Solving Partial Differential Equations

5.1 The Laplace equation

Recall that A stands for
o? o?
521 " 823
in R? or
32 32 62
st a3t 53
Oz; Oz5; O
in R*. First we ask if there are solutions to the equation Au = f for a given
f. If there are, they are not unique, for we can always add a harmonic function
(solution of Au = 0) without changing the right-hand side.
Now suppose we could solve the equation AP = §. Then

APxf)=APxf=6xf=f

so P x f is a solution of Au = f. Of course we have reasoned only formally,
but if P turns out to be a tempered distribution and f € S, then every step is
justified.

Such solutions P are called fundamental solutions or potentials and have been
known for centuries. We have already found a potential when n = 2. Remember
we found A log(z? + 23) = 6 /4n so that log(z? + x3) /4 is a potential (called

the logarithmic potential).
When n = 3 we can solve AP = § by taking the Fourier transform of both

sides. We get
F(AP) = —[¢P(¢) = F6 = 1.
So P(£) = —|¢|~2 and we have computed (example 5 of section 4.2)

1

P(.’I)) = ___J;-l(la—Z) = —47I'|$|
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(this is called the Newtonian potential). We could also verify directly using
Stokes’ theorem that AP = ¢ in this case.

Now there is one point that should be bothering you about the above compu-
tation. We said that the solution was not unique, and yet we came up with just
one solution. There are two explanations for this. First, we did cheat a little.
From the equation —|¢|2P = 1 we cannot conclude that P = —1/|¢|? because
the multiplication is not of two functions but a function times a distribution.
Now it is true that —|¢|2 - (—|¢|~2) = 1 regarding —[¢| =2 as a distribution. But
if we write P = —|¢[72 + g then —|¢|*P = 1 is equivalent to —|¢|?g = 0 and
this equation has nonzero solutions. For instance, g = ¢ is a solution since

(~1€176,0) = (8, = [€]*0) = ~[€[P0(E)le=0 = 0~ »(0) = 0.

This leads to the fundamental solution
B 1 + 1
arr|z|  (2m)3°

More generally we are allowed to take all possible solutions of —|¢[?g = O.
It is apparent that such distributions must be concentrated at £ = 0, and later
we will show they all are finite linear combinations of derivatives of the -
function (note however that only some distributions of this form satisfy —|¢|?g =
0; g = (8%/022)6 does not). Taking F~'(—|£|72 + g) we obtain the Newtonian
potential plus a polynomial that is harmonic.

This is still not the whole story, for we know that the general solution of
Au = § is the Newtonian potential plus a harmonic function. There are many
harmonic functions that are not polynomials. So how have these solutions
escaped us? To put the paradox more starkly, if we attempt to describe all
harmonic functions on R® (the same argument works for R? as well) by using
the Fourier transforms to solve Au = 0, we obtain —|¢[?4(£) = 0, from which
we deduce that © must be a polynomial. That seems to exclude functions that
are harmonic but are not polynomials, such as e*! cos x,.

But there is really no contradiction because e®! cos x; is not a tempered distri-
bution; it grows too fast as 1 — oo, so its Fourier transform is not defined. In
fact what we have shown is that any harmonic function that is not a polynomial
must grow too fast at infinity to be a tempered distribution. Stating this in the
contrapositive form, if a harmonic function on R? or R? is of polynomial growth

(fu(@)] < cl]™ as z — o)

then it must be a polynomial. This is a generalization of Liouville’s theorem (a
bounded entire analytic function is constant).

The two points 1 have just made bear repeating in a more general context:
(1) when solving an equation for a distribution by division, there will be extra
solutions at the zeroes of the denominator, and (2) when using Fourier transforms
to solve differential equations you will only obtain those solutions that do not
grow too rapidly at infinity.
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Now we return to the Laplace equation. We have seen that A(P % f) = f
if f € S. Actually this solution is valid for more general functions f, as long
as the convolution can be reasonably defined. For instance, since P is locally
integrable in both cases, P * f(z) = [ P(z — y)f(y) dy makes sense for f
continuous and vanishing outside a bounded set, and A(P * f) = f.

Usually one is interested in finding not just a solution to a differential equation,
but a solution that satisfies certain side conditions which determine it uniquely.
A typical example is the following: Let D be a bounded domain in ’? or R?
with a smooth boundary B (in R? B is a curve, in R® B is a surface). Let f be
a continuous function on D (continuous up to the boundary) and g a continuous
function on B. We then seek solution of Au = f in D with u = g on B.

To solve this problem first extend f so that it is defined outside of D. The
simplest way to do this is to set it equal to zero outside D—this results in a
discontinuous function, but that turns out not to matter. Call the extension F'
and look at P* F. Since A(PxF)=F and F = fon D wesetv=PxF
restricted to D and so Av = f on D. Calling w = u — v we see that w must
satisfy

Aw=0onD

w=g—honB

where h = P * F restricted to B. Now it can be shown that h is continuous
so that the problem for w is the classical Dirichlet problem: find a harmonic
function on D with prescribed continuous values on B. This problem always
has a unique solution, and for some domains D it is given by explicit integrals.
Once you have the unique solution w to the Dirichlet problem, ¥ = v + w is
the unique solution to the original problem.

Next we will use Fourier transforms to study the Dirichlet problem when
D is a half-plane (D is not bounded, of course, but it is the easiest domain
to study). It will be convenient to change notation here. We let ¢ be a real
variable that will always be > 0, and we let x = (z;,...,z,) be a variable in
R™ (the cases of physical interest are n = 1,2). We consider functions u(z,t)
for x € R, ¢ > 0 which are harmonic

82 82 32 32
8t2+8zf+.“+ax$l]u—[ +Am]u_0
and which take prescribed values on the boundary t = 0 : u(z,0) = f(z). For
now let us take f € S(R™).

The solution is not unique for we may always add ct, that is a harmonic
function that vanishes on the boundary. To get a unique solution we must add
a growth condition at infinity, say that % is bounded.

The method we use is to take Fourier transforms in the z-variables only (this
is sometimes called the partial Fourier transform). That is, for each fixed ¢ > 0,
we regard u(x,t) as a function of z. Since it is bounded it defines a tempered
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distribution and so it has a Fourier transform that we denote F,u(&,t) (some-
times the more ambiguous notation %(,t) is used). The differential equation

2

§t2 (z,t) + Azu(z,t) =0

becomes
2

0
o (6 ) — P Fau(€, ) = 0

and the boundary condition u(z,0) = f(x) becomes Fou(£,0) = f(£).

Now what have we gained by this? We have replaced a partial differential
equation by an ordinary differential equation, since only ¢-derivatives are in-
volved. And the ordinary differential equation is so simple it can be solved
directly. For each fixed ¢ (this is something of a cheat, since F,u(&,t) is only
a distribution, not a function of &; however, in this case we get the right answer
in the end), the equation

2

s Feulé,t) ~ 167 Fau(€ ) =0

has solutions c;etlél + c e~ €l where ¢; and ¢, are constants. Since these
constants can change with { we should write

Fou(€,t) = c1 (€)'l + ey (¢)e el

for the general solution. Now we can simplify this formula by considering the
fact that we want u(z, t) to be bounded. The term c,(£)etl¢l is going to grow
with ¢ as ¢ — oo, unless ¢;(§) = 0. So we are left with F,u(¢,t) = cz(ﬁ)e_tlﬂ
From the boundary condition Fru(¢,0) = f(€) we obtain ¢;(€) = f(£) so
Fou(€,t) = f(€)e tél, hence

u(z,t) = F; ' (F(&)e™ ) = F7 ' (e « f(2).

Now in example (4) of 4.2 we computed

(= +1 t
j_‘—l e—tlfl = (—Zﬂ)l" (n ) -
) 2 ) (@ +ep)*F

SO

_(ntt n+1 t
u(z,t) =7 (2 )I‘< > )/nf(y)(t2+(x-y)2)%t—1 dy.

This is referred to as the Poisson integral formula for the half-space. The
integral is convergent as long as f is a bounded function and gives a bounded
harmonic function with boundary values f. The derivation we gave involved
some questionable steps; however, the validity of the result can be checked and
the uniqueness proved by other methods.
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Exercise: Verify that u is harmonic by differentiating the integral. (Note that
the denominator is never zero since ¢t > 0.)
The special case n =1

1 [ t
u(z,t) = -7;/_00 f(y)mdy

can be derived from the Poisson integral formula for the disk by conformal
mapping.

5.2 The heat equation

We retain the notation from the previous case: t > 0,z € R™, u(z,t). In this
case the heat equation is

s,
au(m, t) = kAgu(z,t)

where k is a positive constant. You should think of ¢ as time, ¢ = O the initial
time, x a point in space (n = 1,2,3 are the physically interesting cases), and
u(z,t) temperature. The boundary condition u(z,0) = f(x),f given in S,
should be thought of as the initial temperature. From physical reasoning there
should be a unique solution. Actually for uniqueness we need some additional
growth condition on the solution—boundedness is more than adequate (although
it requires some work to exhibit a nonzero solution with zero initial conditions).
We can find the solution explicitly by the method of partial Fourier transform.

The differential equation becomes

9 2

5 Feul6, 1) = —KIELFou(6, )
and the initial condition becomes F,(£,0) = f(£). Solving the differential
equation we have

Fau(€,t) = c(§)e™ "
and from the initial condition ¢(€) = f(£) so that
u(z, t) = F~' (e I f(¢))
— ]_-—l(e—ktlglz)*f

1 o

Exercise: Verify directly that this gives a solution of the heat equation.
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One interesting aspect of this solution is the way it behaves with respect to
time. This is easiest to see on the Fourier transform side:

Fou(€,t) = el f(g)

decreases at infinity more rapidly as ¢ increases. This decrease at infinity cor-
responds roughly to “smoothness” of u(z,t). Thus as time increases, so does
the smoothness of the temperature. The other side of the coin is that if we
try to reverse time we run into trouble. In other words, if we try to find the
solution for negative ¢ (corresponding to times before the initial measurement),
the initial temperature f(x) must be very smooth (so that f(¢£) decreases so
fast that f €3 Ye—ktlé " is a tempered distribution). Even if the solution does exist
for negative ¢, it is not given by a simple formula (the formula we derived is
definitely nonsense for ¢ < 0).

So far, the problems we have looked at involve solving a differential equation
on an unbounded region. Most physical problems involve bounded regions. For
the heat equation, the simplest physically realistic domain is to take n = 1 and
let z vary in a finite interval, so 0 < z < 1. This requires that we formulate
some sort of boundary conditions at = 0 and x = 1. We will take periodic
boundary conditions

u(0,t) = u(1,t) all ¢

which correspond to a circular piece of wire (insulated, so heat does not transfer
to the ambient space around the wire). In the problems you will encounter other
boundary conditions.

The word “periodic” is the key to the solution. We imagine the initial
temperature f(z), which is defined on [0, 1] (to be consistent with the peri-
odic boundary conditions we must have f(0) = f(1)), extended to the whole
line as a periodic function of z, f(z + 1) = f(z) all z, and similarly for
u(z,t),u(z+ 1,t) = u(z, t) all z (note that the periodic condition on u implies
the boundary condition just by setting z = 0).

Now if we substitute our periodic function f in the solution for the whole
line, we obtain

1 )
Wart) = G [ eI ) dy

— 00

oo

1
—w+'- 24kt
Z 47rkt)1/2/ TS (y) dy

(break the line up into intervals j < y < 7+ 1 and make the change of variable
y — y — j in each interval, using the periodicity of the f to replace f(y — j)
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by f(y)). We can write this

oo

! 1 2

= - —(z+j—y)*/4kt

u(z,t) = /0 (47rkt)1/2j;°oe fy)dy

because the series converges rapidly. Observe that this formula does indeed
produce a periodic function u(z,t), since the substitution x — z + 1 can be
erased by the change of summation variable j — j — 1.

Perhaps you are more familiar with a solution to the same problem using
Fourier series. This, in fact, was one of the first problems that led Fourier to the
discovery of Fourier series. Since the problem has a unique solution, the two
solutions must be equal, but they are not the same. The Fourier series solution

looks like

0o
An2.2 .
U(II}, t) — 2 : ane 4r°n kte27rzn:v

n=—oo

1
an=/ f(z)e 2" dg.
0

Both solutions involve infinite series, but the one we derived has the advantage
that the terms are all positive (if f is positive).

5.3 The wave equation

The equation is (0%/0t?)u(z, t) = k*A,u(z,t) where ¢ is now any real number
and x € R®. We will consider the cases n = 1,2,3 only, which describe
roughly vibrations of a string, a drum, and sound waves in air, respectively.
The constant & is the maximum propagation speed, as we shall see shortly. The
initial conditions we give are for both  and du/dt,

ue,0) = f@),  on(z,0) = g(z).

As usual we take f and g in S, although the solution we obtain allows much
more general choice. These initial conditions (called Cauchy data) determine a
unique solution without any growth conditions.
We solve by taking partial Fourier transforms. We obtain
32

s reul6,t) = —k*|EPP Fou(€, )

Feul€,0)= () 5 Feult,0) = 5(6)
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The general solution of the differential equation is

c1(&) cos ktlg| + c2(€) sin kt|€|

and from the initial conditions we obtain

Fou(e, 1) = F(€) cos ktlg] + () mFUEL

kl¢|

Before inverting the Fourier transform let us make some observations about
the solution. First, it is clear that time is reversible—except for a minus sign
in the second term, there is no difference between ¢ and —¢. So the past is
determined by the present as well as the future.

Another thing we can see, although it requires work, is the conservation of
energy. The energy of the solution u(x,t) at time ¢ is defined as

04 [ ([ + % || ) oo

The first term is kinetic energy and the second is potential energy. Conservation
of energy says that E(t) is independent of ¢.
To see this we express the energy in terms of F,u(¢,t). Since

u(z, 1)

0 .
f:z (5;]‘“) (€7t) = *Zéjfmu(f’t)

2

+ E2JE1? | Fou(€, b)] )

B0 = 505 /.. (|§tf (e,

by the Plancherel formula. Now

Fau(e, 0 = ( 7€) cos kel + 9(6) )
 (F@reos ket + 318 2t
and
8 2 :
2 Ful6,0)] = (<HELF(E)sin bl + 9(6) cos e
(~HIEIF(€)sin ktle] + 58 cos kt(E)
so that

9 : :
2 a6, )| + I IFals, OF = PIEFLAOP + )7
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(the cross terms cancel and the sin? + cos? terms add to one). Thus

E(t) = / (RIERIFE)L + 1a(©)P) de

2
dz
independent of ¢.
Now to invert the Fourier transform. When n =1 this is easy since cos kt[¢|=
%(ezktﬁ + e—zktﬁ) )

2(2m)n

(5

j=1

%f(x)lz + lg(a)

F=(cos kEIf©)(@) = 5 (Fa + kt) + f(z — k).

Similarly

i (g psinktle 1
fl(g“) v )‘Zkt/_kt“’(‘”“)ds‘

When n = 3 the answer is given in terms of surface integrals over spheres.
Let o denote the distribution

(0,0) = /I _ ¢l@)dot@

where do(x) is the element of surface integration on the unit sphere. In terms
of spherical coordinates (z,y,z) = (cos6y,sinf; cosf,,sinb; sinb,) for the
sphere, with 0 < 6, < 7 and 0 < 0, < 2, this is just

2r ™
(o,0) =/ / ¢(cos 0y, sin 8, cos 85, sin 6, sin 8;) sin 8, db,, db,.
o Jo

Now to compute 6(£) we need to evaluate this integral when ¢(z) = e**¢. To
make the computation easier we use the observation (from problem 3.8) that & is
radial, so it suffices to compute §(;,0,0), for then 6(&;,&2,€3) = 6(J¢[,0,0).
But

27 ™
(0’, e”"g‘) = / / eiglcos o sin 91 d91 d92
0 0

™
= 27!'/ e’f‘ cos 61 sin 01 d0]
0

—27rei5‘ cosf |™

13
_ 47 sin &,

&
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and so (&) = 4xsin|€|/|€|. Similarly, if o, denotes the surface integral over
the sphere |z| = r of radius r, then 6,(§) = 4nrsinr|€|/|£| and so

1 __ sinkt|¢|
F (47rk2t"’“)‘ kle|

Thus
-1 R sin ktl€| _ 1
(g(&) k|§| - 47rk2takt *g(fE)
Furthermore, if we differentiate this identity with respect to ¢ we find

PG @) skt = 5 (griggom 1)

(we renamed the function f). Thus the solution to the wave equation in n = 3
dimensions is simply

0 1 1
wwt) = g7 (gomom * 1)) + grgome * o(a).

The convolution can be written directly as
ouxf@) = [ fa+y)douly)
lyl=kt
or it can be expressed in terms of integration over the unit sphere

okt * f(x) = k2t2/ f(z + kty)do

ly|=1
27 .
= k2t2/ / f(x) + ktcos 8y, xy + ktsinb cos b,
o Jo
x3 + ktsin6, sin6;)sin 6, db, db,.

When n = 2 the solution to the wave equation is easiest to obtain by the so-
called “method of descent”. We take our initial position and velocity f(zi, z2)
and g(x1,z;) and pretend they are functions of three variables (z,, z,, z3) that
are independent of the third variable x3;. Fair enough. We then solve the
3-dimensional wave equation for this initial data. The solution will also be
independent of the third variable and will be the solution of the original 2-
dimensional problem. This gives us explicitly

u(z,t) =

2r  pw
(r% (4_t7; / / f(z1 + ktcosy,z2 + ktsin 6 cos 6,) sin 6, db, d()2)
o Jo

2m
+ _ / (z1 + ktcos 8y, z; + ktsin b, cos 6,) sin 0, db; db,.
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There is another way to express this solution. The pair of variables (cos 6,
sin 6, cos 0,) describes the unit disk z? + z% < 1 in a two-to-one fashion (two
different values of 6, give the same value to cos@, ) as (6,,6;) vary over
0 <6 <m0< 60, <27 Thus if we make the substitution (y;,y2) =
(cos 8y,sinf; cos ;) then dydy, = sin? 6,|sin 6;|d6,df, and sin6,|sinf;| =

V1 - |yl]? so

_oft f(z + kty)
e = (3¢ o SR %)

& [ glz+kty)

21 Jlyi<1 /1= ly]?

Note that these are improper integrals because (1 — |y|?)~'/? becomes infinite
as |y| — 1, but they are absolutely convergent. Still another way to write the
integrals is to introduce polar coordinates:

(z t)—g i/ZW/lf(ac + ktrcosf,x +ktrsin0)——rdr—d9)
B AV S S 2 Vi-r

2
2w

rdr

27 1
+ / g9(z1 + ktr cos 8, x, + kir sin ) ———— db.
o Jo

1 —1r2

The convergence of the integral is due to the fact that fol (rdr/v/1 — r?) is finite.

There are several astounding qualitative facts that we can deduce from these
elegant quantitative formulas. The first is that k is the maximum speed of
propagation of signals. Suppose we make a “noise” located near a point y at
time £ = 0. Can this noise be “heard” at a point z at a later time t? Certainly
not if the distance (z —y) from z to y exceeds kt, for the contribution to u(z, t)
from f(y) and g(y) is zero until kt > |x — y|. This is true in all dimensions,
and it is a direct consequence of the fact that u(z,t) is expressed as a sum of
convolutions of f and g with distributions that vanish outside the ball of radius
kt about the origin. (Compare this with the heat equation, where the “speed
of smell” is infinite!) Also, of course, there is nothing special about starting at
t = 0. The finite speed of sound and light are well-known physical phenomena
(light is governed by a system of equations, called Maxwell’s equations, but each
component of the system satisfies the wave equation). But something special
happens when n = 3 (it also happens when n is odd, n > 3). After the noise
is heard, it moves away and leaves no reverberation (physical reverberations
of sound are due to reflections off walls, ground, and objects). This is called
Huyghens’ principle and is due to the fact that distributions we convolve f and
g with also vanish inside the ball of radius kt. Another way of saying this
is that signals propagate at exactly speed k. In particular, if f and g vanish



Schrodinger’s equation and quantum mechanics 67

outside a ball of radius R, then after a time 1 (R + |z|), there will be a total

silence at point . This is clearly not the case when n = 1,2 (when n = 1
it is true for the initial position f, but not the initial velocity g). This can be
thought of as a ripple effect: after the noise reaches point z, smaller ripples
continue to be heard. A physical model of this phenomenon is the ripples you
see on the surface of a pond, but this is in fact a rather unfair example, since
the differential equations that govern the vibrations on the surface of water are
nonlinear and therefore quite different from the linear wave equation we have
been studying. In particular, the rippling is much more pronounced than it is
for the 2-dimensional wave equation.

There is a weak form of Huyghens’ principle that does hold in all dimensions:
the singularities of the signal propagate at exactly speed k. This shows up in the
convolution form of the solution when n = 2 in the smoothness of (1—|y|?)~!/?
everywhere except on the surface of the sphere |y| = 1.

Another interesting property is the focusing of singularities, which shows up
most strikingly when n = 3. Since the solution involves averaging over a sphere,
we can have relatively mild singularities in the initial data over the whole sphere
produce a sharp singularity at the center when they all arrive simultaneously.
Assume the initial data is radial: f(z) and g(x) depend only on |z| (we write

£(@) = £(1al). g(2) = g(|]))- Then u(0, ) = (8/%)(¢ (kt)) + tg(kt) since

1 1
oot SO = g

etc.
It is the appearance of the derivative that can make u(0, t) much worse than

f or g. For instance, take g(z) = 0 and

_ [ (a=la)'? iz <1
f(“’)_{o if |z| > 1.

Then f is continuous, but not differentiable. But u(0,t) = f(kt) + ktf'(kt)
tends to infinity at ¢ = 1/k, which is the instant when all the singularities are
focused.

5.4 Schrodinger’s equation and quantum mechanics

The quantum theory of a single particle is described by a complex-valued “wave
function” ¢(z) defined on R?. The only restriction on ¢ is that [, |¢(z)|? dz
be finite. Since ¢ and any constant multiple of ¢ describe the same physical
state, it is convenient, but not necessary, to normalize this integral to be one.
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The wave function changes with time. If u(z,t) is the wave function at time ¢
then

3} :
Eu(m, t) = ikAzu(z,t).

This is the free Schrodinger equation. There are additional terms if there is a
potential or-other physical interaction present. The constant k is related to the
mass of the particle and Planck’s constant.

The free Schrodinger equation is easily solved with initial condition u(z,0) =
o(z). We have (8/0t)F u(é,t) = ik|€|2Fru(é,t) and Fou(€,0) = @(£) so
that

. 2 N
Fou(€,t) = e p(¢).
Referring to example (3) of 4.2 we find

(TN i —i|z—y|?/4kt
u(z,t) = (k—t) e /Rge ¢(y) dy

where the + sign is the sign of ¢ (of course the factor et has no physical
significance, by our previous remarks).

Actually the expression for F,u is more useful. Notice that |F,u(&,t)| =
|@(€)| is independent of ¢. Thus

2, 1 )
/R3 lu(z,t)|” dz = an)" /Ral]-;u(g,tn d¢

is independent of £, so once the wave-function is normalized at ¢ = 0 it remains
normalized.

The interpretation of the wave function is somewhat controversial, but the
standard description is as follows: there is an imperfect coupling between phys-
ical measurement and the wave function, so that a position measurement of a
particle with wave function ¢ will not always produce the same answer. Instead
we have only a probabilistic prediction: the probability that the position vector
will measure in a set A C R? is

f A |‘P($)|2 dz
Jrs (@) dz
We have a similar statement for measurements of momentum. If we choose
units appropriately, the probability that the momentum vector will measure in a
set BC IR is
g |&(2)]* d€
Jr: [6(2)|? d€
Note that [, |4(€)[*dE = (2m)" [ps(¢(2))? dz so that the denominator is
always finite.

Now what happens as time changes? The position probabilities change in a
very complicated way, but | Fou(&,t)| = |@(€)| so the momentum probabilities
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remain the same. This is the quantum mechanical analog of conservation of
momentum.

5.5

L

Problems

For the Laplace and the heat equation in the half-space prove via the
Plancherel formula that

/ |u(z,t)|2dx§/ |u(z,0)|*dz t > 0.

What is the limit of this integral as ¢ — 0 and as t — oco?

For the same equations show |u(z,t)| < sup,cg~ [u(y,0)|. (Hint: Write
u = G¢ * f and observe that G¢(z) > 0. Then use the Fourier inversion
formula to compute fR,, Gi(z) dz and estimate

ol | [ G s 1w

Solve

& 2

fort > 0,z € R* given

u(e,0) = fz),  u(@0)=g(a)
f,g € S with |u(z,t)| < ¢(1 + |t|). Hint: Show
Foul(,t) = te HElg(€) + (7l + tlgle1¢1) f(£).

To invert note that F, ' (|]e~tély = — Z 71 (etel).

Solve (9/dt)u(z,t) = kAzu +u for t > 0,z € R with u(z,0) =
f(z) €S.

Solve (8%/0t?)u(z,t) + Azu(z,t) = 0 for 0 < t < T,z € R™ with
u(z,0) = f(z),u(z,T) = g(x) for Fpu(&,t) (do not attempt to invert
the Fourier transform).

So}vlf; the free Schrédinger equation with initial wave function p(z) =
e 1*l,

In two dimensions show that the Laplacian factors

914__?.2_— i_*_zi i._z_a_
0z2  0y? \0r Oy \ozx Oy



70
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11.

12.

13.

14.

Solving Partial Differential Equations

and the factors commute. Deduce from this that an analytic function is
harmonic.

Let f be a real-valued function in S(R') and define g by §(¢) =
—i(sgn&)f(€). Show that g is real-valued and if u(z, t) and v(z, t) are the
harmonic functions in the half-plane with boundary values f and g then
they are conjugate harmonic functions: u + iv is analytic in z = ¢ + it.
(Hint: Verify the Cauchy-Riemann equations.) Find an expression for v
in terms of f. (Hint: Evaluate F~'(—4sgn e~ ¢l directly.)

Show that a solution to the heat equation (or wave equation) that is inde-
pendent of time (stationary) is a harmonic function of the space variables.

Solve the initial value problem for the Klein-Gordon equation
82
—é—t;:Axu—mzu m >0

u(z,0) = f(z), %%(w,O) = g(z)

for Fru(&,t) (do not attempt to invert the Fourier transform).
Show that the energy

dz

B =3 [ muteop+

is conserved for solutions of the Klein-Gordon equation Klein-Gordon
equation.

Solve the heat equation on the interval [0, 1] with Dirichlet boundary
conditions

w(0,6)=0, u(l,t)=0

(Hint: Extend all functions by odd reflection about the boundary points
z = 0 and z = 1 and periodicity with period 2).
Do the same as problem 12 for Neumann boundary conditions

0 5}

(Hint: This time use even reflections).

Show that the inhomogeneous heat equation with homogeneous initial
conditions

0
2 (o,1) = ke, t) + Flo
u(z,0) =
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15.

I16.

17.

18.

is solved by Duhamel’s integral

u(z,t) = /Ot (‘/R" Gs(y)F(z —y,t ——s)dy) ds

where

1 2
= |yl /4ks
Gs(y) (47(']65)”/26

is the solution kernel for the homogeneous heat equation. Use this to
solve the fully inhomogeneous problem.

a%“(x’t) = kALu(z, t) + F(z, t)
u(z,0) = f(z).

Show that the inhomogeneous wave equation on R® with homogeneous
initial data
32

E)ﬁu(x’ t) = szzu(w, t) + F(z,t)

u(z,0) =0 %u(m,O) =0

is solved by Duhamel’s integral

u(z,t) = /Ot ( . H,(y)F(x — y,t — 3) dy) ds.

where

o sinks|§|)
H.=7 ( CEA

Show this is valid for negative ¢ as well. Use this to solve the inhomoge-
neous wave equation with inhomogeneous initial data.

Interpret the solution in problem 15 in terms of finite propagation speed
and Huyghens’ principle (n = 3) for the influence of the inhomogeneous
term F(z,t).

Show that if the initial temperature is a radial function then the temperature
at all later times is radial.

Maxwell’s equations in a vacuum can be written
10
—C-EEE(w,t) = curl H(z,t)
10

'Eb—tH(.’E,t) = —curl E(.’E,t)
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where the electric and magnetic fields £ and H are vector-valued func-
tions on R?. Show that each component of these fields satisfies the wave
equation with speed of propagation c.

Let u(z, t) be a solution of the free Schriédinger equation with initial wave
function ¢ satisfying [p, |¢(z)|dz < oo. Show that |u(z,t) < ct=3/2 for
some constant c. What does this tell you about the probabilty of finding
a free particle in a bounded region of space as time goes by?



