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Abstract

This paper compares the finitary three-valued logic LPF and the infinitary two-
valued logic MPLω, the logics underlying VDM SL and COLD-K. These logics
reflect different approaches to reasoning about partial functions and bringing recur-
sive function definitions into proofs. The purpose of the comparison is to acquire
insight into the relationship between these approaches. A natural translation from
LPF to MPLω is given. It is shown that what can be proved remains the same after
translation, in case strictness axioms are added to LPF or removed from MPLω.
The translation from LPF to MPLω is extended to recursive function definitions
and this translation is next used to justify some ways of bringing the definitions of
partial functions into proofs using LPF.

1 Introduction

Functions specified in VDM SL [Jon90, JS90] or COLD-K [Jon89] are generally partial
functions. Partial functions give rise to non-denoting terms. This makes reasoning about
partial functions problematic in classical first-order logic. The underlying logics of VDM
SL and COLD-K, viz. LPF [BCJ84, Che86] and MPLω [KR89], have different approaches
to solve this problem.

Classical first-order logic has been used fruitfully to describe and formalize mathematical
concepts and theories. But there was always the problem of non-denoting terms: terms
that do not refer to objects in the intended domain (they are also called undefined terms).
The classical example is division by zero. In most formalizations, this problem is side-
stepped by considering division not as a binary function but as a ternary relation D ,
where D(x , y , z ) means that x divided by y yields z , or by restriction of the language:
allowing t/t ′ as a term only if t ′ 6= 0 . In recursion theory, however, it became clear that
partial functions are essential in any decent theory of recursive functions.
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Scott provided a formal basis for reasoning about partial functions in [Sco67], later ex-
tended to intuitionistic logic with sheaf semantics in [Sco79]. Semantically, the situation
is as follows: the intended domain is extended with an object ⊥ (undefined) to which the
undefined terms refer. This idea has been adopted by, for example, Beeson in [Bee85] and
the second author in [Ren84]. This approach has also been followed in MPLω, the logic
underlying COLD-K. It can be characterized as follows:

• there is a definedness predicate ↓, where t↓ means that t is denoting (or is defined,
exists, refers to a defined object);

• if an atomic formula is true, then all terms occurring in it are defined (the strictness
property).

Another approach has been followed in LPF, the logic underlying VDM SL. Here the
possibility of undefinedness is extended to the formulae by adding a truth value N (neither-
true-nor-false), so terms and formulae are in this respect treated on an equal footing.
This makes LPF a non-classical logic with three truth values. So the definition of the
logical connectives has to be extended. This is done by taking the definitions obtained
by extending the classical truth-conditions and falsity-conditions with a clause yielding N
for the other cases. In other words, Kleene’s strong three-valued connectives [Kle52] are
taken. For example, we have for any propositions A and A′:

A ∧ A′ = T if A = T and A′ = T,

F if A = F or A′ = F,

N otherwise.

This extension to the three-valued case yields monotonic operators with respect to the
ordering N � T,F, the ordering of information contents. Furthermore, there is only a
weak strictness property:

if an atomic formula t = t ′ is true or false, then both t and t ′ are defined.

One might expect the following strong version here:

if an atomic formula is true or false, then all terms occurring in it are defined.

There are reasons to think that such a version of strictness is an intended property of
LPF. It is strongly suggested in Section 3.3 of [Jon86, Jon90], as is shown in [Tho89] (see
Section 7 of the current paper for LPF with strictness axioms).

In this paper we consider these two ways of dealing with undefinedness more closely, in a
comparison of the underlying logics of the specification languages VDM SL and COLD-K.
In Section 2, these logics are described in broad outline. Some other logics which handle
partial functions are discussed in Section 3. Sections 4–8 constitute the body of this
paper. In Section 4 we present ML=, many-sorted classical logic with equality, by giving
definitions of the language, the proof system, and the interpretation of ML=. It is used
as the starting point for the presentations of LPF and MPLω in Sections 5 and 6. LPF
is embedded into MPLω in Section 7. Section 8 is concerned with recursive function
definitions in LPF and MPLω. Conclusions and final remarks are given in Section 9.

In [CJ90], Cheng and Jones compare the usability of different logics in handling partial
functions. Their brief treatment of logics based on Scott’s idea and their way of bringing



the definitions of partial functions into proofs using LPF provided an important stimulus
to write this paper.

2 Overview of LPF and MPLω

LPF and MPLω reflect different approaches to deal with non-denoting terms in formulae.
This section describes these logics informally and in broad outline.

2.1 LPF

LPF is a non-classical finitary first-order logic of partial functions with equality. Its typical
features are obtained by rather drastic changes to classical first-order logic. Classical
reasoning is invalidated on a large scale. A mathematically precise presentation of LPF
is given by Cheng in [Che86].

The logic LPF adopts an approach to solve the problem with non-denoting terms in
formulae, which does not stay within the realm of classical, two-valued logics. Atomic
formulae that contain non-denoting terms may be logically neither-true-nor-false. Thus,
the assumption of the “excluded middle” is given up. Yet, the classical truth-conditions
and falsehood-conditions for logical connectives and quantifiers are adopted. The formula
concerned is classified as neither-true-nor-false exactly when it cannot be classified as true
or false by these conditions. Likewise, an equation t1 = t2 is classified as neither-true-
nor-false exactly when t1 or t2 is non-denoting.

This approach leaves open the treatment of free variables. In contrast with MPLω, free
variables are always denoting — just as bound variables.

A definedness connective ∆ guarantees expressive completeness of the connectives of LPF
for three-valued truth functions. ∆ A is true if the formula A can be classified as either
true or false, and false otherwise.

LPF lacks countably infinite conjunctions, which we shall see in MPLω. Neither is there
another feature in LPF that allows recursive or inductive definitions to be expressed as
formulae. LPF lacks descriptions, which would also give rise to non-denoting terms, as
well.

The formation rules for LPF are the usual formation rules with an additional rule for
formulae of the form ∆ A. The proof system of LPF presented in [Che86] is a Gentzen-
type sequent calculus that does not resemble a classical one. Even so, adding one axiom
schema — stating the assumption of the excluded middle — would make it a complete
proof system for classical first order logic with equality.

The formulae that contain only function and predicate symbols from a certain set Σ
constitute the language of LPF over Σ . The structures used for interpretation of the
language of LPF over Σ consist of an interpretation of every symbol in Σ as well as
an interpretation of the equality symbol that is in accordance with the above-mentioned
treatment of non-denoting terms in equations. The connectives and quantifiers are always
interpreted according to the outlined classification of formulae. The interpretation of the
language in the structures concerned is sound with respect to the proof system. The proof



system is complete with respect to the interpretation of the language in these structures.

The outlined version of LPF is the one-sorted version presented in [Che86]. In the current
paper, that version is generalized to a many-sorted version of LPF. For convenience, the
many-sorted version is compared with MPLω.

2.2 MPLω

MPLω is a many-sorted infinitary first-order logic of partial functions with equality. Its
typical features are mainly obtained by additions to language and proof system of clas-
sical first-order logic. Classical reasoning is only invalidated on a small scale. The lan-
guage, proof system and interpretation of MPLω are introduced by Koymans and Renardel
de Lavalette in [KR89].

The logic MPLω adopts an approach to solve the problem with non-denoting terms in
formulae, which stays within the realm of classical, two-valued logics. Atomic formulae
that contain non-denoting terms are logically false. In this way, the assumption of the
excluded middle does not have to be given up. When a formula cannot be classified as
true, it is inexorably classified as false. No further distinction is made. However, denoting
terms and non-denoting terms can be distinguished. t =S t means that t is denoting
(for terms t of sort S ), which is also written t↓S . There is a standard undefined constant
symbol ↑S for every sort symbol S . ↑S is a non-denoting term of sort S .

If A0 ,A1 ,A2 , . . . are countably many formulae, then the formula
∧

n An can be formed.
This allows a large class of recursive and inductive definitions of functions and predicates
to be expressed as formulae of MPLω. This was first sketched in [KR89, Section 4] and
later worked out in detail by Renardel de Lavalette in [Ren89].

If A is a formula, then the term ιx : S (A) can be formed which is called a description. Its
intended meaning is the unique value x of sort S that satisfies A if such a unique value
exists and undefined otherwise. This means that not every description will be denoting.
Descriptions can be eliminated: it is possible to translate formulae containing descriptions
into logically equivalent formulae without descriptions.

The formation rules for MPLω are the usual formation rules with an additional rule for
descriptions and with the rule for binary conjunctions replaced by the rule for countably
infinite conjunctions from Lω [Kar64, Kei71] (classical first-order logic with countably
infinite conjunctions). The proof system of MPLω presented in [KR89] is a Gentzen-type
sequent calculus that resembles one for Lω. Obviously, there are additional axioms for
equality, undefined, and description.

The formulae that contain only sort, function and predicate symbols from a certain set
Σ constitute the language of MPLω over Σ . The structures used for interpretation of
the language of MPLω over Σ consist of an interpretation of every symbol in Σ as well
as an interpretation of each of the equality symbols associated with the sort symbols
in Σ . These interpretations have to be in accordance with the outlined treatment of
non-denoting terms. The classical interpretation of the connectives and quantifiers is
used. This means that, unlike free variables, bound variables are always denoting. The
interpretation of the language in the structures concerned is sound with respect to the
proof system. The proof system is complete with respect to the interpretation of the



language in these structures.

3 Other Logics for Partial Functions

There are other logics for partial function. They differ from LPF and MPLω in various
ways. The key differences are discussed in this section.

3.1 Other Three-valued Logics

The key differences between the various three-valued logics are with respect to:

• what logical connectives and quantifiers are taken as basic,

• whether equality of some kind is taken as basic and if so which kind,

• what model-theoretic notion of logical consequence is taken to underlie the proof
system.

Negation, disjunction, and existential quantifier are basic in the version of LPF pre-
sented in [Che86]. Each behaves according to its classical truth-condition and falsehood-
condition; only if neither of them meets, it will yield neither-true-nor-false. This is
Kleene’s way of extending the classical connectives and quantifiers to the three-valued
case [Kle52]. In addition, there are two basic connectives which have no classical coun-
terparts: a nullary connective designating neither-true-nor-false and a unary connective
for definedness of formulae. All possible connectives for three-valued logics are definable
by the above-mentioned four basic connectives. The definable connectives include Mc-
Carthy’s connectives [McC67] and  Lukasiewicz’s connectives [ Luk67]. McCarthy’s quan-
tifiers are also definable. Quantifiers which bind variables that may be non-denoting are
not definable, but such quantifiers are uncommon in a three-valued setting.

There are several ways of extending classical equality to the three-valued case. Admissible
kinds of equality only differ in their treatment of non-denoting terms:

• weak equality : if either t1 or t2 is non-denoting, then t1 = t2 is neither-true-nor-false;

• strong equality : if either t1 or t2 is non-denoting, then t1 = t2 is true whenever both
t1 and t2 are non-denoting and false otherwise;

• existential equality : if either t1 or t2 is non-denoting, then t1 = t2 is false.

Weak equality is basic in LPF. Due to the presence of the definedness connective, strong
equality and existential equality are also definable. Thus, LPF encompasses most three-
valued logics with respect to their connectives, quantifiers and equality predicates.

The following are the intuitive ideas that underlie sensible notions of logical consequence
for three-valued logics:



• from premises that are not false, one can draw conclusions that are not false;

• from premises that are true, one can draw conclusions that are not false;

• from premises that are true, one can draw conclusions that are true;

• from premises that are true, one can draw conclusions that are true, and conclusions
that are false must arise from premises that are false.

Note that “from premises that are not false, one can draw conclusions that are true” does
not correspond to a sensible notion of logical consequence, since not every formula will
be a consequence of itself.

Logical consequence for three-valued logics according to the first idea amounts to logics
in which the definedness of any formula (i.e. the property that the formula is either true
or false) can be treated as true. It means that a separate proof is needed to establish the
definedness. For formulae formed with Kleene’s or McCarthy’s connectives and Kleene’s
quantifiers, logical consequence for three-valued logics according to the second idea reduces
to classical logical consequence for two-valued logics. For formulae formed with Kleene’s
connectives and Kleene’s quantifiers, logical consequence for three-valued logics according
to the third idea coincides with classical logical consequence for two-valued logics except
for the absence of what depends anyhow on the excluded middle. That is, it is lacking
exactly what does not leave room for formulae which are neither true nor false. This is
what one naturally expects from a three-valued logic where the additional truth value is
interpreted as neither true nor false. The last idea actually combines the first idea and
the third idea. The corresponding notion of logical consequence seems too strong for a
logic for the formal specification and verified design of software systems, which is only
concerned with drawing true conclusions from true premises.

For LPF, the underlying notion of logical consequence is the third one of the above-
mentioned notions. The first notion underlies Owe’s weak logic [Owe84]. The second
notion underlies the logic PFOL which is presented in [GL90] together with reflections
on the semantic options for three-valued logics and their relationships. Amongst other
things, it is shown in [GL90] that logical consequence according to the first or second
notion can be defined over logical consequence according to the third notion (in the
latter case, it can only be defined provided that the definedness connective is available).
Similar reflections are also presented in [KTB88], but there a definedness connective is not
mentioned. In [KTB88], attention is also paid to McCarthy’s connectives. The last notion
of logical consequence underlies Blamey’s partial logic [Bla86]. It follows immediately
that the above-mentioned definability results extend to this notion. Because of these
definability results for other notions of logical consequence, LPF also encompasses most
three-valued logics with respect to their underlying notion of logical consequence.

3.2 Other Two-valued Logics

The various two-valued logics for partial functions are quite similar with respect to their
connectives and their underlying notion of logical consequence. The quantifiers differ
slightly in the treatment of the bound variables.



The key differences between the various two-valued logics are with respect to:

• the treatment of free variables and bound variables,

• whether equality of some kind is taken as basic and if so which kind,

• whether two levels of truth values are used.

In MPLω, free variables may not denote but bound variables always do. The same happens
in Scott’s free logic [Sco67], Plotkin’s PFL (Partial Function Logic) [Plo85] and other
free logics (for a discussion of free logics, see [Ben86]). Due to this treatment of free
and bound variables, frequent reasoning about the definedness of terms can be avoided.
This contrasts with Scott’s LCF (Logic of Computable Functions), which was renamed
PPλ [GMW79, Pau87], where bound variables may as well not denote: frequent reasoning
about undefined is customary. The treatment of variables in PPλ is a consequence of the
decision not to differ from classical first-order logic with respect to logical axioms and
inference rules. Quantifications, where the bound variable may be non-denoting, can be
treated as abbreviations in MPLω. Both free variables and bound variables always denote
in Beeson’s LPT (Logic of Partial Terms) [Bee88]. Thus, LPT is kept closer to classical
first-order logic than the free logics.

MPLω is a two-valued logic with existential equality. Strong equality is definable. Note
that weak equality makes no sense in two-valued logics. All of this is the same as in
Scott’s free logic and Beeson’s LPT. But PPλ is a logic with strong equality. This means
that it does not differ from classical logic with respect to its kind of equality as well.

PPλ is the only one of the above-mentioned logics which is classical, but nevertheless it
handles partial functions. That result is reached by adopting a layered approach which
give rise to two levels of truth values. Terms, which are intended to represent computable
objects, can be undefined (as computations commonly involve applications of partial func-
tions). Thus, three “computational truth values”, including an undefined truth value, is
made provision for. Formulae, which are meant to be assertions about computable objects,
must be either true or false (which corresponds to the truth or falsehood, respectively, of
the assertions). So there are only two “logical truth values”.

Roughly speaking, there are two main approaches of handling partial functions in a two-
valued logic: the approach adopted by free logics and the layered approach adopted by
PPλ. MPLω adopts the former approach; it encompasses most free logics with respect
to their treatment of free and bound variables and their predicates concerning equality.
Although MPLω does not adopt the latter approach, it is shown in the current paper that
it allows for a layered approach: formulae of LPF can be treated as terms of MPLω.

4 Many-sorted Classical Logic with Equality

MPLω and LPF are quite different. Nevertheless, ML=, many-sorted classical logic with
equality, provides a convenient starting point for a presentation of both logics. Hence,
language, proof system and interpretation of ML= are presented first.



4.1 Signatures

A language of ML= is constructed with sort symbols, function symbols and predicate
symbols that belong to a certain set, called a signature. For a given signature, say Σ , the
language concerned is called the language of ML= over signature Σ or the language of
ML=(Σ ). The corresponding proof system and interpretation are analogously called the
proof system of ML=(Σ ) and the interpretation of ML=(Σ ), respectively.

We assume a set SORT of sort symbols , a set FUNC of function symbols , and a set PRED
of predicate symbols . f , g range over FUNC , P ,Q range over PRED , and S , S1 , S2 , . . .
range over SORT . Every f ∈ FUNC has a function type S1 × · · · × Sn → Sn+1 and every
P ∈ PRED has a predicate type S1 × · · · × Sn (S1 , . . . , Sn+1 ∈ SORT ). To indicate this,
we use the notation f : S1 × · · · × Sn → Sn+1 and P : S1 × · · · × Sn . Function symbols of
function type→ S are also called constant symbols of sort S . For every S ∈ SORT , there
is a standard predicate symbol =S : S × S , called equality .

A signature Σ is a finite subset of SORT ∪FUNC ∪PRED such that

for all f ∈ Σ , f : S1 × · · · × Sn → Sn+1 ⇒ S1 , . . . ,Sn+1 ∈ Σ ;
for all P ∈ Σ ,P : S1 × · · · × Sn ⇒ S1 , . . . ,Sn ∈ Σ .

We write S(Σ ) for Σ ∩ SORT , F(Σ ) for Σ ∩ FUNC , P(Σ ) for Σ ∩ PRED , SP(Σ ) for
{=S | S ∈ S(Σ )}. SIGN denotes the set of all signatures for ML=.

We also assume a set VAR of variable symbols . x , y , z , x1 , x2 , . . . range over VAR. Every
x ∈ VAR has a sort S (S ∈ SORT ).

We write V for SORT ∪FUNC ∪PRED ∪VAR. We write w ≡ w ′, where w ,w ′ ∈ V , to
indicate that w and w ′ are identical symbols.

Furthermore, it is assumed that SORT , FUNC , PRED , and VAR are four disjoint sets
and =S /∈ V for all S ∈ SORT .

4.2 Language of ML=(Σ)

Terms and Formulae

The language of ML=(Σ ) contains terms and formulae. They are constructed according
to the formation rules which are given below. t , t ′, t1 , t

′
1 , t2 , t

′
2 , . . . range over terms and

A,A0 ,A
′
0 ,A1 ,A

′
1 , . . . range over formulae.

The terms of ML=(Σ ) are inductively defined by the following formation rules:

1. variable symbols of sort S are terms of sort S , for any S ∈ S(Σ );

2. if f ∈ F(Σ ), f : S1 × · · · × Sn → Sn+1 and t1 , . . . , tn are terms of sorts S1 , . . . ,Sn , respec-
tively, then f (t1 , . . . , tn) is a term of sort Sn+1 .

The formulae of ML=(Σ ) are inductively defined by the following formation rules:

1. > and ⊥ are formulae;

2. if P ∈ P(Σ ) ∪ SP(Σ ), P : S1 × · · · × Sn and t1 , . . . , tn are terms of sorts S1 , . . . ,Sn ,
respectively, then P(t1 , . . . , tn) is a formula;



3. if A is formula, then ¬A is a formula;

4. if A1 and A2 are formulae, then A1 ∧ A2 is a formula;

5. if A is a formula and x is a variable of sort S , S ∈ S(Σ ), then ∀x : S (A) is a formula.

The string representation of formulae as suggested by these formation rules can lead to
syntactic ambiguities. Parentheses are used to avoid such ambiguities.

For every set Γ of formulae of ML=(Σ ), sig(Γ ), the signature of Γ , is the smallest signature
such that for every formula A ∈ Γ , A is a formula of ML=(sig(Γ )).

TML=(Σ ) denotes the set of all terms of ML=(Σ ).
LML=(Σ ) denotes the set of all formulae of ML=(Σ ).

Notational Conventions

Constant symbols may be used as terms, i.e. in terms of the form f (t1 , . . . , tn) the paren-
theses may be omitted whenever n = 0 .

The equality symbols (=S ) are used in infix notation. Moreover, they are used without
subscript when this causes no ambiguity.

Sometimes ∀x1 : S1 (· · · ∀xn : Sn (A) · · ·) is simply written as ∀x1 : S1 , . . . , xn : Sn (A).

Absent from the language of ML=(Σ ) are disjunction, existential quantification, etc. They
are defined as abbreviations:

A1 ∨ A2 := ¬(¬A1 ∧ ¬A2 ),
A1 → A2 := ¬A1 ∨ A2 ,
A1 ↔ A2 := (A1 → A2 ) ∧ (A2 → A1 ),
∃x : S (A) := ¬∀x : S (¬A).

The need to use parentheses in the string representation of formulae is reduced by ranking
the precedence of the logical symbols ¬, ∧, ∨,→,↔. The enumeration presents this order
from the highest precedence to the lowest precedence.

Free Variables and Substitution

For a term or formula E of ML=(Σ ), free(E ) denotes the set of free variable of E , which is
defined as usual. We write free(Γ ), where Γ is a set of formulae, for

⋃
{free(A) | A ∈ Γ}.

A variable symbol x is called free in Γ if x ∈ free(Γ ).

Substitution for variables is also defined as usual. Let x be a variable symbol, t be a term
(x and t of the same sort) and E be a term or formula. Then [x := t ]E is the result of
replacing the term t for the free occurrences of the variable symbol x in E , avoiding that
free variables in t become bound by means of renaming of bound variables.

4.3 Proof System of ML=(Σ)

Sequents

The proof system of ML=(Σ ) is formulated as a Gentzen-type sequent calculus.



A sequent is an expression of the form Γ ` ∆, where Γ and ∆ are finite sets of formulae
of ML=(Σ ). Instead of { } ` ∆ we write ` ∆, and instead of Γ ` { } we write Γ `.

The intended meaning of the sequent Γ ` ∆ is that the conjunction of the formulae in Γ
entails the disjunction of the formulae in ∆. A sequent is proved by a derivation obtained
by using the axiom schemas and rules of inference given below.

Axiom Schemas and Rules of Inference

Γ ,∆,Γ ′,∆′, . . . stand for arbitrary finite sets of formulae of ML=(Σ ).
A,A1 ,A2 stand for arbitrary formulae of ML=(Σ ).
t , t1 , t2 stand for arbitrary terms (of appropriate sorts) of ML=(Σ ).
x , y , z stand for arbitrary variable symbols (of appropriate sorts).
S stands for an arbitrary sort symbol in Σ .

We write Γ ,∆ for Γ ∪∆ and A for {A}.
The proof system of ML=(Σ ) is defined by the following axiom schemas and rules of
inference:

Logical Axioms:

(>) ` >

(⊥) ⊥ `

(taut) A ` A

Non-logical Axioms:

(eqv) ` ∀x : S (x = x ) ∧ ∀x : S , y : S , z : S (x = y ∧ x = z → y = z )

(sub) t1 = t2 , [x := t1 ]A ` [x := t2 ]A

Rules of Inference:

(¬L)
Γ ` ∆,A

Γ ,¬A ` ∆
(¬R)

Γ ,A ` ∆

Γ ` ∆,¬A

(∧L)
Γ ,Ai ` ∆

Γ ,A1 ∧ A2 ` ∆
for i = 1 , 2 (∧R)

Γ ` ∆,A1 Γ ` ∆,A2

Γ ` ∆,A1 ∧ A2

(∀L)
Γ , [x := t ]A ` ∆

Γ , ∀x : S (A) ` ∆
(∀R)

Γ ` ∆,A

Γ ` ∆,∀x : S (A)

(cut)
Γ ` ∆,A Γ ′,A ` ∆′

Γ ,Γ ′ ` ∆,∆′
(weak)

Γ ` ∆

Γ ,Γ ′ ` ∆,∆′

Restriction on the rule (∀R): x not free in Γ ∪∆.

Multiple instances of axiom schema (eqv) for the same sort symbol are superfluous. In
ML=, the axiom schema (sub) is equivalent to ` ∀x : S , y : S (x = y ∧ A→ [x := y ]A). The
rule (weak) becomes a derived rule when the axiom schemas are replaced by weakened
versions (axiom schemas ` A are replaced by axiom schemas Γ ` ∆,A, etc.).



The deduction theorem holds in ML=:

A1 ` A2

` A1 → A2
is a derived rule.

LPF does not have this property in common with ML=.

Derivations

A derivation (or proof ) is a finitely branching tree with branches of finite length, where
the nodes are labelled with sequents in such a way that the labels of terminal nodes are
instances of axiom schemas and the label of any non-terminal node is obtained from the
labels of its immediate descendants by applying an inference rule.

A sequent Γ ` ∆ is derivable if there exists a derivation with its root labelled by Γ ` ∆.
We write ML=(Σ ): Γ ` ∆ (and sometimes just Γ ` ∆ without more ado) to indicate that
Γ ` ∆ is derivable.

4.4 Interpretation of ML=(Σ)

Structures

The structures used for interpretation of terms and formulae of ML=(Σ ) consist of an
interpretation of every symbol in the signature Σ as well as an interpretation of the
equality symbols.

A structure A with signature Σ consists of:

1. for every S ∈ S(Σ ), a non-empty set SA;

2. for every f ∈ F(Σ ), f : S1 × · · · × Sn → Sn+1 , a total map f A: SA
1 × · · · × SA

n → SA
n+1 ;

3. for every P ∈ P(Σ ), P : S1 × · · · × Sn , a total map PA: SA
1 × · · · × SA

n → {T,F};

4. for every S ∈ S(Σ ), a total map =A
S : SA × SA → {T,F} such that

for all d , d ′ ∈ SA, =A
S (d , d ′) = T if d = d ′,

F if d 6= d ′.

Instead of wA we write w when it is clear from the context that the interpretation of
symbol w in structure A is meant.

Assignment

An assignment in a structure A with signature Σ assigns to variables of sorts in Σ elements
of the corresponding domains in A. The interpretation of terms and formulae of ML=(Σ )
in A is given with respect to an assignment α in A.

Let A be a structure with signature Σ . Then an assignment in A is a function α which
maps variables of sort S ∈ S(Σ ) to elements of SA.

For every assignment α in A, variable symbol x of sort S ∈ S(Σ ) and element d ∈ SA,
we write α(x → d) for the assignment α′ such that α′(y) = α(y) if y 6≡ x and α′(x ) = d .



Interpretation

The interpretation of terms is given by a function mapping term t of sort S , structure A
and assignment α in A to the element of SA that is the value of t in A under assignment
α. Similarly, the interpretation of formulae is given by a function mapping formula A,
structure A and assignment α in A to the element of {T,F} that is the truth value of
A in A under assignment α. We write [[t ]]Aα and [[A]]Aα for these interpretations. The
superscripts are omitted when it is clear from the context which structure is meant.

The interpretation functions for terms and formulae are inductively defined by:

[[x ]]α = α(x ),
[[f (t1 , . . . , tn)]]α = f ([[t1 ]]α, . . . , [[tn ]]α),

[[>]]α = T,
[[⊥]]α = F,
[[P(t1 , . . . , tn)]]α = P([[t1 ]]α, . . . , [[tn ]]α),
[[t1 = t2 ]]α = =S ([[t1 ]]α, [[t2 ]]α),
[[¬A]]α = T if [[A]]α = F,

F if [[A]]α = T,
[[A1 ∧ A2 ]]α = T if [[A1 ]]α = T and [[A2 ]]α = T,

F if [[A1 ]]α = F or [[A2 ]]α = F,
[[∀x : S (A)]]α = T if for all d ∈ S , [[A]]α(x→d) = T,

F if for some d ∈ S , [[A]]α(x→d) = F .

We write A |= A[α] for [[A]]Aα = T.

For finite sets Γ and ∆ of formulae of ML=(Σ ), ∆ is a consequence of Γ , written Γ |= ∆,
iff for all structures A with signature Σ , for all assignments α in A, if A |= A[α] for all
A ∈ Γ then A |= A′[α] for some A′ ∈ ∆.

ML= has the following soundness and completeness properties:

soundness: if Γ ` ∆, then Γ |= ∆; completeness: if Γ |= ∆, then Γ ` ∆.

LPF and MPLω have these properties in common with ML=.

5 Many-sorted Partial Infinitary Logic

MPLω is introduced by Koymans and Renardel de Lavalette in [KR89], where a math-
ematically precise presentation is given. In this section, language, proof system and
interpretation of MPLω are presented by describing the differences with language, proof
system and interpretation of ML=. These differences are consequences of the features that
MPLω has in addition to those of ML=, viz. coverage of undefinedness, descriptions and
countably infinite conjunctions. The assumptions and definitions about symbols and sig-
natures for ML= also apply to MPLω, except that additional standard symbols — needed
for the coverage of undefinedness — are assumed.



5.1 Additional Standard Symbols for MPLω

For every S ∈ SORT , there is a standard function symbol ↑S :→ S , called undefined .

We write SF(Σ ) for {↑S | S ∈ S(Σ )}. It is assumed that ↑S /∈ V for all S ∈ SORT .

5.2 Language of MPLω(Σ)

The language of MPLω(Σ ) differs from the language of ML=(Σ ). The language of ML=(Σ )
requires adaptations to each of the additional features of MPLω.

Terms and Formulae

The terms and formulae of MPLω(Σ ) are simultaneously and inductively defined by the
formation rules which are obtained from the formation rules for terms and formulae of
ML=(Σ ) as follows:

a. replace formation rule 2 for terms by the following rule to adapt for undefinedness:

2′. if f ∈ F(Σ ) ∪ SF(Σ ), f : S1 × · · · × Sn → Sn+1 and t1 , . . . , tn are terms of sorts
S1 , . . . ,Sn , respectively, then f (t1 , . . . , tn) is a term of sort Sn+1 ;

b. add the following formation rule for terms to adapt for descriptions:

3′. if A is a formula and x is a variable of sort S , S ∈ S(Σ ), then ιx : S (A) is a term of
sort S ;

c. replace the formation rule 4 for formulae by the following rule to adapt for countably
infinite conjunctions:

4′. if 〈An〉n<ω = 〈A0 ,A1 , . . .〉 are formulae, then
∧

n An is a formula.

So we have countable conjunctions instead of binary conjunctions and descriptions as
additional terms. Similar to the treatment of standard predicate symbols in the formation
of (atomic) formulae, the standard function symbols are treated in the formation of terms
in the same way as the function symbols from the signature Σ .

The terms and formulae of MPLω(Σ ), that can be constructed from the signature Σ
according to the formation rules which are given above, include ill-formed terms and
formulae. Only terms and formulae with a finite number of free variables are well-formed.
In what follows, terms and formulae are always assumed to be well-formed.

A term or formula E of MPLω(Σ ) is well-formed iff free(E ) is finite.

TMPLω(Σ ) denotes the set of all well-formed terms of MPLω(Σ ).
LMPLω(Σ ) denotes the set of all well-formed formulae of MPLω(Σ ).

Notational Conventions

The undefined symbols (↑S ) are used without subscript when this causes no ambiguity.



Countable disjunctions, binary conjunctions, definedness, and non-existential equality are
defined as abbreviations:∨

n An := ¬
∧

n ¬An ,
A1 ∧ A2 :=

∧
n A′n ,where A′0 = A1 and A′n = A2 for 0 < n < ω,

t↓S := t =S t
t1 'S t2 := (t1↓S ∨ t2↓S )→ t1 =S t2 .

Binary disjunction, existential quantification, etc. are defined as abbreviations as for ML=.

The definedness symbols (↓S ) and non-existential equality symbols ('S ) are used without
subscript when this causes no ambiguity.

In [KR89], definedness of terms is taken as a primitive notion: the definedness symbols
are additional standard symbols. Here, definedness of t is defined as abbreviation of a
formula. This difference is not essential, since ` t↓ ↔ t = t holds.

5.3 Proof System of MPLω(Σ)

The proof system of MPLω(Σ ) differs from the proof system of ML=(Σ ). The proof
system of ML=(Σ ) also requires adaptations to each of the additional features of MPLω.

The proof system of MPLω(Σ ) is defined by the axiom schemas and rules of inference
which are obtained from the axiom schemas and rules of inference of ML=(Σ ) as follows:

a. add the following non-logical axiom schemas to adapt for undefinedness:

(S ↑) ` ¬(↑S ↓)

(f ↓) ` f (t1 , . . . , tn)↓ → t1↓ ∧ . . . ∧ tn↓

(P↓) ` P(t1 , . . . , tn)→ t1↓ ∧ . . . ∧ tn↓

(=↓) ` t1 = t2 → t1↓ ∧ t2↓ ;

b. replace the rules of inference (∀L) and (∀R) by the following rules to adapt for
undefinedness:

(∀L)
Γ ` ∆, t↓S Γ , [x := t ]A ` ∆

Γ , ∀x : S (A) ` ∆
(∀R)

Γ , x↓S ` ∆,A

Γ ` ∆, ∀x : S (A)
;

c. add the following non-logical axiom schema to adapt for descriptions:

(ι) ` ∀y : S (y = ιx : S (A)↔ ∀x : S (A↔ x = y)) ;

d. replace the rules of inference (∧ L) and (∧ R) by the following rules to adapt for
countably infinite conjunctions:

(
∧

L)
Γ ,Ai ` ∆

Γ ,
∧

n An ` ∆
for all i (

∧
R)

〈Γ ` ∆,An〉n<ω
Γ ` ∆,

∧
n An

.

Restriction on the axiom schema (ι): y not free in A. The restriction on the rule (∀R),
viz. x not free in Γ ∪∆, remains.



Furthermore, the sets of formulae in a sequent Γ ` ∆ may be countably infinite, but
only finitely many different variables may occur free, i.e. free(Γ ) and free(∆) are finite.
Derivations may be infinitely (but countably) branching.

This sequent calculus resembles a Gentzen-type sequent calculus for infinitary classical
first-order logic with equality. There are additional non-logical axiom schemas concerning
definedness for the function and predicate symbols (including the undefined and equality
symbols). There is also an axiom schema for descriptions. The slightly adapted rules
for the universal quantifier are due to the treatment of free and bound variables: free
variables may not denote but bound variables always do.

In [KR89], a proof system of MPLω(Σ ) is presented whose axiom schemas are weakened
versions of equivalent axiom schemas for the axiom schemas of the proof system presented
above (axiom schemas Γ ` ∆,A instead of axiom schemas ` A, etc.) and whose rules
of inference do not include the weakening rule. However, the weakening rule is a derived
rule. The rules of the proof system presented above include the weakening rule, because
it is no longer a derived rule. On the other hand, when the weakening rule is included,
the weakened versions of the axiom schemas become derivable. In other words, the proof
systems are equivalent.

5.4 Interpretation of MPLω(Σ)

The interpretation of MPLω(Σ ) differs from the interpretation of ML=(Σ ). The interpre-
tation of ML=(Σ ) requires adaptations to each of the additional features of MPLω. This
includes the structures used for interpretation.

Structures

The structures used for MPLω differ from the structures used for ML=. The differences
(for a structure A with signature Σ ) are:

• for every S ∈ S(Σ ), SA is such that ⊥ ∈ SA;

• for every S ∈ S(Σ ), =A
S is such that

for all d , d ′ ∈ SA, =A
S (d , d ′) = T if d 6= ⊥ and d ′ 6= ⊥ and d = d ′,

F if d = ⊥ or d ′ = ⊥ or d 6= d ′;

• for every f ∈ F(Σ ), f : S1 × · · · × Sn → Sn+1 , f A is such that
for all d1 ∈ SA

1 , . . . , dn ∈ SA
n , d1 = ⊥ or . . . or dn = ⊥ ⇒ f A(d1 , . . . , dn) = ⊥;

• for every P ∈ P(Σ ), P : S1 × · · · × Sn , PA is such that
for all d1 ∈ SA

1 , . . . , dn ∈ SA
n , d1 = ⊥ or . . . or dn = ⊥ ⇒ PA(d1 , . . . , dn) = F.

In other words, the interpretations of sort symbols must be sets containing a special ele-
ment ⊥. When a term is non-denoting, ⊥ is used as its interpretation. The interpretation
of every symbol concerned is in accordance with the following treatment of non-denoting
terms: atomic formulae that contain non-denoting terms are logically false.



Interpretation

The interpretation functions for terms and formulae are simultaneously and inductively
defined by the interpretation rules obtained from the interpretation rules of ML= as
follows:

a. add the following interpretation rule to adapt for undefinedness:

[[↑S ]]α = ⊥,

b. replace the interpretation rule for universal quantifications by the following rule to
adapt for undefinedness:

[[∀x : S (A)]]α = T if for all d ∈ S − {⊥}, [[A]]α(x→d) = T,

F if for some d ∈ S − {⊥}, [[A]]α(x→d) = F;

c. add the following interpretation rule to adapt for descriptions:

[[ιx : S (A)]]α = the unique d ∈ S − {⊥} such that [[A]]α(x→d) = T if it exists,

⊥ otherwise;

d. replace the interpretation rule for binary conjunctions by the following rule to adapt
for countably infinite conjunctions:

[[
∧

n An ]]α = T if [[An ]]α = T for all n < ω,

F if [[An ]]α = F for some n < ω.

So the interpretation of binary conjunctions is extended to countable conjunctions and
the interpretation of descriptions is added. The interpretation of universal quantifications
is slightly adapted in order to guarantee that bound variables always denote.

LPF needs predicate symbols to be interpreted as truth-valued functions and the inter-
pretation of formulae to be given by a truth-valued function. This is already anticipated
in the presentation of ML= and MPLω. In this way, the essential differences between LPF
and MPLω can be emphasized.

In [KR89], structures for MPLω(Σ ) are used whose interpretations of predicate symbols
are n-ary relations. In the structures used here, these relations can be thought of as being
replaced by the truth-valued functions that are their characteristic functions. This view
agrees with the interpretation of formulae of the forms P(t1 , . . . , tn) and t1 = t2 in such
structures, which is given by the interpretation function described here. That is, the truth-
valued functions used as interpretations of predicate symbols are consistently identified
with the relations for which they are the characteristic functions. In other words, the
truth of formulae is invariant under the replacement. Furthermore, the interpretation of
formulae of MPLω(Σ ) is given in [KR89] by an interpretation relation. The interpretation
function described here is the characteristic function of that relation. So it gives essentially
the same interpretation of formulae.



5.5 Properties of MPLω

Some interesting properties of this logic, are presented below.

1. The deduction theorem holds in MPLω:

A1 ` A2

` A1 → A2
is a derived rule.

2. MPLω is weaker than ML=
ω , ML= with binary conjunctions replaced by countable

conjunctions:

for every sequent Γ ` ∆ of ML=
ω (Σ ): MPL′ω(Σ ): Γ ` ∆ iff ML=

ω (Σ ): Γ ` ∆.

MPL′ω(Σ ) is MPLω(Σ ) extended with the axiom schema ` t↓ where t is an arbitrary
term without occurrences of undefined symbols (↑S ).

That is, adding the assumption of definedness to MPLω yields a complete proof
system for ML=

ω . The proof is obvious.

MPLω is even strictly weaker than ML=
ω : ` t↓, where t is an arbitrary term without

occurrences of undefined symbols, is in general not derivable in MPLω.

3. MPLω can be reduced to L=
ω , classical first-order logic with equality and countably

infinite conjunctions:

MPLω(Σ ): ` A iff L=
ω (Σ ∗): Ax(Σ ) ` A∗

for appropriate mappings •∗ (for signatures and formulae) and an appropriate map-
ping Ax (mapping signatures of MPLω to sets of formulae of L=

ω ).

A proof is given in [Ren89, Appendix C.1].

6 Logic for Partial Functions

LPF is introduced by Barringer, Cheng and Jones in [BCJ84], where it is presented in
broad outline. A mathematically precise presentation is given by Cheng in [Che86]. In this
section, language, proof system and interpretation of LPF are presented by describing the
differences with language, proof system and interpretation of ML=. These differences are
consequences of the feature that LPF has in addition to the features of ML=, viz. coverage
of undefinedness with three truth values. The assumptions and definitions about symbols
and signatures for ML= also apply to LPF.

In [Che86], the connectives ∗,∆,¬,∨ and the quantifier ∃ are considered to be basic. In
this section, >,⊥, ∗,∆,¬,∧ and ∀ are considered to be basic. In either case, all non-basic
connectives and quantifiers can be defined with the basic ones. In [Che86], a one-sorted
version of LPF is presented. In order to make a comparison with MPLω easier, a many-
sorted version of LPF is presented in this section.



6.1 Language of LPF(Σ)

The language of LPF(Σ ) differs from the language of ML=(Σ ). The language of ML=

requires adaptations to the additional feature of LPF.

Terms and Formulae

The formation rules for terms of LPF(Σ ) and formation rules for terms of ML=(Σ ) are
the very same. The formulae of LPF(Σ ) are inductively defined by the formation rules
which are obtained from the formation rules for formulae of ML=(Σ ) as follows:

a. replace formation rule 1 by the following rule:

1′′. >, ⊥, and ∗ are formulae;

b. add the following formation rule:

6′′. if A is formula, then ∆ A is a formula.

So we have ∗ and ∆ as additional connectives (nullary and unary, respectively).

TLPF (Σ ) denotes the set of all terms of LPF(Σ ).
LLPF (Σ ) denotes the set of all formulae of LPF(Σ ).

Notational Conventions

Several kinds of definedness and equality are defined as abbreviations:

δA := A ∨ ¬A,
ES (t) := t =S t ,
t↓S := ∆ ES (t),

t1
∃
=S t2 := t1 =S t2 ∧ ∆(ES (t1 ) ∧ ES (t2 )),

t1 ==S t2 := (t1↓S ∨ t2↓S )→ t1
∃
=S t2 .

Binary disjunction, existential quantification, etc. are defined as abbreviations as for ML=.

The definedness and equality symbols ES , ↓S ,
∃
=S and ==S are used without subscript

when this causes no ambiguity.

Both E (t) and t↓ mean that t is denoting. If t is non-denoting, then E (t) is neither-

true-nor-false but t↓ is false as in MPLω. If either t1 or t2 is non-denoting, then t1
∃
= t2

is either true or false and t1 == t2 is false.
∃
= is existential equality and == is strong

equality (see Section 3.1). == is essentially the same as ' in MPLω.

6.2 Proof System of LPF(Σ)

The proof system of LPF(Σ ) differs from the proof system of ML=(Σ ). The proof system
of ML= also requires adaptations to the additional feature of LPF. The differences are
great.



The proof system of LPF(Σ ) is defined by the axiom schemas and rules of inference which
are obtained from the axiom schemas and rules of inference of ML=(Σ ) as follows:

a. add the following logical axiom schemas:

(∗) ∗ `

(¬∗) ¬∗ `

(contr) A,¬A ` ;

b. add the following non-logical axiom schemas:

(var) ` E (x )

(=E ) t1 = t2 ` E (t1 ) ∧ E (t2 )

(¬=E ) ¬(t1 = t2 ) ` E (t1 ) ∧ E (t2 )

(comp) E (t1 ),E (t2 ) ` t1 = t2 ,¬(t1 = t2 ) ;

c. add the following rules of inference:

(∆L)
Γ ,¬A ` ∆ Γ ,A ` ∆

Γ ,∆ A ` ∆
(∆R)

Γ ` ∆,A

Γ ` ∆,∆ A

Γ ` ∆,¬A

Γ ` ∆,∆ A

(¬∆L)
Γ ` ∆,A

Γ ,¬∆ A ` ∆

Γ ` ∆,¬A

Γ ,¬∆ A ` ∆
(¬∆R)

Γ ,¬A ` ∆ Γ ,A ` ∆

Γ ` ∆,¬∆ A
;

d. replace all rules of inference except (cut) and (weak) by the following rules:

(¬¬L)
Γ ,A ` ∆

Γ ,¬¬A ` ∆
(¬¬R)

Γ ` ∆,A

Γ ` ∆,¬¬A

(∧L)
Γ ,Ai ` ∆

Γ ,A1 ∧ A2 ` ∆
for i = 1 , 2 (∧R)

Γ ` ∆,A1 Γ ` ∆,A2

Γ ` ∆,A1 ∧ A2

(¬∧L)
Γ ,¬A1 ` ∆ Γ ,¬A2 ` ∆

Γ ,¬(A1 ∧ A2 ) ` ∆
(¬∧R)

Γ ` ∆,¬Ai

Γ ` ∆,¬(A1 ∧ A2 )
for i = 1 , 2

(∀L)
Γ ` ∆,ES (t) Γ , [x := t ]A ` ∆

Γ ,∀x : S (A) ` ∆
(∀R)

Γ ` ∆,A

Γ ` ∆, ∀x : S (A)

(¬∀L)
Γ ,¬A ` ∆

Γ ,¬∀x : S (A) ` ∆
(¬∀R)

Γ ` ∆,ES (t) Γ ` ∆,¬[x := t ]A

Γ ` ∆,¬∀x : S (A)
.

The restriction on the rule (∀R), viz. x not free in Γ ∪∆, remains and also applies to the
rule (¬∀L).

This sequent calculus does not resemble a Gentzen-type sequent calculus for classical first-
order logic. Adding the axiom schema ` A,¬A, corresponding to the law of the excluded
middle, would make it a complete proof system for ML=. Because this law does not hold,
the rules (¬L) and (¬R) are replaced by the axiom schema (contr) and the special rules



concerning negation for each of the basic connectives and the universal quantifier. The
additional axiom schemas for equality are due to the extension of equality to the three-
valued case. The axiom schema (= E ) is similar to the axiom schema (=↓) of MPLω.
Axiom schemas and rules concerning the connectives without a classical counterpart are
added. The usual rules for the universal quantifier are slightly adapted, because bound
variables always denote. The adapted rules also differ from the corresponding rules of
MPLω, because, unlike there, free variables always denote in LPF. The axiom schema
(var) expresses that free variables always denote. Note that the rules (∧L) and (∧R) are
not changed.

In [Che86], a proof system of LPF is presented with rules concerning disjunction and exis-
tential quantification instead of rules concerning conjunction and universal quantification
as in the proof system presented above, since different connectives and quantifiers are
taken as basic there. In either case, the other rules are derived rules. The axiom schemas
of the proof system presented above also include the additional axiom schemas (>) and
(⊥). However, these axiom schemas are derivable. In other words, the proof systems are
equivalent.

6.3 Interpretation of LPF(Σ)

The interpretation of LPF(Σ ) differs from the interpretation of ML=(Σ ). The interpre-
tation of ML= requires adaptations to the additional feature of LPF. This includes the
structures used for interpretation.

Structures

The structures used for LPF differ from the structures used for ML=. The differences (for
a structure A with signature Σ ) are:

• for every S ∈ S(Σ ), SA is such that ⊥ ∈ SA and SA − {⊥} is non-empty;

• for every P ∈ P(Σ ) ∪ SP(Σ ), PA maps to {T,F,N};

• for every S ∈ S(Σ ), =A
S is such that

for all d , d ′ ∈ SA, =A
S (d , d ′) = T if d 6= ⊥ and d ′ 6= ⊥ and d = d ′,

F if d 6= ⊥ and d ′ 6= ⊥ and d 6= d ′,

N otherwise.

In other words, the interpretations of sort symbols are extended with a special element ⊥
and the domain of truth values is extended with another special element N. When a term
is non-denoting, ⊥ is used as its interpretation. Analogously, when a formula is neither T
(true) nor F (false), N is used as its interpretation. We can think of N as corresponding
to the classification neither-true-nor-false. The interpretation of every symbol concerned
is in accordance with the treatment of non-denoting terms where equations t1 = t2 are
logically neither-true-nor-false when t1 or t2 is non-denoting.

In contrast with MPLω, the interpretation of sort symbols may not be sets that only con-
tain ⊥. Functions and predicates may be non-strict. However, these are minor differences.
The main difference is that predicates may yield the truth value N.



Assignment

The definition of assignment is also changed. Let A be a structure with signature Σ . Then
an assignment in A is a function α which maps variables of sort S ∈ S(Σ ) to elements
of SA − {⊥}. This means that variables are never mapped to ⊥. This restriction is in
accordance with the treatment of free and bound variables: both free and bound variables
always denote. Without the redefinition of assignment, a redefinition of consequence
would have been necessary.

Interpretation

The interpretation function for terms and formulae are inductively defined by the inter-
pretation rules obtained from the interpretation rules of ML= as follows:

a. add the following interpretation rules:

[[∗]]α, = N,
[[∆ A]]α = T if [[A]]α = T or [[A]]α = F,

F otherwise;

b. replace the interpretation rules for negations, binary conjunctions, and universal
quantifications by the following rules:

[[¬A]]α = T if [[A]]α = F,

F if [[A]]α = T,

N otherwise,
[[A1 ∧ A2 ]]α = T if [[A1 ]]α = T and [[A2 ]]α = T,

F if [[A1 ]]α = F or [[A2 ]]α = F,

N otherwise,
[[∀x : S (A)]]α = T if for all d ∈ S − {⊥}, [[A]]α(x→d) = T,

F if for some d ∈ S − {⊥}, [[A]]α(x→d) = F,

N otherwise.

So the classical T/F-conditions for connectives and quantifiers are adopted; only the
assumption is given up that all formulae under all assignment have to be either true or
false. The interpretation of the new connectives is added.

6.4 Properties of LPF

Some properties, that are relevant to the use of this logic, are presented here.

1. LPF has the following expressiveness property:

All functions of type {T,F,N}n → {T,F,N} are definable by the basic connectives of
LPF.

A proof is given in [Che86, Section 3.1].

2. A weak version of the deduction theorem holds in LPF:



A1 ` A2 ` δ(A1 )

` A1 → A2
is a derived rule.

A proof is given in [Jon90, Section 1.3].

3. LPF is weaker than ML=:

for every sequent Γ ` ∆ of ML=(Σ ): LPF′(Σ ): Γ ` ∆ iff ML=(Σ ): Γ ` ∆.

LPF′(Σ ) is LPF(Σ ) extended with the axiom schema ` A,¬A.

That is, adding the law of the excluded middle to LPF yields a complete proof
system for ML=. A proof for propositional LPF without equality (in the one-sorted
case) is given in [Avr88, Section 4.1]. That proof extends directly to the general
case.

LPF is even strictly weaker than ML=: ` A,¬A is in general not derivable in LPF.

7 Reducing LPF to MPLω

The relationship between LPF and ML= is clearly characterized by property (3) of Sec-
tion 6.4. The relationship between MPLω and ML=

ω is similarly characterized by property
(2) of Section 5.5. Besides, the relationship between MPLω and the one-sorted fragment
of ML=

ω , i.e. L=
ω , is characterized by property (3) of Section 5.5. That property is a

reducibility result.

In this section, the relationship between LPF and MPLω will also be characterized by a
reducibility result. The mappings concerned provide a uniform embedding of LPF into
MPLω.

7.1 Translation

The translation given below simplifies the translation of the logical expressions of VVSL
(which are roughly the formulae of LPF) in [Mid90].

We write:

TLPF for
⋃
{TLPF (Σ ) | Σ ∈ SIGN }, LLPF for

⋃
{LLPF (Σ ) | Σ ∈ SIGN },

TMPLω for
⋃
{TMPLω(Σ ) | Σ ∈ SIGN }, LMPLω for

⋃
{LMPLω(Σ ) | Σ ∈ SIGN }.

For the translation of formulae two mappings are used:

〈[•]〉:LLPF → TMPLω , 〈[•]〉: TLPF → TMPLω .

For a formula A of LPF, the formula 〈[A]〉 = tt is the translation of A to MPLω. Intuitively,
〈[A]〉 = tt is a formula of MPLω stating that the formula A of LPF is true in LPF. Likewise,
〈[A]〉 = ff is a formula of MPLω stating that the formula A of LPF is false in LPF. In case
both 〈[A]〉 = tt and 〈[A]〉 = ff are false in MPLω, A is neither-true-nor-false in LPF.

The syntactic variables that are used in the definition of these mappings, range over
syntactic objects as follows (subscripts and primes are not shown):



S ranges over SORT , f ranges over FUNC , P ranges over PRED ,
x ranges over VAR, t ranges over TLPF , A ranges over LLPF .

It is assumed that B ∈ SORT , tt , ff ∈ FUNC , tt , ff :→ B, and lb ∈ VAR, lb of sort B.

We assume a total mapping from V to V ; for each w ∈ V , we write w for the symbol to
which w is mapped. Furthermore, the mapping is assumed to be injective and such that

each sort symbol S is mapped to a sort symbol S ,
each function symbol f : S1 × · · · × Sn → Sn+1 is mapped to a function symbol

f : S1 × · · · × Sn → Sn+1 ,
each predicate symbol P : S1 × · · · × Sn is mapped to a function symbol

P : S1 × · · · × Sn → B,
each variable symbol x of sort S is mapped to a variable symbol x of sort S ,
the set {B, tt , ff , lb} and its image are disjoint.

The translation mappings are inductively defined by:

〈[x ]〉 = x ,
〈[f (t1 , . . . , tn)]〉 = f (〈[t1 ]〉, . . . , 〈[tn ]〉),

〈[∗]〉 = ↑,
〈[P(t1 , . . . , tn)]〉 = P(〈[t1 ]〉, . . . , 〈[tn ]〉),
〈[t1 = t2 ]〉 = ι lb:B( 〈[t1 ]〉↓ ∧ 〈[t2 ]〉↓ → (〈[t1 ]〉 = 〈[t2 ]〉 ↔ lb = tt) ),
〈[∆ A]〉 = ι lb:B( 〈[A]〉 = tt ∨ 〈[A]〉 = ff ↔ lb = tt ),
〈[¬A]〉 = ι lb:B( (〈[A]〉 = tt ↔ lb = ff ) ∧

(〈[A]〉 = ff ↔ lb = tt) ),
〈[A1 ∧ A2 ]〉 = ι lb:B( (〈[A1 ]〉 = tt ∧ 〈[A2 ]〉 = tt ↔ lb = tt) ∧

(〈[A1 ]〉 = ff ∨ 〈[A2 ]〉 = ff ↔ lb = ff ) ),
〈[∀x : S (A)]〉 = ι lb:B( (∀x : S (〈[A]〉 = tt) ↔ lb = tt) ∧

(∃x : S (〈[A]〉 = ff ) ↔ lb = ff ) ).

These translation rules strongly resemble the interpretation rules of LPF that are given in
Section 6.3. Only the translation rule for equations does not resemble the corresponding
interpretation rule. The interpretation rule concerned gives explicitly a truth-condition
and a falsehood-condition. The corresponding translation rule, unlike the other ones,
could be simplified by leaving this style.

A translation for sequents of LPF(Σ ) can also be devised:

〈[Γ ` ∆]〉 := Ax(Σ ) ∪ Bax ∪ {〈[A]〉 = tt | A ∈ Γ} ` {〈[A′]〉 = tt | A′ ∈ ∆},
where Ax(Σ ) = {∃yS : S (yS↓) | S ∈ S(Σ )},

Bax = {∀ lb:B(lb = tt ∨ lb = ff ),¬(tt = ff )}.

Here, it is assumed that yS is a variable symbol of sort S for all S ∈ SORT .

7.2 Reducibility

Roughly speaking, LPF can be reduced to MPLω in the sense that what can be proved
in LPF remains the same after translation. Unfortunately, MPLω only deals with strict
functions and predicates whilst LPF deals with non-strict functions and predicates as
well. Therefore “MPLω without strictness axioms” and “LPF with strictness axioms” are



introduced.

MPL−ω is MPLω with its proof system restricted by removing the axiom schema (f ↓) and
the axiom schema (P↓).
LPF+ is LPF with its proof system extended by adding the axiom schema (f ↓) and the
following axiom schema:

(P↓′) ` ∆ P(t1 , . . . , tn)→ t1↓ ∧ . . . ∧ tn↓ .

Structures for LPF with strict maps as interpretations of function and predicate symbols
are called strict structures.

Theorem

1. LPF+ can be reduced to MPLω, i.e.:

LPF+(Σ ): Γ ` ∆ iff MPLω(Σ ∪ {B, tt , ff }): 〈[Γ ` ∆]〉;

2. LPF can be reduced to MPL−ω , i.e.:

LPF(Σ ): Γ ` ∆ iff MPL−ω (Σ ∪ {B, tt , ff }): 〈[Γ ` ∆]〉.

Proof:
1. ⇒ is proved by induction over the length of a derivation of Γ ` ∆. For ⇐, it suffices
to show that for some strict structure A of LPF with signature Σ that is a counter-model
for Γ ` ∆, there exists a structure A∗ of MPLω with signature Σ ∪ {B, tt , ff } that is a
counter-model for 〈[Γ ` ∆]〉.
2. is proved similarly. 2

It is assumed that the translation of sequents is extended to inference rules in the obvious
way.

Corollary
The translation of the inference rules of LPF are derived rules in MPLω.

8 Recursively Defined Functions

In the previous section, LPF is embedded into MPLω. Besides, recursive function defini-
tions can be represented in MPLω. All that allows the rules that are used to reason about
recursively defined functions in LPF to become derived rules of MPLω.

8.1 LPF and Recursive Function Definitions

The logic LPF is used in VDM [Jon86, Jon90, JS90] to reason about recursively defined
functions. The feature for recursive function definitions in VDM is made precise below
by defining a conservative extension of LPF, referred to by LPFR.

The following additional formation rule for terms is required:

3′′. if A is a formula and t1 and t2 are terms of sort S , then if A then t1 else t2 is a term of
sort S , for any S ∈ S(Σ ).



Terms of this form are called conditionals . In [BCJ84, Jon86], conditionals are also
regarded as terms of an extension of LPF.

The following additional formation rule for formulae is required:

7′′. if f ∈ F(Σ ), f : S1×. . .×Sn → Sn+1 , x1 , . . . , xn are distinct variables of sorts S1 , . . . ,Sn , re-
spectively, and t is a term of sort Sn+1 with free(t) ⊆ {x1 , . . . , xn}, then f (x1 , . . . , xn) 4 t
is a formula.

Formulae of this form are called recursive function definitions .

A recursive function definition f (x1 , . . . , xn) 4 t defines f directly in terms of a defining
term t in which the function being defined may be recursively used.

The following additional inference rules are needed:

(if-E)
` A ` t == if A then t1 else t2

` t == t1

` ¬A ` t == if A then t1 else t2
` t == t2

(4→==)
f (x1 , . . . , xn) 4 t ` ∀x1 : S1 , . . . , xn : Sn (f (x1 , . . . , xn) == t)

.

Restriction on the rule (4→==): f : S1 × · · · × Sn → Sn+1 .

These rules for conditionals and recursive function definitions are essentially the same as
those postulated in [BCJ84]. However, recursive function definitions are not treated as
formulae there.

The following substitution rules for reasoning about recursively defined functions are
introduced by Jones in [Jon86]:1

(4-subs)
` t = t ` [y :=[x := t ]t ′]A

` [y := f (t)]A

given a recursive function definition
f (x ) 4 t ′

(if-subs)

` A ` E (t) ` [y :=[x := t ]t1 ]A′

` [y := f (t)]A′

` ¬A ` E (t) ` [y :=[x := t ]t2 ]A′

` [y := f (t)]A′

given a recursive function definition
f (x ) 4 if A then t1 else t2

These rules can be regarded as derived rules of LPFR. They permit proofs to avoid use
of and reasoning about strong equality, provided that there are no nested conditionals
involved.

In [Jon90], Jones informally explains how a recursive definition of a partial function can
be rendered into inference rules. The inference rules concerned resemble the appropriate
rules of an inductive definition of the function (for partial functions, such rules usually
need to be of a particular form). Given the recursive definition, the inference rules can
also be regarded as derived rules of LPFR.

In structures for LPF, a partial function is modelled by a total map whose argument
domains and result domain contain a special element ⊥. An argument tuple is mapped
to ⊥ if the function concerned is undefined for that argument tuple. This suggests the
following definition, which is used in the additional interpretation rules given below.

1Only the simple case of unary functions is shown; extension to the general case of n-ary functions is
straightforward.



For total maps F and G , F ,G :S1 × · · · × Sn → Sn+1 (⊥ ∈ S1 , . . . ,Sn+1 ), F is called
less defined than G iff

for all d1 ∈ S1 , . . . , dn ∈ Sn ,F (d1 , . . . , dn) 6= ⊥ ⇒ F (d1 , . . . , dn) = G(d1 , . . . , dn).

The following additional interpretation rules are required:

[[if A then t1 else t2 ]]Aα = [[t1 ]]Aα if [[A]]Aα = T,
[[t2 ]]Aα if [[A]]Aα = F,
⊥ otherwise,

[[f (x1 , . . . , xn) 4 t ]]Aα = T if f A is the least defined F : SA
1 × · · · × SA

n → SA
n+1 such

that for all d1 ∈ SA
1 − {⊥}, . . . , dn+1 ∈ SA

n+1 − {⊥},
[[t ]]A

′

α(x1→d1 )···(xn→dn )
= dn+1 ⇒ F (d1 , . . . , dn) = dn+1 ,

F otherwise;

assuming that f : S1 ×· · ·×Sn → Sn+1 and where A′ is the structure with signature Σ such
that wA′

= wA if w 6≡ f and f A
′

= F (w ∈ Σ ∪ SP(Σ )).

It can easily be checked that the least defined F satisfying a condition of the given form
always exists.

The extended interpretation is sound with respect to the extended proof system. However,
the extended proof system is not complete with respect to the extended interpretation.
Because the inference rules do not cover the “leastness” of recursively defined functions,
they are not sufficient to prove all properties that hold for those functions. Their unde-
finedness properties cannot be proved.

8.2 MPLω and Recursive Function Definitions

Just like terms of LPF, conditionals can be mapped to terms of MPLω. That is, the
definition of the translation mappings for LPF can be extended to LPF with conditionals
by the addition of the following translation rule for conditionals:

〈[if A then t1 else t2 ]〉 = ιy : S ((〈[A]〉 = tt → y = 〈[t1 ]〉) ∧ (〈[A]〉 = ff → y = 〈[t2 ]〉)),
assuming that if A then t1 else t2 is a term of sort S and where y is a variable symbol of
sort S not free in 〈[A]〉, 〈[t1 ]〉, and 〈[t2 ]〉.

Just like formulae of LPF, recursive function definitions can be mapped to terms of MPLω.
That is, the definition of the translation mappings for LPF with conditionals can further
be extended to LPFR by the addition of the following translation rule for recursive function
definitions:

〈[f (x1 , . . . , xn) 4 t ]〉 =

ι lb:B(f :
I
= ∀x 1 : S1 , . . . , xn : Sn , y : Sn+1 (〈[t ]〉 = y → f (x 1 , . . . , xn) = y)↔ lb = tt),

assuming that f : S1 × · · · × Sn → Sn+1 and where y is a variable symbol of sort Sn+1 not
free in 〈[t ]〉.

For a recursive function definition f (x1 , . . . , xn) 4 t , the formula 〈[f (x1 , . . . , xn) 4 t ]〉 = tt is
its translation to MPLω. Intuitively, 〈[f (x1 , . . . , xn) 4 t ]〉 = tt is a formula of MPLω stating
that f is the least defined function such that the value of that function for arguments
x1 , . . . , xn is the value that is yielded by evaluation of t when f denotes that function.



This translation simplifies the translation of the explicit function definitions of VVSL
in [Mid90].

For function symbol f ∈ F(Σ ), f : S1 × · · · × Sn → Sn+1 , and formula A of MPLω(Σ ),
f :

I
= A is defined as an abbreviation of a formula of MPLω by

f :
I
= A := ∀x1 : S1 , . . . , xn : Sn (f (x1 , . . . , xn) ' (δf .A)(x1 , . . . , xn)).

(δf .A)(t1 , . . . , tn) abbreviates a term of MPLω(Σ ). It can be regarded as function applica-
tion, with (δf .A) denoting the least defined function f such that A (under the conditions
that A is admissible for f and A is functionality preserving for f ). This notation and
the accompanying conditions are defined in [Mid90, Section 4.7]. It can be defined as
abbreviations because MPLω is a logic with countably infinite conjunctions.

The meaning of δf .A is reflected in the following derived rules, which are proved in [Ren89,
Appendix D.4]:

` Adm(f ,A)

` Func(f ,A)→ [f := δf .A]A

` Adm(f ,A)

` Func(f ,A)→ (A→ δf .A ⊆ f )
.

Adm(f ,A) and Func(f ,A) abbreviate formulae of MPLω stating the above-mentioned con-
ditions concerning admissibility and preservation of functionality. δf .A ⊆ f abbreviates
a formula stating that δf .A is less (or equally) defined than f .

The rules (4→==) and (if-E) of LPFR become derived rules of MPLω after translation.
Consequently, the same holds for the substitution rules (4-subs) and (if-subs) as well as
the rules generated from recursive function definitions according to [Jon90].

Theorem
The translation of the rules (4→==) and (if-E) are derived rules of MPLω.
Proof:
Straightforward. 2

9 Conclusions and Final Remarks

Classical reasoning can be used in the positive fragment of LPF. Generally, classical
reasoning cannot be used out of the positive fragment. In particular, the deduction
theorem does not hold in LPF. The departures from classical reasoning are consequences
of giving up the assumption of the excluded middle.

In MPLω, reasoning only differs from classical reasoning with respect to variables and
equality. The differences are direct consequences of embodying non-denoting terms. Such
differences are also present in LPF. But unlike formulae of LPF, formulae of MPLω do
not inherit the possibility of being non-denoting.

Free variables and bound variables are treated the same in LPF (variables always denote).
The different treatment of free variables and bound variables in MPLω is usual in free
logics, e.g. in Scott’s free logic. Owing to the different treatment of free variables and
bound variables, many references to undefined (i.e. non-denoting terms) can be avoided.

In both logics, equality is such that non-denoting terms are not equal, not even when
they are identical (for non-denoting terms t , t = t is neither-true-nor-false in LPF and



false in MPLω). But the kind of equality that equates all non-denoting terms can be
expressed in both logics. The substitution rules (4-subs) and (if-subs), which can be
regarded as derived rules of LPF extended with recursive function definitions, permit
proofs of properties concerning simple recursively defined functions to avoid use of two
kinds of equality. Similar derived rules can be devised for MPLω.

In this paper, it is shown that LPF can be reduced to MPLω and that recursive function
definitions in VDM style can be represented in MPLω. Formulae of LPF can be treated as
terms of MPLω. Thus, LPF-formulae’s truth, falsehood or either lack can be expressed in
MPLω. Because recursive definitions of partial functions can also be expressed in MPLω,
reasoning about these functions can be done within MPLω. Even properties that depend
upon the leastness of the functions can be proved.

First of all, these results demonstrate that three-valued logics such as LPF are not neces-
sary to deal with partial functions: formulae can be translated to formulae of a two-valued
logic and what can be proved remains the same after translation. What is more, the re-
sults demonstrate that MPLω allows for a layered approach to handle partial functions:
formulae of LPF can be regarded as abbreviations of terms of MPLω. Thereby, it be-
comes possible to switch between reasoning in LPF and reasoning in MPLω. In that case,
reasoning in LPF should be taken for being derived from reasoning in MPLω.

LPF has to be extended for reasoning about recursively defined function. The results
about recursive definitions of partial functions justify the additional rules (4→==) and
(if-E) (thus, they also justify the generation of rules from recursive function definitions
according to [Jon90]). LPF has also to be extended for reasoning about the data types
used in VDM (e.g. natural numbers, finite sets, composite objects), see also [Jon90]. The
rules concerned can be justified in the same vein. The required translations are already
worked out in [Mid90].
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