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Abstract

We propose a process algebra obtained by extending a combination of the process al-
gebra with continuous relative timing from Baeten and Middelburg [Process Algebra
with Timing, Springer, 2002, Chapter 4] and the process algebra with propositional
signals from Baeten and Bergstra [Theoretical Computer Science 177 (1977) 381–
405]. The proposed process algebra makes it possible to deal with the behaviour
of hybrid systems, i.e. systems in which the instantaneous state transitions caused
by performing actions are alternated with continuous state evolutions. This process
algebra has, in addition to equational axioms, rules to derive equations with the
help of real analysis.
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1 Introduction

There is a rapid growth of interest in systems that exhibit both discrete and
continuous behaviour. Such systems, called hybrid systems, are found in many
areas, from avionics to consumer electronics. Simple hybrid systems typically
consist of a controlling subsystem made up of digital components and a con-
trolled subsystem made up of analog components. The controlling subsystem
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exhibits discrete behaviour and the controlled subsystem exhibits continuous
behaviour. In general, the controlling subsystem is embedded in the controlled
subsystem without being accessible from the outside. Moreover, the behaviour
of the controlling subsystem generally depends on the behaviour of the con-
trolled subsystem and cannot be considered in isolation. More complicated
hybrid systems arise, for example, if the controlled subsystem is a distributed
system and, for that reason, the controlling subsystem is composed of several
distributed controllers and possibly a coordinating supervisor.

It was proposed almost at the outset of the interest for hybrid systems in
computer science to model them as hybrid automata [1–3]. Hybrid automata
are automata equipped with variables that evolve continuously with time.
They can be viewed as a generalization of timed automata [4,5]. The study of
hybrid systems in computer science is up to now largely focussed on hybrid
automata, in particular on model checking for hybrid automata, i.e. automatic
ways for verifying whether a hybrid automaton satisfies a property expected
from the hybrid system modelled by it (see e.g. Refs. [6–9]). To the best of our
knowledge, little attention is paid to equivalence checking for hybrid automata,
i.e. automatic ways for verifying whether two hybrid automata are equivalent
in some well-defined sense. Satisfaction of properties expressed in an expressive
temporal logic can be automatically verified for a restricted subclass of hybrid
automata, known as linear hybrid automata. Conservative approximations are
needed for other hybrid automata to make automatic verification possible.

We complement the framework of hybrid automata with a process algebra for
hybrid systems. This process algebra, being essentially a calculus of hybrid
systems, allows for description and syntax-based analysis of hybrid systems in
a compositional way. It comprises:

• mathematical expressions for hybrid systems;
• equational axioms for equational reasoning about hybrid systems;
• rules for lifting results from real analysis to equations about hybrid systems;
• a structural operational semantics of the expressions.

The expressions are constructed by means of operators, each of which corre-
sponds to a distinct and natural way in which hybrid systems can be combined
or adapted. The axioms and lifting rules make fully precise how to establish
whether two expressions constructed in different ways represent the same hy-
brid system. The axioms can amongst other things be used to transform an
expression into one that is suggestive of a symbolic counterpart of a hybrid
automaton. The structural operational semantics induces a transition system
for each expression. The transition systems concerned are similar to the ones
used for model checking in the setting of hybrid automata. Consequently, those
model checking techniques can easily be adapted to the process algebraic set-
ting for hybrid systems.
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The process algebra for hybrid systems is also meant to be an algebraic theory
which formalizes an important part of our general understanding of hybrid
systems. Although the axioms and lifting rules of the process algebra are
supported by a model, based on the structural operational semantics, our
general understanding of hybrid systems provided the primary justification of
the axioms and lifting rules of the process algebra. The process algebra for
hybrid systems turns out to be far from a compact theory. The complexity
inherent in hybrid systems is also found in the rather large number of axioms.
Only a few axioms can be removed because of their derivability from the other
axioms. The remaining axioms formalize distinct and basic general properties.
In order to condense the theory, the collection of operators has to be restricted.
However, this would compromise its relevance to hybrid systems.

Like the framework of hybrid automata, the process algebra for hybrid systems
proposed in this paper adopts the view that a hybrid system is a system in
which an instantaneous state transition takes place on the system performing
an action and a continuous state evolution takes place on the system idling
between performing successive actions.

The process algebra for hybrid systems is obtained by extending a combina-
tion of two existing extensions of ACP [10], namely the process algebra with
continuous relative timing from Ref. [11] and the process algebra with proposi-
tional signals from Ref. [12]. A process may idle for some period of time before
it performs its next action (instantaneously), in which case the next action is
performed after a delay. The process algebra with continuous relative timing
covers this aspect of process behaviour. The state of the process may further
change continuously during the delay. This is not covered, because the state
of processes is kept invisible. In the process algebra with propositional signals,
a process can have its state to some extent visible. The basic idea is that the
visible part of the state of a process, called the signal emitted by the process,
is a proposition. Only discrete state changes, caused by performing actions,
are covered.

We introduce a new operator which makes it possible to deal with continuous
state changes during delays as well. With the new operator, we can have signals
at all points of time during a delay instead of only at its begin and end. For this
operator, we have to add some structure to the atomic propositions from which
the propositional signals concerned are generated: algebraic and differential
equations and inequalities concerning named state components are taken as
atomic propositions. We also introduce a new operator which makes it possible
to deal better with instantaneous state changes where the state immediately
after the change depends upon the state immediately before the change. The
resulting process algebra has, in addition to equational axioms, some rules
to derive further equations with the help of real analysis. These lifting rules
constitute a smooth interface to disciplines such as control engineering where
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real analysis is the standard tool. They permit to cast the effects of continuous
state changes into equations about processes.

As mentioned before, up to now the study of hybrid systems is largely fo-
cussed on hybrid automata. The process algebra proposed in this paper can
be regarded as originating from the formalism of hybrid automata in the sense
that it has been strongly influenced by the formalism of hybrid automata. This
is among other things apparent from the fact that hybrid automata can be
faithfully represented using the proposed process algebra in a uniform and
direct way. The representation of hybrid automata will be briefly outlined in
Section 6. The operational semantics of the proposed process algebra has fur-
ther been influenced by the concept of abstract phase transition systems from
Ref. [13].

Other related work includes the following. A variant of timed CSP [14] in
which one can deal with continuous behaviour in a limited way is introduced in
Ref. [15]. A variant of the π-calculus [16] in which one can deal with continuous
behaviour in another limited way is introduced in Ref. [17]. Those variants
of timed CSP and the π-calculus are called hybrid CSP and the φ-calculus,
respectively. Very shortly after the report version of this paper [18] appeared,
another report about an extension of ACP for hybrid systems [19] appeared.
That version, called HyPA, does not extend a version of ACP with timing.
Thereby, in comparison with the process algebra proposed in this paper, it
has some limitations with regard to the description and analysis of hybrid
systems. Hybrid CSP, the φ-calculus and HyPA will be further discussed in
Section 6. Here, we only mention that to the best of our knowledge the first
process algebra for hybrid systems is hybrid CSP. There is also work on the
description and analysis of hybrid systems in which operations corresponding
to ways in which hybrid systems can be combined or adapted are introduced,
but which has not yet resulted in an algebraic framework. Notable examples
are the work on Charon [20], Masaccio [21], and the HIOA framework [22].

In Ref. [11], a coherent collection of four process algebras with timing, each
dealing with timing in a different way, is presented. The time scale on which
the time is measured is either discrete or continuous, and the timing of actions
is either relative or absolute. There is no other reason to choose for relative
timing in this paper but the fact that it is generally considered to be simpler
than absolute timing. Various constants and operators of the process algebra
with continuous relative timing have counterparts in the other versions from
the above-mentioned collection. A notational distinction is made between a
constant or operator of one version and its counterparts in another version,
by means of different decorations of a common symbol, if they should not be
identified in case versions are integrated. So long as one uses a single version,
one can safely omit those decorations. However, we refrain from omitting them
in this paper because we think that change of notation in a series of technical
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publications is undesirable.

We distinguish between a basic process algebra for hybrid systems, which
does not cover parallelism and communication, an algebra of communicating
processes for hybrid systems, which covers parallelism and communication,
and several extensions which are useful or needed in many applications. Two
extensions are presented as extensions of the basic process algebra and another
one as extension of the algebra of communicating processes. This is only for
pedagogical reasons. Integration, which provides for alternative composition
over a continuum of differently timed alternatives, and guarded recursion,
which allows for the description of (potentially) non-terminating processes,
are needed in many applications of the proposed process algebra for hybrid
systems. Both integration and guarded recursion are treated as extensions.
Localization, which makes it possible to keep discontinuities of named state
components local, is useful in various applications. Localization is treated as
extension as well.

The structure of this paper is as follows. First of all, we introduce the basic
process algebra for hybrid systems (Section 2). Next, we consider the addition
of integration and recursion (Section 3). After that, we consider the addi-
tion of parallel composition and encapsulation (Section 4). Then, we consider
the addition of localization (Section 5). Finally, some concluding remarks are
made (Section 6). The application of the process algebra for hybrid systems
is regularly illustrated by means of examples.

In the remainder of this paper, we will mostly refer to process algebras by
name. The process algebra with continuous relative timing from Ref. [11]
and the process algebra with propositional signals from Ref. [12] are known
as ACPsrt and ACPps, respectively. The new process algebra proposed in
this paper is called ACPsrt

hs . All of these process algebras are extensions of
ACP [23,10]. We will also refer to BPA and BPAδ, which are names of subthe-
ories of ACP that do not cover parallelism and communication. The difference
between them is that BPA does not cover deadlock and BPAδ does.

The new process algebra proposed in this paper extends ACPsrt. This process
algebra was first introduced in Ref. [24]. The motivation of choices made in
the design of ACPsrt, as well as a brief comparison with other process algebras
with timing, can be found in Ref. [24]. In this paper, we mostly refer to Ref. [11]
because, in many respects, it contains a more extensive treatment of ACPsrt.
Additional insight in the choices made in the design of ACPsrt can be gained
from Refs. [25,26].

Some familiarity with real analysis is required. The desirable background can,
for example, be found in Ref. [27].
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2 Basic Process Algebra

In this section, we introduce BPAsrt
hs , which is, roughly speaking, the subthe-

ory of ACPsrt
hs that does not cover parallelism and communication. Beforehand,

we give already an idea of its application by means of an example concerning
a water-level monitor. First of all, we introduce BPAsrt

⊥ , an extension of (a
restricted version of) BPAsrt from Ref. [11] with non-existence like in BPA⊥
from Ref. [12]. Next, we introduce BPAsrt

ps , an extension of BPAsrt
⊥ with proposi-

tional signals and conditions like in BPAps from Ref. [12]. Finally, we introduce
BPAsrt

hs , an extension of BPAsrt
ps with a signal evolution operator and a signal

transition operator.

2.1 Example: Water-level Monitor

This section is a sample of the application of BPAsrt
hs . It is meant to give a first

impression of how one describes the behaviour of hybrid systems in BPAsrt
hs .

We describe the behaviour of a water-level monitor. This example is adapted
from Ref. [2]. We take the following informal description of the behaviour of
the water-level monitor as the starting point of our formal description.

The water-level monitor continuously senses the water level l in a tank and
turns a pump on and off, in order to keep it between 0.075 m and 0.300 m.
Initially, the water level is 0.075 m and the pump is on. While the pump is
on, the water level rises by 0.025 m/s. When the water level becomes 0.250 m,
the monitor turns the pump off. While the pump is off, the water level falls
by 0.050 m/s. When the water level becomes 0.175 m, the monitor turns the
pump on. Naturally, the water level does not change instantaneously when
the monitor turns the pump on or off. The change of the status of the pump
becomes effective only 2 s later. That is, the pump starts working 2 s after it
has been turned on and the pump stops working 2 s after it has been turned
off.

The water-level monitor can be formally described using BPAsrt
hs by the fol-
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lowing equations:

W = (l = 0.075) ∧� W on ,

W on = (l ≤ 0.250 ∧ l̇ = 0.025) ∩�

σ∗
rel

(
(l = 0.250) :→

(
(l• = •l) �� ˜̃turn-off · W on′))

,

W on′
= (l ≤ 0.300 ∧ l̇ = 0.025) ∩�σ2

rel

(
(l• = •l) �� ˜̃stop · W off

)
,

W off = (l ≥ 0.175 ∧ l̇ = −0.050) ∩�

σ∗
rel

(
(l = 0.175) :→

(
(l• = •l) �� ˜̃turn-on · W off′))

,

W off′
= (l ≥ 0.075 ∧ l̇ = −0.050) ∩�σ2

rel

(
(l• = •l) �� ˜̃start · W on

)
.

At this stage, we cannot further explain this description. However, note that
it appears to be a fairly direct representation of the informal description given
above (l̇ stands for the derivative of l). In addition to constants and operators
of BPAsrt [11] and BPAps [12], the signal transition operator �� and the signal
evolution operator ∩� are used. These new operators are needed to make precise
that the water level does not change instantaneously at the points of time at
which the monitor turns the pump on or off or the pump starts or stops working
and that the water level changes continuously as described above during the
periods in between.

2.2 BPAsrt with Non-existence

The atomic processes are undelayable actions. Let a be an action. Then un-
delayable action a, written ˜̃a, is the process that immediately performs action
a at the current point of time and then terminates successfully. Actions are
idealized in the sense that they are treated as if they are performed instanta-
neously.

The basic way of timing processes is relative delay. Let P be a process and
r ∈ R≥. Then the relative delay of P for a period of time r, written σr

rel(P ), is
the process that idles for a period of time r and then behaves like P . In other
words, it is P after a delay of r time units.

The basic ways of combining processes are alternative composition and sequen-
tial composition. Let P1 and P2 be processes. Then the alternative composition
of P1 and P2, written P1 +P2, is the process that behaves either like P1 or like
P2, but not both. In other words, there is an arbitrary choice between P1 and
P2. The choice is resolved on one of them performing its first action, and not
otherwise. Consequently, the choice between two idling processes will always
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be postponed until at least one of the processes can perform its first action.
Only when both processes cannot idle any longer, further postponement is not
an option. If the choice has not yet been resolved when one of the processes
cannot idle any longer, the choice will simply not be resolved in its favour. The
sequential composition of P1 and P2, written P1 · P2, is the process that first
behaves like P1, but when P1 terminates successfully it continues by behaving
like P2. That is, P1 is followed by P2. If P1 never terminates successfully, the
sequential composition of P1 and P2 will behave like P1.

In order to deal with unsuccessful termination, we need an additional process
that is neither capable of performing any action nor capable of idling beyond
the current point of time. This process, written ˜̃δ, is called undelayable dead-
lock.

We further introduce a process that is considered to be in an inconsistent state
from its start. We need this process further on when we introduce propositional
signals (it corresponds to a process that emits a signal that cannot hold). It is
common to consider a process with such an inconsistency to be non-existent.
Therefore, this process, written ⊥, is (rather contradictory) called the non-
existent process. Like undelayable deadlock, ⊥ is neither capable of performing
any action nor capable of idling beyond the current point of time. Moreover, a
choice involving the non-existent process and the non-existent process followed
by another process are non-existent as well.

For convenience later on, we also add an auxiliary operator: νrel. The operator
νrel is interpreted as relative undelayable time-out. Let P be a process. The
relative undelayable time-out of P , written νrel(P ), behaves like the part of
P that starts to perform actions at the current point of time if P is capa-
ble of performing actions at the current point of time. Otherwise, it behaves
like undelayable deadlock. That is, the relative undelayable time-out keeps P
entirely from idling.

The process algebra introduced here features urgent actions. This means that
it is possible for two or more actions to be performed consecutively at the
same point of time. In Ref. [25], it is shown, using the finite elements of the
nonstandard extension of R≥ as time domain, that actions that are performed
consecutively at the same point of time in R≥, say p, can be considered to be
performed at different points in time that are infinitely close to p. Other pro-
cess algebras featuring urgent actions include the ACP-style process algebras
with timing presented in Ref. [11], ATP [28], the different versions of CCS
with timing [29–31], Timed CSP [14], TIC [32], and TPL [33].

We shall henceforth use x, y, x′, y′, . . . as variables ranging over processes. Fur-
thermore, we shall henceforth use p, q, r, . . . to stand for arbitrary closed terms
denoting non-negative real numbers, and a, b, c, . . . to stand for arbitrary ac-
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Table 1
Axioms of BPAsrt

⊥ (a ∈ Aδ, p, q ≥ 0, r > 0)

x+ y = y + x A1

(x+ y) + z = x+ (y + z) A2

x+ x = x A3

(x+ y) · z = (x · z) + (y · z) A4

(x · y) · z = x · (y · z) A5

x+ ˜̃δ = x A6SR
˜̃δ · x = ˜̃δ A7SR

x+ ⊥ = ⊥ NE1

⊥ · x = ⊥ NE2
˜̃a · ⊥ = ˜̃δ NE3SR

σ0
rel(x) = x SRT1

σp
rel(σ

q
rel(x)) = σp+q

rel (x) SRT2

σp
rel(x) + σp

rel(y) = σp
rel(x+ y) SRT3

σp
rel(x) · y = σp

rel(x · y) SRT4

νrel(˜̃a) = ˜̃a SRU1

νrel(σr
rel(x)) = ˜̃δ SRU2

νrel(x+ y) = νrel(x) + νrel(y) SRU3

νrel(x · y) = νrel(x) · y SRU4

νrel(⊥) = ⊥ NESRU

tions.

It is assumed that a fixed but arbitrary set A of actions has been given. We
write Aδ for A ∪ {δ}. An important convention is that we use a, b, c, . . . to
stand for elements of Aδ in the context of equations and for elements of A
in the context of transition rules (used for describing structural operational
semantics), unless explicitly indicated otherwise.

The axioms of BPAsrt
⊥ are the equations given in Table 1. Many axioms in this

table and coming ones are actually axiom schemas. In this table, for example,
a stands for an arbitrary action, and p and q stand for arbitrary closed terms
denoting non-negative real numbers. Axioms A1–A5 are the axioms of BPA.
Axioms A6SR and A7SR are simple reformulations of axioms A6 and A7 of
BPAδ. The constant δ has been replaced by the constant ˜̃δ. For a detailed
introduction to BPA and BPAδ, see Ref. [10]. Axioms SRT1 and SRT2 point
out that a delay of 0 time units has no effect and that consecutive delays count
up. Axiom SRT3, called the time-factorization axiom, shows that a delay by
itself cannot determine a choice. Axiom SRT4 reflects that timing is relative.
Axioms SRU1–SRU4 make clear that relative undelayable time-out prevents
a process from idling at the start. Axioms NE1 and NE2 express that a choice
involving the non-existent process and the non-existent process followed by
another process are non-existent as well. Axiom NE3SR expresses that going
on as ⊥ after performing an action is impossible. Axiom NESRU expresses
that keeping ⊥ from idling has no effect.

Note that the following interesting equations are derivable (p ≥ 0, r > 0):

σp+r
rel (x) + σr

rel(
˜̃δ) = σp+r

rel (x) ,

σp+r
rel (x) + σr

rel(⊥) = σr
rel(⊥) .
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The axioms of BPAsrt
⊥ are essentially the axioms of BPAsrt and BPA⊥ with

on top of that axiom NESRU concerning the effect of relative undelayable
time-out on the non-existent process. Axiom NESRU is the only additional
axiom. In particular, we do not have any additional axiom concerning the effect
of relative delay on the non-existent process. The process σr

rel(⊥) (r > 0) is
considered to be capable of idling, but only till arbitrarily close to the point of
time that is reached after a period of time r. Thus, just like after performing an
action, it is impossible to go on as ⊥ after idling for a period of time. However,
there are no additional identifications of processes possible as a result of the
interaction between relative delay and the non-existent process.

Throughout this paper, the need to use parentheses is reduced by using the
associativity of the operators + and ·, and by ranking the precedence of the
binary operators. We adhere to the following precedence rules: (i) the oper-
ator + has lower precedence than all others, (ii) the operator · has higher
precedence than all others, and (iii) all other operators have the same prece-
dence. Moreover, we shall use the notation

∑
i∈I ti, where I = {i1, . . . , in} and

ti1 , . . . , tin are terms denoting processes, for ti1 + . . . + tin . The convention is

that
∑

i∈I ti stands for ˜̃δ if I = ∅.

2.3 BPAsrt with Propositional Signals

Propositions are used both as signals that are emitted by processes and as
conditions that are imposed on processes to proceed. Condition testing is
looked upon as signal inspection. The intuition is that the signal emitted by
a process, as well as each of its logical consequences, holds at the start of the
process. The signal emitted by a process is also called the signal of the process.

The basic ways of dealing with propositions are signal emission and conditional
proceeding. Let P be a process and ψ be a proposition. Then P emitting signal
ψ, written ψ ∧�P , is the process that behaves like P and moreover emits signal
ψ; and P proceeding conditionally on ψ, written ψ :→ P , is the process that
behaves like P if proposition ψ holds at its start, and otherwise behaves like
undelayable deadlock.

It is assumed that a fixed but arbitrary set Pat of atomic propositions has been
given. Propositions over Pat are constructed in the usual way with constants
T, F and the various logical connectives (¬, ∨, ∧, →, ↔).

We shall henceforth use ψ, ψ′, . . . to stand for arbitrary (state) propositions
over Pat.

In derivations we may always use logical equivalences of propositional logic.
So we are actually using equivalence classes of propositions, with respect to
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Table 2
Additional axioms for BPAsrt

ps

T :→ x = x GC1

F :→ x = ˜̃δ GC2SR

ψ :→ ˜̃δ = ˜̃δ GC3SR

ψ :→ (x+ y) = ψ :→ x+ ψ :→ y GC4

ψ :→ x · y = (ψ :→ x) · y GC5

ψ :→ (ψ′ :→ x) = (ψ ∧ ψ′) :→ x GC6

(ψ ∨ ψ′) :→ x = ψ :→ x+ ψ′ :→ x GC7

T ∧� x = x SE1

F ∧� x = ⊥ SE2

ψ ∧� x+ y = ψ ∧� (x+ y) SE3

(ψ ∧� x) · y = ψ ∧� x · y SE4

ψ ∧� (ψ′ ∧� x) = (ψ ∧ ψ′) ∧� x SE5

ψ ∧� (ψ :→ x) = ψ ∧� x SE6

ψ :→ (ψ′ ∧� x) = (ψ→ ψ′) ∧� (ψ :→ x) SE7

νrel(ψ :→ x) = ψ :→ νrel(x) PSSRU1

νrel(ψ ∧� x) = ψ ∧� νrel(x) PSSRU2

logical equivalence, instead of the propositions themselves.

The axioms of BPAsrt
ps are the equations given in Tables 1 and 2. Axioms

GC1–GC7 and SE1–SE7 are simple reformulations of corresponding axioms of
BPAps (see Ref. [12]). The constant δ has again been replaced by the constant
˜̃δ. Axiom SE2 expresses that a process emitting the signal F is non-existent.
Axioms SE6 and SE7 represent the interaction between signal emission and
conditional proceeding. Axiom SE6 reflects that condition testing is looked
upon as signal inspection. Axiom SE7 points out that if a proposition holds
at the start of a process and that process is proceeding conditional on an-
other proposition then at the start of the whole the former proposition holds
or the latter proposition does not hold. Axioms PSSRU1 and PSSRU2 are
new axioms concerning the interaction of relative undelayable time-out with
conditional proceeding and signal emission.

Note that axioms NE1, NE2 and NESRU are derivable from axioms A1, SE2,
SE3, SE4 and PSSRU2. Note further that the following generalizations of
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axioms SE3 and SE6 are derivable:

ψ ∧� x+ ψ′ ∧� y = (ψ ∧ ψ′) ∧� (x+ y) ,

(ψ ∧ ψ′) ∧� (ψ :→ x) = (ψ ∧ ψ′) ∧� x ,

ψ ∧� ((ψ ∧ ψ′) :→ x) = ψ ∧� (ψ′ :→ x) .

Note also that the following interesting specialization of axiom SE3 is deriv-
able:

ψ ∧� ˜̃δ + x = ψ ∧� x .

Useful derivable equations concerning the non-existing process are:

ψ ∧� ⊥ = ⊥ ,

ψ :→ ⊥ = ¬ψ ∧� ˜̃δ .

The axioms of BPAsrt
ps are essentially the axioms of BPAsrt and BPAps with

on top of that axiom NESRU concerning the effect of relative undelayable
time-out on the non-existent process and axioms PSSRU1 and PSSRU2 con-
cerning the interaction of relative undelayable time-out with conditional pro-
ceeding and signal emission. Axioms NESRU, PSSRU1 and PSSRU2 are the
only additional axioms. In particular, we do not have any additional axiom
concerning the interaction of relative delay with conditional proceeding and
signal emission. Conditional proceeding is non-waiting. Therefore, we do not
have ψ :→ σr

rel(x) = σr
rel(ψ :→ x). Signal emission is non-persistent, both over

performing an action and idling for a period of time. Therefore, we do not
have ψ ∧� σr

rel(x) = σr
rel(ψ ∧� x).

In Ref. [34], a counterpart of BPAsrt
ps with discrete relative timing is presented,

which includes a non-waiting version of the conditional proceeding operator as
well as a waiting version. In that paper, the symbol :→ is used for the waiting
version. The reason for this was that in a natural embedding of BPAps, the
conditional proceeding operator of BPAps, for which the symbol :→ is used
as well, corresponds to the waiting version. In the current paper, in which
no waiting version is introduced, the symbol :→ is used for the non-waiting
version. This is done because the axioms concerning the non-waiting version
are essentially the same as the axioms concerning the conditional proceeding
operator of BPAps.

12



2.4 BPAsrt for Hybrid Systems

In Sections 2.2 and 2.3, existing (basic) process algebras were simply joined.
No new constants or operators were added. With BPAsrt for hybrid systems,
it becomes more interesting because new operators, which make it possible to
deal with the behaviour of hybrid systems, are introduced.

In the case of BPAsrt
hs , we add some structure to the atomic propositions of

BPAsrt
ps . That is, algebraic and differential equations and inequalities concern-

ing named state components, called state variables, are taken as atomic propo-
sitions. From now on, we will call them atomic state propositions. In confor-
mity with that, the propositions that can be constructed from atomic state
propositions will be called state propositions. They will be defined precisely
later on. State variables are real-valued functions of time. Their values may
change both instantaneously at the points of time at which an action is per-
formed and continuously during the periods in between.

In order to deal with continuous state evolutions, the signal evolution operator
is introduced. Let P be a process, V be a set of state variables, and φ be a
state proposition. Then P in evolution according to φ with V smooth, written
φ ∩�

V P , is the process P of which the emitted signal changes continuously
till it performs its first action in such a way that φ is satisfied and without
discontinuities for the state variables in V . If the first action is performed
immediately, signal evolution does not take its signal changing effect. What
remains in such cases is that P emits signal φ at the start.

In order to deal with instantaneous state transitions, the signal transition oper-
ator is introduced. This operator requires transition propositions, i.e. propo-
sitions concerning the values of the state variables immediately before and
after a transition, instead of state propositions. Transition propositions, just
as state propositions, will be defined precisely later on. Let P be a process and
χ be a transition proposition. Then P in transition according to χ, written
χ �� P , is the process P of which the emitted signal changes instantaneously
over performing its first action in such a way that χ is satisfied, if it performs
its first action immediately. Otherwise, signal transition does not take its sig-
nal changing effect. In either case, the process χ ��P behaves like undelayable
deadlock if there is no transition satisfying χ possible at the start of P .

The signal transition operator supersedes the terminal signal emission operator
from Ref. [12]. The terminal signal emission operator is in general inadequate
if the state immediately after a transition depends upon the state immediately
before the transition.

It is assumed that a fixed but arbitrary set V of state variables has been
given. For each state variable v ∈ V, we introduce an additional state variable
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v̇, standing for the derivative of v. We write V̇ for {v̇ | v ∈ V}. It is further
assumed that a set of constants, arithmetic operators and relational operators
of real arithmetic, including the basic ones (0, 1, +, −, ·, −1, <), has been given.
The set of state expressions is inductively defined by the following formation
rules:

• each state variable v ∈ V ∪ V̇ is a state expression;
• each constant c is a state expression;
• if o is an arithmetic operator of arity n and s1, . . . , sn are state expressions,

then o(s1, . . . , sn) is a state expression.

The set of atomic state propositions is inductively defined by the following
formation rules:

• if s1 and s2 are state expressions, then s1 = s2 is an atomic state proposition;
• if π is a relational operator of arity n, and s1, . . . , sn are state expressions,

then π(s1, . . . , sn) is an atomic state proposition.

In the case of BPAsrt
hs , we take the set of atomic state propositions as the set

Pat. State propositions are not propositions over Pat in the customary meaning.
There are two additional ways to construct state propositions, which will be
described after the introduction of transition propositions.

For each state variable v ∈ V ∪ V̇, we further introduce two additional state
variables •v and v•, standing for the state variable v immediately before and
immediately after a transition. We write •V for {•v | v ∈ V ∪ V̇} and V• for
{v• | v ∈ V ∪ V̇}. The set of transition expressions is inductively defined by
the following formation rules:

• each state variable v ∈ •V ∪ V• is a transition expression;
• each constant c is a transition expression;
• if o is an arithmetic operator of arity n and t1, . . . , tn are transition expres-

sions, then o(t1, . . . , tn) is a transition expression.

The set of atomic transition propositions is inductively defined by the following
formation rules:

• if t1 and t2 are transition expressions, then t1 = t2 is an atomic transition
proposition;

• if π is a relational operator of arity n, and t1, . . . , tn are transition expres-
sions, then π(t1, . . . , tn) is an atomic transition proposition.

Transition propositions are constructed from atomic transition propositions in
the usual way with constants T, F and the various logical connectives, and in
addition according to the following formation rule:

14



• if ψ is a state proposition, then •ψ and ψ• are transition propositions.

The proposition •ψ is satisfied exactly by the transitions from a state in which
ψ holds, and the proposition ψ• is satisfied exactly by the transitions to a state
in which ψ holds.

We are now able to come back to the construction of state propositions. State
propositions are constructed from atomic state propositions in the usual way
with constants T, F and the various logical connectives, and in addition ac-
cording to the following formation rule:

• if χ is a transition proposition, then ◦χ and χ◦ are state propositions.

The proposition ◦χ holds exactly in the states from which a transition satisfy-
ing χ is possible, and the proposition χ◦ holds exactly in the states to which
a transition satisfying χ is possible.

We write Pst for the set of all state propositions, and we write Ptr for the set
of all transition propositions.

We adhere to the customary notational conventions for real arithmetic. For
example, we shall generally use infix notation for binary operators, and prefix
notation for unary operators.

Let ψ be a state proposition. Then we write ψ[•V/V] and ψ[V•/V] for ψ with,
for each v ∈ V ∪ V̇, each occurrence of v in ψ replaced by •v and v•, respec-
tively. As to be expected, satisfaction of transition propositions is defined in
Section 2.6 such that the transition proposition •ψ is satisfied by the same
transitions as ψ[•V/V], and the transition proposition ψ• is satisfied by the
same transitions as ψ[V•/V]. Moreover, satisfaction of state propositions is
defined such that the state propositions ◦(ψ•) and (•ψ)◦ hold in a state if
there exists a state in which ψ holds. In other words, those state propositions
express satisfiability of ψ.

Let φ and χ be a state proposition and a transition proposition, respectively.
Then we write V(φ) for the set of all v ∈ V with v or v̇ occurring in φ, and
V(χ) for the set of all v ∈ V with •v, •v̇, v• or v̇• occurring in χ.

We shall use the notation φ ∩�t for φ ∩�
V(φ) t. We shall also use the notation CV ,

where V ⊆ V, for
∧

v∈V (v• = •v ∧ v̇• = •v̇).

We shall henceforth use ψ, ψ′, . . . as well as φ, φ′, . . . to stand for arbitrary
state propositions, and χ, χ′, . . . to stand for arbitrary transition propositions.
In general, we use ψ, ψ′, . . . only in the cases where the state propositions occur
solely as an operand of the signal emission operator and/or the conditional
proceeding operator. Furthermore, we shall henceforth use v, v′, . . . to stand for
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arbitrary elements of V, unless explicitly mentioned otherwise, and V, V ′, . . .
to stand for arbitrary subsets of V.

In derivations, we may always use equivalences of state propositions and equiv-
alences of transition propositions that are results of real arithmetic. So, like
in the case of BPAsrt

ps , we are actually using equivalence classes of propositions
instead of the propositions themselves.

The axioms of BPAsrt
hs are the equations given in Tables 1, 2, and 3. In Table 3,

we use a to stand for elements of A. Axioms HSE1–HSE12 and HST1–HST12
show that signal evolution and signal transition take effect over what takes
place first, which is either performing an action or idling for a period of time,
and that signal evolution keeps taking effect in the case of idling till the first
action is performed. However, equations expressing how signal evolution ac-
tually changes the signal of a process during idling cannot be derived using
the axioms of BPAsrt

hs . The reason for this is that the equations concerned
can only be derived with the help of real analysis. We will introduce some
rules for this kind of derivations in Section 2.5. Axioms HSE3–HSE6 show
that signal evolution only takes its signal changing effect in the case where
idling takes place first. Together with axiom HSE9, they also indicate that the
state proposition concerned always hold at the start of the process concerned,
even in the case where nothing can take place. Axioms HST3–HST6 show
that signal transition only takes its signal changing effect in the case where
performing an action takes place first. Together with axiom HST9, they also
indicate that the process concerned will always behave like undelayable dead-
lock if there is no transition satisfying the transition proposition concerned
possible at its start, even in the case where idling takes place first. Axioms
HSE1 and HST1 are reminiscent of axioms SE1 and GC1, respectively; and
axioms HSE2 and HST2 are reminiscent of axioms SE2 and GC2, respectively
(all closed substitution instances of HSE2 and HST2 are derivable from the
other axioms). Axiom HSE13 expresses that in the case of a choice between
two idling processes the signals of the idling processes change jointly until one
of them performs its first action. It would have been very inconvenient to ex-
press this without the relative undelayable time-out operator. Axioms HST13
and HST14 show that there are cases in which signal emission and conditional
proceeding can be eliminated in favour of signal transition. Axioms HSSRU1
and HSSRU2 show that signal evolution and signal transition take effect over
what takes place first, also in the presence of relative undelayable time-out.

Note that axioms HSE4 and HST6 are derivable specializations of axioms
HSE12 and HST12; and that axiom HSE5 is derivable from axioms HSE4 and
HSE8. Note further that the following specializations of axioms HSE6 and
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Table 3
Additional axioms for BPAsrt

hs (a ∈ A, r > 0)

T ∩�∅ x = x HSE1

F ∩�
V x = ⊥ HSE2

φ ∩�
V

˜̃δ = φ ∧� ˜̃δ HSE3

φ ∩�V ˜̃a = φ ∧� ˜̃a HSE4

φ ∩�V ˜̃a · x = φ ∧� ˜̃a · x HSE5

φ ∩�
V σr

rel(x) = φ ∩�
V (φ ∧� σr

rel(φ ∩�
V x)) HSE6

φ ∩�
V (x+ y) = φ ∩�

V x+ φ ∩�
V y HSE7

φ ∩�
V x · y = (φ ∩�

V x) · y HSE8

φ ∩�V (ψ :→ x) = φ ∧� (ψ :→ (φ ∩�V x)) HSE9

φ ∩�V (ψ ∧� x) = ψ ∧� (φ ∩�V x) HSE10

φ ∩�
V (φ′ ∩�

V ′ x) = (φ ∧ φ′) ∩�
V ∪V ′ x HSE11

φ ∩�
V (χ �� ˜̃a) = φ ∧� (χ �� ˜̃a) HSE12

φ ∩�V σr
rel(x) + φ′ ∩�

V ′ σr
rel(νrel(y)) =

φ ∩�V (σr
rel(x) + φ′ ∩�

V ′ σr
rel(νrel(y))) HSE13

T �� x = x HST1

F �� x = ˜̃δ HST2

χ �� ˜̃δ = ˜̃δ HST3

χ �� ˜̃a = χ �� (◦χ :→ ˜̃a) HST4

χ �� ˜̃a · x = χ �� (◦χ :→ ˜̃a · (χ◦ ∧� x)) HST5

χ �� σr
rel(x) = ◦χ :→ σr

rel(x) HST6

χ �� (x+ y) = χ �� x+ χ �� y HST7

χ �� x · y = (χ �� x) · y HST8

χ �� (ψ :→ x) = ψ :→ (χ �� x) HST9

χ �� (ψ ∧� x) = (◦χ→ ψ) ∧� (χ �� x) HST10

χ �� (χ′ �� ˜̃a) = (χ ∧ χ′) �� ˜̃a HST11

χ �� (φ ∩�V σr
rel(x)) = ◦χ :→ (φ ∩�V σr

rel(x)) HST12

ψ :→ ˜̃a = •ψ �� ˜̃a HST13
˜̃a · (ψ ∧� x) = ψ• �� ˜̃a · x HST14

νrel(φ ∩�V x) = φ ∩�V νrel(x) HSSRU1

νrel(χ �� x) = χ �� νrel(x) HSSRU2

HST5 are derivable (a ∈ A, r > 0):

φ ∩�
V σ

r
rel(x) = φ ∩�

V (φ ∧� σr
rel(x)) ,

φ ∩�
V σ

r
rel(x) = φ ∩�

V σ
r
rel(φ ∩�

V x) ,

χ �� ˜̃a · x = χ �� (◦χ :→ ˜̃a · x) ,
χ �� ˜̃a · x = χ �� ˜̃a · (χ◦ ∧� x) .
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Note also that the following specializations of axiom HSE13 are derivable
(r > 0):

φ ∩�
V σ

r
rel(

˜̃δ) + σr
rel(νrel(x)) = φ ∩�

V σ
r
rel(νrel(x)) ,

φ ∩�
V σ

r
rel(νrel(x)) + φ′ ∩�

V ′ σr
rel(νrel(y))

= (φ ∧ φ′) ∩�
V ∪V ′ (σr

rel(νrel(x)) + σr
rel(νrel(y))) .

The following interesting equations are derivable for all closed terms t (r > 0):

φ ∩�
V σ

r
rel(t) = φ ∩�

V (φ ∧� σr
rel(φ ∧� t)) ,

φ ∩�
V t = φ ∧� (φ ∩�

V t) ,

χ �� t = ◦χ :→ (χ �� t) .

The following derivable equation shows how signal transition changes the sig-
nal of a process over performing an action:

ψ ∧� (χ �� ˜̃a · x) = ψ ∧� (χ �� ˜̃a · ((•ψ ∧ χ)◦ ∧� x)) .

Axiom HST5 is indispensable in deriving this equation. We can use it, for
example, to derive

(v = 0) ∧� ((•v + v• = 1) �� ˜̃a · ˜̃b)
= (v = 0) ∧� ((•v + v• = 1) �� ˜̃a · ((v = 1) ∧� ˜̃b)) .

Using equivalences that are results of real arithmetic, we can, for example,
derive the following equation:

(v = 0) ∧� ((v̇ = 0) ∩�σ2
rel((v̇ = 1) ∩�σ3

rel(˜̃a)))

= (v = 0) ∧� ((v̇ = 0) ∩�σ2
rel(⊥)) .

All processes that can be described by means of the constants and operators
of BPAsrt

hs , can be described by a basic term. The set B of basic terms is
inductively defined by the following rules:

• ⊥ ∈ B;
• if ψ ∈ Pst

+, then ψ ∧� ˜̃δ ∈ B;
• if ψ ∈ Pst

+, χ ∈ Ptr
+ and a ∈ A, then ψ :→ (χ �� ˜̃a) ∈ B;

• if ψ ∈ Pst
+, χ ∈ Ptr

+, a ∈ A and t ∈ B, then ψ :→ (χ �� ˜̃a · t) ∈ B;
• if ψ, φ ∈ Pst

+, V ⊆ V, r ∈ R> and t ∈ B, then ψ :→ (φ ∩�
V σ

r
rel(t)) ∈ B;

• if t, t′ ∈ B, then t+ t′ ∈ B.
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Here we write Pst
+ and Ptr

+ for the restrictions of Pst and Ptr, respectively,
to satisfiable propositions. We can prove that all closed terms of BPAsrt

hs can
be reduced to a basic term.

Theorem 1 (Elimination) For all closed terms t of BPAsrt
hs there exists a

basic term t′ such that t = t′ is derivable from the axioms of BPAsrt
hs .

PROOF. See Appendix A.1. �

If we replace in the third and fourth rule of the definition of B given above
ψ :→ (χ �� ˜̃a) ∈ B by χ �� ˜̃a ∈ B and ψ :→ (χ �� ˜̃a · t) ∈ B by χ �� ˜̃a · t ∈ B, we still
have this result. Even if we add in the fourth rule the condition on χ that χ◦

implies the signal of t, we still have this result.

We can distinguish two interesting kinds of basic terms. The set Bν of unde-
layable basic terms is inductively defined by the following rules:

• ⊥ ∈ Bν ;
• if ψ ∈ Pst

+, then ψ ∧� ˜̃δ ∈ Bν ;
• if ψ ∈ Pst

+, χ ∈ Ptr
+ and a ∈ A, then ψ :→ (χ �� ˜̃a) ∈ Bν ;

• if ψ ∈ Pst
+, χ ∈ Ptr

+, a ∈ A and t ∈ B, then ψ :→ (χ �� ˜̃a · t) ∈ Bν ;
• if t, t′ ∈ Bν , then t+ t′ ∈ Bν .

The set Bσ of delayable basic terms is inductively defined by the following
rules:

• if ψ, φ ∈ Pst
+, V ⊆ V, r ∈ R> and t ∈ B, then ψ :→ (φ ∩�

V σ
r
rel(t)) ∈ Bσ;

• if t, t′ ∈ Bσ, then t+ t′ ∈ Bσ.

We can prove the following lemmas.

Lemma 2 (Urgency) For all t ∈ Bν, νrel(t) = t is derivable from the axioms
of BPAsrt

hs .

PROOF. Easy, by induction on the structure of undelayable basic term t. �

Lemma 3 (Representation) For all basic terms t, either t ∈ Bν or there
exists a term t′ ∈ Bν and a term t′′ ∈ Bσ such that t = t′ + t′′ is derivable from
the axioms of BPAsrt

hs .

PROOF. Easy, by induction on the structure of basic term t. �
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As a corollary of Lemmas 2 and 3, we have the following.

Corollary 4 (Representation) For all closed terms t of BPAsrt
hs , either t =

νrel(t) is derivable from the axioms of BPAsrt
hs or there exists a basic term t′ of

the form
∑

i∈I ψi :→ (φi
∩�

Vi
σri

rel(ti)) such that t = νrel(t) + t′ is derivable from
the axioms of BPAsrt

hs .

2.5 Lifting Rules of BPAsrt
hs

Below, we introduce some rules which allow results from real analysis to be
lifted to equations about processes.

We assume a mathematical theory MT that includes real arithmetic and real
analysis to derive properties of signal evolutions. It is assumed that the state
variables and the constants and arithmetic operators of real arithmetic can be
used in MT to construct expressions designating real-valued functions of R≥.
Likewise, it is assumed that the relational operators of real arithmetic and the
logical constants and connectives can be used in MT to construct expressions
designating truth-valued functions of R≥. It is also assumed that MT is based
on the following interpretation of the state variables:

• each state variable v is interpreted as a real-valued function of R≥ that is
piecewise of class C∞ in R≥; 1

• the interpretation of a state variable v̇ is the right-hand derivative of the
interpretation of the state variable v. 2

It is further assumed that MT is based on the following interpretation of the
constants and arithmetic operators of real arithmetic:

• in expressions designating real numbers, constants and arithmetic operators
of real arithmetic are interpreted as usual;

• in expressions designating real-valued functions of R≥, constants and arith-
metic operators of real arithmetic are interpreted as the pointwise extensions
of their usual interpretations.

Likewise, it is assumed that MT is based on the following interpretation of

1 A function f : I → R, where I is an interval in R≥, is of class C∞ in I if f (n),
the nth order derivative of f , exists at every point of I, and is continuous on I, for
every n; and f is piecewise of class C∞ in I if I can be partitioned into a finite
set I of left-closed and right-open intervals such that, for each interval I ′ ∈ I, the
restriction of f to I ′ is of class C∞ in I ′.
2 For each function that is piecewise of class C∞ in some interval I, the right-hand
derivative equals the derivative at all points of I where the latter exists.
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Table 4
Lifting rules for BPAsrt

hs (a ∈ Aδ, r, s > 0)
V ⊆ C∞[0, r] �MT ψ(0) →∀t ∈ [0, r] • φ(t) ↔ φ′(t)

ψ ∧� (φ ∩�V σr
rel(x)) = ψ ∧� (φ′ ∩�V σr

rel(x))
HSELR1

V ⊆ C∞[0, r] �MT ψ(0) ∧ (∀t ∈ [0, r] • φ(t)) → ψ′(r)

ψ ∧� (φ ∩�V σr
rel(x)) = ψ ∧� (φ ∩�V σr

rel(ψ
′ ∧� x))

HSELR2

V ⊆ C∞[0, r] �MT ψ(0) ∧ (∀t ∈ [0, s] • φ(t)) ∧ (∃t ∈ (s, r] • ∀t′ ∈ (s, t] • ¬φ(t′))

ψ ∧� (φ ∩�
V σr

rel(x)) = ψ ∧� (φ ∩�
V σs

rel(
˜̃δ))

HSELR3

the relational operators of real arithmetic and the logical constants and con-
nectives:

• in expressions designating truth-values, relational operators of real arith-
metic, logical constants and logical connectives are interpreted as usual;

• in expressions designating truth-valued functions of R≥, relational operators
of real arithmetic, logical constants and logical connectives are interpreted
as the pointwise extensions of their usual interpretations.

Moreover, it is assumed that the following equivalences concerning the oper-
ators ◦ , ◦, • and • are derivable in MT:

•ψ ⇔ ψ[•V/V] ,

ψ• ⇔ ψ[V•/V] ,
◦χ⇔ ∃r1, . . . , r2n ∈ R • χ[V/•V][r1, . . . , r2n/v1

•, . . . , vn
•, v̇1

•, . . . , v̇n
•] ,

χ◦ ⇔ ∃r1, . . . , r2n ∈ R • χ[V/V•][r1, . . . , r2n/
•v1, . . . ,

•vn,
•v̇1, . . . ,

•v̇n] .

Recall that we use the notations [•V/V] and [V•/V] for the replacement of the
occurrences of v ∈ V ∪ V̇ by •v and v•, respectively. We use the notations
[V/•V] and [V/V•] for the reverse replacements.

The rules for lifting results from real analysis to equations about processes
are given in Table 4. We use the notation �MT for derivability in MT; and we
write V ⊆ C∞[0, r] to indicate that for each v ∈ V the restriction of v to [0, r]
is of class C∞ in [0, r].

Lifting rule HSELR1 can, for example, be used to derive

((v = 0) ∧ (v̇ = 1)) ∩�σ1
rel(˜̃a) = F ∩�σ1

rel(˜̃a) = ⊥ .

Note that we cannot derive

((v = 0) ∧ (v̇ = 1)) ∧� ˜̃a = F ∧� ˜̃a .
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This is to be expected: although it is impossible that the emitted signal of a
process evolves according to (v = 0) ∧ (v̇ = 1), it is possible that a process
emits the signal (v = 0) ∧ (v̇ = 1).

Lifting rules HSELR2 and HSELR3 are indispensable in deriving the following
equations:

(v = 0) ∧� ((v ≤ 5 ∧ v̇ = 1) ∩�σ4
rel(˜̃a))

= (v = 0) ∧� ((v ≤ 5 ∧ v̇ = 1) ∩�σ4
rel((v = 4) ∧� ˜̃a)) ,

(v = 0) ∧� ((v ≤ 5 ∧ v̇ = 1) ∩�σ6
rel(˜̃a))

= (v = 0) ∧� ((v ≤ 5 ∧ v̇ = 1) ∩�σ5
rel(

˜̃δ)) .

The use of signal evolution, as well as the use of signal transition, will be
further illustrated in Section 3.3, after we have considered the addition of in-
tegration and recursion in Sections 3.1 and 3.2, and in Sections 4.6 and 4.7,
after we have considered the addition of parallel composition and encapsula-
tion in Section 4.2.

We will henceforth write PA � e to indicate that equation e is derivable from
the axioms and lifting rules of process algebra PA using standard equational
reasoning.

Because there exist equations that are only derivable with the help of real
analysis, by way of the lifting rules, there is no effective procedure for deter-
mining of an arbitrary equation whether it is derivable. Therefore, efficient
proof techniques are important. Restrictions that make an effective procedure
possible could be useful as well.

If we replace C∞ by C 1 in the current section and the next one, the results
of Section 2.7 go through. In other words, we could have chosen for state
variables that are functions from R≥ to R that are piecewise of class C 1 in
R≥. 3 However, that choice would complicate the theory and might inhibit
useful extensions.

3 A function f : I → R, where I is an interval in R≥, is of class C 1 in I if ḟ , the
(1st order) derivative of f , exists at every point of I, and is continuous on I; and f
is piecewise of class C 1 in I if I can be partitioned into a finite set I of left-closed
and right-open intervals such that, for each interval I ′ ∈ I, the restriction of f to
I ′ is of class C 1 in I ′.
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2.6 Operational Semantics of BPAsrt
hs

The structural operational semantics of BPAsrt
hs will be described below using

assignments of state variables. An assignment of state variables is a function
α : V ∪ V̇ → R or a function β : •V ∪ V• → R. An assignment α : V ∪ V̇ → R is
also called a state. An assignment β : •V∪V• → R is also called a state update.

An assignment α : V ∪ V̇ → R can be extended to state expressions and
atomic state propositions in the usual homomorphic way, and an assignment
β :•V∪V• → R can be extended to transition expressions and atomic transition
propositions in the usual homomorphic way. An assignment α : V ∪ V̇ → R

can also be extended further to state propositions as usual, except for state
propositions of the forms ◦χ and χ◦, and an assignment β : •V ∪ V• → R

can also be extended further to transition propositions as usual, except for
transition propositions of the forms •ψ and ψ•. We will use the same name for
an assignment and its extensions. For state propositions of the forms ◦χ and
χ◦, we have:

• α(◦χ) = T iff there exists a state update β such that β(•v) = α(v) for all
v ∈ V ∪ V̇ and β(χ) = T;

• α(χ◦) = T iff there exists a state update β such that β(v•) = α(v) for all
v ∈ V ∪ V̇ and β(χ) = T.

For transition propositions of the forms •ψ and ψ•, we have:

• β(•ψ) = T iff there exists a state α such that α(v) = β(•v) for all v ∈ V∪ V̇
and α(ψ) = T;

• β(ψ•) = T iff there exists a state α such that α(v) = β(v•) for all v ∈ V∪ V̇
and α(ψ) = T.

In Ref. [12], the structural operational semantics of BPAps is described using
valuations of atomic propositions. A valuation of atomic propositions is a
function v : Pat → B. In the case of BPAsrt

hs , where the set of atomic state
propositions is taken as the set Pat of atomic propositions, an assignment α:V∪
V̇ → R of state variables induces a valuation α:Pat → B of atomic propositions,
viz. the extension of the assignment α to atomic state propositions.

Below, satisfaction of state propositions by state evolutions and satisfaction
of transition propositions by pairs of states will be defined. Let ρ : [0, r] →
(V → R), where r ∈ R>, and V ⊆ V. Then, for every v ∈ V, we write ρv for
the function ρv : [0, r] → R defined by ρv(t) = ρ(t)(v). We say that ρ is a state
evolution if ρv is piecewise of class C∞ in [0, r) for all v ∈ V. If ρ is a state
evolution, we say that ρ is smooth for V if ρv is of class C∞ in [0, r] for all
v ∈ V . If ρ is a state evolution, we say that a state α agrees with ρ at time t,
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t ∈ [0, r], if for all v ∈ V:

α(v) = ρv(t) , α(v̇) = ρ̇v(t) .

Let (α, α′) be a pair of states. Then, we say that a state update β agrees with
(α, α′) if for all v ∈ V:

β(•v) = α(v) , β(•v̇) = α(v̇) , β(v•) = α′(v) , β(v̇•) = α′(v̇) .

We write Er for the set of all state evolutions ρ : [0, r] → (V → R). For a given
state evolution ρ : [0, r] → (V → R) and a given time t ∈ [0, r], there is a
unique state that agrees with ρ at t. We write αρ

t for this unique state. For
a given pair of states (α, α′), there is a unique state update that agrees with
(α, α′). We write βα

α′ for this unique state update.

Satisfaction of state propositions (by states and state evolutions) and satis-
faction of transition propositions (by state transitions) are used below in de-
scribing the structural operational semantics of BPAsrt

hs . Satisfaction of state
propositions and transition propositions is defined as follows:

• a state proposition ψ is satisfied by state α, written α |= ψ, if

α(ψ) = T ;

• a state proposition φ is satisfied by state evolution ρ ∈ Er, written ρ |= φ, if

αρ
t (φ) = T for all t ∈ [0, r] ;

• a transition proposition χ is satisfied by the transition from state α to state
α′, written α−→α′ |= χ, if

βα
α′(χ) = T .

We write α
r,ρ�−−→α′ |=V φ for

ρ ∈ Er, α
ρ
0 = α, αρ

r = α′, ρ is smooth for V and ρ |= φ .
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Note that we have for all states α and α′:

α |= ◦(•ψ) iff α |= (ψ•)◦ iff α |= ψ ,

α |= ◦(ψ•) iff α |= (•ψ)◦ iff there exists a state α′′ such that α′′ |= ψ ,

α−→α′ |= •ψ iff α |= ψ ,

α−→α′ |= ψ• iff α′ |= ψ ,

α−→α′ |= χ implies α |= ◦χ and α′ |= χ◦ ,

α
r,ρ�−−→α′ |=V φ implies α |= φ and α′ |= φ .

The structural operational semantics of BPAsrt
hs is described by the rules given

in Tables 5 and 6. In Table 6, we use a to stand for elements of Aδ. The
following transition relations are used:

• a binary relation 〈 , α〉 a−→〈 , α′〉 for each a ∈ A, α, α′ : V ∪ V̇ → R;
• a unary relation 〈 , α〉 a−→〈√, α′〉 for each a ∈ A, α, α′ : V ∪ V̇ → R;

• a binary relation 〈 , α〉 r,ρ�−−→〈 , α′〉 for each r ∈ R>, ρ ∈ Er, α, α
′ : V∪ V̇ → R

such that α = αρ
0 and α′ = αρ

r ;
• a unary relation α∈ [s( )] for each α : V ∪ V̇ → R.

We write 〈t, α〉 � r�−→ for the set of all transition formulas ¬(〈t, α〉 r,ρ�−−→ 〈t′, α′〉)
where t′ is a closed term of BPAsrt

hs , α′ :V∪ V̇ → R and ρ ∈ Er. We write ρ� r,
where ρ ∈ Er+s (r, s > 0), for the ρ′ ∈ Es such that ρ′(s′) = ρ(r + s′) for all
s′ ∈ [0, s].

The four kinds of transition relations are called the action step, action termi-
nation, time step and signal relations, respectively. They can be explained as
follows:

• 〈t, α〉 a−→〈t′, α′〉: in state α, process t is capable of first performing action a
at the current point of time and then proceeding as process t′ in state α′;

• 〈t, α〉 a−→〈√, α′〉: in state α, process t is capable of first performing action a
at the current point of time and then terminating successfully in state α′;

• 〈t, α〉 r,ρ�−−→〈t′, α′〉: in state α, process t is capable of first idling for a period
of time r, while the state evolves according to ρ, and then proceeding as
process t′ in state α′;

• α∈ [s(t)]: in state α, the signal emitted by process t holds.

The following are important properties of the transition relations defined by
the rules given in Tables 5 and 6. We have for all closed terms t and t′, for all
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Table 5
Rules for operational semantics of BPAsrt

hs (a ∈ A, r, s > 0)

〈˜̃a, α〉 a−→〈√, α′〉
〈x, α〉 a−→〈x′, α′〉

〈σ0
rel(x), α〉 a−→〈x′, α′〉

〈x, α〉 a−→〈√, α′〉
〈σ0

rel(x), α〉 a−→〈√, α′〉
〈x, α〉 r,ρ
−−→〈x′, α′〉

〈σ0
rel(x), α〉 r,ρ
−−→〈x′, α′〉

〈σr+s
rel (x), α〉 r,ρ
−−→〈σs

rel(x), α
′〉

α′ ∈ [s(x)]

〈σr
rel(x), α〉 r,ρ
−−→〈x, α′〉

〈x, α′〉 s,ρ�r
−−−−→〈x′, α′′〉
〈σr

rel(x), α〉 r+s,ρ
−−−−→〈x′, α′′〉
〈x, α〉 a−→〈x′, α′〉, α∈ [s(y)]

〈x+ y, α〉 a−→〈x′, α′〉
α∈ [s(x)], 〈y,α〉 a−→〈y′, α′〉

〈x+ y, α〉 a−→〈y′, α′〉
〈x, α〉 a−→〈√, α′〉, α∈ [s(y)]

〈x+ y, α〉 a−→〈√, α′〉
α∈ [s(x)], 〈y,α〉 a−→〈√, α′〉

〈x+ y, α〉 a−→〈√, α′〉
〈x, α〉 r,ρ
−−→〈x′, α′〉, 〈y, α〉 � r
−→, α∈ [s(y)]

〈x+ y, α〉 r,ρ
−−→〈x′, α′〉
〈x, α〉 � r
−→, α∈ [s(x)], 〈y,α〉 r,ρ
−−→〈y′, α′〉

〈x+ y, α〉 r,ρ
−−→〈y′, α′〉
〈x, α〉 r,ρ
−−→〈x′, α′〉, 〈y, α〉 r,ρ
−−→〈y′, α′〉

〈x+ y,α〉 r,ρ
−−→〈x′ + y′, α′〉
〈x,α〉 a−→〈x′, α′〉

〈x · y,α〉 a−→〈x′ · y, α′〉
〈x, α〉 a−→〈√, α′〉, α′ ∈ [s(y)]

〈x · y,α〉 a−→〈y,α′〉
〈x,α〉 r,ρ
−−→〈x′, α′〉

〈x · y,α〉 r,ρ
−−→〈x′ · y,α′〉
〈x,α〉 a−→〈x′, α′〉

〈ψ :→ x, α〉 a−→〈x′, α′〉
α |= ψ

〈x,α〉 a−→〈√, α′〉
〈ψ :→ x, α〉 a−→〈√, α′〉

α |= ψ

〈x,α〉 r,ρ
−−→〈x′, α′〉
〈ψ :→ x, α〉 r,ρ
−−→〈x′, α′〉

α |= ψ

〈x, α〉 a−→〈x′, α′〉
〈ψ ∧� x,α〉 a−→〈x′, α′〉

α |= ψ
〈x,α〉 a−→〈√, α′〉

〈ψ ∧� x, α〉 a−→〈√, α′〉
α |= ψ

〈x, α〉 r,ρ
−−→〈x′, α′〉
〈ψ ∧� x,α〉 r,ρ
−−→〈x′, α′〉

α |= ψ

〈x, α〉 a−→〈x′, α′〉
〈φ ∩�V x, α〉 a−→〈x′, α′〉

α |= φ
〈x, α〉 a−→〈√, α′〉

〈φ ∩�V x, α〉 a−→〈√, α′〉
α |= φ

〈x, α〉 r,ρ
−−→〈x′, α′〉
〈φ ∩�V x, α〉 r,ρ
−−→〈φ ∩�V x′, α′〉

α
r,ρ
−−→α′ |=V φ

〈x,α〉 a−→〈x′, α′〉
〈χ �� x,α〉 a−→〈x′, α′〉

α−→α′ |= χ
〈x, α〉 a−→〈√, α′〉

〈χ �� x,α〉 a−→〈√, α′〉
α−→α′ |= χ

〈x,α〉 r,ρ
−−→〈x′, α′〉
〈χ �� x,α〉 r,ρ
−−→〈x′, α′〉

α |= ◦χ

〈x, α〉 a−→〈x′, α′〉
〈νrel(x), α〉 a−→〈x′, α′〉

〈x, α〉 a−→〈√, α′〉
〈νrel(x), α〉 a−→〈√, α′〉
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Table 6
Rules for α∈ [s( )] (a ∈ Aδ, r > 0)

α∈ [s(˜̃a)]

α∈ [s(x)]

α∈ [s(σ0
rel(x))] α∈ [s(σr

rel(x))]

α∈ [s(x)], α∈ [s(y)]

α∈ [s(x + y)]

α∈ [s(x)]

α∈ [s(x · y)]
α∈ [s(x)]

α∈ [s(ψ :→ x)] α∈ [s(ψ :→ x)]
α �|= ψ

α∈ [s(x)]

α∈ [s(ψ ∧� x)]
α |= ψ

α∈ [s(x)]

α∈ [s(φ ∩�V x)]
α |= φ

α∈ [s(x)]

α∈ [s(χ �� x)] α∈ [s(χ �� x)]
α �|= ◦χ

α∈ [s(x)]

α∈ [s(νrel(x))]

α, α′ : V ∪ V̇ → R, a ∈ A, r ∈ R> and ρ ∈ Er:

〈t, α〉 a−→〈t′, α′〉 or 〈t, α〉 a−→〈√, α′〉 or 〈t, α〉 r,ρ�−−→〈t′, α′〉 implies α∈ [s(t)] ,

〈t, α〉 a−→〈t′, α′〉 or 〈t, α〉 r,ρ�−−→〈t′, α′〉 implies α′∈ [s(t′)] .

In work on hybrid automata, the transition systems associated with hybrid au-
tomata usually include time step relations 〈 , α〉 r�−→〈 , α′〉 instead of 〈 , α〉 r,ρ�−−→
〈 , α′〉. State evolutions only play a part as “witnesses” for time steps, see e.g.
Ref. [3]. Time step relations 〈 , α〉 r�−→ 〈 , α′〉 would yield a semantics which
is too abstract for our purpose. For instance, the meaning of φ ∩�

V (φ′ ∩�
V ′ t)

would be far from its intended meaning, and axiom HSE11 would not be
sound. Consider, for example, the following terms:

(x = 0 ∧ y = 0) ∧�

((x+ y ≤ 4 ∧ x ≥ y ∧ ¬(x = 1 ∧ y = 1) ∧ ẋ > 0 ∧ ẏ > 0) ∩�

σ∗
rel((x = 2 ∧ y = 2) :→ ˜̃stop)) ,

(x = 0 ∧ y = 0) ∧�

((x+ y ≤ 4 ∧ x ≤ y ∧ ẋ > 0 ∧ ẏ > 0) ∩�

((x+ y ≤ 4 ∧ x ≥ y ∧ ¬(x = 1 ∧ y = 1) ∧ ẋ > 0 ∧ ẏ > 0) ∩�

σ∗
rel((x = 2 ∧ y = 2) :→ ˜̃stop))) . 4

The first term can be regarded as describing an object that first moves smoothly
from point (0, 0) to point (2, 2), staying away from the left of the straight line
through points (0, 0) and (2, 2), and not going through point (1, 1), and then
stops. According to our intuition, the second term expresses that the object is
on top of that staying away from the right of the straight line through points
(0, 0) and (2, 2). This is impossible and therefore the object will never stop.
As to be expected, it is derivable from the axioms and lifting rules of BPAsrt

hs

4 The notation σ∗rel(t), which will be introduced in Section 3.1, is to be read as “the
relative delay of t for an arbitrary period of time”.
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that the second term equals:

(x = 0 ∧ y = 0) ∧�

((x+ y ≤ 4 ∧ x = y ∧ ¬(x = 1 ∧ y = 1) ∧ ẋ > 0 ∧ ẏ > 0) ∩�σ∗
rel(

˜̃δ)) .

There are movements satisfying the first restriction and movements satisfy-
ing the second restriction. However, in the case where the state evolutions
representing those movements are only playing a part as witnesses in the op-
erational semantics, it is kept unnoticed that the two restrictions cannot be
satisfied both. As a result, the second term would not denote a process that
will never stop. With regard to the first term, note that the velocity of the
object must change as time goes by in order to meet the constraints on its
position. However, no discontinuities are allowed.

2.7 Bisimulation and Soundness

Bisimulation based on the transition rules for BPAsrt
hs is defined as usual in

cases where processes with different states are not considered to be equivalent.

A bisimulation is a symmetric binary relation B on pairs of closed terms and
states, called configurations, such that for all configurations 〈t1, α〉, 〈t2, α〉 with
B(〈t1, α〉, 〈t2, α〉) the following conditions hold:

• whenever 〈t1, α〉 a−→ 〈t′1, α′〉, then there is a t′2 such that 〈t2, α〉 a−→ 〈t′2, α′〉
and B(〈t′1, α′〉, 〈t′2, α′〉);

• whenever 〈t1, α〉 a−→ 〈√, α′〉, then 〈t2, α〉 a−→ 〈√, α′〉;
• whenever 〈t1, α〉 r,ρ�−−→ 〈t′1, α′〉, then there is a t′2 such that 〈t2, α〉 r,ρ�−−→ 〈t′2, α′〉

and B(〈t′1, α′〉, 〈t′2, α′〉);
• whenever α∈ [s(t1)], then α∈ [s(t2)].

Two configurations 〈t1, α1〉 and 〈t2, α2〉 are bisimulation equivalent (or simply
bisimilar), written 〈t1, α1〉↔ 〈t2, α2〉, if α1 = α2 and there exists a bisimulation
B such that B(〈t1, α1〉, 〈t2, α2〉). Two closed terms t1 and t2 are bisimulation
equivalent, written t1 ↔ t2, if 〈t1, α〉↔ 〈t2, α〉 for all states α.

We also consider a variant of bisimulation equivalence, called interference-
compatible bisimulation equivalence, which is finer than bisimulation equiva-
lence. The idea behind interference-compatible bisimulation is the following.
A process proceeding in parallel with a process P can change the state of
P at any time. Interference-compatible bisimulation offers resistance to such
changes. For example, if a configuration 〈t1, α〉 is related to a configuration
〈t2, α〉 and 〈t1, α〉 a−→ 〈t′1, α′〉, then there is a t′2 such that 〈t2, α〉 a−→ 〈t′2, α′〉
and 〈t′1, α′′〉 is related to 〈t′2, α′′〉 for all states α′′. Parallel composition is in-
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troduced in Section 4. In that section, the need for interference-compatible
bisimulation equivalence will be explained.

An interference-compatible bisimulation is a symmetric binary relation B on
closed terms such that for all closed terms t1, t2 with B(t1, t2) the following
conditions hold:

• whenever 〈t1, α〉 a−→ 〈t′1, α′〉, then there is a t′2 such that 〈t2, α〉 a−→ 〈t′2, α′〉
and B(t′1, t

′
2);

• whenever 〈t1, α〉 a−→ 〈√, α′〉, then 〈t2, α〉 a−→ 〈√, α′〉;
• whenever 〈t1, α〉 r,ρ�−−→ 〈t′1, α′〉, then there is a t′2 such that 〈t2, α〉 r,ρ�−−→ 〈t′2, α′〉

and B(t′1, t
′
2);

• whenever α∈ [s(t1)], then α∈ [s(t2)].

Two closed terms t1 and t2 are interference-compatible bisimulation equivalent,
written t1 ↔ t2, if there exists an interference-compatible bisimulation B such
that B(t1, t2). We will use ic-bisimulation as an abbreviation for interference-
compatible bisimulation.

We regard ic-bisimulation equivalence less natural than bisimulation equiva-
lence: it appears to waver between two opinions. Besides, both axioms HST5
and HST14 and lifting rules HSELR2 and HSELR3 are not sound under ic-
bisimulation equivalence.

Bisimulation equivalence is coarser than ic-bisimulation equivalence.

Lemma 5 (Inclusion) For all closed terms t1 and t2, if t1 ↔ t2 then t1 ↔ t2.

PROOF. Suppose that t1 ↔ t2. Suppose further that B is an ic-bisimulation
witnessing that t1 ↔ t2. Define B′ = {(〈t1, α〉, 〈t2, α〉) | B(t1, t2), α is a state}.
It is easy to see that B′ is a bisimulation. Moreover, if B′(〈t1, α〉, 〈t2, α〉), then
B′(〈t1, α′〉, 〈t2, α′〉) for all states α′. So t1 ↔ t2. �

Bisimulation equivalence and ic-bisimulation equivalence are preserved by all
operators of BPAsrt

hs .

Theorem 6 (Congruence) Both bisimulation equivalence and ic-bisimulation
equivalence are congruences with respect to the operators of BPAsrt

hs .

PROOF. See Appendix A.2. �

The axioms and lifting rules of BPAsrt
hs are sound with respect to bisimulation

equivalence.
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Theorem 7 (Soundness) For all closed terms t1 and t2 of BPAsrt
hs , we have

BPAsrt
hs � t1 = t2 implies t1 ↔ t2.

PROOF. See Appendix A.3. �

We shall henceforth use the name icBPAsrt
hs to refer to the process algebra

that differs from BPAsrt
hs only by the absence of axioms HST5 and HST14 and

lifting rules HSELR2 and HSELR3. As a corollary of the proof of Theorem 7,
we have the following.

Corollary 8 (Soundness) For all closed terms t1 and t2 of BPAsrt
hs , we have

icBPAsrt
hs � t1 = t2 implies t1 ↔ t2.

Bisimulation equivalence appears to be preferable. After all, axiom HST5 is
indispensable to analyse how signal transition changes the signal of a pro-
cess over performing an action and lifting rules HSELR2 and HSELR3 are
indispensable to analyse how signal evolution changes the signal of a process
during idling. Axiom HST14 is a simple alternative to axiom HST5, which has
its limitation.

3 Integration and Recursion

In this section, we extend BPAsrt
hs with integration and guarded recursion.

These extensions will be needed in many applications. We illustrate this by
means of an example concerning a thermostat. We also pay some attention to
Zeno behaviour, which can be described in BPAsrt

hs extended with integration
and guarded recursion.

3.1 BPAsrt
hs with Integration

In order to cover processes that are capable of performing an action at all
points in a certain time interval, we add integration to BPAsrt

hs . Integration
is represented by the variable-binding operator

∫
. Let P be an expression,

possibly containing variable u, such that P [p/u] (P with p substituted for u)
represents a process for all p ∈ R≥; and let U ⊆ R≥. Then the integration∫
u∈UP behaves like one of the processes P [p/u] for p ∈ U . Hence, integration

is a form of alternative composition over a set of alternatives that may even
be a continuum.
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Table 7
Axioms for integration (p ≥ 0)∫

u∈UF (u) =
∫
u′∈UF (u′) INT1∫

u∈∅F (u) = ˜̃δ INT2∫
u∈{p}F (u) = F (p) INT3∫
u∈U∪U ′F (u) =

∫
u∈UF (u) +

∫
u∈U ′F (u) INT4

U �= ∅ ⇒ ∫
u∈Ux = x INT5

(∀u ∈ U • F (u) = G(u)) ⇒ ∫
u∈UF (u) =

∫
u∈UG(u) INT6

U,U ′ unbounded ⇒ ∫
u∈Uσ

u
rel(

˜̃δ) =
∫
u∈U ′σ

u
rel(

˜̃δ) INT8SR

sup U = p, p ∈ U ⇒ ∫
u∈Uσ

u
rel(

˜̃δ) = σp
rel(

˜̃δ) INT9SR∫
u∈Uσ

p
rel(F (u)) = σp

rel(
∫
u∈UF (u)) INT10SR∫

u∈U(F (u) +G(u)) =
∫
u∈UF (u) +

∫
u∈UG(u) INT11∫

u∈U(F (u) · x) = (
∫
u∈UF (u)) · x INT12∫

u∈Uνrel(F (u)) = νrel(
∫
u∈UF (u)) INT13∫

u∈U(ψ :→ F (u)) = ψ :→
∫
u∈UF (u) PSINT1∫

u∈U(ψ ∧� F (u)) = ψ ∧� ∫
u∈UF (u) PSINT2∫

u∈U(φ ∩�V F (u)) = φ ∩�V
∫
u∈UF (u) HSINT1∫

u∈U(χ �� F (u)) = χ �� ∫
u∈UF (u) HSINT2

We shall henceforth use F and G as variables ranging over functions that map
each non-negative real number to a process and can be represented by terms
containing a designated free variable ranging over R≥. For more information
on such second-order variables, see e.g. Refs. [35,36]. Furthermore, we shall
henceforth use u, u′, . . . as variables ranging over R≥. It is assumed that each
first-order definable set of non-negative real numbers can be denoted by a
closed term, and we shall henceforth use U,U ′, . . . to stand for arbitrary closed
terms denoting first-order definable sets of non-negative real numbers.

The additional axioms for integration are the equations given in Table 7.
Axiom INT1 is similar to the α-conversion rule of λ-calculus. Axioms INT2–
INT4 show that integration is a form of alternative composition over a set
of alternatives. Axiom INT5 can be regarded as the counterpart of axiom A3
for integration. Axiom INT6 is an extensionality axiom. The remaining ax-
ioms are easily understood by realizing that integration is a form of alterna-
tive composition over a set of alternatives. Axioms INT10SR, INT11, INT12,
INT13, PSINT1, PSINT2, HSINT1 and HSINT2 can simply be regarded as
variants of axioms SRT3, A2, A4, SRU3, GC4, SE3, HSE7 and HST7, re-
spectively. Axioms INT8SR and INT9SR are both reminiscent of the equation
σp+q

rel (˜̃δ) + σp
rel(

˜̃δ) = σp+q
rel (˜̃δ), which is derivable from axioms A6SR, SRT2 and

SRT3.
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Table 8
Additional rules for integration (a ∈ A, p, q ≥ 0, r > 0)
〈F (p), α〉 a−→〈x′, α′〉, {α∈ [s(F (q))] | q ∈ U}

〈∫
u∈U

F (u), α〉 a−→〈x′, α′〉
p ∈ U

〈F (p), α〉 a−→〈√, α′〉, {α∈ [s(F (q))] | q ∈ U}
〈∫

u∈U
F (u), α〉 a−→〈√, α′〉

p ∈ U

{〈F (q), α〉 r,ρ
−−→〈F1(q), α
′〉 | q ∈ U1},

. . . ,

{〈F (q), α〉 r,ρ
−−→〈Fn(q), α′〉 | q ∈ Un},
{〈F (q), α〉 � r
−→, α∈ [s(F (q))] | q ∈ Un+1}

〈∫
u∈U

F (u), α〉 r,ρ
−−→〈∫
u∈U1

F1(u) + . . .+
∫

u∈Un
Fn(u), α′〉

{U1, . . . , Un} partition

of U \ Un+1, Un+1 ⊂ U

{α∈ [s(F (q))] | q ∈ U}
α∈ [s(

∫
u∈U

F (u))]

The following important equation concerning the interchange of integration
order is derivable:

∫
u∈U(

∫
u′∈U ′K(u, u′)) =

∫
u′∈U ′(

∫
u∈UK(u, u′)) .

Like F and G, we use K here as a variable ranging over functions that map
each pair of non-negative real numbers to a process and can be represented
by terms containing a pair of designated free variables ranging over R≥.

The additional axioms for integration in the case of BPAsrt
hs are essentially the

additional axioms for integration in the case of BPAsrt and on top of that
axioms concerning the interaction of integration with conditional proceeding,
signal emission, signal evolution and signal transition.

We shall henceforth use the name BPAsrt
hs +INT to refer to the extension of

BPAsrt
hs with integration.

We shall henceforth use the notation σ∗
rel(t) for

∫
u∈[0,∞)σ

u
rel(t), with u a variable

not occurring free in t.

The structural operational semantics for integration is described by the rules
given in Table 8. The complexity of the rule concerning the time-related ca-
pabilities of a process

∫
u∈UF (u) is caused by the fact that the processes F (p)

with p ∈ U that are capable of idling need not change uniformly while idling.
For more information on this phenomenon, see e.g. Refs. [11,26]. Bisimula-
tion equivalence and ic-bisimulation equivalence are preserved by integration.
All additional axioms for integration are sound with respect to bisimulation
equivalence and ic-bisimulation equivalence.
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Table 9
Additional axioms for guarded recursion
〈X|E〉 = 〈tX |E〉 if X = tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

3.2 BPAsrt
hs with Guarded Recursion

In order to allow for the description of (potentially) non-terminating processes,
we add guarded recursion to BPAsrt

hs .

A recursive specification over BPAsrt
hs is a set of recursive equations E = {X =

tX | X ∈ V } where V is a set of variables and each tX is a term of BPAsrt
hs

that only contains variables from V . We write V(E) for the set of all variables
that occur on the left-hand side of an equation in E. A solution of a recursive
specification E is a set of processes (in some model of BPAsrt

hs ) {PX | X ∈
V(E)} such that the equations of E hold if, for all X ∈ V(E), X stands for
PX .

Let t be a term of BPAsrt
hs containing a variable X. We call an occurrence of

X in t guarded if t has a subterm of the form ˜̃a · t′ or σr
rel(t

′), where a ∈ A,
r > 0 and t′ a term of BPAsrt

hs , with t′ containing this occurrence of X. A
recursive specification over BPAsrt

hs is called a guarded recursive specification if
all occurrences of variables in the right-hand sides of its equations are guarded
or it can be rewritten to such a recursive specification using the axioms of
BPAsrt

hs and the equations of the recursive specification. A guarded recursive
specification has a unique solution.

For each guarded recursive specification E and each variable X ∈ V(E), we
introduce a constant 〈X|E〉 which is interpreted as the unique solution of E
for X. We often write X for 〈X|E〉 if E is clear from the context. In such
cases, it should also be clear from the context that we use X as a constant.

We will also use the following notation. Let t be a term of BPAsrt
hs with guarded

recursion and E be a guarded recursive specification. Then we write 〈t|E〉 for
t with, for all X ∈ V(E), all occurrences of X in t replaced by 〈X|E〉.

We shall henceforth use X, Y, . . . as variables ranging over processes in the case
where they occur in a recursive specification. Furthermore, we shall henceforth
use tX , tY , . . . to stand for arbitrary terms of which the closed substitution
instances denote processes, and E,E ′, . . . to stand for arbitrary guarded re-
cursive specifications.

The additional axioms for guarded recursion are the equations given in Table 9.
A side condition is added to restrict the variables, terms and guarded recur-
sive specifications for which X, tX and E stand. The additional axioms for
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Table 10
Additional rules for guarded recursion (a ∈ A, r > 0)
〈〈tX |E〉, α〉 a−→〈x′, α′〉
〈〈X|E〉, α〉 a−→〈x′, α′〉

X = tX ∈ E
〈〈tX |E〉, α〉 a−→〈√, α′〉
〈〈X|E〉, α〉 a−→〈√, α′〉

X = tX ∈ E

〈〈tX |E〉, α〉 r,ρ
−−→〈x′, α′〉
〈〈X|E〉, α〉 r,ρ
−−→〈x′, α′〉

X = tX ∈ E
α∈ [s(〈tX |E〉)]
α∈ [s(〈X|E〉)]

X = tX ∈ E

guarded recursion are known as the recursive definition principle (RDP) and
the recursive specification principle (RSP). The equations 〈X|E〉 = 〈tX |E〉
for a fixed E express that the constants 〈X|E〉 make up a solution of E. The
conditional equations E ⇒ X = 〈X|E〉 express that this solution is the only
one.

It is sometimes helpful to rewrite guarded recursive specifications. The fol-
lowing useful fact about the rewriting of guarded recursive specifications can
be proven. Let E and E ′ be two guarded recursive specifications over BPAsrt

hs ,
where E ′ is E rewritten using the axioms of BPAsrt

hs and the equations of E.
Then the equation 〈X|E〉 = 〈X|E ′〉 is derivable for all X ∈ V(E).

The additional axioms for guarded recursion in the case of BPAsrt
hs are the

same as in the cases of BPA, BPAps and BPAsrt. Guarded recursion is added
in the same way to BPAsrt

hs +INT and the other extensions of BPAsrt
hs presented

in this paper.

We shall henceforth use the name BPAsrt
hs +INT+REC to refer to the extension

of BPAsrt
hs +INT with guarded recursion.

The structural operational semantics for guarded recursion is described by the
rules given in Table 10. Bisimulation equivalence and ic-bisimulation equiva-
lence are preserved by guarded recursion. All additional axioms for guarded re-
cursion are sound with respect to bisimulation equivalence and ic-bisimulation
equivalence.

3.3 Example: Thermostat

In this section, we consider a thermostat. We give a guarded recursive spec-
ification of the behaviour of the thermostat. This example is adapted from
Ref. [7]. We take the following (adapted) informal description of the behaviour
of the thermostat from Ref. [37] as the starting point of our specification.

Initially, the temperature is 18 ◦ C and the heating is on. While the heating
is on, the temperature T in the room goes up according to the differential
equation Ṫ = −T + 22. When the temperature becomes 20 ◦ C, the heating
will be turned off. While the heating is off, the temperature T in the room
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goes down according to the the differential equation Ṫ = −T + 17. When the
temperature becomes 18 ◦ C, the heating will be turned on again.

The recursive specification of the thermostat consists of the following equa-
tions:

Th = (T = 18) ∧� Thon ,

Thon = (18 ≤ T ≤ 20 ∧ Ṫ = −T + 22) ∩�

σ∗
rel

(
(T = 20) :→

(
(T • = •T ) �� ˜̃turn-off · Thoff

))
,

Thoff = (18 ≤ T ≤ 20 ∧ Ṫ = −T + 17) ∩�

σ∗
rel

(
(T = 18) :→

(
(T • = •T ) �� ˜̃turn-on · Thon

))
.

The signal transition operator �� and the signal evolution operator ∩� are
needed here to make precise that the temperature in the room does not change
instantaneously at the points of time at which the heating is turned off or on
and that the temperature in the room changes continuously as described above
during the periods in between.

Using the axioms and lifting rules of BPAsrt
hs +INT+REC, we can prove that

the solution of this recursive specification is the same as the solution of the
recursive specification that consists of the following equations:

Th ′ = (T = 18) ∧� Th ′on ,

Th ′on = (18 ≤ T ≤ 20 ∧ Ṫ = −T + 22) ∩�

σln 2
rel

(
(T • = •T ) �� ˜̃turn-off · Th ′off) ,

Th ′off = (18 ≤ T ≤ 20 ∧ Ṫ = −T + 17) ∩�

σln 3
rel

(
(T • = •T ) �� ˜̃turn-on · Th ′on) .

It is clear from this specification that the heater is on for a fraction ln 2/ln 3 of
the time. If we could hide the atomic propositions concerning the state vari-
able T , we would even get the process recursively specificied by the following
equation:

Th ′′ = σln 2
rel

(
˜̃turn-off

)
· σln 3

rel

(
˜̃turn-on

)
· Th ′′ .

For properties that do not concern the course of the values of T and Ṫ , the
processes Th ′ and Th ′′ do not show a single difference. Therefore, we would
like to add a hiding operator v Δ for each v ∈ V such that v Δ P is the
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process that behaves like P , but with the dependence of its behaviour on the
value of v and v̇ made invisible. With the envisaged operator, we would have
TΔTh ′ = Th ′′. However, this extension would require a semantics that carries
more detail than the structural operational semantics given in this paper. For
that reason, we consider it a topic for future work.

3.4 Zeno Behaviour

Consider an object that moves on a flat plane as follows. It starts moving
from the point (1, 0), i.e. the point with x-coordinate 1 and y-coordinate 0,
such that ẋ = −1 and ẏ = 0.5. When the x-coordinate becomes 0, it proceeds
moving such that ẋ = 0.5 and ẏ = −1. When the y-coordinate becomes 0 once
more, it proceeds moving again such that ẋ = −1 and ẏ = 0.5. And so on,
and so forth. Thus the object approaches in a zig-zag way the point (0, 0), but
never reaches it. Moreover, the direction of the object changes infinitely many
times before 2 time units have elapsed. This phenomenon, infinitely many
instantaneous state changes happening in a non-zero finite amount of time, is
called Zeno behaviour. Obviously, such behaviour is unrealizable.

Nevertheless, BPAsrt
hs +INT+REC is expressive enough to describe Zeno be-

haviour. For example, the behaviour considered above can be described by
the following equations:

O = (x = 1 ∧ y = 0) ∧� Or ,

Or = (x ≥ 0 ∧ ẋ = −1 ∧ ẏ = 0.5) ∩�

σ∗
rel

(
(x = 0) :→

(
(x• = •x ∧ y• = •y) �� ˜̃turn-left ·Ol

))
,

Ol = (y ≥ 0 ∧ ẋ = 0.5 ∧ ẏ = −1) ∩�

σ∗
rel

(
(y = 0) :→

(
(x• = •x ∧ y• = •y) �� ˜̃turn-right ·Or

))
.

Under bisimulation equivalence and ic-bisimulation equivalence, no distinction
is made between behaviours that occur after a point of time at which infinitely
many instantaneous state changes accumulate.

4 Algebra of Communicating Processes

In this section, we extend BPAsrt
hs with operators to capture parallelism and

communication. Beforehand, we give already an idea of the application of the
resulting process algebra, called ACPsrt

hs , by means of an example concerning
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the temperature control of a nuclear reactor. We also illustrate its application
by means of examples concerning a bottle filling system and a railroad crossing
system.

4.1 Example: Nuclear Reactor

This section is a sample of the application of ACPsrt
hs . It is meant to give a first

impression of how one describes the behaviour of hybrid systems composed
of several components that proceed concurrently and interact with each other
using ACPsrt

hs . We describe the behaviour of a simple nuclear reactor in which
the temperature of the reactor core is controlled by two control rods. This
example is adapted from Ref. [6]. We take the following informal description
of the behaviour of the reactor as the starting point of our formal description.

Initially, the temperature of the reactor core is 510 ◦ C and the control rods are
outside the reactor core. With the control rods outside the reactor core, the
temperature T increases according to the differential equation Ṫ = 0.1T − 50.
The reactor must be shut down if the temperature becomes higher than 550 ◦ C.
To prevent a shutdown, one of the control rods should be put into the reactor
core once the temperature becomes 550 ◦ C. With control rod 1 inside the
reactor core, the temperature T decreases according to the differential equation
Ṫ = 0.1T − 56. With control rod 2 inside the reactor core, the temperature
T decreases according to the differential equation Ṫ = 0.1T − 60. The control
rod inside the reactor is removed from the reactor core once the temperature
becomes 510 ◦ C. When it is removed, it cannot be put back in the reactor core
for the next c seconds. To prevent that the reactor ever needs to be shut down,
the time c must be short enough to guarantee that, whenever the temperature
of the reactor core becomes 550 ◦ C, one of the control rods can be put back
in the reactor core.

The recursive specification of the reactor core consists of the following equa-
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tions:

C = (T = 510) ∧� Cout ,

Cout = (T ≤ 550 ∧ Ṫ = 0.1T − 50) ∩�(
σ∗

rel

(
(T = 550) :→

(
(T • = •T ) �� ˜̃s1(add) · C in1

))
+ σ∗

rel

(
(T = 550) :→

(
(T • = •T ) �� ˜̃s2(add) · C in2

)))
,

C in1 = (T ≥ 510 ∧ Ṫ = 0.1T − 56) ∩�

σ∗
rel

(
(T = 510) :→

(
(T • = •T ) �� ˜̃s1(rmv) · Cout

))
,

C in2 = (T ≥ 510 ∧ Ṫ = 0.1T − 60) ∩�

σ∗
rel

(
(T = 510) :→

(
(T • = •T ) �� ˜̃s2(rmv) · Cout

))
.

Each of the control rods is recursively defined by a single equation:

R1 = σ∗
rel

(
˜̃r1(add) · σ∗

rel

(
˜̃r1(rmv) · σc

rel(R1)
))

,

R2 = σ∗
rel

(
˜̃r2(add) · σ∗

rel

(
˜̃r2(rmv) · σc

rel(R2)
))

.

Assuming that the whole system starts with both control rods out of the core
for at least c seconds, the reactor is described by the following term:

∂H(C ‖R1 ‖R2) ,

where

H = {si(d) | i ∈ {1, 2}, d ∈ {add , rmv}}
∪ {ri(d) | i ∈ {1, 2}, d ∈ {add , rmv}} .

We write si(d), ri(d) and ci(d) for the action of sending d at port i, the action of
receiving d at port i and the action of communicating d at port i, respectively.
The action ci(d) is the action that is left when si(d) and ri(d) are performed
synchronously. This notation is the standardized notation for handshaking
communication introduced for ACP in Ref. [38].

At this stage, we cannot explain this description fully. However, note that it
appears to be a fairly direct representation of the informal description given
above. In addition to constants and operators of ACPsrt [11] and ACPps [12],
the signal transition operator �� and the signal evolution operator ∩� introduced
in Section 2.4 are used. These operators are needed to make precise that the
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temperature of the reactor core does not change instantaneously at the points
of time at which a control rod is put into it or removed from it and that
the temperature of the reactor core changes continuously as described above
during the periods in between.

4.2 ACPsrt for Hybrid Systems

The basic ways of combining atomic processes into composite processes are
sequential and alternative composition. A more advanced way of combining
processes is parallel composition. Let P1 and P2 be processes. Then the parallel
composition of P1 and P2, written P1‖P2, is the process that proceeds with P1

and P2 in parallel. By this is roughly meant that it can behave in the following
ways:

• first either P1 or P2 performs its first action and next it proceeds in parallel
with the process following that action and the process that did not perform
an action;

• if their first actions can be performed synchronously, first P1 and P2 perform
their first actions synchronously and next it proceeds in parallel with the
processes following those actions.

However, P1 and P2 may have to idle before they can perform their first action.
Therefore, their parallel composition can only start with:

• performing an action of P1 or P2 if it can do so before or at the ultimate
point of time for the other process to start performing actions or to deadlock;

• performing an action of P1 and an action of P2 synchronously if both pro-
cesses can do so at the same point of time.

Moreover, the state transition caused by performing the first action of P1 or
P2 must be one that is not precluded by the other process. By this is meant
that:

• the signal of the other process must hold in the state immediately before
the transition and the state immediately after the transition;

• if the other process is idling when the action is performed, a state evolution
with discontinuities for all state variables of which the value changes by the
transition must be possible for the other process.

We say that the discontinuities resulting from the transition are possible for
the other process to indicate that the latter condition is fulfilled.

The point of view is that there is only one action left when actions are per-
formed synchronously. Thus, we can amongst other things easily model hand-
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shaking communication: when the action si(d) of sending datum d at port i and
the action ri(d) of receiving datum d at port i are performed synchronously,
only the action ci(d) of communicating datum d at port i is left.

Parallel composition does not prevent actions that can be performed syn-
chronously from being performed on their own. In order to capture parallelism
and communication fully, we have, in addition to parallel composition, encap-
sulation with respect to a certain set of actions. Let P be a process and H be a
set of actions. Then the encapsulation of P with respect to H , written ∂H(P ),
keeps P from performing actions in H . The process P becomes deadlocked at
the point that one of these actions would otherwise be performed. The name
encapsulation is used here because the actions in H are encapsulated from
communication with actions coming from the environment of P .

We will use two auxiliary operators in the axiomatization of ACPsrt
hs : �� and |.

The operator �� is interpreted as left merge, which is the same as parallel com-
position except that the left merge of P1 and P2 can only start with performing
an action of P1. The operator | is interpreted as communication merge, which
is the same as parallel composition except that the communication merge of
P1 and P2 can only start with performing an action of P1 and an action of P2

synchronously.

We shall henceforth use H,H ′, . . . to stand for arbitrary subsets of A.

It is assumed that a fixed but arbitrary partial commutative and associative
communication function γ : A × A → A has been given. The function γ is
regarded to give the result of synchronously performing any two actions for
which this is possible, and to be undefined otherwise.

The additional axioms for parallel composition and encapsulation are the equa-
tions given in Tables 11, 12, 13, 14 and 15. Adding the equations given in
Table 11 to the axioms of BPAsrt

⊥ gives us the subtheory ACPsrt
⊥ , ACPsrt with

non-existence. Adding the equations given in Tables 11 and 12 to the axioms
of BPAsrt

ps gives us the subtheory ACPsrt
ps , ACPsrt with propositional signals.

Adding the equations given in Tables 11, 12, 13 and 14, with the exception
of axioms CM2SRPS and CM3SRPS from Table 11, to the axioms and lifting
rule of icBPAsrt

hs gives us the theory ACPsrt
hs , ACPsrt for hybrid systems (note

that axioms HST5 and HST14 and lifting rules HSELR2 and HSELR3 are not
present in ACPsrt

hs ). Adding the same equations, together with the equations
given in Table 15, to the axioms and lifting rule of icBPAsrt

hs with integration
gives us the theory ACPsrt

hs with integration.

First of all, we look at the additional axioms for ACPsrt
⊥ (Table 11). Ax-

ioms CM1, CM4, CM8, CM9, D3 and D4 are in common with ACP. Axioms
CM2SRPS, CM3SRPS, CM5SR–CM7SR, CF1SR, CF2SR, D1SR and D2SR
are simple reformulations of axioms CM2, CM3, CM5–CM7, CF1, CF2, D1
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Table 11
Additional axioms for ACPsrt

⊥ (a, b, c ∈ Aδ, p ≥ 0, r > 0)

x ‖ y = x �� y + y �� x+ x | y CM1
˜̃a �� x = ˜̃a · x+ ∂A(νrel(x)) CM2SRPS
˜̃a · x �� y = ˜̃a · (x ‖ y) + ∂A(νrel(y)) CM3SRPS

σr
rel(x) �� νrel(y) = ∂A(νrel(y)) SRCM1aPS

σr
rel(x) �� (νrel(y) + z) = σr

rel(x) �� z + ∂A(νrel(y)) SRCM1bPS

σr
rel(x) �� σr

rel(y) = σr
rel(x �� y) SRCM2

(x+ y) �� z = x �� z + y �� z CM4
˜̃a · x | ˜̃b = (˜̃a | ˜̃b) · x CM5SR
˜̃a | ˜̃b · x = (˜̃a | ˜̃b) · x CM6SR
˜̃a · x | ˜̃b · y = (˜̃a | ˜̃b) · (x ‖ y) CM7SR

νrel(x) | σr
rel(y) = ∂A(νrel(x)) SRCM3PS

σr
rel(x) | νrel(y) = ∂A(νrel(y)) SRCM4PS

σr
rel(x) | σr

rel(y) = σr
rel(x | y) SRCM5

(x+ y) | z = x | z + y | z CM8

x | (y + z) = x | y + x | z CM9

˜̃a | ˜̃b = ˜̃c if γ(a, b) = c CF1SR
˜̃a | ˜̃b = ˜̃δ if γ(a, b) undefined CF2SR

∂H(˜̃a) = ˜̃a if a �∈ H D1SR

∂H(˜̃a) = ˜̃δ if a ∈ H D2SR

∂H(σp
rel(x)) = σp

rel(∂H(x)) SRD

∂H(x+ y) = ∂H(x) + ∂H(y) D3

∂H(x · y) = ∂H(x) · ∂H(y) D4

⊥ �� x = ⊥ NE4

⊥ | x = ⊥ NE5

x | ⊥ = ⊥ NE6

∂H(⊥) = ⊥ NE7

and D2 of ACP. For a detailed introduction to ACP, see Ref. [10]. Axioms
SRCM1aPS, SRCM1bPS, SRCM2, SRCM3PS, SRCM4PS, SRCM5 and SRD
are new axioms concerning the interaction of relative delay with left merge,
communication merge and encapsulation. The axioms given in Table 11, other
than axioms NE4–NE7, are the axioms concerning parallel composition and
encapsulation of ACPsrt without the deadlocked process (see Ref. [11]), but

with ˜̃δ replaced by ∂A(νrel(x)) or ∂A(νrel(y)) in the axioms of which the name
ends with PS. This is to accommodate the addition of propositional signals:
the signal of the left merge and communication merge of two processes is
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Table 12
Additional axioms for ACPsrt

ps (r > 0)

(ψ :→ x) �� y = ψ :→ (x �� y) + ∂A(νrel(y)) PSCM1

(ψ :→ x) | y = ψ :→ (x | y) + ∂A(νrel(y)) PSCM2

x | (ψ :→ y) = ψ :→ (x | y) + ∂A(νrel(x)) PSCM3

(ψ ∧� x) �� y = ψ ∧� (x �� y) PSCM4

(ψ ∧� x) | y = ψ ∧� (x | y) PSCM5

x | (ψ ∧� y) = ψ ∧� (x | y) PSCM6

σr
rel(x) �� (ψ :→ y + z) =

ψ :→ (σr
rel(x) �� (y + z)) + ¬ψ :→ (σr

rel(x) �� z) PSSRCM

∂H(ψ :→ x) = ψ :→ ∂H(x) PSD1

∂H(ψ ∧� x) = ψ ∧� ∂H(x) PSD2

always the conjunction of the signals of both processes. Axioms NE4–NE7
concern the effect of left merge, communication merge and encapsulation on
the non-existent process. The equation t �� ⊥ = ⊥ is derivable for all closed
terms t. The axioms of ACPsrt

⊥ are essentially the axioms of ACPsrt and ACP⊥
with on top of that axiom NESRU (Table 1) concerning the effect of relative
undelayable time-out on the non-existent process.

Secondly, we look at the additional axioms for ACPsrt
ps (Table 12). Axioms

PSCM1–PSCM6, PSD1 and PSD2 are similar to the additional axioms for
ACPps (see Ref. [12]). Terms of the form sρ(x) ∧� δ have been replaced by

terms of the form ∂A(νrel(x)) instead of sρ(x) ∧� ˜̃δ. However, the addition of the

operator sρ would yield the derivability of ∂A(νrel(t)) = sρ(t) ∧� ˜̃δ for all closed
terms t. The other differences are due to the absence of the terminal signal
emission operator and the choice of having as the signal of the left merge of two
processes, as in the case of the communication merge, always the conjunction
of the signals of both processes. This choice, originating from the variant with
discrete relative timing introduced in Ref. [34], is required for axiom PSSRCM
to be sound. Axiom PSSRCM is useful dealing with the parallel composition of
processes that are conditionally capable of idling. Note that axioms NE4–NE7
are derivable from axioms PSCM4, PSCM5, PSCM6, PSD2 and SE2. Note
further that the following generalization of axiom PSSRCM is derivable:

σr
rel(x) �� (ψ :→ y + ψ′ :→ z)

= (ψ ∧ ψ′) :→ (σr
rel(x) �� (y + z))

+ (ψ ∧ ¬ψ′) :→ (σr
rel(x) �� y) + (¬ψ ∧ ψ′) :→ (σr

rel(x) �� z) .

The following equation is derivable for all closed terms t and t′:

t �� (ψ ∧� t′) = ψ ∧� (t �� ψ ∧� t′) .
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Table 13
Additional axioms for ACPsrt

hs (a ∈ Aδ, r, s > 0)
˜̃a �� x = dρ(x) �� ˜̃a · x+ ∂A(νrel(x)) CM2SRHS
˜̃a · x �� y = dρ(y) �� ˜̃a · (x ‖ y) + ∂A(νrel(y)) CM3SRHS

(φ ∩�V x) �� y = φ ∩�V (x �� y) HSCM1

(φ ∩�V x) | y = φ ∩�V (x | y) HSCM2

x | (φ ∩�
V y) = φ ∩�

V (x | y) HSCM3

(χ �� νrel(x)) �� y = χ �� (νrel(x) �� y) + ∂A(νrel(y)) HSCM4

(χ �� x) | y = χ �� (x | y) + ∂A(νrel(y)) HSCM5

x | (χ �� y) = χ �� (x | y) + ∂A(νrel(x)) HSCM6

σr
rel(x) �� (φ ∩�

V σr
rel(y) + z) =

σr
rel(x) �� (σr

rel(φ ∩�
V y) + z) + φ ∩�

V σr
rel(

˜̃δ) HSSRCM

∂H(φ ∩�V x) = φ ∩�V ∂H(x) HSD1

∂H(χ �� x) = χ �� ∂H(x) HSD2

Table 14
Axioms for root discontinuity operator (a ∈ Aδ, r > 0)
dρ(⊥) = F RDO1

dρ(˜̃a) = T RDO2

dρ(σr
rel(x)) = T RDO3

dρ(x+ y) = dρ(x) ∧ dρ(y) RDO4

dρ(x · y) = dρ(x) RDO5

dρ(ψ :→ x) = •ψ→ dρ(x) RDO6

dρ(ψ ∧� x) = •ψ ∧ dρ(x) RDO7

dρ(φ ∩�
V νrel(x)) = •φ ∧ dρ(νrel(x)) RDO8

dρ(φ ∩�
V σr

rel(x)) = •φ ∧ CV RDO9

dρ(χ �� x) = •(◦χ) → dρ(x) RDO10

The axioms of ACPsrt
ps are essentially the axioms of ACPsrt and ACPps with on

top of that axiom PSSRCM, axiom NESRU (Table 1) concerning the effect of
relative undelayable time-out on the non-existent process and axioms PSSRU1
and PSSRU2 (Table 2) concerning the interaction of relative undelayable time-
out with conditional proceeding and signal emission.

Finally, we look at the additional axioms for ACPsrt
hs (Tables 13 and 14). Ax-

ioms CM2SRHS and CM3SRHS from Table 13 replace axioms CM2SRPS
and CM3SRPS from Table 11. These new axioms are needed to reflect that in
the parallel composition of two processes the discontinuities resulting from the
transition caused by performing the first action of one of them must be possible
for the other. The auxiliary root discontinuity operator dρ, of which axioms
RDO1–RDO10 are the defining equations, yields the transition proposition
that characterizes the transitions from which only discontinuities result that
are possible for a process. Recall that CV abbreviates

∧
v∈V (v• = •v∧ v̇• = •v̇).

The following substitution instances of axioms CM2SRPS and CM3SRPS are
derivable for all closed terms t in which the signal evolution operator only
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occurs in subterms of the form φ ∩�∅ t′:

˜̃a �� t = ˜̃a · t+ ∂A(νrel(t)) ,

˜̃a · x �� t = ˜̃a · (x ‖ t) + ∂A(νrel(t)) .

Hence, the auxiliary operator dρ, and the replacement of axioms CM2SRPS
and CM3SRPS by axioms CM2SRHS and CM3SRHS, would not be needed if
the preclusion of discontinuities for certain state variables in state evolutions
was not supported. Axioms HSCM1–HSCM6, HSSRCM, HSD1 and HSD2
show that signal evolution and signal transition take effect over what takes
place first, also in the presence of parallel composition and encapsulation.
Obviously, we do not have x �� (φ ∩�

V y) = φ ∩�
V (x �� y): y may not be done

with idling when x performs its first action. Axiom HSSRCM shows that
notwithstanding that, if two processes idle in parallel, signal evolution takes
place in a way possible for both processes. Note that the following variation
of axiom HSSRCM is derivable:

σr
rel(x) �� (φ ∩�

V σ
r
rel(y) + φ′ ∩�

V ′ σr
rel(z))

= σr
rel(x) �� (σr

rel(φ ∩�
V y) + σr

rel(φ
′ ∩�

V ′ z)) + (φ ∧ φ′) ∩�
V ∪V ′ σr

rel(
˜̃δ) .

Using the axioms of ACPsrt
hs , we can, for example, derive the following equa-

tions:

σ2
rel((v

• = •v + 1) �� ˜̃a · σ1
rel(

˜̃b)) ‖ ((v̇ = 0) ∩�{v} σ3
rel(˜̃c))

= (v̇ = 0) ∩�{v} σ2
rel(

˜̃δ) ,

σ2
rel((v

• = •v + 1) �� ˜̃a · σ1
rel(

˜̃b)) ‖ ((v̇ = 0) ∩�∅ σ3
rel(˜̃c))

= (v̇ = 0) ∩�∅
σ2

rel((v
• = •v + 1) �� ˜̃a · ((v̇ = 0) ∩�∅ σ1

rel(
˜̃b · (v̇ = 0) ∧� ˜̃c+ ˜̃c · ˜̃b))) .

Note the difference on the left hand side of these equations: (v̇ = 0) ∩�{v}
σ3

rel(˜̃c) precludes discontinuities for v, but (v̇ = 0) ∩�∅ σ3
rel(˜̃c) does not preclude

discontinuities for v.

We can prove that all closed terms of ACPsrt
hs can be reduced to a closed term

of BPAsrt
hs .

Theorem 9 (Elimination) For all closed terms t of ACPsrt
hs , there exists

a closed term t′ of BPAsrt
hs such that t = t′ is derivable from the axioms of

ACPsrt
hs .

PROOF. See Appendix A.4. �
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Table 15
Additional axioms for integration∫

u∈U(F (u) �� x) = (
∫
u∈UF (u)) �� x INT14∫

u∈U(F (u) | x) = (
∫
u∈UF (u)) | x INT15∫

u∈U(x | F (u)) = x | (∫u∈UF (u)) INT16∫
u∈U∂H(F (u)) = ∂H(

∫
u∈UF (u)) INT17

dρ(
∫
u∈UF (u)) =

∧
p∈U dρ(F (p)) RDO11

As a corollary of Theorem 9, we have that all closed terms of ACPsrt
hs can be

reduced to a basic term.

Corollary 10 (Elimination) For all closed terms t of ACPsrt
hs , there exists

a basic term t′ such that t = t′ is derivable from the axioms of ACPsrt
hs .

Integration can be added to ACPsrt
⊥ , ACPsrt

ps as well as ACPsrt
hs . The additional

axioms for integration (Table 15) can be regarded as variants of axioms CM4,
CM8, CM9, D3 and RDO4.

We shall henceforth use the name ACPsrt
hs +INT to refer to the extension of

ACPsrt
hs with integration and the name ACPsrt

hs +INT+REC to refer to the
extension of ACPsrt

hs +INT with guarded recursion.

4.3 Two-Phase Derivation

The equations added to the axioms of icBPAsrt
hs to obtain ACPsrt

hs , cannot be
added to BPAsrt

hs : if axiom HST5, axiom HST14, lifting rule HSELR2 or lifting
rule HSELR3 is added to ACPsrt

hs , the result is not sound. For example, we can
derive the following equation from the axioms of ACPsrt

hs :

((v = 0) ∧� ((v• = •v + 1) �� ˜̃a · ((v = 0) :→ ˜̃b))) �� ((v• = •v − 1) �� ˜̃c)

= (v = 0) ∧� ((v• = •v + 1) �� ˜̃a · ((v• = •v − 1) �� ˜̃c · ˜̃b)) .

However, if we add axiom HST5 to ACPsrt
hs , we can also derive the following

equation:

(v = 0) ∧� ((v• = •v + 1) �� ˜̃a · ((v = 0) :→ ˜̃b))

= (v = 0) ∧� ((v• = •v + 1) �� ˜̃a · ˜̃δ) .

Then by substitution of the right-hand side for the left-hand side in the pre-
vious equation, and next further derivation from the axioms of ACPsrt

hs , we
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get:

((v = 0) ∧� ((v• = •v + 1) �� ˜̃a · ((v = 0) :→ ˜̃b))) �� ((v• = •v − 1) �� ˜̃c)

= ((v = 0) ∧� ((v• = •v + 1) �� ˜̃a · ˜̃δ)) �� ((v• = •v − 1) �� ˜̃c)

= (v = 0) ∧� ((v• = •v + 1) �� ˜̃a · ((v• = •v − 1) �� ˜̃c · ˜̃δ)) .

Yet, we have that

(v = 0) ∧� ((v• = •v + 1) �� ˜̃a · ((v• = •v − 1) �� ˜̃c · ˜̃b))
�↔ (v = 0) ∧� ((v• = •v + 1) �� ˜̃a · ((v• = •v − 1) �� ˜̃c · ˜̃δ)) ,

(v = 0) ∧� ((v• = •v + 1) �� ˜̃a · ((v• = •v − 1) �� ˜̃c · ˜̃b))
�↔ (v = 0) ∧� ((v• = •v + 1) �� ˜̃a · ((v• = •v − 1) �� ˜̃c · ˜̃δ)) .

The problem is that bisimulation equivalence is not preserved by parallel
composition, left merge and communication merge whereas axioms HST5
and HST14 and lifting rules HSELR2 and HSELR3 are not sound under ic-
bisimulation equivalence. Because we still want to use these axioms and lifting
rules, we introduce two-phase derivation which only permits the use of axioms
HST5 and HST14 and lifting rules HSELR2 and HSELR3 in the absence of
parallel composition, left merge and communication merge. With the intro-
duction of two-phase derivation we follow an idea from Ref. [39], where this
kind of derivation was introduced to deal with a comparable problem.

Let t1 and t2 be closed terms of ACPsrt
hs . Then t1 = t2 is two-phase derivable

from the axioms and lifting rule of ACPsrt
hs and the axioms and lifting rules of

BPAsrt
hs , written ACPsrt

hs /BPAsrt
hs �2 t1 = t2, if there exist closed terms t′1 and t′2

of BPAsrt
hs such that

ACPsrt
hs � t1 = t′1, ACPsrt

hs � t2 = t′2, BPAsrt
hs � t′1 = t′2 .

Let t1 and t2 be closed terms of ACPsrt
hs +Ext, where Ext is INT, INT+REC

or INT+REC+HSL. Then t1 = t2 is two-phase derivable from the axioms and
lifting rule of ACPsrt

hs +Ext and the axioms and lifting rules of BPAsrt
hs +Ext,

written ACPsrt
hs /BPAsrt

hs +Ext �2 t1 = t2 if there exist closed terms t′1 and t′2 of
BPAsrt

hs +Ext such that

ACPsrt
hs + Ext � t1 = t′1, ACPsrt

hs + Ext � t2 = t′2, BPAsrt
hs + Ext � t′1 = t′2 .

Here, HSL refers to the extension with localization, which is treated in Sec-
tion 5.
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It is worth mentioning that the proofs of Theorems 1 and 9 show that axioms
HST5 and HST14 and lifting rules HSELR2 and HSELR3 are not needed to
obtain the elimination results. If they would be needed, the idea of two-phase
derivation would be useless.

Two-phase derivation does not permit the undesirable derivation given above.
However, it does permit the derivations leading to the simplications of descrip-
tions of hybrid systems shown in Sections 4.6 and 4.7. Those simplications,
which facilitate analysis of the systems concerned, would not be possible oth-
erwise.

The need for two-phase derivation originates from the potentiality of inter-
ference between parallel processes through shared state variables. Two-phase
derivation may hinder a modular approach to hybrid system description and
analysis. To remedy this largely, we could adapt two-phase derivation in such
a way that it takes into account the absence of shared state variables.

4.4 Operational Semantics of ACPsrt
hs

The structural operational semantics for parallel composition, left merge, com-
munication merge and encapsulation is described by the rules given in Ta-
bles 16 and 17. In Table 17, we use a to stand for elements of Aδ. The following
additional transition relations are used:

• a unary relation α→α′∈ [d( )] for each α, α′ : V ∪ V̇ → R.

We write 〈t, α〉 ��−→ for the set of all transition formulas ¬(〈t, α〉 r,ρ�−−→ 〈t′, α′〉)
where t′ is a closed term of ACPsrt

hs , α′ : V ∪ V̇ → R, r ∈ R> and ρ ∈ Er.

The auxiliary discontinuity relations α→α′∈ [d( )] can be explained as fol-
lows:

• α→α′∈ [d(t)]: in state α, the discontinuities resulting from a transition to
state α′ are possible for process t.

The following is an important property of the transition relations defined by
the transition rules given for ACPsrt

hs . We have for all closed terms t, for all
α, α′ : V ∪ V̇ → R:

α→α′∈ [d(t)] implies α∈ [s(t)] .
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Table 16
Additional rules for ACPsrt

hs (a, b, c ∈ A, r > 0)
〈x, α〉 a−→〈x′, α′〉, α→α′ ∈ [d(y)], α′ ∈ [s(y)]

〈x ‖ y,α〉 a−→〈x′ ‖ y, α′〉
α→α′ ∈ [d(x)], α′ ∈ [s(x)], 〈y,α〉 a−→〈y′, α′〉

〈x ‖ y,α〉 a−→〈x ‖ y′, α′〉
〈x, α〉 a−→〈√, α′〉, α→α′ ∈ [d(y)], α′ ∈ [s(y)]

〈x ‖ y, α〉 a−→〈y, α′〉
α→α′ ∈ [d(x)], α′ ∈ [s(x)], 〈y,α〉 a−→〈√, α′〉

〈x ‖ y, α〉 a−→〈x, α′〉
〈x, α〉 a−→〈x′, α′〉, 〈y,α〉 b−→〈y′, α′〉

〈x ‖ y, α〉 c−→〈x′ ‖ y′, α′〉
γ(a, b) = c

〈x, α〉 a−→〈x′, α′〉, 〈y,α〉 b−→〈√, α′〉
〈x ‖ y,α〉 c−→〈x′, α′〉

γ(a, b) = c

〈x, α〉 a−→〈√, α′〉, 〈y,α〉 b−→〈y′, α′〉
〈x ‖ y,α〉 c−→〈y′, α′〉

γ(a, b) = c
〈x, α〉 a−→〈√, α′〉, 〈y, α〉 b−→〈√, α′〉

〈x ‖ y,α〉 c−→〈√, α′〉
γ(a, b) = c

〈x, α〉 r,ρ
−−→〈x′, α′〉, 〈y, α〉 r,ρ
−−→〈y′, α′〉
〈x ‖ y,α〉 r,ρ
−−→〈x′ ‖ y′, α′〉

〈x, α〉 a−→〈x′, α′〉, α→α′ ∈ [d(y)], α′ ∈ [s(y)]

〈x �� y, α〉 a−→〈x′ ‖ y, α′〉
〈x,α〉 a−→〈√, α′〉, α→α′ ∈ [d(y)], α′ ∈ [s(y)]

〈x �� y, α〉 a−→〈y, α′〉
〈x, α〉 r,ρ
−−→〈x′, α′〉, 〈y, α〉 r,ρ
−−→〈y′, α′〉

〈x �� y,α〉 r,ρ
−−→〈x′ �� y′, α′〉
〈x, α〉 a−→〈x′, α′〉, 〈y,α〉 b−→〈y′, α′〉

〈x | y,α〉 c−→〈x′ ‖ y′, α′〉
γ(a, b) = c

〈x, α〉 a−→〈x′, α′〉, 〈y,α〉 b−→〈√, α′〉
〈x | y, α〉 c−→〈x′, α′〉

γ(a, b) = c

〈x, α〉 a−→〈√, α′〉, 〈y,α〉 b−→〈y′, α′〉
〈x | y, α〉 c−→〈y′, α′〉

γ(a, b) = c
〈x, α〉 a−→〈√, α′〉, 〈y, α〉 b−→〈√, α′〉

〈x | y, α〉 c−→〈√, α′〉
γ(a, b) = c

〈x, α〉 r,ρ
−−→〈x′, α′〉, 〈y, α〉 r,ρ
−−→〈y′, α′〉
〈x | y,α〉 r,ρ
−−→〈x′ | y′, α′〉

〈x, α〉 a−→〈x′, α′〉
〈∂H(x), α〉 a−→〈∂H(x′), α′〉

a �∈ H
〈x,α〉 a−→〈√, α′〉

〈∂H(x), α〉 a−→〈√, α′〉
a �∈ H

〈x, α〉 r,ρ
−−→〈x′, α′〉
〈∂H(x), α〉 r,ρ
−−→〈∂H(x′), α′〉
α∈ [s(x)], α∈ [s(y)]

α∈ [s(x ‖ y)]
α∈ [s(x)], α∈ [s(y)]

α∈ [s(x �� y)]
α∈ [s(x)], α∈ [s(y)]

α∈ [s(x | y)]
α∈ [s(x)]

α∈ [s(∂H(x))]

Note that we have for all closed terms t in which the signal evolution operator
only occurs in subterms of the form φ ∩�∅ t′, for all α, α′ : V ∪ V̇ → R:

α→α′∈ [d(t)] iff α∈ [s(t)] .

Hence, the auxiliary transition relations α→α′∈ [d( )] would be superfluous if
the preclusion of discontinuities for certain state variables in state evolutions
was not supported. We also have for all closed terms t and states α and α′:

α→α′∈ [d(t)] iff α−→α′ |= dρ(t) .

48



Table 17
Rules for α→α′ ∈ [d( )] (a ∈ Aδ, r > 0)

α→α′ ∈ [d(˜̃a)]

α→α′ ∈ [d(x)]

α→α′ ∈ [d(σ0
rel(x))] α→α′ ∈ [d(σr

rel(x))]

α→α′ ∈ [d(x)], α→α′ ∈ [d(y)]

α→α′ ∈ [d(x+ y)]

α→α′ ∈ [d(x)]

α→α′ ∈ [d(x · y)]
α→α′ ∈ [d(x)]

α→α′ ∈ [d(ψ :→ x)] α→α′ ∈ [d(ψ :→ x)]
α �|= ψ

α→α′ ∈ [d(x)]

α→α′ ∈ [d(ψ ∧� x)]
α |= ψ

α→α′ ∈ [d(x)], 〈x,α〉 r,ρ
−−→〈x′, α′′〉
α→α′ ∈ [d(φ ∩�V x)]

α−→α′ |= CV , α |= φ
α→α′ ∈ [d(x)], 〈x,α〉 �
−→
α→α′ ∈ [d(φ ∩�V x)]

α |= φ

α→α′ ∈ [d(x)]

α→α′ ∈ [d(χ �� x)] α→α′ ∈ [d(χ �� x)]
α �|= ◦χ

α∈ [s(x)]

α→α′ ∈ [d(νrel(x))]

α→α′ ∈ [d(x)], α→α′ ∈ [d(y)], 〈x ‖ y, α〉 r,ρ
−−→〈x′, α′′〉
α→α′ ∈ [d(x ‖ y)]

α∈ [s(x)], α∈ [s(y)], 〈x ‖ y,α〉 �
−→
α→α′ ∈ [d(x ‖ y)]

α→α′ ∈ [d(x)], α→α′ ∈ [d(y)], 〈x �� y,α〉 r,ρ
−−→〈x′, α′′〉
α→α′ ∈ [d(x �� y)]

α∈ [s(x)], α∈ [s(y)], 〈x �� y, α〉 �
−→
α→α′ ∈ [d(x �� y)]

α→α′ ∈ [d(x)], α→α′ ∈ [d(y)], 〈x | y, α〉 r,ρ
−−→〈x′, α′′〉
α→α′ ∈ [d(x | y)]

α∈ [s(x)], α∈ [s(y)], 〈x | y, α〉 �
−→
α→α′ ∈ [d(x | y)]

α→α′ ∈ [d(x)]

α→α′ ∈ [d(∂H(x))]

{α→α′ ∈ [d(F (q))] | q ∈ U}
α→α′ ∈ [d(

∫
u∈U

F (u))]

α→α′ ∈ [d(〈tX |E〉)]
α→α′ ∈ [d(〈X|E〉)]

X = tX ∈ E

4.5 Bisimulation and Soundness

The definitions of bisimulation equivalence and ic-bisimulation equivalence
have to be adapted to the addition of discontinuity relations. The following
condition must be added to both definitions:

• whenever α→α′∈ [d(t1)], then α→α′∈ [d(t2)].

The following example shows that bisimulation equivalence is not preserved
by all operators of ACPsrt

hs . We have

(v• = 1) �� ˜̃a · ((v = 0) :→ ˜̃b)↔ (v• = 1) �� ˜̃a · ˜̃δ .
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First, we take the left-hand side as the first argument of a left merge with
(v• = 0) �� ˜̃c. A possible sequence of transitions is

〈((v• = 1) �� ˜̃a · ((v = 0) :→ ˜̃b)) �� ((v• = 0) �� ˜̃c), v �→ ∗〉
a−→ 〈((v = 0) :→ ˜̃b) ‖ ((v• = 0) �� ˜̃c), v �→ 1〉
c−→ 〈(v = 0) :→ ˜̃b, v �→ 0〉
b−→ 〈√, v �→ 0〉 .

Here, v �→ r denotes the state in which the value of v is r; and ∗ is any real
number. Secondly, we take the right-hand side as the first argument of a left
merge with (v• = 0) �� ˜̃c. The only possible sequence of transitions starting
from the same state is

〈((v• = 1) �� ˜̃a · ˜̃δ) �� ((v• = 0) �� ˜̃c), v �→ ∗〉
a−→ 〈˜̃δ ‖ ((v• = 0) �� ˜̃c), v �→ 1〉
c−→ 〈˜̃δ, v �→ 0〉 .

This discrepancy does not occur with ic-bisimulation equivalence because

(v• = 1) �� ˜̃a · ((v = 0) :→ ˜̃b) �↔ (v• = 1) �� ˜̃a · ˜̃δ .

Ic-bisimulation equivalence is preserved by all operators of ACPsrt
hs .

Theorem 11 (Congruence) Ic-bisimulation equivalence is a congruence with
respect to the operators of ACPsrt

hs .

PROOF. For ic-bisimulation equivalence, congruence follows immediately
from the following. The transition rules for ACPsrt

hs constitute a complete tran-
sition system specification in panth format, and ic-bisimulation equivalence is
the equivalence which is guaranteed to be a congruence in that case (see e.g.
Refs. [40,36]). 5 �

The axioms and lifting rule of ACPsrt
hs are sound with respect to ic-bisimulation

equivalence.

Theorem 12 (Soundness) For all closed terms t1 and t2 of ACPsrt
hs , we have

ACPsrt
hs � t1 = t2 implies t1 ↔ t2.

5 This equivalence is called bisimulation equivalence in Refs. [40,36]. This should
not be confused with what is called bisimulation equivalence in this paper.
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Fig. 1. Connection diagram for bottle filling system

PROOF. See Appendix A.5. �

As a corollary of Theorems 7 and 12, we have the soundness of two-phase
derivation.

Corollary 13 (Soundness) For all closed terms t1 and t2 of ACPsrt
hs , we

have ACPsrt
hs /BPAsrt

hs �2 t1 = t2 implies t1 ↔ t2.

4.6 Example: Bottle Filling System

In this section, we consider a bottle filling system. This example is adapted
from Ref. [37]. The bottle filling system consists of two subsystems, a conveyer
belt CB and a container C, which proceed concurrently. They communicate
with each other at ports 1 and 2. The configuration of the bottle filling system
is shown in Figure 1. We take the following informal description of the bottle
filling system as the starting point of our specifications of the conveyer belt
and the container.

Bottles on a conveyer belt are filled with 10 L of liquid poured from a container.
When a bottle is put under the container, a tap is opened and the bottle is
filled at a rate of 3 L/s until the container becomes empty or the bottle becomes
full, whatever happens first. In the case where the container becomes empty
first, the bottle is filled further at the same rate as the container. When the
bottle is full, the tap is closed and the conveyer belt starts moving to put the
next bottle under the container, which takes 1 s. The container is filled at a
constant rate of rL/s. Its capacity is mL. Naturally, it is highly preferable
that overflow never occurs. It is also preferable that the container does not
get empty during the filling of each bottle. It is assumed that initially the
conveyer belt starts moving to put the first bottle under the container and the
container is half full.

The recursive specifications of the conveyer belt and the container given be-
low need no further explanation because they are fairly direct representations
of the corresponding informal descriptions. The recursive specification of the
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conveyer belt consists of the following equations:

CB = (b = 0 ∧ ḃ = 0) ∩�σ1
rel

(
(b• = •b) �� ˜̃s1(start) · CBnf

)
,

CBnf = (b ≤ 10 ∧ ḃ = 3) ∩�(
σ∗

rel

(
(b• = •b) �� ˜̃r2(empty) · CB sf

)
+ σ∗

rel

(
(b = 10) :→

(
(b• = 0) �� ˜̃s1(stop) · CB

)))
,

CB sf = (b ≤ 10 ∧ ḃ = r) ∩�

σ∗
rel

(
(b = 10) :→

(
(b• = 0) �� ˜̃s1(stop) · CB

))
.

The recursive specification of the container consists of the following equations:

C = (c = m/2) ∧� C inc ,

C inc = (c ≤ m ∧ ċ = r) ∩�(
σ∗

rel

(
(c < m) :→

(
(c• = •c) �� ˜̃r1(start) · C dec

))
+ σ∗

rel

(
(c = m) :→

(
(c• = •c) �� ˜̃overflow · ˜̃δ

)))
,

Cdec = (c ≥ 0 ∧ ċ = r − 3) ∩�(
σ∗

rel

(
(c > 0) :→

(
(c• = •c) �� ˜̃r1(stop) · C inc

))
+ σ∗

rel

(
(c = 0) :→

(
(c• = •c) �� ˜̃s2(empty) · Cdry

)))
,

Cdry = (c = 0) ∩�σ∗
rel

(
(c• = •c) �� ˜̃r1(stop) · C inc

)
.

The whole system is described by the following term:

∂H(CB ‖ C) ,

where

H = {s1(d) | d ∈ {start , stop}} ∪ {r1(d) | d ∈ {start , stop}}
∪ {s2(empty)} ∪ {r2(empty)}

and the communication function γ is defined such that

γ(si(d), ri(d)) = γ(ri(d), si(d)) = ci(d)

for all d ∈ {start , stop, empty} and i ∈ {1, 2}, and it is undefined otherwise.
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Using the axioms and lifting rule of ACPsrt
hs +INT+REC and the axioms and

lifting rules of BPAsrt
hs +INT+REC, we obtain by means of two-phase derivation

the following guarded recursive specification of the whole system:

X ini = (c = m/2) ∧� Xmv
m/2 ,

Xmv
c′ = (b = 0 ∧ ḃ = 0 ∧ c ≤ m ∧ ċ = r) ∩�

σ1
rel

(
(b• = •b ∧ c• = •c) �� ˜̃c1(start) ·Xnf

c′+r

)
(for every c′ < m− r),

Xmv
c′ = (b = 0 ∧ ḃ = 0 ∧ c ≤ m ∧ ċ = r) ∩�

σ
(m−c′)/r
rel

(
(b• = •b ∧ ḃ• = •ḃ ∧ c• = •c) �� ˜̃overflow · ˜̃δ

)
(for every m− r ≤ c′ < m),

Xnf
c′ = (b ≤ 10 ∧ ḃ = 3 ∧ c ≥ 0 ∧ ċ = r − 3) ∩�

σ
10/3
rel

(
(b• = 0 ∧ c• = •c) �� ˜̃c1(stop) ·Xmv

c′−(3−r)(10/3)

)
(for every (3 − r)(10/3) < c′ < m),

Xnf
c′ = (b ≤ 10 ∧ ḃ = 3 ∧ c ≥ 0 ∧ ċ = r − 3) ∩�

σ
c′/(3−r)
rel

(
(b• = •b ∧ c• = •c) �� ˜̃c2(empty) ·Xsf

3c′/(3−r)

)
(for every c′ ≤ (3 − r)(10/3)),

Xsf
b′ = (b ≤ 10 ∧ ḃ = r ∧ c = 0) ∩�

σ
(10−b′)/r
rel

(
(b• = 0 ∧ c• = •c) �� ˜̃c1(stop) ·Xmv

0

)
(for every b′ ≤ 10).

From this recursive specification, it is easy to see that the contents c′ of the
container fluctuates around m/2 liters and overflow never occurs if r = 30/13
and m/2 > r. If r > 30/13, eventually overflow occurs. If r < 30/13, overflow
never occurs but during the filling of each bottle the container gets empty.

4.7 Example: Railroad Crossing System

In this section, we consider a railroad crossing system. This example is adapted
from Ref. [6]. The configuration of the railroad crossing system is shown in
Figure 2. Analysis meant to provide answers to various basic questions about
the railroad crossing system requires that the behaviour of its controller as
well as the behaviour of the trains and the gate is described. We take the
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Fig. 2. Connection diagram for railroad crossing system

following informal description of the railroad crossing system from Ref. [37]
as the starting point of our specifications.

When a train approaches the gate from a great distance its speed is between
48 m/s and 52 m/s. As soon as it passes the detector placed at 1000 m backward
from the gate, an appr signal is sent to the controller. The train may now slow
down, but its speed stays between 40 m/s and 52 m/s, and pass the gate. As
soon as it passes the detector placed at 100 m forward from the gate, an exit
signal is sent to the controller. A new train may come after the current one
has passed the second detector, but only at a distance greater than or equal to
1500 m. The gate is able to receive lower and raise signals from the controller
at any time. As soon as the gate receives a lower signal, it lowers from 90 ◦

to 0 ◦ at a constant rate of 20 ◦ per second. As soon as it receives a raise
signal, it raises from 0 ◦ to 90 ◦ at the same rate. The controller is able to
receive appr and exit signals from the train detectors at any time. When the
controller receives an appr signal, it takes less than 5 s before a lower signal
is sent to the gate. When the controller receives an exit signal, it takes less
than 5 s before a raise signal is sent to the gate. Because of fault tolerance
considerations, appr signals should always cause the gate to go down, and
exit signals should be ignored while the gate is going down. It is assumed that
initially there is no train at a distance smaller than 1400 m backward from
the gate, the gate is open, and the controller is idling. Moreover, it is assumed
that each single train changes its speed only smoothly.

It is worth mentioning that the identity of the trains passing the gate is not
relevant to the analysis of the functioning of the railroad crossing system.
Whatever the trains, the railroad crossing system treats them all the same.

The recursive specifications of the train movement, the gate and the con-
troller given below need no further explanation because they are fairly direct
representations of the corresponding informal descriptions. The recursive spec-
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ification of the train movement consists of the following equations:

Trains = (x ≤ −1400) ∧� T far ,

T far = (x ≤ −1000 ∧ 48 ≤ ẋ ≤ 52) ∩�

σ∗
rel

(
(x = −1000) :→

(
(x• = •x ∧ ẋ• = •ẋ) �� ˜̃s1(appr) · T near

))
,

T near = (−1000 ≤ x ≤ 0 ∧ 40 ≤ ẋ ≤ 52) ∩�

σ∗
rel

(
(x = 0) :→

(
(x• = •x ∧ ẋ• = •ẋ) �� ˜̃pass · T past

))
,

T past = (0 ≤ x ≤ 100 ∧ 40 ≤ ẋ ≤ 52) ∩�

σ∗
rel

(
(x = 100) :→

(
(x• ≤ −1400) �� ˜̃s1(exit) · T far

))
.

The recursive specification of the gate consists of the following equations:

Gate = (r = 90) ∧� Gop ,

Gop = (r = 90 ∧ ṙ = 0) ∩�(
σ∗

rel

(
(r• = •r) �� ˜̃r2(lower) ·Gdn

)
+ σ∗

rel

(
(r• = •r) �� ˜̃r2(raise) ·Gop

))
,

Gdn = (0 ≤ r ≤ 90 ∧ ṙ = −20) ∩�(
σ∗

rel

(
(r• = •r) �� ˜̃r2(lower) ·Gdn

)
+ σ∗

rel

(
(r• = •r) �� ˜̃r2(raise) ·Gup

)
+ σ∗

rel

(
(r = 0) :→

(
(r• = •r) �� ˜̃readydn ·Gcl

)))
,

Gcl = (r = 0 ∧ ṙ = 0) ∩�(
σ∗

rel

(
(r• = •r) �� ˜̃r2(lower) ·Gcl

)
+ σ∗

rel

(
(r• = •r) �� ˜̃r2(raise) ·Gup

))
,

Gup = (0 ≤ r ≤ 90 ∧ ṙ = 20) ∩�(
σ∗

rel

(
(r• = •r) �� ˜̃r2(lower) ·Gdn

)
+ σ∗

rel

(
(r• = •r) �� ˜̃r2(raise) ·Gup

)
+ σ∗

rel

(
(r = 90) :→

(
(r• = •r) �� ˜̃readyup ·Gop

)))
.
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The recursive specification of the controller consists of the following equations:

Cntr = (d = 0) ∧� C idle ,

C idle = (ḋ = 0) ∩�(
σ∗

rel

(
(d• = 0) �� ˜̃r1(appr) · Cdn

)
+ σ∗

rel

(
(d• = 0) �� ˜̃r1(exit) · Cup

))
,

Cdn = (0 ≤ d ≤ 5 ∧ ḋ = 1) ∩�(
σ∗

rel

(
(d• = 0) �� ˜̃s2(lower) · C idle

)
+ σ∗

rel

(
(d• = •d) �� ˜̃r1(appr) · Cdn

)
+ σ∗

rel

(
(d• = •d) �� ˜̃r1(exit) · Cdn

))
,

Cup = (0 ≤ d ≤ 5 ∧ ḋ = 1) ∩�(
σ∗

rel

(
(d• = 0) �� ˜̃s2(raise) · C idle

)
+ σ∗

rel

(
(d• = 0) �� ˜̃r1(appr) · Cdn

)
+ σ∗

rel

(
(d• = •d) �� ˜̃r1(exit) · Cup

))
.

The whole system is described by the following term:

∂H(Trains ‖ Cntr ‖ Gate) ,

where

H = {s1(d) | d ∈ {appr , exit}} ∪ {r1(d) | d ∈ {appr , exit}}
∪ {s2(d) | d ∈ {lower , raise}} ∪ {r2(d) | d ∈ {lower , raise}}

and the communication function γ is defined such that

γ(si(d), ri(d)) = γ(ri(d), si(d)) = ci(d)

for all d ∈ {appr , exit , lower , raise} and i ∈ {1, 2}, and it is undefined other-
wise.

Using the axioms and lifting rule of ACPsrt
hs +INT+REC and the axioms and

lifting rules of BPAsrt
hs +INT+REC, we obtain by means of two-phase derivation
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the following guarded recursive specification of the whole system:

X0 = (x ≤ −1400 ∧ d = 0 ∧ r = 90) ∧� X1
0 ,

X1
t′ = (x ≤ −1000 ∧ 48 ≤ ẋ ≤ 52 ∧ ḋ = 0 ∧ r = 90 ∧ ṙ = 0) ∩�∫

t∈[400/52−t′ ,∞)

σt
rel

(
(d• = 0 ∧ C{x,r}) �� ˜̃c1(appr) ·X2

0

)
(for every t′ < 90/20 + 5),

X2
t′ = (−1000 ≤ x ≤ 0 ∧ 40 ≤ ẋ ≤ 52

∧ 0 ≤ d ≤ 5 ∧ ḋ = 1 ∧ r = 90 ∧ ṙ = 0) ∩�∫
t∈[0,5−t′)

σt
rel

(
(d• = 0 ∧ r• = •r ∧ C{x}) �� ˜̃c2(lower) ·X3

t′+t,90

)
(for every t′ < 90/20 − (400/52− 5)),

X3
t′,r = (−1000 ≤ x ≤ 0 ∧ 40 ≤ ẋ ≤ 52 ∧ ḋ = 0 ∧ 0 ≤ r ≤ 90 ∧ ṙ = −20) ∩�

σ
r/20
rel

(
(r• = •r ∧ C{x,d}) �� ˜̃readydn ·X4

t′+r/20

)
(for every t′ < 5 and r ≤ 90),

X4
t′ = (−1000 ≤ x ≤ 0 ∧ 40 ≤ ẋ ≤ 52 ∧ ḋ = 0 ∧ r = 0 ∧ ṙ = 0) ∩�∫

t∈[1000/52−t′ ,1000/40−t′]

σt
rel

(
C{x,d,r} �� ˜̃pass ·X5

)
(for every t′ < 90/20 + 5),

X5 = (0 ≤ x ≤ 100 ∧ 40 ≤ ẋ ≤ 52 ∧ ḋ = 0 ∧ r = 0 ∧ ṙ = 0) ∩�∫
t∈[100/52,100/40]

σt
rel

(
(x• ≤ −1400 ∧ d• = 0 ∧ C{r}) �� ˜̃c1(exit) ·X6

)
,

X6 = (x ≤ −1000 ∧ 48 ≤ ẋ ≤ 52 ∧ 0 ≤ d ≤ 5 ∧ ḋ = 1 ∧ r = 0 ∧ ṙ = 0) ∩�∫
t∈[0,5)

σt
rel

(
(d• = 0 ∧ r• = •r ∧ C{x}) �� ˜̃c2(raise) ·X7

t

)
,

X7
t′ = (x ≤ −1000 ∧ 48 ≤ ẋ ≤ 52 ∧ ḋ = 0 ∧ 0 ≤ r ≤ 90 ∧ ṙ = 20) ∩�∫

t∈[400/52−t′ ,90/20)

σt
rel

(
(d• = 0 ∧ C{x,r}) �� ˜̃c1(appr) ·X8

t

)
+ σ

90/20
rel

(
(r• = •r ∧ C{x,d}) �� ˜̃readyup ·X1

t′+90/20

)
(for every t′ < 5),

X8
t′ = (−1000 ≤ x ≤ 0 ∧ 40 ≤ ẋ ≤ 52

∧ 0 ≤ d ≤ 5 ∧ ḋ = 1 ∧ 0 ≤ r ≤ 90 ∧ ṙ = 20) ∩�∫
t∈[0,90/20−t′)

σt
rel

(
(d• = 0 ∧ r• = •r ∧ C{x}) �� ˜̃c2(lower) ·X3

t,20(t′+t)

)
+ σ

90/20−t′
rel

(
(r• = •r ∧ C{x,d}) �� ˜̃readyup ·X2

90/20−t′
)

(for every 400/52 − 5 < t′ < 90/20).57



Recall that CV abbreviates
∧

v∈V (v• = •v ∧ v̇• = •v̇). From this recursive
specification, it is not difficult to see that (1) a train can only pass the gate
when the gate is closed, (2) the gate opens after a train has left the track
unless a new train has entered the track and (3) the system reacts adequately
when a new train enters the track while the gate is going up. Analysis of this
recursive specification is sufficient for virtually all relevant safety and liveness
properties of the system in this case where it is not the continuously changing
state that has to be controlled. For example, although it is important to know
when a train passes the gate, it is in this case not important to know where
the train is during its approach. However, it is most likely different in those
cases where it is the continuously changing state that has to be controlled.

In all cases, an important advantage of using the proposed process algebra for
the description and analysis of hybrid systems is that one does not have to be
finished with real analysis before one can use process algebra. For example, a
process algebra with timing can only be used for the description and analysis
of a hybrid system after all timing that arises from the continuous behaviour
of the system has been determined with the help of real analysis – with the
danger of abstracting too far – whereas real analysis is irrelevant in the stage
where the process algebra with timing is used.

5 Localization

In this section, we extend ACPsrt
hs with localization. The localization operator

makes it possible to keep discontinuities of a state variable local, in other words
to inhibit discontinuities of the state variable caused by the environment. This
extension can be useful in various applications. We illustrate this by means of
an example concerning a vehicle with velocity control.

5.1 ACPsrt
hs with Localization

In order to support the preclusion of discontinuities for certain state variables
due to actions performed by the environment of a process, we add localization
to ACPsrt

hs . Let P be a process and v be a state variable. Then the localization
of P with respect to v, written v ∇ P , behaves like P , but with its state
evolving without discontinuities for v whenever it is idling.

In the railroad crossing system described in Section 4.7, the signal evolution
operator is consistently used in such a way that the states of Trains, Gate and
Cntr , as well as consequently the state of the whole system, must always evolve
during idling without discontinuities for all state variables. This is possible
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Table 18
Axioms for localization (a ∈ Aδ, r > 0)
v ∇⊥ = ⊥ HSL1

v ∇ ˜̃a = ˜̃a HSL2

v ∇ σr
rel(x) = T ∩�{v} σr

rel(v ∇ x) HSL3

v ∇ (x+ y) = v ∇ x+ v ∇ y HSL4

v ∇ x · y = (v ∇ x) · (v ∇ y) HSL5

v ∇ (ψ :→ x) = ψ :→ (v ∇ x) HSL6

v ∇ (ψ ∧� x) = ψ ∧� (v ∇ x) HSL7

v ∇ (φ ∩�
V x) = φ ∩�

V (v ∇ x) HSL8

v ∇ (χ �� ˜̃a) = χ �� ˜̃a HSL9

v ∇ (v′ ∇ x) = v′ ∇ (v ∇ x) HSL10

v ∇ (
∫
u∈UF (u)) =

∫
u∈U(v ∇ F (u)) HSL11

because, for each state variable, there is only one process that may cause
discontinuities of the state variable, there is only one process that behaves
dependent on the value of the state variable, and those processes are the
same. That is, the state variables x, r and d are local to the processes Trains,
Gate and Cntr , respectively. With or without localization, these processes,
as well as the whole system, behave exactly the same. In other systems, we
sometimes find that some state variable is not local, but shared by two or
more processes. This means that the signal evolution operator has to be used
in such a way that the states of those processes may sometimes evolve during
idling with discontinuities for that state variable. In such cases, localization of
the whole system inhibits further discontinuities caused by its environment. It
is worth noticing that real analysis would not be a great help to the analysis
of the system, if its state could evolve with discontinuities when it is idling.
The use of localization will be illustrated in Section 5.2.

The additional axioms for localization are the equations given in Table 18.
Axioms HSL1–HSL11 show that localization is a global version of an instance
of signal evolution.

We shall henceforth use the name ACPsrt
hs +INT+REC+HSL to refer to the

extension of ACPsrt
hs +INT+REC with localization, and likewise the name

BPAsrt
hs +INT+REC+HSL.

The structural operational semantics for localization is described by the rules
given in Table 19. Bisimulation equivalence and ic-bisimulation equivalence
are preserved by localization. All additional axioms for localization are sound
with respect to bisimulation equivalence and ic-bisimulation equivalence.
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Table 19
Additional rules for localization (a ∈ A, r > 0)

〈x, α〉 a−→〈x′, α′〉
〈v ∇ x, α〉 a−→〈v ∇ x′, α′〉

〈a,α〉 a−→〈√, α′〉
〈v ∇ x, α〉 a−→〈√, α′〉

〈x, α〉 r,ρ
−−→〈x′, α′〉
〈v ∇ x, α〉 r,ρ
−−→〈v ∇ x′, α′〉

α
r,ρ
−−→α′ |={v} T

α∈ [s(x)]

α∈ [s(v ∇ x)]

α→α′ ∈ [d(x)], 〈x,α〉 r,ρ
−−→〈x′, α′′〉
α→α′ ∈ [d(v ∇ x)]

α−→α′ |= C{v}
α→α′ ∈ [d(x)], 〈x,α〉 �
−→
α→α′ ∈ [d(v ∇ x)]

5.2 Example: Vehicle with Velocity Control

In this section, we consider a vehicle with velocity control. This example is
adapted from Ref. [22]. The vehicle with velocity control consists of the vehicle
and a controller. The vehicle follows a suggested acceleration a approximately,
to within an error of ε. The velocity controller monitors the velocity v of the
vehicle and produces a new suggested acceleration every d time units. The
suggested acceleration is chosen in such a way that the velocity of the vehicle
will remain below vmax. We assume that the vehicle starts with velocity 0
and the velocity controller with suggested acceleration 0. We also assume that
vmax ≥ ε d. The recursive specification of the vehicle consists of the following
equations:

V = (v = 0) ∧� V ′ ,

V ′ = (a− ε ≤ v̇ ≤ a+ ε) ∩�{v} σ∗
rel(

˜̃δ) .

The recursive specification of the velocity controller consists of the following
equations:

C = (a = 0) ∧� C ′ ,

C ′ = (ȧ = 0) ∩�σd
rel

(
(•v + (a• + ε) d ≤ vmax) �� ˜̃suggest · C ′

)
.

The vehicle with velocity control is described by the following term:

a∇ (V ‖ C) .

The point is that the vehicle process V does not preclude discontinuities for
a, which is updated every d time units by the controller process C. The local-
ization operator is used to inhibit further discontinuities of a caused by the
environment of the vehicle and its controller. In other words, only the con-
troller can update the suggested acceleration of the vehicle, and in this way
affect the velocity.
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6 Concluding Remarks

A process algebra has been presented which makes it possible to deal with
the behaviour of systems in which the instantaneous state transitions caused
by performing actions are alternated with continuous state evolutions. It is
intended as an algebraic framework for the description and analysis of hybrid
systems. The inescapable interface of this framework with real analysis is iso-
lated in special lifting rules to derive equations with the help of a mathematical
theory that includes real analysis. The application of the framework has been
illustrated by means of various examples. In the analysis of a thermostat, a
bottle filling system and a railroad crossing system, the lifting rules turned
out to be essential.

6.1 Discussion of Main Choices

The process algebra for hybrid systems proposed in this paper extends the pro-
cess algebra with continuous relative timing from Ref. [11]. One of the reasons
to extend a process algebra with timing is the following notable experience
with the use of process algebra with timing for the description and analysis of
hybrid systems (see e.g. Ref. [11]). In many cases, when all timing that arises
from continuous behaviour is known, the details of continuous behaviour are
not relevant to analysis of the system concerned with respect to all or virtually
all properties expected from it, but the details of timing are still relevant.

The process algebra for hybrid systems proposed in this paper also extends
the process algebra with propositional signals from Ref. [12]. The initial ideas
about the use of a timed variant of the process algebra with propositional
signals for hybrid systems were born while the second author was working
on timed frames [41,42]. Similar ideas, born independently, were outlined in
Ref. [43], but those ideas have never been worked out. To the best of our
knowledge, the process algebra with propositional signals is the only process
algebra that provides such a simple means as a proposition to represent the
state of a process. When dealing with hybrid systems, a feature like that,
extended to state transitions and state evolutions, is very common. Using the
formalism of hybrid automata, for example, a hybrid system is described by
means of initial, invariant, jump and flow conditions.

One of the reasons to build on existing theory is that it is considered to be good
practice. We add only two operators to the combination of the process algebra
with continuous relative timing from Ref. [11] and the process algebra with
propositional signals from Ref. [12], viz. the signal evolution operator and the
signal transition operator. The latter operator actually replaces the terminal
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signal emission operator of the process algebra with propositional signals.
The question arises whether the resulting process algebra contains superfluous
operators by taking over the operators of two process algebras which have not
been devised for hybrid systems. We do not need the conditional proceeding
operator, because its effect can be mimicked by the signal transition operator,
but its presence contributes to a clear comprehension of the whole. We need
all other operators. They cannot be mimicked by each other and they are all
indispensable in most descriptions of hybrid systems given in this paper.

The choice of the operators that have been added to the combination of the
process algebra with continuous relative timing and the process algebra with
propositional signals has been strongly influenced by the formalism of hybrid
automata. As a consequence, there are close connections between the pro-
cess algebra for hybrid systems and the formalism of hybrid automata. These
connections are elaborated in ongoing work mentioned in Section 6.2.

Like in the formalism of hybrid automata, each switch from one continuous
mode to another requires that an action is performed. This feature is clearly
a consequence of our choice to build on the process algebra with continuous
relative timing from Ref. [11]. It is directly inherited from that process algebra.
Actions may not be needed to model switches between continuous modes of
systems that behave purely according to physical laws, but we believe that it is
seldom artificial to use them. Moreover, we believe that the feature discussed
here is not really relevant to the degree of usefulness of the proposed process
algebra. However, experience in practical applications is needed to make a firm
claim.

6.2 Ongoing and Future Work

It was mentioned in the introduction that the process algebra proposed in
this paper is inspired by the work on the formalism of hybrid automata. In
ongoing work, we are elaborating the connections between the proposed pro-
cess algebra and the formalism of hybrid automata. In Ref. [44], we show that
hybrid automata can be faithfully represented using the proposed process al-
gebra: the representations of two hybrid automata are bisimilar if and only if
their standard interpretations as timed transition systems are bisimilar. 6 The
representation of a hybrid automaton involves a recursive specification with

6 The timed transition system associated with a hybrid automaton may have mul-
tiple initial states. We deal with that in the process algebra representation in the
way described in Ref. [45].
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an equation of the form

Xm = φm
∩�

V

( ∑
s∈Sm

χs
�� ˜̃as ·Xm′

s
+

∫
u∈(0,∞)

σu
rel(Xm)

)

for each control mode m of the hybrid automaton concerned. It is not difficult
to establish that the proposed process algebra has more expressive power than
the formalism of hybrid automata. An important point is that not even all
recursive equations of the form

Xm = φm
∩�

V( ∑
s∈Sm

χs
�� ˜̃as ·Xm′

s
+
∑
i∈Im

ψi :→
(
φmi

∩�
V

∫
u∈(0,∞)

σu
rel(Xm)

))

can be reduced to an equation of the form used to represent hybrid automata.

We mentioned in Section 3.3 that we would like to add a hiding operator vΔ
for each state variable v, but that this extension would require a semantics
that carries more detail than the structural operational semantics given in
this paper. Working out the addition of those hiding operators is one of the
options for future work.

The new process algebra for hybrid systems proposed in this paper represents
a large amount of work. Therefore, it is not amazing that it induces a lot of
other options for future work. We mention only a few options. Development
of efficient proof techniques is important because there is no effective proce-
dure for determining of an arbitrary equation of the proposed process algebra
whether it is derivable. Investigation into restricted versions of the proposed
process algebra that make an effective procedure possible is also interesting.
In continuation of the current work concerning the connections with the for-
malism of hybrid automata, it is interesting to investigate the adaptation of
model checking tools developed for hybrid automata to restricted versions
of the proposed process algebra. Together with that a suitable temporal logic
should be developed. Of course, it is very important that case-studies to assess
the degree of usefulness in practical applications are carried out in conjunc-
tion with all the theoretical work mentioned above. If the design of hybrid
systems can indeed be improved by the results of that work, it is worth turn-
ing it into an industrial method that can be used by both software engineers
and control engineers when designing hybrid systems. We mention that the
proposed process algebra for hybrid systems has not been designed with the
objective to make easy transfer to practical control engineering possible. It
appears that HyPA [19], which is discussed in Section 6.3, has been designed
with that objective.
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Quite another option for further work is in the area of tool support for sound-
ness proofs for process algebras. The creation of the full soundness proofs for
BPAsrt

hs and ACPsrt
hs is a very time-consuming, but for the greater part routine,

affair in which mistakes are easily made. It gave us a shock to experience that
our initial soundness proofs contained a few mistakes. The making of a read-
able electronic version of the proofs by hand takes up a great deal of time too.
All this calls for a semi-automatic way for proving soundness of equational
axioms, with respect to common versions of bisimulation equivalence, from
transition rules. We think of a tool that can carry out routine work such as
searching for applicable transition rules, producing their relevant instances,
checking and recording the proof steps made, and making a readable version
of the proof while it is created.

6.3 Related Work

Concerning related work, we mention the early work on hybrid CSP [15], the
recent work on the φ-calculus [17], and the very recent work on HyPA [19].
In hybrid CSP and the φ-calculus, which are variants of timed CSP and the
π-calculus, respectively, one can only deal with continuous behaviour in a
limited way. The main limitation of hybrid CSP, which dates back to 1994,
is that parallel composition of processes is only possible if the continuous
behaviour exhibited by the parallel processes is independent: the processes
are not allowed to have a state variable in common. The main limitation of
the φ-calculus is that the expressions constructed by means of the operators
of the φ-calculus denote processes that do not exhibit continuous behaviour:
continuous behaviour can only be exhibited by a special process, called an
environment, which is described separately. The work on HyPA is the most
closest to our work, and deserves a more detailed discussion.

HyPA is an extension of ACP for hybrid systems on which the first report
appeared very shortly after the report version of this paper. In that report, it
is stated that HyPA and ACPsrt

hs are very similar. We agree only in part. The
transition systems induced by the structural operational semantics of HyPA
are in some respects similar to the ones induced by the structural operational
semantics of ACPsrt

hs . However, in our opinion, the similarities end with that.
Here, we confine ourselves to mentioning some of the most important dissim-
ilarities.

The operators of ACP are the only operators that HyPA and ACPsrt
hs have in

common. The additional operators, which make it possible to deal with the
behaviour of hybrid systems, are quite different. This dissimilarity has far-
reaching consequences. The absence of operators for timing means that mere
timing must be modelled in HyPA by means of state variables that behave as
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clocks. Because ACPsrt
hs includes the operators of ACPsrt, we can transform the

description of a hybrid system in ACPsrt
hs into one that makes explicit timing

that arises from the evolution of its state. Similar transformations are not
possible with descriptions of hybrid systems in HyPA.

Another important dissimilarity concerns alternative composition. The struc-
tural operational semantics of alternative composition in ACPsrt

hs provides for
a form of time-determinism: if 〈t, α〉 r,ρ�−−→ 〈t′, α′〉 and 〈t, α〉 r,ρ�−−→ 〈t′′, α′〉, then
t′ ≡ t′′. This property can be paraphrased roughly as follows: a choice be-
tween different idling processes is postponed so long as all can idle. How-
ever, a choice between different evolutions of the state is not postponed. The
structural operational semantics of alternative composition in HyPA does not
provide for a form of time-determinism. We consider the above-mentioned
form of time-determinism of vital importance for a faithful representation of
all time-dependent behaviour. In the case of behaviour of hybrid systems,
the continuous state changes that take place during idling may surely make
choices between processes available at certain points of time, but that does
not amount to the property that such choices may happen during idling. It
appears that this observation contradicts the main argument used in Ref. [19]
against the form of time-determinism present in ACPsrt

hs . The representation of
hybrid automata in ACPsrt

hs sketched in Section 6.2 draws attention to the fact
that, different from what is said in Ref. [19], this form of time-determinism
is in line with the approach of hybrid automata. Because each control mode
has just one alternative to proceed with idling, time-determinism is just not
an issue.

Finally, we mention the loosely related work on duration calculus. The orig-
inal duration calculus, called DC, is proposed in Ref. [46]. DC is an interval
temporal logic designed for expressing and reasoning about assumptions and
requirements on how the state of a real-time system changes over time. An
extension of DC for hybrid systems, called EDC, is proposed in Ref. [47]. EDC
can be used during requirement capturing and early design stages of the de-
velopment of a hybrid systems. As soon as during the design details about
actions taking place become relevant, a process algebra such as ACPsrt

hs is bet-
ter suited. To investigate how the switch from EDC to ACPsrt

hs can be made
in a semantically sound way is still another option for further work.

6.4 Miscellaneous Remarks

The process algebra for hybrid systems proposed in this paper does not incor-
porate abstraction from internal actions. This issue is not even fully under-
stood in process algebras with timing. The version of branching bisimulation
equivalence for processes with discrete relative timing proposed in Ref. [48] for
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this purpose, and adapted to continuous relative timing in Ref. [11], is too fine
for many applications. A slightly coarser equivalence is proposed in Ref. [49].

The proposed process algebra for hybrid systems does not exclude the possi-
bility of two or more actions to be performed consecutively at the same point
in time. For hybrid automata, this possibility is sometimes excluded. A vari-
ant of the proposed process algebra that excludes this possibility as well can
be devised along similar lines as the process algebra with nonstandard timing
from Ref. [25].

Concerning Zeno behaviour, the phenomenon that infinitely many instanta-
neous state changes happen before a certain point of time, the following remark
is in order. The axioms and lifting rules given in this paper are based on a
notion of bisimulation that does not distinguish between behaviours that oc-
cur after a point of time at which infinitely many instantaneous state changes
accumulate. A notion of bisimulation to deal with Zeno behaviour is proposed
in Ref. [50]. In our opinion, however, Zeno behaviour is primarily a sign that
a questionable abstraction of a real system has been made; and behaviour
occurring after such unrealizable behaviour is absolutely irrelevant.

The process algebra with continuous relative timing from Ref. [11] on which
we build the proposed process algebra for hybrid systems arises from an at-
tempt to streamline a lot of work on process algebra with timing in the setting
of ACP done since 1989. It originates from ACPst, a version of ACP with con-
tinuous relative timing from Ref. [51], which, unlike the earlier version of ACP
with continuous relative timing from Ref. [52], does not combine performing
an action with idling for a period of time. An interesting extension of the ver-
sion of ACP with continuous absolute timing from Ref. [52] is the real space
process algebra proposed in Ref. [53]. Still another option for further work is
to investigate to what extent the examples concerning data transmission via
a mobile intermediate station from Refs. [53,54] can be described using the
process algebra for hybrid systems proposed in this paper.
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Appendix

In this appendix, we outline elimination, congruence and soundness proofs
for BPAsrt

hs and ACPsrt
hs . The full proofs are for the greater part very long and

really tedious. They are, for example, much longer than the full proofs given
in Ref. [55] for a version of ACP with discrete relative timing. We focus on the
most difficult parts of the proofs in this appendix. Even for those parts, we do
not give full details. That is, we mention the axioms by which the equations
relevant to the elimination proofs can be derived instead of presenting the
derivations of the equation, and we present in the congruence and soundness
proofs the conditions under which transition relations hold without mentioning
how the conditions follow from the transition rules. What is left out, can easily
be found by consulting the axioms referred to or the applicable transition rules.

A.1 Proof of Theorem 1 (Elimination for BPAsrt
hs )

The proof is straightforward by induction on the structure of closed term t.
For terms t of the forms ⊥, ˜̃a, σr

rel(t
′), t′ + t′′ and ψ ∧� t′, it is trivial to show

that there is a basic term that is derivably equal to t. For terms t of the forms
νrel(t

′), t′ ·t′′, ψ :→t′, φ ∩�
V t

′ and χ ��t′, it follows immediately from the induction
hypothesis and the following lemmas:

(1) for all t ∈ B, there is a t′ ∈ B such that νrel(t) = t′ is derivable;
(2) for all t, t′ ∈ B, there is a t′′ ∈ B such that t · t′ = t′′ is derivable;
(3) for all ψ ∈ Pst and t ∈ B, there is a t′ ∈ B such that ψ :→t = t′ is derivable;
(4) for all φ ∈ Pst, V ⊆ V and t ∈ B, there is a t′ ∈ B such that φ ∩�

V t = t′

is derivable;
(5) for all χ ∈ Ptr and t ∈ B, there is a t′ ∈ B such that χ �� t = t′ is derivable.

These lemmas are easily proven by induction on the structure of basic term
t. We present here the proof of the fourth lemma. The proofs of the other
lemmas are similar, but less complicated.

The proof of the fourth lemma goes as follows:

• t ≡ ⊥: Then φ ∩�
V ⊥ = ⊥ by SE2, HSE10; and ⊥ ∈ B.

• t ≡ ψ ∧� ˜̃δ: Then φ ∩�
V (ψ ∧� ˜̃δ) = (φ ∧ ψ) ∧� ˜̃δ by HSE10, HSE3, SE5. We

proceed by distinguishing two cases:
· φ ∧ ψ ∈ Pst

+: Then (φ ∧ ψ) ∧� ˜̃δ ∈ B.

· φ ∧ ψ �∈ Pst
+: Then (φ ∧ ψ) ∧� ˜̃δ = ⊥ by SE2; and ⊥ ∈ B.

• t ≡ ψ :→ (χ �� ˜̃a): Then φ ∩�
V (ψ :→ (χ �� ˜̃a)) = φ ∧� ˜̃δ+ψ :→ (χ �� ˜̃a) by HSE9,

HSE12, SE7, SE5, A6SR, SE3. We proceed by distinguishing two cases:
· φ ∈ Pst

+: Then φ ∧� ˜̃δ + ψ :→ (χ �� ˜̃a) ∈ B.
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· φ �∈ Pst
+: Then φ ∧� ˜̃δ + ψ :→ (χ �� ˜̃a) = ⊥ by SE3, SE2; and ⊥ ∈ B.

• t ≡ ψ :→ (χ �� ˜̃a · t′′): Analogous to the previous case.

• t ≡ ψ :→ (φ′ ∩�
V ′ σr

rel(t
′′)): Then φ ∩�

V (ψ :→ (φ′ ∩�
V ′ σr

rel(t
′′))) = φ ∧� ˜̃δ +

ψ :→ ((φ ∧ φ′) ∩�
V ∪V ′ σr

rel(t
′′)) by HSE9, HSE11, A6SR, SE3. We proceed by

distinguishing three cases:
· φ ∈ Pst

+ and φ∧φ′ ∈ Pst
+: Then φ ∧� ˜̃δ+ψ :→ ((φ∧φ′) ∩�

V ∪V ′ σr
rel(t

′′)) ∈ B.

· φ ∈ Pst
+ and φ∧ φ′ �∈ Pst

+: Then φ ∧� ˜̃δ+ψ :→ ((φ∧φ′) ∩�
V ∪V ′ σr

rel(t
′′)) = ⊥

by HSE2, SE2, SE7, GC3SR, SE3, SE5, A1, A6SR; and ⊥ ∈ B.
· φ �∈ Pst

+: Then φ ∧� ˜̃δ + ψ :→ ((φ ∧ φ′) ∩�
V ∪V ′ σr

rel(t
′′)) = ⊥ by SE2, NE1;

and ⊥ ∈ B.
• t ≡ t′′ + t′′′: Then φ ∩�

V (t′′ + t′′′) = φ ∩�
V t′′ + φ ∩�

V t′′′ by HSE7. By the
induction hypothesis there are basic terms t∗ and t∗∗ such that φ ∩�

V t
′′ = t∗

and φ ∩�
V t

′′′ = t∗∗; and t∗ + t∗∗ ∈ B.

A.2 Proof of Theorem 6 (Congruence for BPAsrt
hs )

For ic-bisimulation equivalence, congruence follows immediately from the fol-
lowing. The transition rules for BPAsrt

hs constitute a complete transition system
specification in panth format, and ic-bisimulation equivalence is the equiva-
lence which is guaranteed to be a congruence in that case (see e.g. Refs. [40,36]). 7

For bisimulation equivalence, we prove for each operator of BPAsrt
hs that it

preserves bisimulation equivalence. We present here the proof for sequential
composition. The proofs for the other operators of BPAsrt

hs are similar. The
proof for alternative composition is equally complicated, and the proofs for
the remaining operators are less complicated.

Suppose that t1 ↔ t′1 and t2 ↔ t′2. For each state α, let R1
α and R2

α be bisimu-
lation relations witnessing 〈t1, α〉 ↔ 〈t′1, α〉 and 〈t2, α〉 ↔ 〈t′2, α〉, respectively.
We write Ri (i = 1, 2) for the union of Ri

α over all states α. Let α0 be a fixed
but arbitrary state. Define

Rα0 = R′
α0

∪ R2 ,

where

R′
α0

= {(〈s1 · t2, α〉, 〈s′1 · t′2, α〉) | R1
α0

(〈s1, α〉, 〈s′1, α〉)} .

We show that Rα0 is a bisimulation relation. Suppose that Rα0(〈t, α〉, 〈t′, α〉).
In the case where R2(〈t, α〉, 〈t′, α〉), the conditions for a bisimulation relation

7 This equivalence is called bisimulation equivalence in Refs. [40,36]. This should
not be confused with what is called bisimulation equivalence in this paper.
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are trivially satisfied; and in the case where R′
α0

(〈t, α〉, 〈t′, α〉), we may assume
that t ≡ s1 · t2, t′ ≡ s′1 · t′2 and R1

α0
(〈s1, α〉, 〈s′1, α〉). In the latter case, we

distinguish between the different kinds of transition relations:

• action step relations: Suppose 〈t, α〉 a−→〈u, α′〉. We proceed by distinguishing
the two possibilities for u:
· u ≡ v · t2: 〈t, α〉 a−→ 〈u, α′〉 holds only if 〈s1, α〉 a−→ 〈v, α′〉. Because
R1

α0
(〈s1, α〉, 〈s′1, α〉), there exists a v′ such that 〈s′1, α〉 a−→ 〈v′, α′〉 and

R1
α0

(〈v, α′〉, 〈v′, α′〉). So 〈s′1 · t′2, α〉 a−→ 〈v′ · t′2, α′〉 and Rα0(〈v · t2, α′〉, 〈v′ ·
t′2, α

′〉).
· u ≡ t2: 〈t, α〉 a−→ 〈u, α′〉 holds only if 〈s1, α〉 a−→ 〈√, α′〉 and α′∈ [s(t2)].

Because R1
α0

(〈s1, α〉, 〈s′1, α〉), we have 〈s′1, α〉 a−→ 〈√, α′〉. Moreover, be-
cause R2(〈t2, α′〉, 〈t′2, α′〉), we have α′∈ [s(t′2)]. So 〈s′1 · t′2, α〉 a−→〈t′2, α′〉 and
Rα0(〈t2, α′〉, 〈t′2, α′〉).

• action termination relations: Suppose 〈t, α〉 a−→〈√, α′〉. Both 〈t, α〉 a−→〈√, α′〉
and 〈t′, α〉 a−→〈√, α′〉 do not hold.

• time step relations: Suppose 〈t, α〉 r,ρ�−−→〈u, α′〉. There is only one possibility

for u, viz. u ≡ v · t2. 〈t, α〉 r,ρ�−−→ 〈u, α′〉 holds only if 〈s1, α〉 r,ρ�−−→ 〈v, α′〉.
Because R1

α0
(〈s1, α〉, 〈s′1, α〉), there exists a v′ such that 〈s′1, α〉 r,ρ�−−→ 〈v′, α′〉

and R1
α0

(〈v, α′〉, 〈v′, α′〉). So 〈s′1 · t′2, α〉 r,ρ�−−→〈v′ · t′2, α′〉 and Rα0(〈v · t2, α′〉, 〈v′ ·
t′2, α

′〉).
• signal relations: Suppose α∈ [s(t)]. α∈ [s(t)] holds only if α∈ [s(s1)]. Be-

cause R1
α0

(〈s1, α〉, 〈s′1, α〉), we have α∈ [s(s′1)]. So α∈ [s(s′1 · t′2)].

Because Rα0(〈t1 ·t2, α0〉, 〈t′1 ·t′2, α0〉), we have that Rα0 is a bisimulation relation
witnessing 〈t1 · t2, α0〉↔ 〈t′1 · t′2, α0〉. Because α0 is an arbitrary state, we have
that there exists a bisimulation relation witnessing 〈t1 · t2, α〉↔ 〈t′1 · t′2, α〉 for
any state α. So, we conclude that t1 · t2 ↔ t′1 · t′2.

A.3 Proof of Theorem 7 (Soundness for BPAsrt
hs )

We have to prove that, for all closed terms t and t′ of BPAsrt
hs , we have BPAsrt

hs �
t = t′ implies t↔ t′. It follows from Theorem 6 that it is sufficient to prove for
each axiom separately that t↔ t′ for all closed substitution instances t = t′ of
the axiom and to prove for each lifting rule, under assumption of the premises
of the lifting rule, that t↔ t′ for all closed substitution instances t = t′ of the
conclusion of the lifting rule. Moreover, it follows from Lemma 5 that in order
to prove that t↔ t′, it is sufficient to prove that t↔ t′. It happens that for
each axiom of icBPAsrt

hs , we can prove that t ↔ t′ for all closed substitution
instances t = t′ of the axiom. To prove that t↔ t′ for all closed substitution
instances t = t′ of an axiom, we proceed as follows. We give a binary relation
R on closed terms and show that (i) for all the closed substitution instances
t = t′ of the axiom, we have (t, t′) ∈ R and (ii) R is an ic-bisimulation relation.
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The proof of (i) is generally trivial. To prove (ii), we show that the conditions
for an ic-bisimulation relation are satisfied for all closed terms t∗ and t∗∗ such
that (t∗, t∗∗) ∈ R. We shall loosely say that a relation contains all closed
substitution instances of an equation if it contains all pairs (t, t′) such that
t = t′ is a closed substitution instance of the equation.

The axioms of BPAsrt
hs are essentially the axioms of BPAsrt and BPAps with on

top of that axioms NESRU, PSSRU1 and PSSRU2 and the axioms for signal
evolution and signal transition given in Table 3. The differences, due to having
(undelayable) actions ˜̃a instead of actions a, are not relevant to the purpose
of building on the soundness proofs of BPAsrt and BPAps.

If we replace in the rules describing the structural operational semantics of
BPAsrt a−→ , a−→ √

and
r�−→ by 〈 , α〉 a−→ 〈 , α′〉, 〈 , α〉 a−→ 〈√, α′〉 and

〈 , α〉 r,ρ�−−→〈 , α′〉, respectively, the induced ic-bisimulation equivalence is iden-
tical to the version of bisimulation equivalence for which the axioms of BPAsrt

have been proved sound. If we replace in the rules describing the structural
operational semantics of BPAps

v,a−−→ ,
v,a−−→ √

, v∈ [s( )] and w ∈ [s( )]
by 〈 , α〉 a−→〈 , α′〉, 〈 , α〉 a−→〈√, α′〉, α∈ [s( )] and α′ ∈ [s( )], respectively, the
induced ic-bisimulation equivalence is coarser than the version of bisimulation
equivalence for which the axioms of BPAps have been proved sound. Hence,
we can safely make these replacements.

After that, for some of the operators of BPAsrt and BPAps, there are still sup-
plementary transition rules concerning additional kinds of transition relations
and/or adapted transition rules with supplementary premises concerning ad-
ditional kinds of transition relations. It follows that, as far as the axioms of
BPAsrt and BPAps are concerned, we only have to check:

• each axiom in which σrel, +, :→ or ∧� occurs with respect to the time step
relations;

• each axiom in which σrel or νrel occurs with respect to the signal relations.

Checking the axioms concerning σrel and + with respect to the time step
relations goes almost analogous to checking them for BPAsrt: it does not have
to be turned upside down in order to take the supplementary premises into
account. Checking the axioms concerning :→ and ∧� with respect to the time
step relations goes analogous to checking them with respect to the action step
relations. Checking the axioms concerning σrel and νrel with respect to the
signal relations is very easy.

Checking axioms NESRU, PSSRU1 and PSSRU2 with respect to all transi-
tion relations is very easy as well. What remains, is to check the axioms for
signal evolution and signal transition (Table 3) and the lifting rules of BPAsrt

hs

(Table 4) with respect to all kinds of transition relations.
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For all axioms except axioms HST5 and HST14, and for lifting rule HSELR1,
the checks with respect to ic-bisimulation equivalence succeed. In the case of
those checks, it happens frequently that for an arbitrary substitution instance
t1 = t2 of an axiom, we can quite easily establish that 〈t1, α〉 a−→ 〈t′, α′〉 iff
〈t2, α〉 a−→ 〈t′, α′〉, or 〈t1, α〉 a−→ 〈t′1, α′〉 iff 〈t2, α〉 a−→ 〈t′2, α′〉 and t′1 = t′2 is a
substitution instance of that axiom as well; and similarly for the other kinds
of transition relations.

This is the case except for axioms HSE6, HSE13 and HST6. We present here
the checks for axiom HSE13. Checking the other axioms goes similarly, but is
simpler.

The checks for axiom HSE13 go as follows. We take the relation R that consists
of all closed substitution instances of axiom HSE13, the equation x = x and
the equation φ ∩�

V x+ φ′ ∩�
V ′ νrel(y) = φ ∩�

V (x+ φ′ ∩�
V ′ νrel(y)).

First of all, we consider the closed substitution instances of axiom HSE13.
We take an arbitrary closed substitution instance, say φ ∩�

V σr
rel(t1) + φ′ ∩�

V ′

σr
rel(νrel(t2)) = φ ∩�

V (σr
rel(t1) + φ′ ∩�

V ′ σr
rel(νrel(t2))), and distinguish between the

different kinds of transition relations:

• action step relations: For all states α and α′, and a ∈ A, both 〈φ ∩�
V σ

r
rel(t1)+

φ′ ∩�
V ′ σr

rel(νrel(t2)), α〉 a−→〈t′, α′〉 and 〈φ ∩�
V (σr

rel(t1)+φ′ ∩�
V ′ σr

rel(νrel(t2))), α〉 a−→
〈t′′, α′〉 do not hold for any t′ and t′′.

• action termination relations: For all states α and α′, and a ∈ A, both
〈φ ∩�

V σr
rel(t1) + φ′ ∩�

V ′ σr
rel(νrel(t2)), α〉 a−→〈√, α′〉 and 〈φ ∩�

V (σr
rel(t1) + φ′ ∩�

V ′

σr
rel(νrel(t2))), α〉 a−→〈√, α′〉 do not hold.

• time step relations: There exist states α and α′, s > 0 and ρ ∈ Es such that
〈φ ∩�

V σr
rel(t1) + φ′ ∩�

V ′ σr
rel(νrel(t2)), α〉 s,ρ�−−→ 〈t′, α′〉 or 〈φ ∩�

V (σr
rel(t1) + φ′ ∩�

V ′

σr
rel(νrel(t2))), α〉 s,ρ�−−→〈t′′, α′〉 holds. We proceed by distinguishing three cases:

· s = r: 〈φ ∩�
V σ

r
rel(t1) + φ′ ∩�

V ′ σr
rel(νrel(t2)), α〉 s,ρ�−−→〈t′, α′〉 holds only if α

s,ρ�−−→
α′ |=V φ, α′ ∈ [s(t1)], α

s,ρ�−−→ α′ |=V ′ φ′, α′ ∈ [s(t2)] and t′ ≡ φ ∩�
V t1 +

φ′ ∩�
V ′ νrel(t2). 〈φ ∩�

V (σr
rel(t1) + φ′ ∩�

V ′ σr
rel(νrel(t2))), α〉 s,ρ�−−→ 〈t′′, α′〉 holds

only if α
s,ρ�−−→ α′ |=V φ, α′ ∈ [s(t1)], α

s,ρ�−−→ α′ |=V ′ φ′, α′ ∈ [s(t2)] and t′′ ≡
φ ∩�

V (t1 + φ′ ∩�
V ′ νrel(t2)). Moreover, (t′, t′′) ∈ R.

· s < r: 〈φ ∩�
V σ

r
rel(t1) + φ′ ∩�

V ′ σr
rel(νrel(t2)), α〉 s,ρ�−−→〈t′, α′〉 holds only if α

s,ρ�−−→
α′ |=V φ, α

s,ρ�−−→ α′ |=V ′ φ′ and t′ ≡ φ ∩�
V σr−s

rel (t1) + φ′ ∩�
V ′ σr−s

rel (νrel(t2)).

〈φ ∩�
V (σr

rel(t1)+φ′ ∩�
V ′ σr

rel(νrel(t2))), α〉 s,ρ�−−→〈t′′, α′〉 holds only if α
s,ρ�−−→α′ |=V

φ, α
s,ρ�−−→α′ |=V ′ φ′ and t′′ ≡ φ ∩�

V (σr−s
rel (t1)+φ

′ ∩�
V ′ σr−s

rel (νrel(t2))). Moreover,
(t′, t′′) ∈ R.

· s > r: 〈φ ∩�
V σr

rel(t1) + φ′ ∩�
V ′ σr

rel(νrel(t2)), α〉 s,ρ�−−→ 〈t′, α′〉 holds only if

〈t1, α′′〉 s−r,ρ�−−−→ 〈t′, α′〉 for some state α′′, α
s,ρ�−−→ α′ |=V φ, α |= φ′ and

α∈ [s(t2)]. 〈φ ∩�
V (σr

rel(t1) + φ′ ∩�
V ′ σr

rel(νrel(t2))), α〉 s,ρ�−−→ 〈t′′, α′〉 holds only

if 〈t1, α′′〉 s−r,ρ�−−−→ 〈t′′, α′〉 for some state α′′, α
s,ρ�−−→ α′ |=V φ, α |= φ′ and
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α∈ [s(t2)]. Because there is at most one t∗ such that 〈t1, α′′〉 s−r,ρ�−−−→〈t∗, α′〉,
we have that t′ ≡ t′′. Hence, (t′, t′′) ∈ R.

• signal relations: For all states α, α∈ [s(φ ∩�
V σr

rel(t1) + φ′ ∩�
V ′ σr

rel(νrel(t2)))]
holds only if α |= φ and α |= φ′; and α∈ [s(φ∩�

V (σr
rel(t1)+φ

′ ∩�
V ′σr

rel(νrel(t2))))]
holds only if α |= φ and α |= φ′.

Next, we consider the closed substitution instances of the equation φ ∩�
V x +

φ′ ∩�
V ′ νrel(y) = φ ∩�

V (x+φ′ ∩�
V ′ νrel(y)). We take an arbitrary closed substitution

instance, say φ ∩�
V t1 + φ′ ∩�

V ′ νrel(t2) = φ ∩�
V (t1 + φ′ ∩�

V ′ νrel(t2)). It is easy
to check that, for all states α and α′, a ∈ A, r > 0 and ρ ∈ Er, 〈φ ∩�

V

t1 + φ′ ∩�
V ′ νrel(t2), α〉 a−→ 〈t∗, α′〉 iff 〈φ ∩�

V (t1 + φ′ ∩�
V ′ νrel(t2)), α〉 a−→ 〈t∗, α′〉,

〈φ ∩�
V t1 +φ′ ∩�

V ′ νrel(t2), α〉 a−→〈√, α′〉 iff 〈φ ∩�
V (t1 +φ′ ∩�

V ′ νrel(t2)), α〉 a−→〈√, α′〉,
〈φ ∩�

V t1+φ
′ ∩�

V ′νrel(t2), α〉 r,ρ�−−→〈t∗∗, α′〉 iff 〈φ ∩�
V (t1+φ

′ ∩�
V ′νrel(t2)), α〉 r,ρ�−−→〈t∗∗, α′〉

and α∈ [s(φ ∩�
V t1+φ′ ∩�

V ′ νrel(t2))] iff α∈ [s(φ ∩�
V (t1+φ′ ∩�

V ′ νrel(t2)))]. Moreover,
(t∗, t∗) ∈ R and (t∗∗, t∗∗) ∈ R.

The closed substitution instances of the equation x = x trivially satisfy the
conditions for an ic-bisimulation relation.

Axioms HST5 and HST14 and lifting rules HSELR2 and HSELR3 have to
be checked with respect to bisimulation equivalence instead of ic-bisimulation
equivalence. This goes in a similar way. The differences are that we give a
binary relation R on configurations, i.e. pairs of closed terms and states, and
show that the conditions for bisimulation equivalence are satisfied. For exam-
ple, in the case of axiom HST5, we take the relation R that consists of all pairs
(〈t, α〉, 〈t′, α〉) where t = t′ is a closed substitution instance of axiom HST5
and α is a state and all pairs (〈t∗, α∗〉, 〈χ◦ ∧� t∗, α∗〉) where χ is a transition
proposition, t∗ is a closed term and α∗ is a state such that α∗ |= χ◦. The
restriction on α∗ is essential here. It is the reason why checking with respect
to ic-bisimulation equivalence fails.

A.4 Proof of Theorem 9 (Elimination for ACPsrt
hs )

Like the proof of Theorem 1, the proof is by induction on the structure of
closed term t. For terms t of the forms ⊥, ˜̃a, σr

rel(t
′), t′ + t′′, t′ · t′′, ψ :→ t′, ψ ∧� t′,

φ ∩�
V t

′, χ �� t′ and νrel(t
′), it follows immediately from the induction hypothesis

and Theorem 1, that there is a basic term that is derivably equal to t. For
terms of the forms t′ ‖ t′′, t′ �� t′′, t′ | t′′ and ∂H(t′), it follows immediately from
the induction hypothesis and the following lemmas:

(1) for all t, t′ ∈ B, there is a t′′ ∈ B such that t ‖ t′ = t′′ is derivable;
(2) for all t, t′ ∈ B, there is a t′′ ∈ B such that t �� t′ = t′′ is derivable;
(3) for all t, t′ ∈ B, there is a t′′ ∈ B such that t | t′ = t′′ is derivable;
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(4) for all t ∈ B, there is a t′ ∈ B such that ∂H(t) = t′ is derivable.

The fourth lemma is easily proven by induction on the structure of the basic
term t. The first three lemmas are proven simultaneously by induction on the
sum of the norm of t and the norm of t′. The norm of a closed term t, written
|t|, is intended to be a measure of the complexity of t. It is defined as follows:

|⊥| = |˜̃δ| = |˜̃a| = 1 ,

|σp
rel(t)| = |t| + p + 1 ,

|t+ t′| = |t| + |t′| + 1 ,

|t · t′| = |t| + |t′| + 1 ,

|νrel(t)| = |t| + 1 ,

|ψ :→ t| = |t| + 1 ,

|ψ ∧� t| = |t| + 1 ,

|φ ∩�
V t| = |t| + 1 ,

|χ �� t| = |t| + 1 ,

|t ‖ t′| = |t| + |t′| + 1 ,

|t �� t′| = |t| + |t′| + 1 ,

|t | t′| = |t| + |t′| + 1 ,

|∂H(t)| = |t| + 1 .

The first lemma follows immediately from the second and third lemma. The
proof of the second lemma goes by case distinction on the structure of the
basic term t, and the proof of the third lemma goes by case distinction on the
structure of the basic terms t and t′. We sketch here the proof of the second
lemma. The proof of the third lemma is much simpler. The proof of the second
lemma is simplified by using a fifth lemma:

(5) for all t ∈ B, either ∂A(νrel(t)) = ⊥ is derivable or there is a ψ ∈ Pst
+

such that ∂A(νrel(t)) = ψ ∧� ˜̃δ is derivable.

This lemma is easily proven by induction on the structure of basic term t.

The proof of the second lemma goes as follows. For the cases t ≡ ⊥, t ≡ ψ ∧� ˜̃δ,
t ≡ ψ :→ (χ �� ˜̃a) and t ≡ ψ :→ (χ �� ˜̃a · t∗), it is easy to see that a basic term is
derivable. The case t ≡ ψ :→ (φ ∩�

V σ
r
rel(t

∗)) follows immediately from the fact
that

for all t, t′ ∈ B and r > 0, there is a t′′ ∈ B such that σr
rel(t) �� t′ = t′′ is

derivable.

This is proven as follows by case distinction for t′ according to Corollary 4:

• t′ = νrel(t
′): Then σr

rel(t)��νrel(t
′) = ∂A(νrel(t

′)) by SRCM1aPS. According to
the fifth lemma introduced in the proof, either ∂A(νrel(t

′)) = ⊥ is derivable

or there is a ψ ∈ Pst
+ such that ∂A(νrel(t

′)) = ψ ∧� ˜̃δ is derivable; and

⊥, ψ ∧� ˜̃δ ∈ B.
• t′ = νrel(t

′)+
∑

i∈I ψi :→(φi
∩�

Vi
σri

rel(ti)): Then σr
rel(t)��(νrel(t

′)+
∑

i∈I ψi :→
(φi

∩�
Vi
σri

rel(ti))) = σr
rel(t)��

∑
i∈I ψi:→(φi

∩�
Vi
σri

rel(ti))+∂A(νrel(t
′)) by SRCM1bPS.

First of all, we look at the term σr
rel(t)��

∑
i∈I ψi :→(φi

∩�
Vi
σri

rel(ti)), and proceed
by distinguishing two cases (we write rmin for min({ri | i ∈ I})):
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· r > rmin: Then

σr
rel(t) ��

∑
i∈I

ψi :→ (φi
∩�

Vi
σri

rel(ti))

=
∑
J⊆I

(
∧

i∈J ψi ∧ ∧i∈I\J ¬ψi) :→

(σrmin
rel (σr−rmin

rel (t) ��∑
i∈J

φi
∩�

Vi
σri−rmin

rel (ti))

+ (
∧

i∈J φi) ∩�
(
⋃

i∈J
Vi)
σrmin

rel (˜̃δ))

by repeatedly PSSRCM, repeatedly SRT2 and HSSRCM, repeatedly SRT3,
and SRCM2. By GC1, HSE1 and the induction hypothesis there is a basic
term tJ such that σr−rmin

rel (t) ��∑i∈J φi
∩�

Vi
σri−rmin

rel (ti) = tJ for all J ⊆ I;
and by Theorem 1 there is a basic term t′′ such that

∑
J⊆I (

∧
i∈J ψi ∧∧

i∈I\J ¬ψi) :→ (σrmin
rel (tJ ) + (

∧
i∈J φi) ∩�

(
⋃

i∈J
Vi) σ

rmin
rel (˜̃δ)) = t′′.

· r ≤ rmin: Then

σr
rel(t) ��

∑
i∈I

ψi :→ (φi
∩�

Vi
σri

rel(ti))

=
∑
J⊆I

(
∧

i∈J ψi ∧ ∧i∈I\J ¬ψi) :→

(σr
rel(t ��

∑
i∈J

φi
∩�

Vi
σri−r

rel (ti)) + (
∧

i∈J φi) ∩�
(
⋃

i∈J
Vi) σ

r
rel(

˜̃δ))

by repeatedly PSSRCM, repeatedly SRT2 and HSSRCM, repeatedly SRT3,
and SRCM2. By GC1, HSE1 and the induction hypothesis there is a basic
term tJ such that t ��∑i∈J φi

∩�
Vi
σri−r

rel (ti) = tJ for all J ⊆ I; and by The-
orem 1 there is a basic term t′′ such that

∑
J⊆I (

∧
i∈J ψi ∧ ∧i∈I\J ¬ψi) :→

(σr
rel(t

J) + (
∧

i∈J φi) ∩�
(
⋃

i∈J
Vi)
σr

rel(
˜̃δ)) = t′′.

Next, we look at the term ∂A(νrel(t
′)). According to the fifth lemma intro-

duced in the proof, either ∂A(νrel(t
′)) = ⊥ is derivable or there is a ψ ∈ Pst

+

such that ∂A(νrel(t
′)) = ψ ∧� ˜̃δ is derivable; and ⊥, ψ ∧� ˜̃δ ∈ B. Hence, t′ is in

all cases the alternative composition of two basic terms, and thus a basic
term.

For the case t ≡ t∗ + t∗∗, it follows directly from the induction hypothesis and
CM4 that a basic term is derivable.

A.5 Proof of Theorem 12 (Soundness for ACPsrt
hs )

We have to prove that, for all closed terms t and t′ of ACPsrt
hs , we have ACPsrt

hs �
t = t′ implies t↔ t′. It follows from Theorem 11 that it is sufficient to prove
for each axiom separately that t↔ t′ for all closed substitution instances t = t′

of the axiom and to prove for lifting rule HSELR1, under assumption of the
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premises of the lifting rule, that t ↔ t′ for all closed substitution instances
t = t′ of the conclusion of the lifting rule.

The axioms of ACPsrt
hs are essentially the axioms of ACPsrt and ACPps, with

the exception of axioms CM2SRPS and CM2SRPS, and on top of that axioms
NESRU, PSSRU1 and PSSRU2, axiom PSSRCM, and the axioms for signal
evolution and signal transition given in Tables 3, 13 and 14, with the exception
of axioms HST5 and HST14. The differences, due to having (undelayable)
actions ˜̃a instead of actions a and using terms ∂A(νrel(x)) instead of sρ(x) ∧� δ,
are not relevant to the purpose of building on the soundness proofs of ACPsrt

and ACPps.

In the rules describing the structural operational semantics of ACPsrt and
ACPps, we can safely make the replacements mentioned in the soundness proof
for BPAsrt

hs (Appendix A.3) as well.

After that, for some of the operators of ACPsrt and ACPps, there are still sup-
plementary transition rules concerning additional kinds of transition relations
and/or adapted transition rules with supplementary premises concerning ad-
ditional kinds of transition relations. It follows that, as far as the axioms of
ACPsrt and ACPps are concerned, we only have to check:

• each axiom in which �� occurs with respect to the action step and action
termination relations;

• each axiom in which σrel, +, :→ or ∧� occurs with respect to the time step
relations;

• each axiom in which σrel, νrel or �� occurs with respect to the signal relations;
• each axiom with respect to the discontinuity relations.

For the operators of icBPAsrt
hs , there are, in comparison with the structural op-

erational semantics of icBPAsrt
hs , only supplementary transition rules concern-

ing the discontinuity relations and no adapted transition rules at all. Moreover,
the axioms and lifting rule of icBPAsrt

hs have already been checked with respect
to all kinds of transition relations except the discontinuity relations. Hence,
as far as the axioms and lifting rule of icBPAsrt

hs are concerned, we can restrict
ourselves to check them with respect to the discontinuity relations. Check-
ing the axioms and lifting rule of icBPAsrt

hs with respect to the discontinuity
relations is easy.

Checking the axioms of ACPsrt
hs coming from ACPsrt and ACPps (other than

the axioms of BPAsrt and BPAps), with respect to certain kinds of transi-
tion relations as indicated above, goes similar to checking them for ACPsrt

and ACPps. Checking axiom PSSRCM is somewhat more complicated, com-
parable to the checking of axiom HSE13 in the soundness proof for BPAsrt

hs

(Appendix A.3).
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What remains, is to check the additional axioms of ACPsrt
hs concerning signal

evolution and signal transition (Table 13) with respect to all kinds of transition
relations. Like for most axioms of BPAsrt

hs concerning signal evolution and
signal transition, this is quite easy for most axioms. An exception is axiom
HSSRCM.

The checks for axiom HSSRCM go as follows. We take the relation R that
consists of all closed substitution instances of axiom HSSRCM, the equation
x = x, the equation x �� (φ ∩�

V y) = x �� (φ ∩�
V y) + φ ∩�

V
˜̃δ, the equation

x��(φ∩�
V y+z) = x��(φ∩�

V y+z)+φ∩�
V
˜̃δ and the equation σr

rel(x)��(φ∩�
V σ

r
rel(y)) =

σr
rel(x) �� σr

rel(φ ∩�
V y) + φ ∩�

V σ
r
rel(

˜̃δ).

First, we consider the closed substitution instances of axiom HSSRCM. We
take an arbitrary closed substitution instance, say σr

rel(t1)��(φ ∩�
V σ

r
rel(t2)+t3) =

σr
rel(t1)�� (σr

rel(φ ∩�
V t2)+ t3)+φ ∩�

V σ
r
rel(

˜̃δ), and distinguish between the different
kinds of transition relations:

• action step relations: For all states α and α′, and a ∈ A, both 〈σr
rel(t1)��(φ ∩�

V

σr
rel(t2)+t3), α〉 a−→〈t′, α′〉 and 〈σr

rel(t1)��(σr
rel(φ ∩�

V t2)+t3)+φ ∩�
V σ

r
rel(

˜̃δ), α〉 a−→
〈t′′, α′〉 do not hold for any t′ and t′′.

• action termination relations: For all states α and α′, and a ∈ A, both
〈σr

rel(t1) �� (φ ∩�
V σ

r
rel(t2)+ t3), α〉 a−→〈√, α′〉 and 〈σr

rel(t1) �� (σr
rel(φ ∩�

V t2)+ t3)+

φ ∩�
V σ

r
rel(

˜̃δ), α〉 a−→〈√, α′〉 do not hold.
• time step relations: There exist states α and α′, s > 0 and ρ ∈ Es such that
〈σr

rel(t1) �� (φ ∩�
V σ

r
rel(t2) + t3), α〉 s,ρ�−−→〈t′, α′〉 or 〈σr

rel(t1) �� (σr
rel(φ ∩�

V t2) + t3) +

φ ∩�
V σ

r
rel(

˜̃δ), α〉 s,ρ�−−→〈t′′, α′〉 holds. We proceed by distinguishing three cases:

· s = r: 〈σr
rel(t1) �� (φ ∩�

V σr
rel(t2) + t3), α〉 s,ρ�−−→ 〈t′, α′〉 holds only if either

α′ ∈ [s(t1)], α
′ ∈ [s(t2)], α

s,ρ�−−→ α′ |=V φ, 〈t3, α〉 � s�−→, α∈ [s(t3)] and t′ ≡
t1 �� (φ ∩�

V t2) or α′∈ [s(t1)], α
′ ∈ [s(t2)], α

s,ρ�−−→α′ |=V φ, 〈t3, α〉 s,ρ�−−→〈t′3, α′〉
and t′ ≡ t1 ��(φ ∩�

V t2 +t′3) for some closed term t′3. 〈σr
rel(t1)��(σr

rel(φ ∩�
V t2)+

t3) + φ ∩�
V σ

r
rel(

˜̃δ), α〉 s,ρ�−−→〈t′′, α′〉 holds only if either α′∈ [s(t1)], α
′∈ [s(t2)],

α
s,ρ�−−→ α′ |=V φ, 〈t3, α〉 � s�−→, α∈ [s(t3)] and t′′ ≡ t1 �� (φ ∩�

V t2) + φ ∩�
V

˜̃δ

or α′∈ [s(t1)], α
′ ∈ [s(t2)], α

s,ρ�−−→ α′ |=V φ, 〈t3, α〉 s,ρ�−−→ 〈t′3, α′〉 and t′′ ≡
t1 �� (φ ∩�

V t2 + t′3) + φ ∩�
V

˜̃δ for some closed term t′3. If 〈t3, α〉 � s�−→ and

α∈ [s(t3)], then (t′, t′′) ∈ R. If 〈t3, α〉 s,ρ�−−→〈t′3, α′〉, then also (t′, t′′) ∈ R.

· s < r: 〈σr
rel(t1) �� (φ ∩�

V σr
rel(t2) + t3), α〉 s,ρ�−−→ 〈t′, α′〉 holds only if either

α
s,ρ�−−→α′ |=V φ, 〈t3, α〉 � s�−→, α∈ [s(t3)] and t′ ≡ σr−s

rel (t1) �� (φ ∩�
V σ

r−s
rel (t2)) or

α
s,ρ�−−→α′ |=V φ, 〈t3, α〉 s,ρ�−−→〈t′3, α′〉 and t′ ≡ σr−s

rel (t1) �� (φ ∩�
V σ

r−s
rel (t2) + t′3)

for some closed term t′3. 〈σr
rel(t1) �� (σr

rel(φ ∩�
V t2) + t3) + φ ∩�

V σ
r
rel(

˜̃δ), α〉 s,ρ�−−→
〈t′′, α′〉 holds only if either α

s,ρ�−−→α′ |=V φ, 〈t3, α〉 � s�−→, α∈ [s(t3)] and t′′ ≡
σr−s

rel (t1) ��σr−s
rel (φ ∩�

V t2)+φ ∩�
V σ

r−s
rel (˜̃δ) or α

s,ρ�−−→α′ |=V φ, 〈t3, α〉 s,ρ�−−→〈t′3, α′〉
and t′′ ≡ σr−s

rel (t1)�� (σr−s
rel (φ ∩�

V t2)+ t′3)+φ ∩�
V σ

r−s
rel (˜̃δ) for some closed term

t′3. If 〈t3, α〉 � s�−→ and α∈ [s(t3)], then (t′, t′′) ∈ R. If 〈t3, α〉 s,ρ�−−→〈t′3, α′〉, then
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also (t′, t′′) ∈ R.

· s > r: 〈σr
rel(t1) �� (φ ∩�

V σr
rel(t2) + t3), α〉 s,ρ�−−→ 〈t′, α′〉 holds only if either

〈t1, α∗〉 s−r,ρ�−−−→ 〈t′1, α′〉, 〈t2, α∗∗〉 s−r,ρ�−−−→ 〈t′2, α′〉, α s,ρ�−−→ α′ |=V φ, 〈t3, α〉 � s�−→,
α∈ [s(t3)] and t′ ≡ t′1 �� (φ ∩�

V t′2) for some closed terms t′1, t
′
2 and states

α∗ and α∗∗, or 〈t1, α∗〉 s−r,ρ�−−−→〈t′1, α′〉, 〈t2, α∗∗〉 s−r,ρ�−−−→〈t′2, α′〉, α s,ρ�−−→α′ |=V φ,

〈t3, α〉 s,ρ�−−→〈t′3, α′〉 and t′ ≡ t′1 �� (φ ∩�
V t

′
2 + t′3) for some closed terms t′1, t

′
2,

t′3 and states α∗ and α∗∗. 〈σr
rel(t1) �� (σr

rel(φ ∩�
V t2)+ t3)+φ ∩�

V σ
r
rel(

˜̃δ), α〉 s,ρ�−−→
〈t′′, α′〉 holds only if either 〈t1, α∗〉 s−r,ρ�−−−→ 〈t′1, α′〉, 〈t2, α∗∗〉 s−r,ρ�−−−→ 〈t′2, α′〉,
α

s,ρ�−−→α′ |=V φ, 〈t3, α〉 � s�−→, α∈ [s(t3)] and t′′ ≡ t′1 �� (φ ∩�
V t

′
2) for some closed

terms t′1, t
′
2 and states α∗ and α∗∗, or 〈t1, α∗〉 s−r,ρ�−−−→〈t′1, α′〉, 〈t2, α∗∗〉 s−r,ρ�−−−→

〈t′2, α′〉, α s,ρ�−−→ α′ |=V φ, 〈t3, α〉 s,ρ�−−→ 〈t′3, α′〉 and t′′ ≡ t′1 �� (φ ∩�
V t′2 + t′3)

for some closed terms t′1, t
′
2, t

′
3 and states α∗ and α∗∗. If 〈t3, α〉 � s�−→ and

α∈ [s(t3)], then (t′, t′′) ∈ R. If 〈t3, α〉 s,ρ�−−→〈t′3, α′〉, then also (t′, t′′) ∈ R.
• signal relations: For all states α, α∈ [s(σr

rel(t1)��(φ∩�
V σ

r
rel(t2)+t3))] holds only

if α |= φ and α∈ [s(t3)]; and α∈ [s(σr
rel(t1)�� (σr

rel(φ ∩�
V t2)+ t3)+φ ∩�

V σ
r
rel(

˜̃δ))]
holds only if α |= φ and α∈ [s(t3)].

• discontinuity relations: For all states α and α′, α→α′∈ [d(σr
rel(t1) �� (φ ∩�

V

σr
rel(t2) + t3))] holds only if either σr

rel(t1) �� (φ ∩�
V σr

rel(t2) + t3) can idle,
α−→α′ |= CV , α |= φ and α→α′∈ [d(t3)] or σr

rel(t1)��(φ ∩�
V σ

r
rel(t2)+t3) cannot

idle and α∈ [s(t3)]; and α→α′∈ [d(σr
rel(t1)��(σr

rel(φ ∩�
V t2)+t3)+φ ∩�

V σ
r
rel(

˜̃δ))]

holds only if σr
rel(t1) �� (σr

rel(φ ∩�
V t2)+ t3)+φ ∩�

V σ
r
rel(

˜̃δ) can idle, α−→α′ |= CV ,

α |= φ and α→α′∈ [d(t3)] or σr
rel(t1)��(σr

rel(φ ∩�
V t2)+t3)+φ ∩�

V σ
r
rel(

˜̃δ) cannot
idle and α∈ [s(t3)]. Both σr

rel(t1) �� (φ ∩�
V σ

r
rel(t2)+ t3) and σr

rel(t1) �� (σr
rel(φ ∩�

V

t2) + t3) + φ ∩�
V σ

r
rel(

˜̃δ) can only idle if α
s,ρ�−−→α′′ |=V φ or 〈t3, α〉 s,ρ�−−→〈t′′3, α′′〉

for some closed term t′′3, state α′′, s > 0 and ρ ∈ Es.

The case of the closed substitution instances of the equation σr
rel(x) �� (φ ∩�

V

σr
rel(y)) = σr

rel(x) �� σr
rel(φ ∩�

V y) + φ ∩�
V σ

r
rel(

˜̃δ) is similar to the previous case.

Next, we consider the closed substitution instances of the equation x��(φ∩�
V y+

z) = x��(φ ∩�
V y+z)+φ ∩�

V
˜̃δ. We take an arbitrary closed substitution instance,

say t1 �� (φ ∩�
V t2 + t3) = t1 �� (φ ∩�

V t2 + t3)+φ ∩�
V

˜̃δ. It is easy to check that, for
all states α and α′, a ∈ A, r > 0 and ρ ∈ Er, 〈t1 �� (φ ∩�

V t2 + t3), α〉 a−→〈t∗, α′〉
iff 〈t1 �� (φ ∩�

V t2 + t3) + φ ∩�
V

˜̃δ, α〉 a−→〈t∗, α′〉, 〈t1 �� (φ ∩�
V t2 + t3), α〉 a−→〈√, α′〉

iff 〈t1 �� (φ ∩�
V t2 + t3) + φ ∩�

V
˜̃δ, α〉 a−→〈√, α′〉, 〈t1 �� (φ ∩�

V t2 + t3), α〉 r,ρ�−−→〈t∗∗, α′〉
iff 〈t1 �� (φ ∩�

V t2 + t3) + φ ∩�
V

˜̃δ, α〉 r,ρ�−−→ 〈t∗∗, α′〉, α∈ [s(t1 �� (φ ∩�
V t2 + t3))]

iff α∈ [s(t1 �� (φ ∩�
V t2 + t3) + φ ∩�

V
˜̃δ)] and α→α′∈ [d(t1 �� (φ ∩�

V t2 + t3))] iff

α→α′∈ [d(t1��(φ ∩�
V t2+t3)+φ ∩�

V
˜̃δ)]. Moreover, (t∗, t∗) ∈ R and (t∗∗, t∗∗) ∈ R.

The case of the closed substitution instances of the equation x �� (φ ∩�
V y) =

x �� (φ ∩�
V y) + φ ∩�

V
˜̃δ is similar to the previous case.

The closed substitution instances of the equation x = x trivially satisfy the
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conditions for an ic-bisimulation relation.
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