
Theory of Computing Systems manuscript No.
(will be inserted by the editor)

A Thread Algebra with Multi-level Strategic
Interleaving

J.A. Bergstra1,2, C.A. Middelburg 3,1

1 Programming Research Group, University of Amsterdam,
P.O. Box 41882, 1009 DB Amsterdam, the Netherlands

2 Department of Philosophy, Utrecht University,
P.O. Box 80126, 3508 TC Utrecht, the Netherlands

3 Computing Science Department, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, the Netherlands
e-mail: janb@science.uva.nl, keesm@win.tue.nl

The date of receipt and acceptance will be inserted by the editor

Abstract In a previous paper, we developed an algebraic theory about threads
and a form of concurrency where some deterministic interleaving strategy deter-
mines how threads that exist concurrently are interleaved. The interleaving of dif-
ferent threads constitutes a multi-thread. Several multi-threads may exist concur-
rently on a single host in a network, several host behaviours may exist concurrently
in a single network on the internet, etc. In the current paper, we assume that the
above-mentioned kind of interleaving is also present at those other levels. We ex-
tend the theory developed so far with features to cover the multi-level case. We
employ the resulting theory to develop a simplified, formal representation schema
of the design of systems that consist of several multi-threaded programs on var-
ious hosts in different networks and to verify a property of all systems designed
according to that schema.

Key words thread algebra – strategic interleaving – thread-service composition
– delayed processing – exception handling – formal design prototype

1 Introduction

A thread is the behaviour of a deterministic sequential program under execution.
Multi-threading refers to the concurrent existence of several threads in a program
under execution. Multi-threading is the dominant form of concurrency provided
by recent object-oriented programming languages such as Java [10] and C# [11].

Correspondence to: C.A. Middelburg

2 J.A. Bergstra, C.A. Middelburg

In the case of multi-threading, some deterministic interleaving strategy determines
how threads that exist concurrently are interleaved.

Arbitrary interleaving, on which theories about concurrent processes such as
ACP [5] are based, does not provide an appropriate abstraction when dealing with
multi-threading: it happens that interleaving of certain threads leads to deadlock
with a particular deterministic interleaving strategy whereas arbitrary interleaving
would not lead to deadlock, and vice versa. In [7], we introduced a number of plau-
sible deterministic interleaving strategies for multi-threading. We also proposed to
use the phrase strategic interleaving for the more constrained form of interleaving
obtained by using such a strategy. In order to deal with strategic interleaving, we
assumed that a collection of threads to be interleaved takes the form of a sequence,
called a thread vector.

Strategic interleaving of a thread vector constitutes a multi-thread. In conven-
tional operating system jargon, a multi-thread is called a process. Several multi-
threads may exist concurrently on the same machine. Multi-processing refers to
the concurrent existence of several multi-threads on a machine. Such machines
may be hosts in a network, and several host behaviours may exist concurrently in
the same network. And so on and so forth. We assume that strategic interleaving
is also present at those other levels.

In the current paper, we extend the theory developed so far with features to
cover multi-level strategic interleaving. An axiomatic description of the features
concerned, as well as a structural operational semantics, is provided. There is a
dependence on the interleaving strategy considered. We extend the theory only for
the simplest case, to wit cyclic interleaving. Cyclic interleaving basically operates
as follows: at each stage of the interleaving, the first thread in the thread vector
gets a turn to perform a step and then becomes the last one while all others move
one position. Other plausible interleaving strategies are treated in [7]. They can
also be adapted to the setting of multi-level strategic interleaving.

Threads proceed by performing steps, in the sequel called basic actions, in a
sequential fashion. Each basic action performed by a thread is taken as a command
to be processed by a service offered by the execution environment of the thread.
The processing of a command may involve a change of state of the service con-
cerned. At completion of the processing of the command, the service concerned
produces a reply value which is returned to the thread. In this paper, we introduce
thread-service composition, which allows for certain basic actions performed by a
thread to be processed by a certain service. This is needed if certain basic actions
are performed by the thread only for the sake of getting reply values returned by
a certain service and that way having itself affected by that service. In such cases,
the service concerned has an auxiliary nature in the sense that it forms part of the
system under consideration.

We demonstrate that the theory developed in this paper may be of use by em-
ploying it to develop a simplified, formal representation schema of the design of
systems that consist of several multi-threaded programs on various hosts in dif-
ferent networks and to verify a property of all systems designed according to that
schema. We propose to use the term formal design prototype for such a schema.
The verified property is laid down in a simulation theorem, which states that, if

A Thread Algebra with Multi-level Strategic Interleaving 3

a finite thread that forms part of a system designed according to the presented
schema does not make use of the services that form part of the system, then that
thread is simulated by the system. In other words, the thread is not really affected
by the system.

Setting up a framework in which formal design prototypes for systems that
consist of several multi-threaded programs on various hosts in different networks
can be developed and general properties of systems designed according to those
formal design prototypes can be verified is one of the objectives with which we
developed the theory presented in this paper.

The main assumption made in the theory presented in this paper is that strategic
interleaving is present at all levels of such systems. This is a drastic simplification,
as a result of which intuition may break down. We believe however that some such
simplification is needed to obtain a manageable theory about the behaviour of such
systems – and that the resulting theory will sometimes be adequate and sometimes
be inadequate.

Moreover, cyclic interleaving is a simplification of the interleaving strategies
actually used for multi-threading. Because of the complexity of those strategies,
we consider a simplification like this one desirable to start with. It leads to an
approximation which is sufficient in the case where the property laid down in the
simulation theorem mentioned above is verified. The essential point turns out to
be that the interleaving strategy used at each level is fair, i.e. that there will always
come a next turn for all active threads, multi-threads, etc. The simulation theorem
goes through for all fair interleaving strategies: the proof only depends on the use
of multi-level cyclic interleaving in the part where in point of fact its fairness is
shown.

Thread algebra with multi-level strategic interleaving is a design on top of
BPPA (Basic Polarized Process Algebra) [6,3]. BPPA is far less general than ACP-
style process algebras and its design focuses on the semantics of deterministic
sequential programs. The semantics of a deterministic sequential program is sup-
posed to be a polarized process. The idea is that a polarized process may occur
in two roles: the role of a client and the role of a server. In the former role, ba-
sic actions performed by the polarized process are requests upon which a reply is
expected. In the latter role, basic actions performed by the polarized process are
offers to serve a request and to return a reply. The distinction between these roles is
relevant in case BPPA is extended with a mechanism for client-server interaction,
as in [4]. However, BPPA deals with polarized processes that occur in the role of
a client only. In thread algebra, threads are regarded as polarized processes that
occur in the role of a client only.

The structure of this paper is as follows. After a review of BPPA (Section 2),
we extend it to a basic thread algebra with cyclic interleaving, but without any fea-
ture for multi-level strategic interleaving (Section 3). Next, we extend this basic
thread algebra with thread-service composition (Section 4) and other features for
multi-level strategic interleaving (Section 5). Following this, we discuss how de-
layed processing and exception handling can be expressed (Section 6) and give a
formal representation schema of the design of systems that consist of several multi-

4 J.A. Bergstra, C.A. Middelburg

Table 1 Axiom of BPPA

x E tau D y = x E tau D x T1

threaded programs on various hosts in different networks (Section 7). Finally, we
make some concluding remarks (Section 8).

2 Basic Polarized Process Algebra

In this section, we review BPPA (Basic Polarized Process Algebra), a form of pro-
cess algebra which is tailored to the description of the behaviour of deterministic
sequential programs under execution.

In BPPA, it is assumed that there is a fixed but arbitrary finite set ofbasic
actionsA with tau 6∈ A. We writeAtau for A ∪ {tau}. BPPA has the following
constants and operators:

– thedeadlockconstantD;
– theterminationconstantS;
– for eacha ∈ Atau, a binarypostconditional compositionoperator E aD .

We use infix notation for postconditional composition. We introduceaction prefix-
ing as an abbreviation:a ◦ p, wherep is a term of BPPA, abbreviatesp E aD p.

The intuition is that each basic action performed by a polarized process is taken
as a command to be processed by the execution environment of the polarized pro-
cess. The processing of a command may involve a change of state of the execution
environment. At completion of the processing of the command, the execution en-
vironment produces a reply value. This reply is eitherT or F and is returned to the
polarized process concerned. Letp andq be closed terms of BPPA. ThenpE aDq
will proceed asp if the processing ofa leads to the replyT (called a positive reply),
and it will proceed asq if the processing ofa leads to the replyF (called a negative
reply). If the reply is used to indicate whether the processing was successful, a use-
ful convention is to indicate successful processing by the replyT and unsuccessful
processing by the replyF. The actiontau plays a special role. Its execution will
never change any state and always produces a positive reply.

BPPA has only one axiom. This axiom is given in Table 1. Using the abbrevia-
tion introduced above, axiom T1 can be written as follows:x E tauD y = tau ◦x.

A system of recursion equationsover BPPA is a set of equationsE = {X =
tX | X ∈ V }whereV is a set of variables and eachtX is a term of BPPA that only
contains variables fromV . We writeV(E) for the set of all variables that occur
on the left-hand side of an equation inE. Let t be a term of BPPA containing a
variableX. Then an occurrence ofX in t is guardedif t has a subterm of the form
t′ E aD t′′ containing this occurrence ofX. A system of recursion equationsE is
guardedif all occurrences of variables in the right-hand sides of its equations are
guarded or it can be rewritten to such a system of recursion equations using the
equations ofE. Following [3], a CPO structure can be imposed on the domain of
the projective limit model of BPPA. Then guarded recursion equations represent

A Thread Algebra with Multi-level Strategic Interleaving 5

Table 2 Axioms for guarded recursion

〈X|E〉 = 〈tX |E〉 if X = tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

continuous operators having least fixed points. These matters will not be repeated
here, taking for granted that guarded systems of recursion equations have unique
solutions.

We extend BPPA with guarded recursion by adding constants for solutions
of guarded systems of recursion equations and axioms concerning these additional
constants. For each guarded system of recursion equationsE and eachX ∈ V(E),
we add a constant standing for the unique solution ofE for X to the constants of
BPPA. The constant standing for the unique solution ofE for X is denoted by
〈X|E〉. Moreover, we use the following notation. Lett be a term of BPPA andE
be a guarded system of recursion equations. Then we write〈t|E〉 for t with, for
all X ∈ V(E), all occurrences ofX in t replaced by〈X|E〉. We add the axioms
for guarded recursion given in Table 2 to the axioms of BPPA. In this table,X, tX
andE stand for an arbitrary variable, an arbitrary term of BPPA and an arbitrary
guarded system of recursion equations, respectively. Side conditions are added to
restrict the variables, terms and guarded systems of recursion equations for which
X, tX andE stand. The additional axioms for guarded recursion are known as
the recursive definition principle (RDP) and the recursive specification principle
(RSP). The equations〈X|E〉 = 〈tX |E〉 for a fixedE express that the constants
〈X|E〉 make up a solution ofE. The conditional equationsE ⇒ X = 〈X|E〉
express that this solution is the only one.

Remark 1Let E andE′ be two guarded systems of recursion equations over BPPA
with V(E) = V(E′), whereE′ is E rewritten using the equations ofE. Then, by
RDP,〈X|E〉 = 〈X|E′〉 for all X ∈ V(E). This can be regarded as a justification
of the definition of a guarded system of recursion equations. Moreover, it shows
that no generality is lost if we assume in proofs that all occurrences of variables
in the right-hand sides of the equations in a guarded system of recursion equations
are guarded.

Henceforth, we will write BPPA(A) for BPPA with the set of basic actionsA
fixed to be the setA, and BPPA(A)+REC for BPPA(A) extended with the con-
stants for solutions of guarded systems of recursion equations over BPPA(A) and
the axioms RDP and RSP from Table 2.

The projective limit characterization of process equivalence on polarized pro-
cesses is based on the notion of a finite approximation of depthn. When for
all n these approximations are identical for two given polarized processes, both
processes are considered identical. This is expressed by the infinitary conditional
equation AIP (Approximation Induction Principle) given in Table 3. Following [6],
which in fact uses the notation of [5], approximation of depthn is phrased in terms
of a unaryprojectionoperatorπn(). The projection operators are defined induc-
tively by means of axioms P0–P3 given in Table 3. In this table and all subsequent

6 J.A. Bergstra, C.A. Middelburg

Table 3 Approximation induction principle

π0(x) = D P0

πn+1(S) = S P1

πn+1(D) = D P2

πn+1(x E a D y) = πn(x) E a D πn(y) P3

(
∧

n≥0 πn(x) = πn(y)) ⇒ x = y AIP

tables with axioms in whicha occurs,a stands for an arbitrary action fromAtau.
It happens that RSP follows from AIP.

Theorem 1 (RSP follows from AIP) Let E be a guarded system of recursion
equations, and letX ∈ V(E). Then it follows fromAIP thatE ⇒ X = 〈X|E〉.

Proof Without loss of generality, we may assume that all occurrences of variables
in the right-hand sides of the equations inE are guarded (see Remark 1). After
replacingn times (n ≥ 0) all occurrences of allX ∈ V(E) in the right-hand
sides of the equations inE by the right-hand side of the equation forX in E,
all occurrences of variables in the right-hand sides of the equations are at least at
depthn + 1. We writeEn for the guarded system of recursion equations obtained
in this way, and we writetnX for the right-hand side of the equation forX in En.
Because all occurrences of variables intnX are at least at depthn + 1, πn(tnX) is a
closed term. Now assumeE and take an arbitraryn ≥ 0. ThenEn and in particular
X = tnX . From this, it follows immediately thatπn(X) = πn(tnX). Hence,E ⇒
πn(X) = πn(tnX). From this, and the fact thatπn(tnX) equals a closed term, it
follows by RDP that alsoπn(〈X|E〉) = πn(tnX). Hence,πn(X) = πn(〈X|E〉).
From this, it follows by AIP thatX = 〈X|E〉. ut

As mentioned above, the behaviour of a polarized process depends upon its
execution environment. Each basic action performed by the polarized process is
taken as a command to be processed by the execution environment. At any stage,
the commands that the execution environment can accept depend only on its his-
tory, i.e. the sequence of commands processed before and the sequence of replies
produced for those commands. When the execution environment accepts a com-
mand, it will produce a positive reply or a negative reply. Whether the reply is
positive or negative usually depends on the execution history. However, it may
also depend on external conditions.

In the structural operational semantics, we represent an execution environment
by a functionρ : (A× {T,F})∗ → P(A × {T,F}) that satisfies the following
condition: (a, b) 6∈ ρ(α) ⇒ ρ(α y 〈(a, b)〉) = ∅ for all a ∈ A, b ∈ {T,F}
andα ∈ (A× {T,F})∗.1 We write E for the set of all those functions. Given
an execution environmentρ ∈ E and a basic actiona ∈ A, the derivedexecu-
tion environment ofρ after processinga with a positivereply, written ∂

∂a

+
ρ, is

1 We write〈 〉 for the empty sequence,〈d〉 for the sequence havingd as sole element, and
α y β for the concatenation of sequencesα andβ. We assume that the identitiesα y 〈 〉 =
〈 〉 y α = α hold.

A Thread Algebra with Multi-level Strategic Interleaving 7

Table 4 Transition rules of BPPA

S ↓ D ↑ 〈x E tau D y, ρ〉 tau−−→ 〈x, ρ〉

〈x E a D y, ρ〉 a−→ 〈x, ∂
∂a

+
ρ〉

(a, T) ∈ ρ(〈 〉)
〈x E a D y, ρ〉 a−→ 〈y, ∂

∂a

−
ρ〉

(a, F) ∈ ρ(〈 〉)

x ↓

x l

x ↑

x l

Table 5 Transition rules for guarded recursion

〈〈t|E〉, ρ〉 a−→ 〈x′, ρ′〉

〈〈X|E〉, ρ〉 a−→ 〈x′, ρ′〉
X = t ∈ E

〈t|E〉 ↓

〈X|E〉 ↓
X = t ∈ E

〈t|E〉 ↑

〈X|E〉 ↑
X = t ∈ E

defined by ∂
∂a

+
ρ(α) = ρ(〈(a,T)〉 y α); and likewise thederivedexecution envi-

ronment ofρ after processinga with a negativereply, written ∂
∂a

−
ρ, is defined by

∂
∂a

−
ρ(α) = ρ(〈(a,F)〉 y α).
The following transition relations on closed terms of BPPA are used in the

structural operational semantics of BPPA:

– a binary relation〈 , ρ〉 a−→ 〈 , ρ′〉 for eacha ∈ Atau andρ, ρ′ ∈ E ;
– a unary relation ↓;
– a unary relation ↑;
– a unary relation l.

The four kinds of transition relations are called theaction step, termination, dead-
lock, andtermination or deadlockrelations, respectively. They can be explained as
follows:

– 〈p, ρ〉 a−→ 〈p′, ρ′〉: in execution environmentρ, processp can perform actiona
and after that proceed as processp′ in execution environmentρ′;

– p ↓: processp cannot but terminate successfully;
– p ↑: processp cannot but become inactive;
– p l: processp cannot but terminate successfully or become inactive.

The termination or deadlock relation is an auxiliary relation needed when we ex-
tend BPPA in Section 3.

The structural operational semantics of BPPA is described by the transition
rules given in Table 4. In this table and all subsequent tables with transition rules in
whicha occurs,a stands for an arbitrary action fromAtau. The transition rules for
the constants for solutions of guarded systems of recursion equations over BPPA
are given in Table 5. In this table,X, tX andE stand for an arbitrary variable,
an arbitrary term of BPPA and an arbitrary guarded system of recursion equations
over BPPA, respectively. The transition rules for projection are given in Table 6.

Bisimulation equivalence is defined as follows. Abisimulationis a symmetric
binary relationB on closed terms of BPPA such that for all closed termsp andq:

8 J.A. Bergstra, C.A. Middelburg

Table 6 Transition rules for projection

〈x, ρ〉 a−→ 〈x′, ρ′〉

〈πn+1(x), ρ〉 a−→ 〈πn(x′), ρ′〉

x ↓

πn+1(x) ↓

x ↑

πn+1(x) ↑ π0(x) ↑

– if B(p, q) and〈p, ρ〉 a−→ 〈p′, ρ′〉, then there is aq′ such that〈q, ρ〉 a−→ 〈q′, ρ′〉
andB(p′, q′);

– if B(p, q) andp ↓, thenq ↓;
– if B(p, q) andp ↑, thenq ↑.

Two closed termsp andq arebisimulation equivalent, writtenp↔ q, if there exists
a bisimulationB such thatB(p, q).

Bisimulation equivalence is a congruence with respect to the postconditional
composition operators and the projection operators. This follows immediately from
the fact that the transition rules for these operators are in the path format (see
e.g. [2]). The axioms given in Tables 1, 2 and 3 are sound with respect to bisimu-
lation equivalence.

3 A Basic Thread Algebra with Foci and Methods

In this section, we introduce a thread algebra that deals with single-level strategic
interleaving. Features for multi-level strategic interleaving will be added in sub-
sequent sections. The thread algebra introduced in this section is an extension of
BPPA. In [6], its has been outlined how and why polarized processes are a nat-
ural candidate for the specification of the semantics of deterministic sequential
programs. Assuming that a thread is a process representing a deterministic se-
quential program under execution, it is reasonable to view all polarized processes
as threads.

In order to deal with strategic interleaving, it is assumed that a collection of
threads to be interleaved takes the form of a sequence, called a thread vector.
Strategic interleaving operators turn a thread vector of arbitrary length into a sin-
gle thread. This single thread obtained via a strategic interleaving operator is also
called a multi-thread. Formally, however both threads and multi-threads are polar-
ized processes.

In this paper, we only cover the simplest interleaving strategy, namelycyclic
interleaving. Cyclic interleaving basically operates as follows: at each stage of
the interleaving, the first thread in the thread vector gets a turn to perform a basic
action and then the thread vector undergoes cyclic permutation. We mean by cyclic
permutation of a thread vector that the first thread in the thread vector becomes the
last one and all others move one position to the left. If one thread in the thread
vector deadlocks, the whole does not deadlock till all others have terminated or
deadlocked. An important property of cyclic interleaving is that it is fair, i.e. there
will always come a next turn for all active threads.

Other plausible interleaving strategies are treated in [7]. They can also be
adapted to the features for multi-level level strategic interleaving that will be in-

A Thread Algebra with Multi-level Strategic Interleaving 9

Table 7 Axioms for cyclic interleaving

‖(〈 〉) = S CSI1

‖(〈S〉 y α) = ‖(α) CSI2

‖(〈D〉 y α) = SD(‖(α)) CSI3

‖(〈tau ◦ x〉 y α) = tau ◦ ‖(α y 〈x〉) CSI4

‖(〈x E f.m D y〉 y α) = ‖(α y 〈x〉) E f.m D ‖(α y 〈y〉) CSI5

Table 8 Axioms for deadlock at termination

SD(S) = D S2D1

SD(D) = D S2D2

SD(tau ◦ x) = tau ◦ SD(x) S2D3

SD(x E f.m D y) = SD(x) E f.m D SD(y) S2D4

troduced in the current paper. The strategic interleaving operator for cyclic inter-
leaving is denoted by‖(). In [7], it was denoted by‖csi() to distinguish it from
other strategic interleaving operators.

It is assumed that there is a fixed but arbitrary finite set offoci F and a fixed
but arbitrary finite set ofmethodsM. For the set of basic actionsA, we take the
setFM = {f.m | f ∈ F ,m ∈ M}. Each focus plays the role of a name of a
service provided by the execution environment that can be requested to process a
command. Each method plays the role of a command proper. Performing a basic
actionf.m is taken as making a request to the service namedf to process the
commandm.

The axioms for cyclic interleaving are given in Table 7. In this table and all
subsequent tables with axioms or transition rules in whichf andm occur,f and
m stand for an arbitrary focus fromF and an arbitrary method fromM, respec-
tively. In CSI3, the auxiliarydeadlock at terminationoperatorSD() is used. This
operator turns termination into deadlock. Its axioms appear in Table 8.

Henceforth, we will write TAfm for BPPA(FM) extended with the strategic
interleaving operator for cyclic interleaving, the deadlock at termination operator,
and the axioms from Tables 7 and 8.

Example 1The following equation is easily derivable from the axioms of TAfm:

‖(〈(f ′
1.m

′
1 ◦ S) E f1.m1 D (f ′′

1 .m′′
1 ◦ S)〉 y

〈(f ′
2.m

′
2 ◦ S) E f2.m2 D (f ′′

2 .m′′
2 ◦ S)〉)

= ((f ′
1.m

′
1 ◦ f ′

2.m
′
2 ◦ S) E f2.m2 D (f ′

1.m
′
1 ◦ f ′′

2 .m′′
2 ◦ S))

E f1.m1 D

((f ′′
1 .m′′

1 ◦ f ′
2.m

′
2 ◦ S) E f2.m2 D (f ′′

1 .m′′
1 ◦ f ′′

2 .m′′
2 ◦ S)) .

This equation shows clearly that the two threads(f ′
1.m

′
1◦S)E f1.m1 D(f ′′

1 .m′′
1◦S)

and(f ′
2.m

′
2 ◦ S) E f2.m2 D (f ′′

2 .m′′
2 ◦ S) are interleaved in a cyclic manner: first

the first thread performsf1.m1, next the second thread performsf2.m2, next the

10 J.A. Bergstra, C.A. Middelburg

first thread performsf ′
1.m

′
1 or f ′′

1 .m′′
1 depending upon the reply onf1.m1, next

the second thread performsf ′
2.m

′
2 or f ′′

2 .m′′
2 depending upon the reply onf2.m2.

We can prove that each closed term of TAfm can be reduced to a closed term
of BPPA(FM).

Theorem 2 (Elimination) For all closed termsp of TAfm, there exists a closed
termq of BPPA(FM) such thatp = q is derivable from the axioms ofTAfm.

Proof We prove this by induction on the structure ofp:

– p ≡ S: S is a closed term of BPPA(FM).
– p ≡ D: D is a closed term of BPPA(FM).
– p ≡ tau ◦ p′: Let q′ be a closed term of BPPA(FM) such thatp′ = q′. Such

a term exists by the induction hypothesis. Thentau ◦ q′ is a closed term of
BPPA(FM) andtau ◦ p′ = tau ◦ q′.

– p ≡ p′ E f.m D p′′: Let q′ andq′′ be closed terms of BPPA(FM) such that
p′ = q′ andp′′ = q′′. Such terms exist by the induction hypothesis. Then
q′E f.m Dq′′ is a closed term of BPPA(FM) andp′E f.m Dp′′ = q′E f.m D
q′′.

– p ≡ SD(p′): By the induction hypothesis, there exists a closed termq′ of
BPPA(FM) such thatp′ = q′. So we are done if we have proved the following
lemma:

Let q′ be a closed term of BPPA(FM). Then there exists a closed termr′ of
BPPA(FM) such thatSD(q′) = r′ is derivable from the axioms of TAfm.

We prove this lemma by induction on the structure ofq′:
– q′ ≡ S: SD(S) = D by S2D1 andD is a closed term of BPPA(FM).
– q′ ≡ D: SD(D) = D by S2D2 andD is a closed term of BPPA(FM).
– q′ ≡ tau ◦ q′′: SD(tau ◦ q′′) = tau ◦ SD(q′′) by S2D3. Letr′′ be a closed

term of BPPA(FM) such thatSD(q′′) = r′′. Such a term exists by the
induction hypothesis. Thentau ◦ r′′ is a closed term of BPPA(FM) and
SD(tau ◦ q′′) = tau ◦ r′′.

– q′ ≡ q′′ E f.m D q′′′: SD(q′′ E f.m D q′′′) = SD(q′′) E f.m D SD(q′′′) by
S2D4. Letr′′ andr′′′ be closed terms of BPPA(FM) such thatSD(q′′) =
r′′ andSD(q′′′) = r′′′. Such terms exist by the induction hypothesis. Then
r′′ E f.m D r′′′ is a closed term of BPPA(FM) andSD(q′′ E f.m D q′′′) =
r′′ E f.m D r′′′.

– p ≡ ‖(α): If α = 〈 〉, then‖(α) = S by CSI1 andS is a closed term of
BPPA(FM). If α = ‖(〈p′1〉y. . .y〈p′n〉) for somen > 0, then, by the induction
hypothesis, there exist closed termsq′1, . . . , q′n of BPPA(FM) such thatp′1 =
q′1, . . . ,p′n = q′n. So we are done if we have proved the following lemma:

Let q′1, . . . , q′n (n > 0) be closed terms of BPPA(FM). Then there exists a
closed termr′ of BPPA(FM) such that‖(〈q′1〉y . . . y 〈q′n〉) = r′ is derivable
from the axioms of TAfm.

We prove this lemma by induction on the sum of the depths plus one ofq′1, . . . ,
q′n and case distinction on the structure ofq′1:

A Thread Algebra with Multi-level Strategic Interleaving 11

– q′1 ≡ S: ‖(〈S〉y 〈q′2〉y . . . y 〈q′n〉) = ‖(〈q′2〉y . . . y 〈q′n〉) by CSI2. Letr′

be a closed term of BPPA(FM) such that‖(〈q′2〉y . . . y 〈q′n〉) = r′. Such
a term exists by the induction hypothesis. Moreover,‖(〈S〉y 〈q′2〉y . . . y

〈q′n〉) = r′.
– q′1 ≡ D: ‖(〈D〉y 〈q′2〉y . . . y 〈q′n〉) = SD(‖(〈q′2〉y . . . y 〈q′n〉)) by CSI3.

Let r′ be a closed term of BPPA(FM) such that‖(〈q′2〉y . . . y 〈q′n〉) = r′.
Such a term exists by the induction hypothesis. Lets′ be a closed term of
BPPA(FM) such thatSD(r′) = s′. Such a term exists by the lemma proved
above for the casep ≡ SD(p′). Moreover,‖(〈D〉y 〈q′2〉y . . . y 〈q′n〉) = s′.

– q′1 ≡ tau ◦ q′′1 : ‖(〈tau ◦ q′′1 〉 y 〈q′2〉 y . . . y 〈q′n〉) = tau ◦ ‖(〈q′2〉 y . . . y

〈q′n〉 y 〈q′′1 〉) by CSI4. Letr′ be a closed term of BPPA(FM) such that
‖(〈q′2〉 y . . . y 〈q′n〉 y 〈q′′1 〉) = r′. Such a term exists by the induction
hypothesis. Thentau ◦ r′ is a closed term of BPPA(FM) and ‖(〈tau ◦
q′′1 〉 y 〈q′2〉 y . . . y 〈q′n〉) = tau ◦ r′.

– q′1 ≡ q′′1 E f.m Dq′′′1 : ‖(〈q′′1 E f.m Dq′′′1 〉y 〈q′2〉y . . .y 〈q′n〉) = ‖(〈q′2〉y

. . . y 〈q′n〉 y 〈q′′1 〉) E f.m D ‖(〈q′2〉 y . . . y 〈q′n〉 y 〈q′′′1 〉) by CSI5. Let
r′ andr′′ be closed terms of BPPA(FM) such that‖(〈q′2〉 y . . . y 〈q′n〉 y

〈q′′1 〉) = r′ and‖(〈q′2〉y . . . y 〈q′n〉y 〈q′′′1 〉) = r′′. Such terms exist by the
induction hypothesis. Thenr′ E f.m D r′′ is a closed term of BPPA(FM)
and‖(〈q′′1 E f.m D q′′′1 〉 y 〈q′2〉 y . . . y 〈q′n〉) = r′ E f.m D r′′.

ut

The following proposition, concerning the cyclic interleaving of a thread vector
of length1, is easily proved using Theorem 2.

Proposition 1 For all closed termsp of TAfm, the equation‖(〈p〉) = p is deriv-
able from the axioms ofTAfm.

Proof By Theorem 2, it is sufficient to prove that this equation is derivable for all
closed termsp of BPPA(FM). We prove this by induction on the structure ofp:

– p ≡ S: ‖(〈S〉) = S by CSI2 and CSI1.
– p ≡ D: ‖(〈D〉) = D by CSI3, CSI1 and S2D1.
– p ≡ tau ◦ p′: ‖(〈tau ◦ p′〉) = tau ◦ p′ by CSI4 and the induction hypothesis.
– p ≡ p′ E f.m D p′′: ‖(〈p′ E f.m D p′′〉) = p′ E f.m D p′′ by CSI5 and the

induction hypothesis.

In the proof of each case, in addition to the above-mentioned axioms, the fact that
α = α y 〈 〉 = 〈 〉 y α is needed. ut

The equation‖(〈p〉) = p from Proposition 1 expresses the obvious fact that in the
cyclic interleaving of a thread vector of length1 no proper interleaving is involved.

The following are useful properties of the deadlock at termination operator
which are proved using Theorem 2 as well.

Proposition 2 For all closed termsp1, . . . , pn of TAfm, the following equations
are derivable from the axioms ofTAfm:

SD(SD(p1)) = SD(p1) , (1)

SD(‖(〈p1〉 y . . . y 〈pn〉)) = ‖(〈SD(p1)〉 y . . . y 〈SD(pn)〉) . (2)

12 J.A. Bergstra, C.A. Middelburg

Proof By Theorem 2, it is sufficient to prove that these equations are derivable
for all closed termsp1, . . . , pn of BPPA(FM). We prove that (1) is derivable by
induction on the structure ofp1:

– p1 ≡ S: SD(SD(S)) = D by S2D1 and S2D2, andD = SD(S) by S2D1.
– p1 ≡ D: SD(SD(D)) = SD(D) by S2D2.
– p1 ≡ tau ◦ p′1: SD(SD(tau ◦ p′1)) = tau ◦ SD(SD(p′1)) by S2D3 twice,tau ◦

SD(SD(p′1)) = tau ◦ SD(p′1) by the induction hypothesis, andtau ◦ SD(p′1) =
SD(tau ◦ p′1) by S2D3.

– p1 ≡ p′1 E f.m D p′′1 : SD(SD(p′1 E f.m D p′′1)) = SD(SD(p′1)) E f.m D
SD(SD(p′′1)) by S2D4 twice, SD(SD(p′1)) E f.m D SD(SD(p′′1)) =
SD(p′1) E f.m D SD(p′′1) by the induction hypothesis, andSD(p′1) E f.m D
SD(p′′1) = SD(p′1 E f.m D p′′1) by S2D4.

We prove that (2) is derivable by induction on the sum of the depths plus one of
p1, . . . ,pn and case distinction on the structure ofp1:

– p1 ≡ S: SD(‖(〈S〉 y 〈p2〉 y . . . y 〈pn〉)) = SD(SD(‖(〈p2〉 y . . . y 〈pn〉)))
by CSI2 and (1),SD(SD(‖(〈p2〉 y . . . y 〈pn〉))) = SD(‖(〈SD(p2)〉 y

. . . y 〈SD(pn)〉)) by the induction hypothesis, andSD(‖(〈SD(p2)〉 y . . . y

〈SD(pn)〉)) = ‖(〈SD(S)〉 y 〈SD(p2)〉 y . . . y 〈SD(pn)〉) by CSI3 and S2D1.
– p1 ≡ D: SD(‖(〈D〉 y 〈p2〉 y . . . y 〈pn〉)) = SD(SD(‖(〈p2〉 y . . . y 〈pn〉)))

by CSI3,SD(SD(‖(〈p2〉y . . . y 〈pn〉))) = SD(‖(〈SD(p2)〉y . . . y 〈SD(pn)〉))
by the induction hypothesis, andSD(‖(〈SD(p2)〉 y . . . y 〈SD(pn)〉)) =
‖(〈SD(D)〉 y 〈SD(p2)〉 y . . . y 〈SD(pn)〉) by CSI3 and S2D2.

– p1 ≡ tau◦p′1: SD(‖(〈tau◦p′1〉y〈p2〉y . . .y〈pn〉)) = tau◦SD(‖(〈p2〉y . . .y

〈pn〉 y 〈p′1〉)) by CSI4 and S2D3,tau ◦ SD(‖(〈p2〉 y . . . y 〈pn〉 y 〈p′1〉)) =
tau ◦ ‖(〈SD(p2)〉 y . . . y 〈SD(pn)〉 y 〈SD(p′1)〉) by the induction hypothesis,
andtau ◦ ‖(〈SD(p2)〉 y . . . y 〈SD(pn)〉 y 〈SD(p′1)〉) = ‖(〈SD(tau ◦ p′1)〉 y

〈SD(p2)〉 y . . . y 〈SD(pn)〉) by CSI4 and S2D3.
– p1 ≡ p′1 E f.m D p′′1 : SD(‖(〈p′1 E f.m D p′′1〉 y 〈p2〉 y . . . y 〈pn〉)) =

SD(‖(〈p2〉 y . . . y 〈pn〉 y 〈p′1〉)) E f.m D SD(‖(〈p2〉 y . . . y 〈pn〉 y 〈p′′1〉))
by CSI5 and S2D4,SD(‖(〈p2〉 y . . . y 〈pn〉 y 〈p′1〉)) E f.m D SD(‖(〈p2〉 y

. . . y 〈pn〉 y 〈p′′1〉)) = ‖(〈SD(p2)〉 y . . . y 〈SD(pn)〉 y 〈SD(p′1)〉) E f.m D
‖(〈SD(p2)〉 y . . . y 〈SD(pn)〉 y 〈SD(p′′1)〉) by the induction hypothesis, and
‖(〈SD(p2)〉 y . . . y 〈SD(pn)〉 y 〈SD(p′1)〉) E f.m D ‖(〈SD(p2)〉 y . . . y

〈SD(pn)〉y〈SD(p′′1)〉) = ‖(〈SD(p′1E f.m Dp′′1)〉y〈SD(p2)〉y. . .y〈SD(pn)〉)
by CSI5 and S2D4.
ut

We extend TAfm with guarded recursion like in the case of BPPA. It involves
systems of recursion equations over TAfm, which require an adaptation of the no-
tion of guardedness. Asystem of recursion equationsover TAfm is a set of equa-
tionsE = {X = tX | X ∈ V } whereV is a set of variables and eachtX is a term
of TAfm that only contains variables fromV . Let t be a term of TAfm containing a
variableX. Then an occurrence ofX in t is guardedif t has a subterm of the form
t′ E aD t′′ containing this occurrence ofX. A system of recursion equationsE is
guardedif all occurrences of variables in the right-hand sides of its equations are

A Thread Algebra with Multi-level Strategic Interleaving 13

guarded or it can be rewritten to such a system of recursion equations using the
axioms of TAfm and the equations ofE.

Henceforth, we will write TAfm+REC for TAfm extended with the constants
for solutions of guarded systems of recursion equations over TAfm and the axioms
RDP and RSP from Table 2.

Theorem 2 states that the strategic interleaving operator for cyclic interleav-
ing and the deadlock at termination operator can be eliminated from closed terms
of TAfm. It does not state anything concerning closed terms of TAfm+REC. The
following two propositions concern the case where the operand of the strategic in-
terleaving operator for cyclic interleaving is a sequence of constants for solutions
of guarded systems of recursion equations over BPPA(FM) and the case where
the operand of the deadlock at termination operator is such a constant.

Proposition 3 Let E′ and E′′ be guarded systems of recursion equations over
BPPA(FM), letX ∈ V(E′), and letY ∈ V(E′′). Then there exists a guarded sys-
tem of recursion equationsE overBPPA(FM) and a variableZ ∈ V(E) such that
‖(〈〈X|E′〉〉 y 〈〈Y |E′′〉〉) = 〈Z|E〉 is derivable from the axioms ofTAfm+REC.

Proof Without loss of generality, we may assume that all occurrences of variables
in the right-hand sides of the equations inE′ andE′′ are guarded (see Remark 1).
Without loss of generality, we may also assume thatV(E′) andV(E′′) are disjoint
sets. We take an injective functionZ that maps each pair of variables in(V(E′)×
V(E′′))∪(V(E′′)×V(E′)) to a variable not inV(E′)∪V(E′′), and define, guided
by axioms CSI2–CSI5, the following guarded system of recursion equations:

E = {Z(X ′, Y ′) = Y ′ | X ′ = S ∈ E′ ∧ Y ′ ∈ V(E′′)}
∪ {Z(X ′, Y ′) = SD(Y ′) | X ′ = D ∈ E′ ∧ Y ′ ∈ V(E′′)}
∪ {Z(X ′, Y ′) = tau ◦ Z(Y ′, X ′′) |

X ′ = tau ◦X ′′ ∈ E′ ∧ Y ′ ∈ V(E′′)}
∪ {Z(X ′, Y ′) = Z(Y ′, X ′′) E f.m D Z(Y ′, X ′′′) |

X ′ = X ′′ E f.m D X ′′′ ∈ E′ ∧ Y ′ ∈ V(E′′)}
∪ {Z(Y ′, X ′) = X ′ | Y ′ = S ∈ E′′ ∧ X ′ ∈ V(E′)}
∪ {Z(Y ′, X ′) = SD(X ′) | Y ′ = D ∈ E′′ ∧ X ′ ∈ V(E′)}
∪ {Z(Y ′, X ′) = tau ◦ Z(X ′, Y ′′) |

Y ′ = tau ◦ Y ′′ ∈ E′′ ∧ X ′ ∈ V(E′)}
∪ {Z(Y ′, X ′) = Z(X ′, Y ′′) E f.m D Z(X ′, Y ′′′) |

Y ′ = Y ′′ E f.m D Y ′′′ ∈ E′′ ∧ X ′ ∈ V(E′)}
∪ E′ ∪ E′′ .

If we replace inE, for all X ′ ∈ V(E′) and allY ′ ∈ V(E′′), all occurrences
of Z(X ′, Y ′) by ‖(〈〈X ′|E′〉〉 y 〈〈Y ′|E′′〉〉), all occurrences ofZ(Y ′, X ′) by
‖(〈〈Y ′|E′′〉〉 y 〈〈X ′|E′〉〉), all occurrences ofX ′ by ‖(〈〈X ′|E′〉〉) and all occur-
rences ofY ′ by ‖(〈〈Y ′|E′′〉〉), then each of the resulting equations is derivable by
first applying RDP and then applying one of CSI2–CSI5. Hence,‖(〈〈X|E′〉〉 y

14 J.A. Bergstra, C.A. Middelburg

〈〈Y |E′′〉〉) is a solution ofE for Z(X, Y). From this, it follows by RSP that
‖(〈〈X|E′〉〉 y 〈〈Y |E′′〉〉) = 〈Z(X, Y)|E〉. ut

Proposition 4 LetE′ be a guarded system of recursion equations overBPPA(FM),
and letX ∈ V(E′). Then there exists a guarded system of recursion equationsE
over BPPA(FM) and a variableY ∈ V(E) such thatSD(〈X|E′〉) = 〈Y |E〉 is
derivable from the axioms ofTAfm+REC.

Proof Without loss of generality, we may assume that all occurrences of variables
in the right-hand sides of the equations inE′ are guarded. We take an injective
functionY that maps each variable inV(E′) to a variable not inV(E′), and de-
fine, guided by axioms S2D1–S2D4, the following guarded system of recursion
equations:

E = {Y (X ′) = D | X ′ = S ∈ E′} ∪ {Y (X ′) = D | X ′ = D ∈ E′}
∪ {Y (X ′) = tau ◦ Y (X ′′) | X ′ = tau ◦X ′′ ∈ E′}
∪ {Y (X ′) = Y (X ′′) E f.m D Y (X ′′′) | X ′ = X ′′ E f.m D X ′′′ ∈ E′} .

If we replace inE, for all X ′ ∈ V(E′), all occurrences ofY (X ′) by SD(〈X ′|E′〉),
then each of the resulting equations is derivable by first applying RDP and then
applying one of S2D1–S2D4. Hence,SD(〈X|E′〉) is a solution ofE for Y (X).
From this, it follows by RSP thatSD(〈X|E′〉) = 〈Y (X)|E〉. ut

Proposition 3 states that the strategic interleaving operator for cyclic interleaving
can be eliminated from terms of the form‖(〈〈X|E′〉〉 y 〈〈Y |E′′〉〉) if E′ andE′′

are guarded systems of recursion equations over BPPA(FM). Proposition 4 states
that the deadlock at termination operator can be eliminated from terms of the form
SD(〈X|E′〉) if E′ is a guarded system of recursion equations over BPPA(FM).
Moreover, both state that the resulting term is a term of the form〈Z|E〉 whereE
is a guarded system of recursion equations over BPPA(FM). It is clear that the
proof of Proposition 3 generalizes to the case where the operand is a sequence of
length greater than2.

The structural operational semantics of TAfm is described by the transition
rules given in Tables 4 and 9.

Bisimulation equivalence is also a congruence with respect to the strategic in-
terleaving operator for cyclic interleaving and the deadlock at termination operator.
This follows immediately from the fact that the transition rules for TAfm consti-
tute a complete transition system specification in the relaxed panth format (see
e.g. [12]). The axioms given in Tables 7 and 8 are sound with respect to bisimula-
tion equivalence.

4 Thread-Service Composition

In this section, we extend the thread algebra introduced in Section 3 with thread-
service composition, which allows for certain basic actions performed by a thread
to be processed by a certain service. This is needed if certain basic actions are

A Thread Algebra with Multi-level Strategic Interleaving 15

Table 9 Transition rules for cyclic interleaving and deadlock at termination

x1 ↓, . . . , xk ↓, 〈xk+1, ρ〉 a−→ 〈x′k+1, ρ′〉

〈‖(〈x1〉 y . . . y 〈xk+1〉 y α), ρ〉 a−→ 〈‖(α y 〈x′k+1〉), ρ
′〉

(k ≥ 0)

x1 l, . . . , xk l, xl ↑, 〈xk+1, ρ〉 a−→ 〈x′k+1, ρ′〉

〈‖(〈x1〉 y . . . y 〈xk+1〉 y α), ρ〉 a−→ 〈‖(α y 〈D〉 y 〈x′k+1〉), ρ
′〉

(k ≥ l > 0)

x1 ↓, . . . , xk ↓

‖(〈x1〉 y . . . y 〈xk〉) ↓

x1 l, . . . , xk l, xl ↑

‖(〈x1〉 y . . . y 〈xk〉) ↑
(k ≥ l > 0)

〈x, ρ〉 a−→ 〈x′, ρ′〉

〈SD(x), ρ〉 a−→ 〈SD(x′), ρ′〉

x l

SD(x) ↑

performed by the thread only for the sake of getting reply values returned by a
certain service and that way having itself affected by that service.

For eachf ∈ F , we introduce athread-service compositionoperator /f .
These operators have a thread as first argument and a service as second argument.
P /f H is the thread that results from processing all basic actions performed by
threadP that are of the formf.m by serviceH. When a basic actionf.m per-
formed by threadP is processed byH, it is turned into the actiontau and post-
conditional composition is removed in favour of action prefixing on the basis of
the reply value produced byH.

A service is represented by a functionH :M+ → {T,F,B,R} with the prop-
erty thatH(α) = B ⇒ H(α y 〈m〉) = B andH(α) = R ⇒ H(α y 〈m〉) = R
for all α ∈ M+ andm ∈ M. This function is called thereply function of the
service. Given a reply functionH and a methodm, the derived reply function of
H after processingm, written ∂

∂mH, is defined by ∂
∂mH(α) = H(〈m〉 y α).

The connection between a reply functionH and the service represented by it
can be understood as follows:

– If H(〈m〉) = T, the request to process commandm is accepted by the service,
the reply is positive and the service proceeds as∂

∂mH.
– If H(〈m〉) = F, the request to process commandm is accepted by the service,

the reply is negative and the service proceeds as∂
∂mH.

– If H(〈m〉) = B, the request to process commandm is not refused by the
service, but the processing ofm is temporarily blocked. The request will have
to wait until the processing ofm is not blocked any longer.

– If H(〈m〉) = R, the request to process commandm is refused by the service.

The axioms for thread-service composition are given in Table 10. In this table
and all subsequent tables with axioms or transition rules in whichg occurs, likef ,
g stands for an arbitrary focus fromF . Axiom TSC3 expresses that the actiontau
is always accepted. Axioms TSC5 and TSC6 make it clear thattau arises as the
residue of processing commands. Therefore,tau is not connected to a particular
focus, and is always accepted.

Henceforth, we write TAtscfm for TAfm extended with the thread-service compo-
sition operators and the axioms from Table 10.

16 J.A. Bergstra, C.A. Middelburg

Table 10 Axioms for thread-service composition

S /f H = S TSC1

D /f H = D TSC2

(tau ◦ x) /f H = tau ◦ (x /f H) TSC3

(x E g.m D y) /f H = (x /f H) E g.m D (y /f H) if f 6= g TSC4

(x E f.m D y) /f H = tau ◦ (x /f
∂

∂m
H) if H(〈m〉) = T TSC5

(x E f.m D y) /f H = tau ◦ (y /f
∂

∂m
H) if H(〈m〉) = F TSC6

(x E f.m D y) /f H = D if H(〈m〉) ∈ {B, R} TSC7

Example 2Let m,m′,m′′ ∈ M, and letH be a service such thatH(α y 〈m〉) =
T if #m′(α) − #m′′(α) > 0, H(α y 〈m〉) = F if #m′(α) − #m′′(α) ≤ 0,
H(α y 〈m′〉) = T andH(α y 〈m′′〉) = T, for all α ∈ M∗. Here#m′(α) and
#m′′(α) denote the number of occurrences ofm′ andm′′, respectively, inα. Then
the following equation is easily derivable from the axioms of TAtsc

fm :

(f.m′ ◦ ((f ′.m′ ◦ S) E f.m D (f ′′.m′′ ◦ S))) /f H = tau ◦ tau ◦ f ′.m′ ◦ S .

This equation shows clearly how the threadf.m′ ◦ ((f ′.m′ ◦S)E f.m D (f ′′.m′′ ◦
S)) is affected by serviceH: the processing off.m′ andf.m by H turns these
basic actions intotau, and the reply value returned byH after completion of the
processing off.m makes the thread proceed with performingf ′.m′.

We can prove that each closed term of TAtsc
fm can be reduced to a closed term

of BPPA(FM).

Theorem 3 (Elimination) For all closed termsp of TAtsc
fm , there exists a closed

termq of BPPA(FM) such thatp = q is derivable from the axioms ofTAtsc
fm .

Proof The proof follows the same lines as the proof of Theorem 2. Here, we have
to consider one additional case, viz.p ≡ p′ /f H. By the induction hypothesis,
there exists a closed termq′ of BPPA(FM) such thatp′ = q′. So we are done if
we have proved the following lemma:

Let q′ be a closed term of BPPA(FM). Then there exists a closed termr′ of
BPPA(FM) such thatq′ /f H = r′ is derivable from the axioms of TAtscfm .

We prove this lemma by induction on the depth ofq′ and case distinction on the
structure ofq′:

– q′ ≡ S: S /f H = S by TSC1 andS is a closed term of BPPA(FM).
– q′ ≡ D: D /f H = D by TSC2 andD is a closed term of BPPA(FM).
– q′ ≡ tau ◦ q′′: (tau ◦ q′′) /f H = tau ◦ (q′′ /f H) by TSC3. Letr′′ be a

closed term of BPPA(FM) such thatq′′ /f H = r′′. Such a term exists by
the induction hypothesis. Thentau ◦ r′′ is a closed term of BPPA(FM) and
(tau ◦ q′′) /f H = tau ◦ r′′.

– q′ ≡ q′′ E g.mD q′′′: We distinguish four cases:

A Thread Algebra with Multi-level Strategic Interleaving 17

– f 6= g: (q′′ E g.mD q′′′) /f H = (q′′ /f H) E g.mD (q′′′ /f H) by TSC4.
Let r′′ andr′′′ be closed terms of BPPA(FM) such thatq′′ /f H = r′′

andq′′′ /f H = r′′′. Such terms exist by the induction hypothesis. Then
r′′E g.mDr′′′ is a closed term of BPPA(FM) and(q′′E g.mDq′′′)/f H =
r′′ E g.mD r′′′.

– f = g, H(〈m〉) = T: (q′′ E g.mD q′′′) /f H = tau ◦ (q′′ /f
∂

∂mH) by
TSC5. Letr′′ be a closed term of BPPA(FM) such thatq′′ /f ∂

∂mH = r′′.
Such a term exists by the induction hypothesis. Thentau ◦ r′′ is a closed
term of BPPA(FM) and(q′′ E g.mD q′′′) /f H = tau ◦ r′′.

– f = g, H(〈m〉) = F: This case goes analogous to the previous case.
– f = g, H(〈m〉) ∈ {B,R}: (q′′ E g.mD q′′′) /f H = D by TSC7 andD is

a closed term of BPPA(FM).
ut

The following are useful properties of the deadlock at termination operator in
the presence of both cyclic interleaving and thread-service composition which are
proved using Theorem 3.

Proposition 5 For all closed termsp1, . . . , pn of TAtsc
fm , the following equations

are derivable from the axioms ofTAtsc
fm :

SD(SD(p1)) = SD(p1) , (1)

SD(‖(〈p1〉 y . . . y 〈pn〉)) = ‖(〈SD(p1)〉 y . . . y 〈SD(pn)〉) , (2)

SD(p1 /f H) = SD(p1) /f H . (3)

Proof By Theorem 3, it is sufficient to prove that these equations are derivable
for all closed termsp1, . . . , pn of BPPA(FM). For equations (1) and (2), this is
already done in the proof of Proposition 2. For equation (3), we do it by induction
on the depth ofp1 and case distinction on the structure ofp1:

– p1 ≡ S: SD(S /f H) = D by TSC1 and S2D1, andD = SD(S) /f H by TSC2
and S2D1.

– p1 ≡ D: SD(D /f H) = D by TSC2 and S2D2, andD = SD(D) /f H by TSC2
and S2D2.

– p1 ≡ tau ◦ p′1: SD((tau ◦ p′1) /f H) = tau ◦ SD(p′1 /f H) by TSC3 and S2D3,
tau ◦ SD(p′1 /f H) = tau ◦ (SD(p′1) /f H) by the induction hypothesis, and
tau ◦ (SD(p′1) /f H) = SD(tau ◦ p′1) /f H by TSC3 and S2D3.

– p1 ≡ p′1 E g.mD p′′1 : We distinguish four cases:
– f 6= g: SD((p′1 E g.mD p′′1) /f H) = SD(p′1 /f H) E g.mD SD(p′′1 /f H)

by TSC4 and S2D4,SD(p′1 /f H) E g.mD SD(p′′1 /f H) = (SD(p′1) /f
H) E g.mD (SD(p′′1) /f H) by the induction hypothesis, and(SD(p′1) /f
H)E g.mD(SD(p′′1)/f H) = SD(p′1E g.mDp′′1)/f H by TSC4 and S2D4.

– f = g, H(〈m〉) = T: SD((p′1 E g.mD p′′1) /f H) = tau ◦ SD(p′1 /f
∂

∂mH)
by TSC5 and S2D3,tau◦SD(p′1 /f

∂
∂mH) = tau◦(SD(p′1)/f

∂
∂mH) by the

induction hypothesis, andtau◦(SD(p′1)/f
∂

∂mH) = SD(p′1E g.mDp′′1)/fH
by TSC5 and S2D4.

– f = g, H(〈m〉) = F: This case goes analogous to the previous case.

18 J.A. Bergstra, C.A. Middelburg

– f = g, H(〈m〉) ∈ {B,R}: SD((p′1 E g.mD p′′1) /f H) = D by TSC7 and
S2D2, andD = SD(p′1 E g.mD p′′1) /f H by TSC7 and S2D4.

ut

We extend TAtscfm with guarded recursion as in the case of TAfm. Systems of
recursion equations over TAtscfm and guardedness of those are defined as in the case
of TAfm, but with TAfm everywhere replaced by TAtscfm .

Henceforth, we will write TAtscfm+REC for TAtsc
fm extended with the constants

for solutions of guarded systems of recursion equations over TAtsc
fm and the axioms

RDP and RSP from Table 2.
Theorem 3 states that the strategic interleaving operator for cyclic interleaving,

the deadlock at termination operator and the thread-service composition operators
can be eliminated from closed terms of TAtsc

fm . It does not state anything about
closed terms of TAtscfm+REC. Propositions 3 and 4, concerning the case where
the operand of the strategic interleaving operator for cyclic interleaving is a se-
quence of constants for solutions of guarded systems of recursion equations over
BPPA(FM) and the case where the operand of the deadlock at termination opera-
tor is such a constant, go through in the presence of the thread-service composition
operators. The following proposition concerns the case where the first operand of
a thread-service composition operator is such a constant.

Proposition 6 LetE′ be a guarded system of recursion equations overBPPA(FM),
and letX ∈ V(E′). Moreover, letf be a focus and letH be a reply function. Then
there exists a guarded system of recursion equationsE over BPPA(FM) and a
variableY ∈ V(E) such that〈X|E′〉 /f H = 〈Y |E〉 is derivable from the axioms
of TAtsc

fm+REC.

Proof Without loss of generality, we may assume that all occurrences of variables
in the right-hand sides of the equations inE′ are guarded (see Remark 1). LetH be
the set inductively defined by the following rules: (i)H ∈ H; (ii) if m ∈ M and
H ′ ∈ H, then ∂

∂mH ′ ∈ H. We take an injective functionY that maps each pair in
V(E′)×H to a variable not inV(E′), and define, guided by axioms TSC1–TSC7,
the following guarded system of recursion equations:

E = {Y (X ′,H ′) = S | X ′ = S ∈ E′ ∧ H ′ ∈ H}
∪ {Y (X ′,H ′) = D | X ′ = D ∈ E′ ∧ H ′ ∈ H}
∪ {Y (X ′,H ′) = tau ◦ Y (X ′′,H ′) | X ′ = tau ◦X ′′ ∈ E′ ∧ H ′ ∈ H}
∪ {Y (X ′,H ′) = Y (X ′′,H ′) E g.mD Y (X ′′′,H ′) |

X ′ = X ′′ E g.mD X ′′′ ∈ E′ ∧ f 6= g ∧ H ′ ∈ H}
∪ {Y (X ′,H ′) = tau ◦ Y (X ′′, ∂

∂mH ′) |
∃X ′′′ • (X ′ = X ′′ E f.m D X ′′′ ∈ E′ ∧ H ′(〈m〉) = T ∧ H ′ ∈ H)}

∪ {Y (X ′,H ′) = tau ◦ Y (X ′′′, ∂
∂mH ′) |

∃X ′′ • (X ′ = X ′′ E f.m D X ′′′ ∈ E′ ∧ H ′(〈m〉) = F ∧ H ′ ∈ H)}
∪ {Y (X ′,H ′) = D | ∃m,X ′′, X ′′′ •

(X ′ = X ′′ E f.m D X ′′′ ∈ E′ ∧ H ′(〈m〉) ∈ {B,R} ∧ H ′ ∈ H)} .

A Thread Algebra with Multi-level Strategic Interleaving 19

Table 11 Transition rules for thread-service composition

〈x, ρ〉 tau−−→ 〈x′, ρ′〉

〈x /f H, ρ〉 tau−−→ 〈x′ /f H, ρ′〉

〈x, ρ〉 g.m−−−→ 〈x′, ρ′〉

〈x /f H, ρ〉 g.m−−−→ 〈x′ /f H, ρ′〉
f 6= g

〈x, ρ〉 f.m−−−→ 〈x′, ρ′〉

〈x /f H, ρ〉 tau−−→ 〈x′ /f
∂

∂m
H, ρ′〉

H(〈m〉) ∈ {T, F}, (f.m, H(〈m〉)) ∈ ρ(〈 〉)

〈x, ρ〉 f.m−−−→ 〈x′, ρ′〉

x /f H ↑
H(〈m〉) ∈ {B, R}

x ↓

x /f H ↓

x ↑

x /f H ↑

If we replace inE, for all X ′ ∈ V(E′) and all H ′ ∈ H, all occurrences of
Y (X ′,H ′) by 〈X ′|E′〉 /f H, then each of the resulting equations is derivable by
first applying RDP and then applying one of TSC1–TSC7. Hence,〈X|E′〉 /f H is
a solution ofE for Y (X, H). From this, it follows by RSP that〈X|E′〉 /f H =
〈Y (X, H)|E〉. ut

The structural operational semantics of TAtsc
fm is described by the transition

rules given in Tables 4, 9 and 11.
Bisimulation equivalence is also a congruence with respect to the thread-service

composition operators. This follows immediately from the fact that the transition
rules for these operators are in the path format. The axioms given in Table 10 are
sound with respect to bisimulation equivalence.

5 Guarding Tests

In this section, we extend the thread algebra developed in Sections 3 and 4 with
guarding tests. Guarding tests are basic actions meant to verify whether a service
will accept the request to process a certain method now, and if not so whether it
will be accepted after some time. Guarding tests allow for dealing with delayed
processing and exception handling as will be shown in Section 6.

We extend the set of basic actions. For the set of basic actionsA, we now take
the setFMgt = {f.m, f?m, f??m | f ∈ F ,m ∈ M}. Basic actions of the forms
f?m andf??m will be calledguarding tests. Performing a basic actionf?m is
taken as making the request to the service namedf to reply whether it will accept
the request to process methodm now. The reply is positive if the service will accept
that request now, and otherwise it is negative. Performing a basic actionf??m is
taken as making the request to the service namedf to reply whether it will accept
the request to process methodm now or after some time. The reply is positive
if the service will accept that request now or after some time, and otherwise it is
negative.

A service may be local to a single thread, local to a multi-thread, local to a
host, or local to a network. A service local to a multi-thread is shared by all threads
from which the multi-thread is composed, etc. Henceforth, to simplify matters, it
is assumed that each thread, each multi-thread, each host, and each network has a

20 J.A. Bergstra, C.A. Middelburg

Table 12 Additional axioms for cyclic interleaving & deadlock at termination

‖(〈x E f?m D y〉 y α) = ‖(〈x〉 y α) E f?m D ‖(α y 〈y〉) CSI6

‖(〈x E f??m D y〉 y α) = ‖(〈x〉 y α) E f??m D ‖(α y 〈y〉) CSI7

SD(x E f?m D y) = SD(x) E f?m D SD(y) S2D5

SD(x E f??m D y) = SD(x) E f??m D SD(y) S2D6

Table 13 Additional axioms for thread-service composition

(x E g?m D y) /f H = (x /f H) E g?m D (y /f H) if f 6= g TSC8

(x E f?m D y) /f H = tau ◦ (x /f H) if H(〈m〉) ∈ {T, F} TSC9

(x E f?m D y) /f H = tau ◦ (y /f H) if H(〈m〉) = B ∧ f 6= t TSC10

(x E f?m D y) /f H = D if (H(〈m〉) = B ∧ f = t) ∨
H(〈m〉) = R TSC11

(x E g??m D y) /f H = (x /f H) E g??m D (y /f H) if f 6= g TSC12

(x E f??m D y) /f H = tau ◦ (x /f H) if H(〈m〉) ∈ {T, F, B} TSC13

(x E f??m D y) /f H = tau ◦ (y /f H) if H(〈m〉) = R TSC14

unique local service. Moreover, it is assumed thatt, p, h, n ∈ F . Below, the focit,
p, h andn play a special role:

– for each thread,t is the focus of its unique local service;
– for each multi-thread,p is the focus of its unique local service;
– for each host,h is the focus of its unique local service;
– for each network,n is the focus of its unique local service.

As explained below, it happens that not only thread-service composition but
also cyclic interleaving has to be adapted to the presence of guarding tests.

The additional axioms for cyclic interleaving and deadlock at termination in
the presence of guarding tests are given in Table 12. Axioms CSI6 and CSI7 state
that:

– after a positive reply onf?m or f??m, the same thread proceeds with its next
basic action; and thus it is prevented that meanwhile other threads can cause
a state change to a state in which the processing ofm is blocked (andf?m
would not reply positively) or the processing ofm is refused (and bothf?m
andf??m would not reply positively);

– after a negative reply onf?m or f??m, the same thread does not proceed with
it; and thus it is prevented that other threads cannot make progress.

Without this difference, Theorem 5 in Section 7 would not go through.
The additional axioms for thread-service composition in the presence of guard-

ing tests are given in Table 13. Axioms TSC10 and TSC11 are crucial. The point is
that, if the local service of a thread is in a state in which the processing of method
m is blocked, no other thread can raise that state. Consequently, if the processing
of m is blocked, it is blocked forever.

Henceforth, we write TAtsc,gtfm for TAtsc
fm extended with a postconditional com-

position operator for each guarding test and the axioms from Tables 12 and 13.

A Thread Algebra with Multi-level Strategic Interleaving 21

We can prove that each closed term of TAtsc,gt
fm can be reduced to a closed term

of BPPA(FMgt).

Theorem 4 (Elimination) For all closed termsp of TAtsc,gt
fm , there exists a closed

termq of BPPA(FMgt) such thatp = q is derivable from the axioms ofTAtsc,gt
fm .

Proof The proof follows the same lines as the proof of Theorem 3. Here, we have
to consider two additional cases, viz.p ≡ p′ E f?m Dp′′ andp ≡ p′ E f??m Dp′′.
These cases go the same as the casep ≡ p′ E f.m D p′′. In the lemma for the case
p ≡ SD(p′), we have to consider the additional casesq′ ≡ q′′ E f?m D q′′′ and
q′ ≡ q′′ E f??m D q′′′. These cases go the same as the caseq′ ≡ q′′ E f.m D q′′′.
In the lemma for the casep ≡ ‖(α), we have to consider the additional cases
q′1 ≡ q′′1 E f?m D q′′′1 andq′1 ≡ q′′1 E f??m D q′′′1 . These cases go analogous to
the caseq′1 ≡ q′′1 E f.m D q′′′1 . In the lemma for the casep ≡ p′ /f H, we have
to consider the additional casesq′ ≡ q′′ E g?m D q′′′ andq′ ≡ q′′ E g??m D q′′′.
These cases go similar to the caseq′ ≡ q′′ E g.mD q′′′. ut

In other words, Theorem 3 goes through in the presence of guarding tests.
We extend TAtsc,gtfm with guarded recursion as in the case of TAfm. Systems of

recursion equations over TAtsc,gtfm and guardedness of those are defined as in the
case of TAfm, but with TAfm everywhere replaced by TAtsc,gtfm .

Henceforth, we will write TAtsc,gtfm +REC for TAtsc,gt
fm extended with the con-

stants for solutions of guarded systems of recursion equations over TAtsc,gt
fm and

the axioms RDP and RSP from Table 2.

Example 3Let f ∈ F be such thatf 6= t, let m,m′,m′′ ∈ M, and letH be a
service such thatH(α y 〈m〉) = T if #m′(α)−#m′′(α) > 0, H(α y 〈m〉) = B
if #m′(α) − #m′′(α) ≤ 0, H(α y 〈m′〉) = T andH(α y 〈m′′〉) = T, for
all α ∈ M∗. Moreover, letE be the guarded system of recursion equations that
consists of the equationX = ((f ′.m′◦S)E f.m D(f ′′.m′′◦S))E f?m DX. Then
the following equations are easily derivable from the axioms of TAtsc,gt

fm +REC:

‖(〈(f ′.m′ ◦ S) E f.m D (f ′′.m′′ ◦ S)〉 y 〈f.m′ ◦ S〉) /f H = tau ◦ D ,

‖(〈〈X|E〉〉 y 〈f.m′ ◦ S〉) /f H = tau ◦ tau ◦ tau ◦ tau ◦ f ′.m′ ◦ S .

The first basic action performed by‖(〈(f ′.m′ ◦S)E f.m D(f ′′.m′′ ◦S)〉y〈f.m′ ◦
S〉) isf.m. BecauseH(〈m〉) = B, the processing off.m byH leads toD. The first
basic action performed by‖(〈〈X|E〉〉y〈f.m′◦S〉) is f?m. BecauseH(〈m〉) = B
andf 6= t, nextf.m′ is performed and thereafterf?m is performed again. Because

∂
∂m′H(〈m〉) = T, nextf.m is performed and thereafterf ′.m′ is performed.

Just like Theorem 3, Propositions 3, 4 and 6 go through in the presence of
guarding tests. The proofs follow the same lines as before, but, like in the proof of
Theorem 4, we have to take into account that two additional kinds of basic actions
may occur in guarded systems of recursion equations.

The additional transition rules for cyclic interleaving and deadlock at termina-
tion in the presence of guarding tests are given in Table 14, whereγ stands for an

22 J.A. Bergstra, C.A. Middelburg

Table 14 Additional transition rules for cyclic interleaving & deadlock at termination

x1 ↓, . . . , xk ↓, 〈xk+1, ρ〉 γ−→ 〈x′k+1, ρ′〉

〈‖(〈x1〉 y . . . y 〈xk+1〉 y α), ρ〉 γ−→ 〈‖(〈x′k+1〉 y α), ρ′〉
(α, T) ∈ ρ(〈 〉) (k ≥ 0)

x1 l, . . . , xk l, xl ↑, 〈xk+1, ρ〉 γ−→ 〈x′k+1, ρ′〉

〈‖(〈x1〉 y . . . y 〈xk+1〉 y α), ρ〉 γ−→ 〈‖(〈x′k+1〉 y α y 〈D〉), ρ′〉
(α, T) ∈ ρ(〈 〉) (k ≥ l > 0)

x1 ↓, . . . , xk ↓, 〈xk+1, ρ〉 γ−→ 〈x′k+1, ρ′〉

〈‖(〈x1〉 y . . . y 〈xk+1〉 y α), ρ〉 γ−→ 〈‖(α y 〈x′k+1〉), ρ
′〉

(α, F) ∈ ρ(〈 〉) (k ≥ 0)

x1 l, . . . , xk l, xl ↑, 〈xk+1, ρ〉 γ−→ 〈x′k+1, ρ′〉

〈‖(〈x1〉 y . . . y 〈xk+1〉 y α), ρ〉 γ−→ 〈‖(α y 〈D〉 y 〈x′k+1〉), ρ
′〉

(α, F) ∈ ρ(〈 〉) (k ≥ l > 0)

〈x, ρ〉 γ−→ 〈x′, ρ′〉

〈SD(x), ρ〉 γ−→ 〈SD(x′), ρ′〉

Table 15 Additional transition rules for thread-service composition

〈x, ρ〉 g?m−−−→ 〈x′, ρ′〉

〈x /f H, ρ〉 g?m−−−→ 〈x′ /f H, ρ′〉
f 6= g

〈x, ρ〉 f?m−−−→ 〈x′, ρ′〉

〈x /f H, ρ〉 tau−−→ 〈x′ /f H, ρ′〉
H(〈m〉) ∈ {T, F}, (f?m, T) ∈ ρ(〈 〉)

〈x, ρ〉 f?m−−−→ 〈x′, ρ′〉

〈x /f H, ρ〉 tau−−→ 〈x′ /f H, ρ′〉
H(〈m〉) = B, f 6= t, (f?m, F) ∈ ρ(〈 〉)

〈x, ρ〉 t?m−−−→ 〈x′, ρ′〉

x /t H ↑
H(〈m〉) = B

〈x, ρ〉 f?m−−−→ 〈x′, ρ′〉

x /f H ↑
H(〈m〉) = R

〈x, ρ〉 g??m−−−→ 〈x′, ρ′〉

〈x /f H, ρ〉 g??m−−−→ 〈x′ /f H, ρ′〉
f 6= g

〈x, ρ〉 f??m−−−→ 〈x′, ρ′〉

〈x /f H, ρ〉 tau−−→ 〈x′ /f H, ρ′〉
H(〈m〉) ∈ {T, F, B}, (f??m, T) ∈ ρ(〈 〉)

〈x, ρ〉 f??m−−−→ 〈x′, ρ′〉

〈x /f H, ρ〉 tau−−→ 〈x′ /f H, ρ′〉
H(〈m〉) = R, (f??m, F) ∈ ρ(〈 〉)

arbitrary basic action from the set{f?m, f??m | f ∈ F ,m ∈M}. The additional
transition rules for thread-service composition in the presence of guarding tests are
given in Table 15.

Bisimulation equivalence remains a congruence with respect to these opera-
tors. The axioms given in Tables 12 and 13 are sound with respect to bisimulation
equivalence.

A Thread Algebra with Multi-level Strategic Interleaving 23

Table 16 Axioms for delayed processing and exception handling

x E f !m D y = (x E f.m D y) E f?m D (x E f !m D y) DP

x E f.m [y] D z = (x E f.m D z) E f??m D y EH1

x E f !m [y] D z = ((x E f.m D z) E f?m D (x E f !m [y] D z)) E f??m D y EH2

6 Delayed Processing and Exception Handling

We go on to show how guarding tests can be used to express postconditional com-
position with delayed processing and postconditional composition with exception
handling.

For postconditional composition with delayed processing, we extend the set of
basic actions with the set{f !m | f ∈ F ,m ∈M}. Performing a basic actionf !m
is like performingf.m, but in case processing of the commandm is temporarily
blocked, it is automatically delayed until the blockade is over.

For postconditional composition with exception handling, we introduce the no-
tationsxE f.m [y]Dz andxE f !m [y]Dz. The intuition forxE f.m [y]Dz is that
xE f.m D z is tried, buty is done instead in the exceptional case thatxE f.m D z
fails because the request to processm is refused. The intuition forxE f !m [y]D z
is that x E f !m D z is tried, buty is done instead in the exceptional case that
x E f !m D z fails because the request to processm is refused. The processing of
m may first be blocked and thereafter be refused; in that case,y is done instead as
well.

The defining axioms for postconditional composition with delayed processing
and the two forms of postconditional composition with exception handling are
given in Table 16. Axiom DP guarantees thatf.m is only performed iff?m yields
a positive reply. Axioms EH1 and EH2 guarantee thatf.m is only performed if
f??m yields a positive reply. An alternative to axiom EH2 is

x E f !m [y]D z = ((x E f.m D z) E f?m D (x E f !m D z)) E f??m D y .

In that case,y is only done if the processing ofm is refused immediately.
From DP, EH1–EH2 and CSI6–CSI7 (Table 12), it follows immediately that

‖(〈x E f !m D y〉 y α) = ‖(〈x E f.m D y〉 y α) E f?m D ‖(α y 〈x E f !m D y〉) ,

‖(〈x E f.m [y] D z〉 y α) = ‖(〈x E f.m D z〉 y α) E f??m D ‖(α y 〈y〉) ,

‖(〈x E f !m [y] D z〉 y α)

= (‖(〈x E f.m D z〉 y α) E f?m D ‖(α y 〈x E f !m [y] D z〉)) E f??m D ‖(α y 〈y〉) .

These equations give a clear picture of the mechanisms for delayed processing
and exception handling.

Henceforth, we write TAtsc,gt,dp,eh
fm for TAtsc,gt

fm extended with the postcondi-
tional composition operators for delayed processing and exception handling and
the axioms from Table 16.

24 J.A. Bergstra, C.A. Middelburg

Table 17 Transition rules for delayed processing and exception handling

〈(x E f.m D y) E f?m D (x E f !m D y), ρ〉 a−→ 〈z′, ρ′〉

〈x E f !m D y, ρ〉 a−→ 〈z′, ρ′〉

〈(x E f.m D z) E f??m D y, ρ〉 a−→ 〈u′, ρ′〉

〈x E f.m [y] D z, ρ〉 a−→ 〈u′, ρ′〉

〈((x E f.m D z) E f?m D (x E f !m [y] D z)) E f??m D y, ρ〉 a−→ 〈u′, ρ′〉

〈x E f !m [y] D z, ρ〉 a−→ 〈u′, ρ′〉

We extend TAtsc,gt,dp,eh
fm with guarded recursion as in the case of TAfm. Sys-

tems of recursion equations over TAtsc,gt,dp,eh
fm and guardedness of those are de-

fined as in the case of TAfm, but with TAfm everywhere replaced by TAtsc,gt,dp,eh
fm .

Henceforth, we will also write TAtsc,gt,dp,eh
fm +REC for TAtsc,gt,dp,eh

fm extended
with the constants for solutions of guarded systems of recursion equations over
TAtsc,gt,dp,eh

fm and the axioms RDP and RSP from Table 2.

Example 4Let H be as in Example 3. Then the following equations are easily
derivable from the axioms of TAtsc,gt,dp,eh

fm :

‖(〈(f ′.m′ ◦ S) E f.m D (f ′′.m′′ ◦ S)〉 y 〈f.m′ ◦ S〉) /f H

= tau ◦ D ,

‖(〈(f ′.m′ ◦ S) E f !m D (f ′′.m′′ ◦ S)〉 y 〈f.m′ ◦ S〉) /f H

= tau ◦ tau ◦ tau ◦ tau ◦ f ′.m′ ◦ S .

The resemblance with the equations from Example 3 is not accidental: the equa-
tion 〈X|E〉 = (f ′.m′ ◦ S) E f !m D (f ′′.m′′ ◦ S), in which E is the guarded
system of recursion equations from Example 3, is derivable from the axioms of
TAtsc,gt,dp,eh

fm +REC.

The additional transition rules for postconditional composition with delayed
processing and postconditional composition with exception handling are given in
Table 17.

Bisimulation equivalence is a congruence with respect to these operators. The
axioms given in Table 16 are sound with respect to bisimulation equivalence.

7 A Formal Design Prototype

In this section, we show that the thread algebra developed in Sections 3–6 can be
used to develop a simplified, formal representation schema of the design of sys-
tems that consist of several multi-threaded programs on various hosts in different
networks and to verify a property of all systems designed according to the schema.

A Thread Algebra with Multi-level Strategic Interleaving 25

We propose to use the termformal design prototypefor such a schema. The pre-
sented schema can be useful in understanding certain aspects of the systems with
which it is concerned.

The set ofbasic thread expressions, with typical elementP , is defined by

P ::= D
∣∣ S

∣∣ P E f.m D P
∣∣ P E f !m D P

∣∣
P E f.m [P]D P

∣∣ P E f !m [P]D P
∣∣ 〈X|E〉 ,

wheref ∈ F , m ∈ M and〈X|E〉 is a constant standing for the unique solution
for variableX of a guarded system of recursion equationsE in which the right-
hand sides of the equations are basic thread expressions in which variables may
occur wherever basic thread expressions are expected. Thus, the use of guarding
tests, i.e. basic actions of the formsf?m andf??m, is restricted to their intended
use.

A thread vector in which each thread has its local service is of the form

〈P1 /t TLS 1〉 y . . . y 〈Plt /t TLS lt〉 ,

whereP1, . . . , Plt are basic thread expressions, andTLS 1, . . . ,TLS lt are local
services for threads. The local service of a thread does nothing else but maintaining
local data for the thread. A multi-thread vector in which each multi-thread has its
local service is of the form

〈‖(TV 1) /p PLS 1〉 y . . . y 〈‖(TV lp) /p PLS lp〉 ,

whereTV 1, . . . ,TV lp are thread vectors in which each thread has its local ser-
vice, andPLS 1, . . . ,PLS lp are local services for multi-threads. The local service
of a multi-thread maintains shared data of the threads from which the multi-thread
is composed. A typical example of such data are Java pipes. A host behaviour
vector in which each host has its local service is of the form

〈‖(PV 1) /h HLS 1〉 y . . . y 〈‖(PV lh) /h HLS lh〉 ,

wherePV 1, . . . ,PV lh are multi-thread vectors in which each multi-thread has its
local service, andHLS 1, . . . ,HLS lh are local services for hosts. The local service
of a host maintains shared data of the multi-threads on the host. A typical example
of such data are the files connected with Unix sockets used for data transfer be-
tween multi-threads on the same host. A network behaviour vector in which each
network has its local service is of the form

〈‖(HV 1) /n NLS1〉 y . . . y 〈‖(HV ln) /n NLS ln〉 ,

whereHV 1, . . . ,HV ln are host behaviour vectors in which each host has its local
service, andNLS 1, . . . ,NLS ln are local services for networks. The local service
of a network maintains shared data of the hosts in the network. A typical exam-
ple of such data are the files connected with Unix sockets used for data transfer
between different hosts in the same network.

The behaviour of a system that consist of several multi-threaded programs
on various hosts in different networks is described by an expression of the form

26 J.A. Bergstra, C.A. Middelburg

Table 18 Definition of simulation relation

S sim x

D sim x

x sim y ∧ x sim z ⇒ x sim y E a D z

x sim y ∧ z sim w ⇒ x E a D z sim y E a D w

‖(NV), whereNV is a network behaviour vector in which each network has its
local service. A typical example is the case whereNV is an expression of the form

‖(〈‖(〈‖(〈P1 /t TLS 1〉 y 〈P2 /t TLS 2〉) /p PLS 1〉 y

〈‖(〈P3 /t TLS 3〉 y 〈P4 /t TLS 4〉 y 〈P5 /t TLS 5〉) /p PLS2〉) /h HLS 1〉 y

〈‖(〈‖(〈P6 /t TLS 6〉) /p PLS 3〉) /h HLS2〉) /n NLS ,

whereP1, . . . , P6 are basic thread expressions,TLS 1, . . . ,TLS 6 are local ser-
vices for threads,PLS1,PLS 2,PLS 3 are local services for multi-threads,HLS1,
HLS 2 are local services for hosts, andNLS is a local service for networks. It de-
scribes a system that consists of two hosts in one network, where on the first host
currently a multi-thread with two threads and a multi-thread with three threads
exist concurrently, and on the second host currently a single multi-thread with a
single thread exists.

A desirable property of all systems designed according to the schema‖(NV)
is laid down in Theorem 5 below. That theorem is phrased in terms of the relation
sim (is simulated by) on closed terms of TAtsc,gt,dp,eh

fm +REC defined inductively
by means of the rules in Table 18. This relation can be explained as follows:p sim
q means that, in any execution environment,q performs the same actions asp, in
the same order asp, but q possibly performs additional actions prior to each of
those common actions and next to the last of those common actions if their number
is finite. Roughly speaking, Theorem 5 states that, if a finite thread that forms part
of a system designed according to the schema‖(NV) does not make use of the
services that form part of the system, then that thread is simulated by the system.
In other words, the thread is not really affected by the system.

Theorem 5 (Simulation) Let P be a basic thread expression in which all basic
actions are from the set{f.m | f ∈ F \ {t, p, h, n},m ∈ M} and constants
standing for the solutions of guarded systems of recursion equations do not occur.
LetC[P] be a context ofP of the form‖(NV) whereNV is a network behaviour
vector as above. ThenP sim C[P]. This implies thatC[P] will perform all steps
of P in finite time.

Proof We prove this theorem for a more general schema than the schema‖(NV)
presented above. We consider the schema that is obtained from the one presented
above by replacing all expressions of the form‖(V), whereV is a thread vector,
a multi-thread vector, a host behaviour vector or a network behaviour vector, by
expressions of the formSn

D(‖(V)). Here, for each termp and eachn ≥ 0, the
term Sn

D(p) is defined by induction onn as follows:S0
D(p) is p andSn+1

D (p) is
SD(Sn

D(p)). The less general schema is covered becauseS0
D(‖(V)) is ‖(V).

A Thread Algebra with Multi-level Strategic Interleaving 27

Let TV = 〈P1 /t TLS 1〉 y . . . y 〈Plt /t TLS lt〉 ,

PV = 〈Sn1
D (‖(TV 1)) /p PLS1〉 y . . . y 〈Snlp

D (‖(TV lp)) /p PLS lp〉 ,

HV = 〈Sn′1
D (‖(PV 1)) /h HLS1〉 y . . . y 〈S

n′lh
D (‖(PV lh)) /h HLS lh〉 ,

NV = 〈Sn′′1
D (‖(HV 1)) /n NLS 1〉 y . . . y 〈Sn′′ln

D (‖(HV ln)) /n NLS ln〉
be the thread vector in whichP occurs, the multi-thread vector in whichTV
occurs, the host behaviour vector in whichPV occurs and the network behaviour
vector in whichHV occurs, respectively. Letit be the position ofP in TV , ip be
the position ofTV in PV , ih be the position ofPV in HV , andin be the position
of HV in NV . Then thepositionof P in Sn

D(‖(NV)) is it + lt(ip − 1 + lp(ih −
1 + lh(in − 1))).

We proveP sim C[P] by induction on the depth ofP and case distinction on
the structure ofP :

– P ≡ S: S sim C[S] follows immediately from the definition ofsim ;
– P ≡ D: D sim C[D] follows immediately from the definition ofsim ;
– P ≡ P ′ E f.m D P ′′:

We prove this case by induction on the position ofP in ‖(NV):
– Position ofP in ‖(NV) is 1:

BecauseP1 ≡ P ′ E f.m D P ′′, we derive, using TSC4, CSI5 and S2D4,
Sn1

D (‖(TV)) = Sn1
D (‖(TV ′)) E f.m D Sn1

D (‖(TV ′′)) (1), where
TV ′ = 〈P2 /t TLS 2〉 y . . . y 〈Plt /t TLS lt〉 y 〈P ′ /t TLS 1〉 ,
TV ′′ = 〈P2 /t TLS 2〉 y . . . y 〈Plt /t TLS lt〉 y 〈P ′′ /t TLS 1〉 .
BecauseTV 1 ≡ TV , we derive from (1), using TSC4, CSI5 and S2D4,

S
n′1
D (‖(PV)) = S

n′1
D (‖(PV ′)) E f.m D S

n′1
D (‖(PV ′′)) (2), where

PV ′ = 〈Sn2
D (‖(TV 2)) /p PLS 2〉 y . . . y 〈Snlp

D (‖(TV lp)) /p PLS lp〉
y 〈Sn1

D (‖(TV ′)) /p PLS1〉 ,

PV ′′ = 〈Sn2
D (‖(TV 2)) /p PLS 2〉 y . . . y 〈Snlp

D (‖(TV lp)) /p PLS lp〉
y 〈Sn1

D (‖(TV ′′)) /p PLS1〉 .
BecausePV 1 ≡ PV , we derive from (2), using TSC4, CSI5 and S2D4,

S
n′′1
D (‖(HV)) = S

n′′1
D (‖(HV ′)) E f.m D S

n′′1
D (‖(HV ′′)) (3), where

HV ′ = 〈Sn′2
D (‖(PV 2)) /h HLS 2〉 y . . . y 〈S

n′lh
D (‖(PV lh)) /h HLS lh〉

y 〈Sn′1
D (‖(PV ′)) /h HLS1〉 ,

HV ′′ = 〈Sn′2
D (‖(PV 2)) /h HLS 2〉 y . . . y 〈S

n′lh
D (‖(PV lh)) /h HLS lh〉

y 〈Sn′1
D (‖(PV ′′)) /h HLS1〉 .

BecauseHV 1 ≡ HV , we derive from (3), using TSC4, CSI5 and S2D4,
Sn

D(‖(NV)) = Sn
D(‖(NV ′)) E f.m D Sn

D(‖(NV ′′)) (4), where

NV ′ = 〈Sn′′2
D (‖(HV 2)) /n NLS2〉 y . . . y 〈Sn′′ln

D (‖(HV ln)) /n NLS ln〉
y 〈Sn′′1

D (‖(HV ′)) /n NLS 1〉 ,

NV ′′ = 〈Sn′′2
D (‖(HV 2)) /n NLS2〉 y . . . y 〈Sn′′ln

D (‖(HV ln)) /n NLS ln〉
y 〈Sn′′1

D (‖(HV ′′)) /n NLS 1〉 .

The depth ofNV ′ andNV ′′ is one less than the depth ofNV . Hence, it
follows from (4), using the induction hypothesis and the definition ofsim ,
thatP ′ E f.m D P ′′ sim C[P ′ E f.m D P ′′].

28 J.A. Bergstra, C.A. Middelburg

Below, in similar pieces of proof, more than one case must be considered
because TSC4, TSC5, TSC6 or TSC7 is applicable where above only TSC4
is applicable.

– Position ofP in ‖(NV) is greater than1:
LetTV 1 = 〈P1 /t TLS 1〉 y . . . y 〈Plt /t TLS lt〉 ,

PV 1 = 〈Sn1
D (‖(TV 1)) /p PLS 1〉 y . . . y 〈Snlp

D (‖(TV lp)) /p PLS lp〉,
HV 1 = 〈Sn′1

D (‖(PV 1)) /h HLS 1〉 y . . . y 〈S
n′lh
D (‖(PV lh)) /h HLS lh〉

be the thread vector at position1 in PV 1, the multi-thread vector at po-
sition 1 in HV 1 and the host behaviour vector at position1 in NV ,
respectively. We make a case distinction on the structure ofP1:
• P1 ≡ S: We derive, using TSC1 and CSI2,Sn1

D (‖(TV 1)) =
Sn1

D (‖(TV ′
1)), whereTV ′

1 = 〈P2 /t TLS 2〉 y . . . y 〈Plt /t TLS lt〉.
Therefore,Sn

D(‖(NV)) = Sn
D(‖(NV ′)), whereNV ′ is NV with

Sn1
D (‖(TV 1)) replaced bySn1

D (‖(TV ′
1)). The position of P in

Sn
D(‖(NV ′)) is one less than the position ofP in Sn

D(‖(NV)). Hence,
it follows, using the induction hypothesis, thatP sim C[P].

• P1 ≡ D: We derive, using TSC2 and CSI3,Sn1
D (‖(TV 1)) =

Sn1+1
D (‖(TV ′

1)), whereTV ′
1 = 〈P2 /t TLS 2〉y . . . y 〈Plt /t TLS lt〉.

Therefore,Sn
D(‖(NV)) = Sn

D(‖(NV ′)), whereNV ′ is NV with
Sn1

D (‖(TV 1)) replaced bySn1+1
D (‖(TV ′

1)). The position ofP in
Sn

D(‖(NV ′)) is one less than the position ofP in Sn
D(‖(NV)). Hence,

it follows, using the induction hypothesis, thatP sim C[P].
• P1 ≡ P ′

1 E f1.m1 D P ′′
1 : On similar lines as forP above,

we derive, using TSC2–TSC7, CSI3–CSI5 and S2D3–S2D4, either
Sn

D(‖(NV)) = Sn
D(‖(NV ′))E f1.m1 DSn

D(‖(NV ′′)), Sn
D(‖(NV)) =

tau ◦ Sn
D(‖(NV ∗)) or Sn

D(‖(NV)) = Sn+1
D (‖(NV ∗∗)), whereNV ′,

NV ′′, NV ∗ andNV ∗∗ are such that the position ofP in Sn
D(‖(NV ′)),

Sn
D(‖(NV ′′)), Sn

D(‖(NV ∗)) andSn+1
D (‖(NV ∗∗)) is one less than the

position ofP in Sn
D(‖(NV)). In each case, it follows, using the induc-

tion hypothesis and the definition ofsim , thatP sim C[P].
• P1 ≡ P ′

1 E f1!m1 D P ′′
1 : On similar lines as forP above, we

derive, using TSC2–TSC11, CSI3–CSI6 and S2D3–S2D5, either
Sn

D(‖(NV)) = (Sn
D(‖(NV ′)) E f1.m1 D Sn

D(‖(NV ′′))) E f1?m1 D
Sn

D(‖(NV ′′′)), Sn
D(‖(NV)) = tau◦tau◦Sn

D(‖(NV ∗)), Sn
D(‖(NV)) =

tau ◦ Sn
D(‖(NV ∗∗)) or Sn

D(‖(NV)) = Sn+1
D (‖(NV ∗∗∗)), where

NV ′, NV ′′, . . . are such that the position ofP in Sn
D(‖(NV ′)),

Sn
D(‖(NV ′′)), Sn

D(‖(NV ′′′)), Sn
D(‖(NV ∗)), Sn

D(‖(NV ∗∗)) and
Sn+1

D (‖(NV ∗∗∗)) is one less than the position ofP in Sn
D(‖(NV)).

In each case, it follows, using the induction hypothesis and the defini-
tion of sim , thatP sim C[P].

• P1 ≡ P ′
1 E f1.m1 [P ′′

1]DP ′′′
1 : On similar lines as forP above, we de-

rive, using TSC2–TSC7, TSC12–TSC14, CSI3–CSI5, CSI7, S2D3–
S2D4 and S2D6, eitherSn

D(‖(NV)) = (Sn
D(‖(NV ′)) E f1.m1 D

Sn
D(‖(NV ′′))) E f1??m1 D Sn

D(‖(NV ′′′)), Sn
D(‖(NV)) = tau ◦ tau ◦

Sn
D(‖(NV ∗)), Sn

D(‖(NV)) = tau◦Sn+1
D (‖(NV ∗∗)) orSn

D(‖(NV)) =

A Thread Algebra with Multi-level Strategic Interleaving 29

tau ◦ Sn
D(‖(NV ∗∗∗)), whereNV ′, NV ′′, . . . are such that the posi-

tion ofP in Sn
D(‖(NV ′)), Sn

D(‖(NV ′′)), Sn
D(‖(NV ′′′)), Sn

D(‖(NV ∗)),
Sn+1

D (‖(NV ∗∗)) andSn
D(‖(NV ∗∗∗)) is one less than the position ofP

in Sn
D(‖(NV)). In each case, it follows, using the induction hypothesis

and the definition ofsim , thatP sim C[P].
• P1 ≡ P ′

1 E f1!m1 [P ′′
1]D P ′′′

1 : On similar lines as forP above,
we derive, using TSC2–TSC14, CSI3–CSI7 and S2D3–S2D6, either
Sn

D(‖(NV)) = ((Sn
D(‖(NV ′)) E f1.m1 D Sn

D(‖(NV ′′))) E f1?m1 D
Sn

D(‖(NV ′′′))) E f1??m1 D Sn
D(‖(NV ′′′′)), Sn

D(‖(NV)) = tau ◦
tau ◦ tau ◦ Sn

D(‖(NV ∗)), Sn
D(‖(NV)) = tau ◦ tau ◦ Sn

D(‖(NV ∗∗)),
Sn

D(‖(NV)) = tau ◦ Sn+1
D (‖(NV ∗∗∗)) or Sn

D(‖(NV)) = tau ◦
Sn

D(‖(NV ∗∗∗∗)), whereNV ′, NV ′′, . . . are such that the position
of P in Sn

D(‖(NV ′)), Sn
D(‖(NV ′′)), Sn

D(‖(NV ′′′)), Sn
D(‖(NV ′′′′)),

Sn
D(‖(NV ∗)), Sn+1

D (‖(NV ∗∗)), Sn
D(‖(NV ∗∗∗)) andSn

D(‖(NV ∗∗∗∗))
is one less than the position ofP in Sn

D(‖(NV)). In each case, it fol-
lows, using the induction hypothesis and the definition ofsim , that
P sim C[P].

• P1 ≡ 〈X|E〉: Let tX be the right hand side of the equation forX in
E. By RDP,〈X|E〉 = 〈tX |E〉. Hence, in this caseP1 can be replaced
by 〈tX |E〉. The structure of〈tX |E〉 is covered by one of the previous
cases.

ut

In the proof ofP sim C[P] for the caseP ≡ P ′ E f.m D P ′′ given above, we
show among other things that multi-level cyclic interleaving (in the presence of
delayed processing and exception handling) is fair, i.e. that there will always come
a next turn for all active threads, multi-threads, etc. For the single-level case, a
mathematically precise definition of a fair interleaving strategy is given in [8].

8 Conclusions

We have presented an algebraic theory of threads and multi-threading based on
multi-level strategic interleaving for the simple strategy of cyclic interleaving. The
other interleaving strategies treated in [7] can be adapted to the setting of multi-
level strategic interleaving in a similar way. We have also presented a reasonable
though simplified formal representation schema of the design of systems that con-
sist of several multi-threaded programs on various hosts in different networks.
By dealing with delays and exceptions, this schema is sufficiently expressive to
formalize mechanisms like Java pipes (for communication between threads) and
Unix sockets (for communication between multi-threads, called processes in Unix
jargon, and communication between hosts). The exception handling notation in-
troduced is only used for single threads.

To the best of our knowledge, there is no other work on the theory of threads
and multi-threading that is based on strategic interleaving. Although a determinis-
tic interleaving strategy is always used for thread interleaving, it is the practice in

30 J.A. Bergstra, C.A. Middelburg

work in which the semantics of multi-threated programs is involved to look upon
thread interleaving as arbitrary interleaving, see e.g. [1,9].

Options for future work include:

– formalization of mechanisms like Java pipes and Unix sockets using the thread
algebra developed in this paper;

– adaptation of some interleaving strategies from [7], other than cyclic interleav-
ing, to the setting of multi-level strategic interleaving;

– extension of the program algebra from [6] with features for delayed process-
ing and exception handling, with a behavioural semantics based on the thread
algebra developed in this paper.

AcknowledgementsWe thank Mark van der Zwaag from the University of Amsterdam,
Programming Research Group, for suggesting a substantial improvement of the structural
operational semantics of TAfm presented in a draft of this paper, and for suggesting the use
of the symboll to denote the auxiliary transition relation employed in the resulting struc-
tural operational semantics [13]. We also thank an anonymous referee for his/her valuable
comments concerning the presentation of the paper.

References

1. E. Ábrah́am, F. S. de Boer, W. P. de Roever, and M. Steffen. A compositional opera-
tional semantics for JavaMT. In N. Dershowitz, editor,Verification: Theory and Prac-
tice, volume 2772 ofLecture Notes in Computer Science, pages 290–303. Springer-
Verlag, 2003.

2. L. Aceto, W. J. Fokkink, and C. Verhoef. Structural operational semantics. In J. A.
Bergstra, A. Ponse, and S. A. Smolka, editors,Handbook of Process Algebra, pages
197–292. Elsevier, Amsterdam, 2001.

3. J. A. Bergstra and I. Bethke. Polarized process algebra and program equivalence. In
J. C. M. Baeten, J. K. Lenstra, J. Parrow, and G. J. Woeginger, editors,Proceedings 30th
ICALP, volume 2719 ofLecture Notes in Computer Science, pages 1–21. Springer-
Verlag, 2003.

4. J. A. Bergstra and I. Bethke. Polarized process algebra with reactive composition.
Theoretical Computer Science, 343:285–304, 2005.

5. J. A. Bergstra and J. W. Klop. Process algebra for synchronous communication.Infor-
mation and Control, 60(1/3):109–137, 1984.

6. J. A. Bergstra and M. E. Loots. Program algebra for sequential code.Journal of Logic
and Algebraic Programming, 51(2):125–156, 2002.

7. J. A. Bergstra and C. A. Middelburg. Thread algebra for strategic interleaving. Com-
puter Science Report 04-35, Department of Mathematics and Computer Science, Eind-
hoven University of Technology, November 2004.

8. J. A. Bergstra and C. A. Middelburg. Simulating Turing machines on Maurer machines.
Computer Science Report 05-28, Department of Mathematics and Computer Science,
Eindhoven University of Technology, November 2005.

9. C. Flanagan, S. N. Freund, S. Qadeer, and S. A. Seshia. Modular verification of multi-
threaded programs.Theoretical Computer Science, 338(1/3):153–183, 2005.

10. J. Gosling, B. Joy, G. Steele, and G. Bracha.The Java Language Specification.
Addison-Wesley, Reading, MA, second edition, 2000.

A Thread Algebra with Multi-level Strategic Interleaving 31

11. A. Hejlsberg, S. Wiltamuth, and P. Golde.C# Language Specification. Addison-
Wesley, Reading, MA, 2003.

12. C. A. Middelburg. An alternative formulation of operational conservativity with bind-
ing terms.Journal of Logic and Algebraic Programming, 55(1/2):1–19, 2003.

13. M. B. van der Zwaag. Personal communication, 2006.

