Fourier Transforms of
Tempered Distributions

4.1 The definitions

You may already have noticed a similarity between the spaces S and D. Since
distributions were defined to be linear functionals on D, it seems plausible that
linear functionals on S should be of interest. They are, and they are called
tempered distributions. As the nomenclature suggests, the class of tempered
distributions (denoted S’(IR™)) should be a subclass of the distributions D’(R™).
This is in fact the case: any f in S'(R™) is a functional {f, ) defined for all
¢ € S(R™). But since D(R™) C S(R™) this defines by restriction a functional
on D(R™), hence a distribution in D’(IR™) (it is also true that the continuity of
f on S implies the continuity of f on D, but I have not defined these concepts
yet). Different functionals on S define different functionals on D (in other
words (f, ¢) is completely determined if you know it for ¢ € D) so we will be
sloppy and not make any distinction between a tempered distribution and the
associated distribution in D’'(R™). We are thus thinking of S'(R™) C D'(R").
What is not true is that every distribution in D’(R™) corresponds to a tempered
distribution. For example, the function e on R! defines a distribution

(f,0) = / N e p(z) de

—00

(this is finite because the support of ¢ is bounded). But e=="/2 € S(R!) and
we would have

(f,0) =/ e“e /2 dg

— 00

oo 2
=/ e® 2 dx = 400
— 00

43
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so there is no way to define f as a tempered distribution. (In fact, it can be
shown that a locally integrable function defines a tempered distribution if

/ [f(z)|dz < cAYN as A — oo
lz]<A

for some constants ¢ and N, and this condition is necessary if f is positive.)

Exercise: Verify that if f satisfies this estimate then [, |f(x)p(z)|dz < oo
for all ¢ € S(R") so [ f(x)p(x) dz is a tempered distribution.

Now why complicate things by introducing tempered distributions? The an-
swer is that it is possible to define the Fourier transform of a tempered dis-
tribution as a tempered distribution, but it is impossible to define the Fourier
transform of all distributions in D’(R™) as distributions.

Recall that we were able to define operations on distributions via adjoint
identities. If T and S were linear operations that took functions in D to functions
in D such that

/ (T(@))p(z) dz = / ¥(@)Sp(c) do
for v, p € D we defined

(Tf,0) =(f, Sp)

for any distribution f € D’. The same idea works for tempered distributions.
The adjoint identity for 1, o € § is usually no more difficult than for ¢, p € D.
The only new twist is that the operations 7' and S must preserve the class S
instead of D. This is true for the operations we discussed previously with one
exception: Multiplication by a C* function m(z) is allowed only if m(z) does
not grow too fast at infinity; specifically, we require m(z) < c|z|" as £ — oo
for some c and N. This includes polynomials but excludes el=l’ for ele’e=l=I’/2
is not in S while e=1*I'/2 ¢ S.

But in dealing with the Fourier transform it is a real boon to have the class
S: If p € S then Fp € S, while if ¢ € D it may not be true that Fo € D
(surprisingly it turns out that if both ¢ and Fy are in D then ¢ = 0!!) So all
that remains is to discover an adjoint identity involving F. Such an identity
should look like

/ Ho)p(z) do = / (@) Se(z) do

where S is an as-yet-to-be-discovered operation.
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To get such an identity we substitute the definition P () = [Y(y)e™=?dy
and interchange the order of integration

/ B(e)p(z) dz = / by)e=Y dy o(z) dz

/w y) (/ a:)e”’ydx) dy
= [vwpw .

We may rename the variable y to obtain

/1/3(35)90(1")(133 = /¢(x)¢(az)dm.

This is our adjoint identity.

In passing let us note that the Plancherel formula is a simple consequence
of this identity. Just take )(z) = o(x). We have P(x) = [o(y)e = ¥dy =
27)*F~Y(@)(x). Then 9(x) = 2n)"FF g = (2r)"¢(z), so the adjoint
identity reads

Oy

Now the adjoint identity allows us to define the Fourier transform of a tem-
pered distribution f € S'(R") : (f,¢) = (f,@). In other words, f is that
functional on S that assigns to ¢ the value (f,®). If f is actually a function
in S then f is the tempered distribution identified with the function f(x). In
other words ,this definition is consistent with the previous definition, since we
are identifying functions f(z) with the distribution

() = / f(2)o(x) d

In fact, more is true. If f is any integrable function we could define the
Fourier transform of f directly:

:/f(a:)ei”'f dzx.

Now f is a bounded continuous function, so both f and f define tempered
distributions. The adjoint identity continues to hold:

/ f(2)o(z) dz = / f(2)p(z) dx

for ¢ € S so that f is the distribution Fourier transform of f.
The Fourier inversion formula for tempered distributions takes the same
form as for functions in' S : F'Ff = f and FF'f = f with F7!f =
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(27)~"(F f)” where the operation f for distributions corresponds to f(z) =
f(—z) for functions and is defined by (f, p) = (f, @). To establish the Fourier
inversion formula we just do some definition chasing: since ¢ = FF 1y for
@ € S we have

(f,0) = (f, FF o) = (Ff,F ')
= (2m)"™(Ff,(Fo)) = 2m) " ((Ff); Fop)
=(F7Uf, Fo) =(FF'£,0).

So FF~'f = f, and similarly for the inversion in the reverse order.

4.2 Examples

I Let f = 6. Whatis f? We must have $(0) = (6,4) = (f,¢). But by
definition $(0) = [ ¢(z)dz so f = 1. In this example f is not at all smooth,
so f has no decay at infinity. But f has rapid decay at infinity so f is smooth.

2. Let f =¢" (n=1). Since f = (d/dzx)é and 6 = 1 we would like to use our
“ping-pong” table to say f(£) = —i& - 6(§) = —i&. This is possible—in fact,
the entire table is essentially valid for tempered distributions (for convolutions
and products one factor must be in S). Let us verify for instance that

f(%f) = (—izi) f

for any f € S(R™). By definition

(F(329) ) )
(09) =)

But ¢ € S so by our table (9/9xx)p = F(izkp). Thus

<J-“ (-éi— ) ,¢> = —(f, Flizrp)).

Now use the definitions of F f:

—(f, Fizep)) = —(f, izrep).

Finally, use the definition of multiplication by —ixy:

By definition

—'<f,Z£L'k(P) = <—I’:xkfa (P)
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Altogether then,

<f (—aa—k ) ,¢> = (—izefr )

which is to say F(z2- ap ) = —iTk f. The other entries in the table are verified
by similar “definition chasmg arguments. Note that ¢’ is somewhat “rougher”
than 8, so its Fourier transform grows at infinity.

3. Let f(x) = e“"“”'z,s # 0 real. Then f is a bounded continuous function,
hence it defines a tempered distribution, although f is not integrable so that
[ f(z)e= ¢ dx is not defined.

In this example the definition of f is not very helpful. To be honest, you
almost never compute f from the definition—instead you use some other method
to find out what f is and then go back and show it satisfies (f,¢) = (f,@).
That is what we will do in this case.

Recall that we computed (e~t1€7)(¢) = (7r/t)n/2 e~ 1€/ We would like to
substitute ¢ = —is. But note that there is an ambiguity when n is odd, namely
which square root to take for —m/is™/2. This can be clarified by thinking of
t as a complex variable z. We must keep Re 2 > 0 in order that e=lel’
not grow too fast at infinity. But for Re z > 0 we can determine the square
root z!/2 uniquely by requiring arg z to satisfy —w/2 < arg z < 7/2. This is
consistent with taking the positive square root when z is real and positive. So
—m/is = (mi/s) becomes e™/%(w/|s|) when s > 0 and e~"/%(w/|s|) when

s <0so
n/2
(1) erni/4 $s>0
|s]

- n/2 .
(m) e—1rn1./4 s<0.
\

n/Ze—ilaz|2/4s.

p

( T )'I‘L/Z
— =<
—18

With this choice we expect (eisl“’|2) " =-—m/is
Having first obtained the answer, how do we justify it from the definition?
We have to show

( is|z)? ) (ﬂ./ ) <e—i|az|2/43, <P)

which is to say

. n/2 o
/ is|z|? QO(-'L') dr = (—_Zs) /e——zlw| /48(,0(-'3) dz

for all ¢ € S, both integrals being well defined. Now our starting point was the
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fact that F(e~tl=I’) = (%)n/2 e~1=1*/4 which via the adjoint identity gives

2 n/2
/e‘”""I o(z)dx = (%) /e"’lz/“(p(:c)dx.

Now the substitution ¢ = —is may be accomplished by analytic continuation.
We consider

F(z2)= /e‘zl‘”lztﬁ(x) dx
and

G(2) = (g)n/z/e_hﬂlz/%(p(x) dx

for fixed ¢ € S. For Re z > 0 the integrals converge (note that 1/z also has
real part > 0) and can be differentiated with respect to z so they define analytic
functions in Re z > 0.

We have seen that F' and G are equal if 2 is real (and > 0). But an analytic
function is determined by its values for z real so F(z) = G(z) in Re 2 > 0.
Finally F' and G are continuous up to the boundary z = s for s # 0,

F(is) = el—i>l(1)1+ F(e+1s)

and similarly for G (this requires some justification since we are interchanging
a limit and an integral), hence F(is) = G(is) which is the result we are after.

This example illustrates a very powerful method for computing Fourier trans-
forms via analytic continuation. It has to be used with care, however. The
question of when you can interchange limits and integrals is not just an aca-
demic matter—it can lead to errors if it is misused.

4. Let f(x) = e t2l,t > 0. This is a rapidly decreasing function but it is not in

S because it fails to be differentiable at x = 0. For n = 1 it is easy to compute
the Fourier transform directly:

fo=[ " etleleint gy

0 0o
= / et*t el gy + / etz izl gp
0

— 00

oo (t+i€) 1° e (—t+if) 1%
B t+z‘£] JT@L
1 12t
t+if  —t+if 2+
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From the Fourier inversion formula,

e—tlel — l/w b e—ist ge.
T J oo tz + 62

Exercise: Verify this directly using the calculus of residues.

For n > 1 we will use another general method which in outline goes as
follows: We try to write el as an “average” of Gaussians e~*l=I’. In other
words we try to find an identity of the form

e tl=l =/ g(s)e_sl”’|2 ds (g depends on t).
0

If we can do this then (reasoning formally) we should have

F(e ) = / " g(o)Fel") ds
0

= /Ooo 9(s) (%)n/z e~1el’/4s g,

We then try to evaluate this integral (even if we cannot evaluate it explicitly, it
may give more information than the original Fourier transform formula).

Now the identity we seek is independent of the dimension because all that
appears in it is |z| which is just a positive number (call it A for emphasis). So
we want

et =/ g(s)e_“’\2 ds
0

for all A > 0. We will obtain such an identity from the one-dimensional Fourier
transform we just computed. We begin by computing

o0 —s(4+€) |
/ e et de=2
0 —(t2+ 82 0

1
I

Since we know e~!7l = 1 [* ' trre~#¢ d¢ we may substitute in for 1/(¢% +

€2) and get
1 o0 o0 .
etz = —/ t/ e e ds e~ g,
T J_oo 0

Now if we do the &-integration first we have

/_oo ] de¢ = (g_)l/z o~ /4

e—t|m| _ /oo t e—st26—22/4s ds
o (ws)l7? .

SO
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Putting in A for |z| we have

—tA /oo t —stze—A2/4s ds
€ = €
o (ms)1/2

which is essentially what we wanted. (We could make the change of variable
s — 1/4s to obtain the exact form discussed above, but this is unnecessary.)
Now we let z vary in R™ and substitute |z| for A to obtain

—t|z| /°° b —ot? g—lal/as g
e tel = e e s
o (ms)!/2

So

<t 2 2
—tlz]y —st —lz}*/4s
F(e )—/0 (ws)‘/ze Fe )ds

*° t 2
N / (7rs)1/2e_stz(‘”rs)n/ze_&IEI ds.
0

The last step is to e\;aluate2 this integral.ZWe first try to remove the dependence
on £. Note that e=*t e—*l¢I" = e=*(t"+I¢1) | This suggests the change of variable
s — s/(t? + |€|?). Doing this we get

—t|z| — _____E________. = 1 nf2,—s
Flet )(5)—(t2+|£|2)2§__1/0 ———(m)l/z(41rs) e °ds.

This last integral is just a constant depending on n, but not on t or £. It
can be evaluated in terms of the I'-function as Z"W"TI‘(%l) (when n is odd
I(=) = (24! while if n is even T(2fL) = 251 . 253 1. /r). Thus

F —t|z| =" 1‘—2?—11-1 ('n+1> t y
e = 2 ) @+

Note this agrees with our previous computation where n = 1. Once again we see
the decay at infinity of e~*/*| mirrored in the smoothness of its Fourier transform,
while the lack of smoothness of e~*I%! at 2 = 0 results in the polynomial decay
at infinity of the Fourier transform.

Actually we will need to know F~'(e~"%l), which is = F(e™!1*l)(~2),
SO

F1(e~tly = n— (1 ("""1) t i
e = 2 ) @+ F

5. Let f(z) = |z|*. For & > —n (we may even take a complex if Re
a > —n), f is locally integrable (it is never integrable) and does not increase
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too fast so it defines a tempered distribution. To compute its Fourier transform
we use the same method as in the previous example. We have

L el ge pte [ = %1 s
s"27 e ds = |z s 2 e °ds
0 0
o
) lal

(we have made the change of variable s — s|z|~2). Of course for this integral
to converge, the singularity at s = O must be better than s~!, so we require
a < 0. Thus we have imposed the conditions —n < a < 0 to obtain

lmla _ s—%—l —s].’clz

I‘(—— A ds.

Now we may compute

F(|=|*) = ‘F(—i‘é')‘ /0°° 8_%_1.7:'(6_3|z|2)ds
2

_ . ® mS By eP/as
= — §s2 27 e ds.
F(—%)/o

Now to evaluate the integral make the change of variable s — |£|?/4s,ds —

[

452 —==ds so
Gl 113 I T
" < T1€ 2 ¢
a S e *
(le )_ ( a) [45] 432
an/2getn 00 4 n
= e [
r(-% 0
- 71"'7»/220(+'n].—1(§ + 5) Ifl_a_n.
I(=3)
Note that —a — n satisfies the same conditions as a, namely —n < —n—a < 0.
We mention one special case that we will use later: » = 3 and @ = —1. Here
we have
3 2221-1(1)
F(lzI™") = e
TG
= 4m|¢|"
which we can write as
_ _ 1
FH1E?)

47r|x|
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4.3 Convolutions with tempered distributions

Many applications of the Fourier transform to solve differential equations lead
to convolutions where one factor is a tempered distribution. Recall

o *P(x) = /cp(w —y)Y(y)dy

if ¢, € S defines a function in S and F(yp * ) = ¢ - 9. Since products are
not defined for all distributions we cannot expect to define convolutions of two
tempered distributions. However if one factor is in S there is no problem. Fix
¥ € S§. Then convolution with 1/ is an operation that preserves S, so to define
Y * f for f € S’ we need only find an adjoint identity. Now

/ P * p1(x)pa(z) do = / (z - y)e1(y)ea(z) dy de.
If we do the z-integration first,
[ ¥ =pe@rds =G x ealy)
where ¢(z) = 9(—x). Thus

/¢ * p1(z)pa(z) dz = /901(?/)15 * a(y) dy,
which is our adjoint identity. Thus we define 9 * f by
W * f,0) = (£ * ).
From this we obtain F(¢ % f) =) - f by definition chasing:
(FW* o) =W *f,0) = (£, +@) = (f,F '@ +9)).

Now 7= (¢ + ¢) = ((2m)"F 1) - and (2m)"F "¢ = ¢ so (F(y* f), ) =
(f7¢'(p): (¢'fﬂ0)’ which shows f('ﬁ*f):fpf

There is another way to define the convolution, however, which is much more
direct. Remember that if f € S then

v f@) = [ -iway
It is suggestive to write this

¥+ f(z) = (f, 7—0®)

where 7_,9(y) = ¢(z — y) is still in S. But written this way it makes sense
for any tempered distribution f. Of course this defines 1 * f as a function, in
fact a C*° function, since we can put all derivatives on 1. What ought to be
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true is that the distribution defined by this function is tempered and agrees with
the previous definition. This is in fact the case. What you have to show is that
if we denote by g(z) = (f,7—z%) then [ g(z)p(z)dz = (f, 9 * ¢). Formally
we can derive this by substituting

[o@etardo= [(fr-wbrete)da

= (1 [-ebrptoras)

/ (s ())p(x) do = / By - 2)p(e) de = 3 + p(y).

and then noting that

What this shows is that convolution is a smoothing process. If you start with
any tempered distribution, no matter how rough, and take the convolution with
a test function, you get a smooth function.

Let us look at some simple examples. If f = § then

Y 8(2) = (6,7-%) = Y(z ~ y)ly=0 = ¥(2)

so ¢ * 6 = 1. This is consistent with F(1 *8) = 1) - 6 = ¢ since 6 = 1. If we
differentiate this result we get

0 0
'67’91/1(-’17) = 'a—(w * §)

T

0
=1 * o8 )

(the derivative of a convolution with a distribution can be computed by putting
the derivative on either factor). This may also be computed directly. What it
shows is that differentiation is a special case of convolution—you convolve with
a derivative of the -function.

We can also reinterpret the Fourier inversion formula as a convolution equa-
tion. If we write the double integral for F~!Ff as an iterated integral in the
reverse order,

FUR@) = [t [ et a,
then it is just the convolution of f with 517; fix;o e~%®¢ d¢ which is the inverse

Fourier transform of the constant function 1. But we recognize from 6 =1 that
% e~ ¢ d¢ = §(x) (in the distribution sense, of course) so that

L

2r J—o0

FlFf=f+x6=Ff
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In a sense, the identity
T [~ _,
— [ e ide = 6(x)
2 J_ o
is the Fourier inversion formula for the distribution §, and this single inversion
formula implies the inversion formula for all tempered distributions. We will
encounter a similar phenomenon in the next chapter: to solve a differential
equation Pu = f for any f it suffices (in many cases) to solve it for f = §. In
this sense ¢ is the first and best distribution!

4.4 Problems

1. Let
T2 >0

f(””)z{g z<0.

Compute f(£).
2. Let

f(z) = z1|z|* in R™ fora > —n — 1.

Compute f(£). (Hint: Compute (d/dz;)|z|*+2.)
3. Let f(z) = (1 +|z[*)~ in R™ for a > 0. Show that

f(z) = ca/ tx~le~te~tl=l’ g
0

where c,, is a positive constant. Conclude that f (&) is a positive function.

4. Express the integral

F(w)z/j f(®)dtfor feS

as the convolution of f with a tempered distribution.

5. Let f(x) be a continuous function on R! periodic of period 27. Show
that f(£) = Y o> ___ bn7s0 and relate by, to the coefficients of the Fourier
series of f.

6. What is the Fourier transform of z* on R!?

7. Show that F(d, f) = r~"dy;.Ff for tempered distributions (cf. problem
3.6.2).

8. Show that if f is homogeneous of degree ¢ then Ff is homogeneous of
degree —n — t.
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9.

10.

11.

12.

13.
14.

Let

(f, ) = lim Mdminﬂ&l.
€e—0 |z|>e T

Show that F f(£) = csgn{ because F f is odd and homogeneous of degree
zero. Compute the constant ¢ by using d/d¢ sgn £ = 26. (Convolution

with f is called the “Hilbert transform”.)

Compute the Fourier transform of sgnze~*°l on R!. Take the limit as
t — 0 to compute the Fourier transform of sgnz. Compare the result with

problem 9.

Use the Fourier inversion formula to “evaluate” f % sl Jg (this integral

— 00 T

converges as an improper integral

N .
. SInx
lim —dzx
N—ooo -N I

to the indicated value, althouéh this formal computation is not a proof).
(Hint: See problem 3.6.6.) Use the Plancherel formula to evaluate

1) . 2
/‘ (sm x) de.
o \ T

Use the Plancherel formula to evaluate

* 1
———=dz.
/_m (T+22 ™
Compute the Fourier transform of 1/(1 + z2)? in R'.

Compute the Fourier transform of

ke £>0

’f(””)z{(a): z < 0.

Can you do this even when k is not an integer (but k > 0)?



