relations. The main reason
for this choice is that access to subsets of stored relations is a generalization of the
other cases. Moreover, the distinction between access to single tuples and access
to subsets of stored relations is blurred in comparable internal interfaces of existing
RDBMS’s by the provision of “scans” (also called cursors; see e.g. [27]).

The above-mentioned choices highly determine the scope of the formalization.
For example, concepts underlying particular concurrency control mechanisms and
concepts underlying crash recovery are not covered. Besides, this formalization
builds on the formalization of RDM concepts. It means that the definitions are
couched in terms of the RDM. This restricts the scope of the formalization slightly.

5 Specification of the AH interface

In this section, the specification of the AH interface given in [1] is outlined. The
ideas, which are elaborated in that specification, were mainly developed by abstrac-
tion and combination of many useful ideas that have been developed in the area of
transaction management. Concerning concurrency control, the latter ideas are usu-
ally associated with particular (kinds of) concurrency control mechanisms. Amongst
the ideas that have been most influential are the ideas of “two-phase” locking and
“predicate locks” which are introduced in [25], the ideas of “strict” and “superstrict”
concurrency control which are introduced in [29], and the idea of “optimal sched-
ulers” (for availabe information) which is introduced in [26]. Influential ideas with
respect to transaction backup are mainly the ideas described in [27].

The specification is modularly structured. The modules concerning concepts of
the relational data model, concurrency control and transaction backup only contain
definitions of types and functions. The modules concerning access handling only
contain definitions of state variables and operations; except the definition of the



type Status which is used to return an indication of success or failure by most
operations. The part of the specification concerning concepts of the RDM is outlined
in Section 2.2. Outlines of the other parts are given following the overview of the
AH interface in the next subsection.

5.1 Overview of the AH interface

The formalized abstract interface comprises commands for starting and stopping a
transaction, commands for accessing a subset of one of the stored relations to read it
or to overwrite it, and commands for creating and destroying stored relations. The
main constituents of the commands are simple propositional formulae for stating
properties of tuples.

Most of the commands which constitute this interface can be regarded as re-
quests on behalf of some transaction to perform an action on a subset of a stored
relation. In this section, this view is implicit in the introduction of the concepts
concerned. Transactions are introduced as the units of consistency. It is assumed
that each action which is performed on behalf of a transaction may violate database
consistency, but that each transaction, when executed alone, preserves database con-
sistency. The AH, which supports the specified interface, provides for interleaved
performance of actions requested by several transactions in such a manner that each
transaction sees a consistent database and produces a consistent database. In this
case, it is said that the requests are granted in a consistency preserving order. The
AH does so on the ground of the above-mentioned assumption; it does not know
what the consistency requirements are.

When a transaction issues a request, it is never made to wait forever for the
grant of the request. Deadlock is one possible reason why a transaction might wait
forever. The AH will reject an issued request immediately, if the request would
cause deadlock. Other reasons, e.g. livelock, are prevented from occurring by the
way of granting requests. If a request is rejected, then the transaction concerned
usually has to stop after undoing all changes made to the database so far. The AH
also provides for this rollback of transactions.

5.2 Outline of the specification: concurrency control

In the definitions concerned, value constants and transaction names are regarded
as primitive concepts about which a few assumptions have to be made. The mod-
ules VALUE CONSTANT and TRANSACTION NM contain the assump-
tions concerned.

In the module SIMPLE FORMULA, simple formulae are defined. They can
be viewed as expressions denoting tuple predicates. Their well-formedness and eval-
uation are also defined.

In the module ACCESS, accesses are defined in terms of relation names and
simple formulae. They can be viewed as abstractions of requests to perform a read
action or a write action on a subset of some stored relation. An access is used
to present syntactic properties of an access request issued by some transaction. It
contains all the details of the request that can be used to grant this request amongst
requests issued by other transactions in a consistency preserving order. One access



is in conflict with another one if the effects of the requested actions possibly interfere
according to their syntactic properties. This concept is also formalized.

In the module ACCESS TABLE, access tables are defined in terms of transac-
tion names and accesses. They can be viewed as abstractions of states of a collection
of transactions whose actions are performed in an interleaved fashion. An access ta-
ble is used to present, for each active transaction, the syntactic properties of its
previously granted requests and its currently waiting request (only when it is cur-
rently waiting). It contains all the details of the active transactions that can be
used to grant their waiting and coming requests in a consistency preserving order.
For a given transaction, an access is in conflict with an access table if the effect of
the requested action possibly interferes with the effect of one of the actions that
were previously requested by another active transaction. A conflicting request is
not granted immediately. Either it becomes a waiting request which eventually will
be granted or it is rejected. The latter will happen when it would otherwise be
waiting for itself indirectly. In that case the access is called liable for deadlock. The
concepts of being in conflict and being liable for deadlock are also formalized.

VALUE CONSTANT is

abstractX: VALUE of

importX into

module · · · end
and

TRANSACTION NM is

module · · · end
and

SIMPLE FORMULA is

abstractX: ATTRIBUTE, Y: VALUE, Z: VALUE CONSTANT of

export · · · from
import

apply TUPLE to X,Y ,
apply TUPLE STRUCTURE to X,Y ,
apply Z to Y

into

module · · · end
and



ACCESS is

abstract

X: RELATION NM,
Y: ATTRIBUTE,
Z: VALUE,
U: VALUE CONSTANT

of

import

apply RELATION to Y,Z ,
apply DATABASE SCHEMA to X,Y,Z ,
apply SIMPLE FORMULA to Y,Z,U

into

module · · · end
and

ACCESS TABLE is

abstract

X: RELATION NM,
Y: ATTRIBUTE,
Z: VALUE,
U: VALUE CONSTANT,
V: TRANSACTION NM

of

import apply ACCESS to X,Y,Z,U , V into

module · · · end

5.3 Outline of the specification: transaction backup

In the module TRANSITION RECORD, transition records are defined. A tran-
sition record reflects the effect of a write action on some stored relation.

In the module TRANSITION LOG, transition logs are defined in terms of
transition records. They can be viewed as histories of changes to stored relations.

In the module LOG TABLE, log tables are defined in terms of transaction
names and transition logs. They can be viewed as collections of transaction histo-
ries corresponding to collections of transactions whose actions are performed in an
interleaved fashion. A log table is used to record the effects of all write actions on
stored relations which have been performed on request of active transactions, in the
order in which they have taken place and aggregated by transaction. The log table
provides all the details that are required to abort any of the active transactions.
Such abortion of transactions, called rollback, is also defined.

TRANSITION RECORD is

abstractX: RELATION NM, Y: ATTRIBUTE, Z: VALUE of

import apply RELATION to Y,Z , apply DATABASE to X,Y,Z into

module · · · end
and



TRANSITION LOG is

abstractX: RELATION NM, Y: ATTRIBUTE, Z: VALUE of

import apply TRANSITION RECORD to X,Y,Z into

module · · · end
and

LOG TABLE is

abstract

X: RELATION NM,
Y: ATTRIBUTE,
Z: VALUE,
U: TRANSACTION NM

of

import apply TRANSITION LOG to X,Y,Z , U into

module · · · end

5.4 Outline of the specification: access handling

In the module AH STATE, a varying database, a varying database schema, a
varying access table and a varying log table are defined as state variables. They can
be viewed as taking at any point in time the current database value, the current
database schema value, the current access table value and the current log table value,
respectively. Together, they constitute the changing state of the access handler.

In the module ACCESS HANDLING, the commands which constitute the
AH interface are defined as operations. The definition of these commands is rather
straightforward but far from concise. A large part is related to the characterization
of all possible ways in which they may be scheduled.

In the system module, the relevant definitions from the previous modules are
combined and it is specified what from the defined concepts constitutes the abstract
AH interface by making only the names of these concepts visible.

AH STATE is

abstract

X: RELATION NM,
Y: ATTRIBUTE,
Z: VALUE,
U: VALUE CONSTANT,
V: TRANSACTION NM

of

export · · · from
import

apply DATABASE to X,Y,Z ,
apply DATABASE SCHEMA to X,Y,Z ,
apply ACCESS TABLE to X,Y,Z,U,V ,
apply LOG TABLE to X,Y,Z,V

into

module · · · end
and



ACCESS HANDLING is

abstract

X: RELATION NM,
Y: ATTRIBUTE,
Z: VALUE,
U: VALUE CONSTANT,
V: TRANSACTION NM

of

export · · · from

import

apply DATABASE to X,Y,Z ,
apply DATABASE SCHEMA to X,Y,Z ,
apply ACCESS TABLE to X,Y,Z,U,V ,
apply LOG TABLE to X,Y,Z,V ,
apply SIMPLE FORMULA to Y,Z,U ,
apply AH STATE to X,Y,Z,U,V

into

module · · · end
and

system is

abstract

X: RELATION NM,
Y: ATTRIBUTE,
Z: VALUE,
U: VALUE CONSTANT,
V: TRANSACTION NM

of

export · · · from
import

apply SIMPLE FORMULA to Y,Z,U ,
apply ACCESS HANDLING to X,Y,Z,U,V

into

module end

6 Details of the access handling module

In this section, one of the modules from the specification outlined in the previous
section, viz. the module ACCESS HANDLING, is treated in more detail. A
detailed skeleton of the module is presented and explained; there are only the bodies
of the operation definitions missing. Furthermore, one of the operation definitions
is presented and explained.

6.1 Detailed outline of the module ACCESS HANDLING

In the module ACCESS HANDLING a command for starting a transaction,
commands for stopping a transaction by commitment and abortion, and commands
for accessing a subset of one of the stored relations (for reading or overwriting it)



by selection, insertion, deletion and replacement , and commands for creating and
destroying stored relations, are formalized with operations. Together they constitute
the AH interface of a database management system.

The module ACCESS HANDLING is based on assumptions with respect to
relation names, attributes, values, value constants and transaction names and on
definitions regarding databases, database schemas, access tables, log tables, simple
formulae and states of the access handler.

The collection of access handling operations defined in this module, reflects
roughly what is offered in the AH’s of existing RDBMS’s. Only these access han-
dling operations are exported. The idea is that consulting or modifying the state
variables should only be done by means of the operations made available by the
access handler.

ACCESS HANDLING is

abstract

X: RELATION NM,
Y: ATTRIBUTE,
Z: VALUE,
U: VALUE CONSTANT,
V: TRANSACTION NM

of

export

START : ⇒ Transaction nm ,
COMMIT : Transaction nm ⇒ ,
ABORT : Transaction nm ⇒ ,
SELECT :

Transaction nm×Relation nm×Simple formula ⇒ Relation×Status ,
INSERT : Transaction nm × Relation nm × Simple formula ⇒ Status ,
DELETE : Transaction nm × Relation nm × Simple formula ⇒ Status ,
REPLACE :

Transaction nm ×Relation nm × Simple formula × Simple formula ⇒
Status ,

CREATE : Transaction nm × Relation nm ⇒ Status ,
DESTROY : Transaction nm × Relation nm ⇒ Status

from

import

apply DATABASE to X,Y,Z ,
apply DATABASE SCHEMA to X,Y,Z ,
apply ACCESS TABLE to X,Y,Z,U,V ,
apply LOG TABLE to X,Y,Z,V ,
apply SIMPLE FORMULA to Y,Z,U ,
apply AH STATE to X,Y,Z,U,V

into

module

types

Status = {GRANTED,REJECTED}



operations

START ()tnm: Transaction nm
. . .

COMMIT (tnm: Transaction nm)
. . .

ABORT (tnm: Transaction nm)
. . .

SELECT (tnm: Transaction nm, rnm: Relation nm, sf : Simple formula)
r : Relation, st : Status

. . .

INSERT (tnm: Transaction nm, rnm: Relation nm, sf : Simple formula)
st : Status

. . .

DELETE (tnm: Transaction nm, rnm: Relation nm, sf : Simple formula)
st : Status

. . .

REPLACE (tnm: Transaction nm, rnm: Relation nm,
sf1 : Simple formula, sf2 : Simple formula)st : Status

. . .

CREATE (tnm: Transaction nm, rnm: Relation nm)st : Status
. . .

DESTROY (tnm: Transaction nm, rnm: Relation nm)st : Status
. . .

end

6.2 Specification of the operation SELECT

A command for accessing a subset of one of the stored relations for reading it, is
formalized with the non-atomic operation SELECT .

The operation will normally produce a relation and a status as results and it
will normally change the state. Only the current access table may be modified by
this operation, but the current database and the current database schema are also
relevant for the behaviour of SELECT . SELECT (tnm, rnm, sf ) should possibly
terminate for a transaction name tnm that is in use according to the current access
table, a relation name rnm that is in use according to the current database, and
a simple formula sf that is well-formed with respect to the structure of the rnm
relation schema from the current database schema. Finally, if it terminates and
yields GRANTED as status, then it must yield as relation the selection of the rnm
relation from the current database filtered through the predicate denoted by sf . It
yields GRANTED as status iff the appropriate access is granted to tnm according
to the current access table. SELECT is a non-atomic operation. During execution,
one of the following occurs:



1 a. Eventually the read access requested by tnm will not conflict with the
granted and waiting accesses of other transactions according to the cur-
rent access table, the next state is the final state and is reached by an
internal step which changes the current access table by adding the re-
quested access to the granted accesses of tnm. In this case, granted will
be the status.

b. Until then all steps were external, except the initial step which only
changes (if it is not also the final step) the current access table by adding
the requested access to the waiting accesses of tnm.

2. Initially the read access requested by tnm is liable for deadlock according to
the current access table and the initial state is also the final state (i.e. nothing
is changed). In this case, rejected will be the status.

So SELECT waits until the requested access does not conflict with granted and
waiting accesses of other transactions or rejects it immediately. A requested access
is rejected if it would otherwise be waiting for itself indirectly.

In the inter-condition given for SELECT , the first disjunct corresponds to 1 and
the second disjunct corresponds to 2. In the first disjunct, the second argument of
the temporal operator U corresponds to 1a and the first one corresponds to 1b.

SELECT (tnm: Transaction nm, rnm: Relation nm, sf : Simple formula)
r : Relation, st : Status

ext rd curr dbschema: Database schema ,
rd curr database: Database ,
wr curr acctable: Access table

pre in-use(curr acctable, tnm) ∧ in use(curr database, rnm) ∧
is wf (sf , structure(curr dbschema, rnm))

post let acc: Access 4 mk-Access(READ, rnm, sf ) and

r ′′: Relation 4 relation(curr database, rnm) and

tp: Tuple predicate 4 predicate(sf , structure(curr dbschema, rnm)) in

(st = GRANTED ⇒ r = selection(r ′′, tp)) ∧
(st = GRANTED ⇔ granted(tnm, acc, curr acctable))

inter let acc: Access 4 mk-Access(READ, rnm, sf ) in

((¬-©true ⇒
is-I ∧ ©(curr acctable = add to waits(-©curr acctable, tnm, acc))) ∧

(-©true ⇒ is-E)) U
(¬conflicts(tnm, acc, curr acctable, curr dbschema) ∧ is-I ∧
©(curr acctable = add to grants(-©curr acctable, tnm, acc) ∧

st = GRANTED ∧ ¬©true)) ∨
(deadlock liable(tnm, acc, curr acctable, curr dbschema) ∧
st = REJECTED ∧ ¬©true)

One of the design objectives for the temporal sublanguage of VVSL was the
objective to obviate the need to introduce auxiliary state variables acting as history
variables, control variables or scheduling variables. The state variable curr acctable
appears to be an auxiliary one acting as history variable, but cannot be dispensed
with. This is not a weakness of the temporal language. The necessity of such a state
variable has its origin in the fact that the low-level commands which constitute the



AH interface support concurrent execution of several higher-level commands, i.e.
transactions, in a consistency preserving way (see Section 5.1). This brings about
that the history relevant to an individual low-level command execution goes beyond
its starting state.

7 Discussion

In this section, it is argued that there is a need for specifications like the one outlined
in this paper. The usefulness of modular structuring of specifications and specifying
interference is also discussed.

7.1 Formal specifications of hypothetical interfaces for
database systems

First of all, VVSL is a language for writing formal specifications, that is mathe-
matically precise specifications. First some salient aspects of formal specifications
concerning development of software systems are dwelled upon. A mathematically
precise specification of what is required of a software system that is to be developed
provides a reference point against which the correctness of the ultimate software sys-
tem can be established, and not forgetting, guided by which it can be constructed.
This is regarded as the most important aspect of software specification by most
theoreticians and practitioners. For the time being, (professional) practitioners will
mainly establish correctness by precise informal arguments, whereas theoreticians
are usually exploring formal proofs of correctness. It should not be overlooked that
a precise specification also makes it possible to analyze a software system before
its development is undertaken. This opens up a way to increase the confidence
that the specified system conforms to the requirements for it. For the actual prac-
tice of software engineering, all this means that a precise specification is the right
starting-point for the development of a satisfactory software system.

In the author’s opinion, this carries over to theoretical development of solutions
for idealizations of common problems in software systems of a certain kind — such
as locking protocols for concurrency control problems in database systems. Here,
a formal specification of the idealization of such a problem provides a reference
point against which the correctness of the proposed solutions can be established
and the confidence in the pertinence of the idealization to the actual problems can
be increased. The usual absence of such specifications in the area of transaction
management in database systems — as well as in many other areas — is reflected
by the difficulties to relate the different solutions to seemingly the same problem.
A specification like the one outlined in this paper was already needed before the
early work concerning locking protocols for solving database concurrency control
problems and log protocols for solving transaction backup problems (such as the
work presented in [25, 30, 27]) was carried out. Actually, the outlined specification
was largely acquired by seeking the unmentioned assumptions about the problem(s)
to be solved in the presentations of that work (which are often informal too, as
briefly described in Section 4.2).



7.2 Modular structuring of specifications

In [15], Fitzgerald and Jones emphasize one aspect of modular structuring of spec-
ifications: the ability to develop theories about separate modules. This emphasis
originates partly from the issue of formal proofs to establish the correctness of design
steps, but also from the issue of module reusability. In order to clarify the concepts
described in a module, a theory about the module is very useful. This means that
in general the potential reusability of a module is enhanced by the availability of an
accompanying theory. However, there are more aspects of modular structuring of
specifications.

The roles of a mathematically precise specification, which are mentioned in the
previous subsection, give rise to an aspect of modular structuring of specifications
which is the primary one in practice: the potentialities to aid comprehension of
specifications. The comprehensibility of a whole specification partly depends on the
comprehensibility of its separate modules. Enhancing comprehensibility of a module
does not always imply reducing the complexity of a theory about the module (and
vice versa). Should the case arise, reducing complexity in the above sense should
be weighted against the desirability to aid comprehension. It may be important to
take into account whether or not the reusability of the separate modules is actually
considered to be an intended side-effect of the development of the specified system.
Of course, there are still other aspects of modular structuring of specifications which
are in practice more important than the ability to develop theories about separate
modules, e.g. the possibility to control changes in specifications.

It is difficult to assess whether a different modularization could make the spec-
ification outlined in this paper more comprehensible. In any case, it is clear that
the chosen modularization aids a global understanding. In the outlined specifica-
tion, the formalization of the RDM concepts from the specification of an external
RDBMS interface (mentioned in Section 4) is re-used. The modular structure of
that specification isolates the formalization of the RDM concepts. Each of the mod-
ules that constitute the formalization of the RDM concepts describes concepts of
great generality and wide applicability (see also Section 2.2). Moreover, it must be
relatively easy to develop theories about most of the modules concerned (but it has
not been done yet).

7.3 Specifying interference

What matters to the users (persons, programs or whatever) of a software system are
the commands that the system can execute and the observable effects of their execu-
tion. A software system may provide for concurrent execution of multiple commands
in a multi-user environment or it may not. If the system provides for concurrent
execution, then it may arise that some of its commands are intentionally made sen-
sitive to interference by concurrently executed commands. The execution of such a
command terminates in a state and/or yields a result that depends on intermediate
state changes effected by the concurrent execution of other commands. Its execution
may even be suspended to wait for an appropriate state change. It is also possi-
ble that certain intermediate external state changes causes non-termination. Most
commands of the outlined access handler interface are of this kind and so are some
commands of the PCTE interfaces [6, 7].



If a command that is sensitive to interference is specified by means of a pre- and
post-condition only, then it is not described which interference is required for the oc-
currence of many final states and/or yielded results. For example, the specification
of SELECT (given in Section 6) without the inter-condition permits that nothing
happens but the return of the status REJECTED (unless the requested access was
previously granted to the transaction concerned). Rely- and guarantee-condition
pairs, as proposed by Jones in [31] for specifying interference, can be regarded as as
abbreviations of simple inter-conditions. Their main limitation is the inadequacy in
case synchronization with concurrently executed commands is required. Synchro-
nization is required for most commands of the access handler interface (including
SELECT ). Stølen adds in [32] a wait-condition to the rely- and guarantee-condition
pairs to make it possible to deal with synchronization. It appears that this recent ad-
dition permits that the access handler commands are adequately specified, but it is
certain that auxiliary state variables must be employed. Because internal steps and
external steps can only be related via the auxiliary state variables, the specifications
concerned will fail to mirror the intuition behind the commands.

Specifying interference with inter-conditions can be done close to the way it is
naturally discussed. Moreover, anything that can be specified with rely-, guarantee-
and wait-conditions (with or without auxiliary state variables) can also be specified
with inter-conditions. It is argued in [32] that it is less intricate to reason about
shared-state interference with rely-, guarantee- and wait-conditions. The examples
show that the intricacy is still present, but it has been shoved away by relying on
the judicious use of auxiliary state variables.
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