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1 Introduction

In two dimensions the Radon transform is an integral transform that maps a function to its
integrals over lines. Let θ ∈ S1 and s ∈ R then the equation x · θ = s describes a line. The
Radon transform Rf of a function f in S (R2) is defined by

Rf(θ, s) =

∫
x·θ=s

f(x) dx. (1)

(Note that the improper integral converges.) Here the integral denotes the standard line
integral from vector calculus. In higher dimensions the Radon transform maps a function f
to its integrals over hyperplanes. It is defined by the same formula (1), but now θ ∈ Sn−1,
and the integration domain θ · x = s is a hyperplane. The Radon transformed is named after
the Austrian mathematician Johann Radon, who studied it in a paper that appeared in 1917.
In particular he proved several inversion formulas in his paper.

The two-dimensional Radon transform has application in medical imaging, in particular
in X-ray computed tomography. In an X-ray scanner, a beam of X-ray radiation is generated
that passes through an object, see Figure 1. At the other side of the object a line of detectors
is located that measures the intensity I of the rays that have passed through the object.
The beam and the detectors can be rotated, such that the intensity is measured for all lines
passing through the object, hence I = I(θ, s). Depending on the material inside the object,
some of the X-ray radiation is absorbed. When an X-ray travels over a small distance ∆x
in a medium with absorbtion coefficient f(x), the intensity change is ∆I = −f(x)I∆x. This
leads to a differential equation, if x(t) is a parametrization of a line, with

∣∣dx/dt∣∣ = 1, the

equation is dI
dt = −f(x(t))I with solution

I(t) = e−
∫ t f(x(s))dsI0.

Hence for the rays that have passed through the object we have

− log(
I(θ, s)

I0
) =

∫
x·θ=s

f(x) = s dx.

So the reconstruction problem for f amount to the inversion of the Radon transform. For
more on this problem see [6, 3]. (A 3-D scan can be done by performing a series of 2-D scans
for thin layers of the object.)

As Epstein [3] notes, there are a number of other imaging methods in medical imaging
that involve inverting certain integral transforms. The methods used in studying the Radon
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Figure 1: Principle of CT transmission tomography

transform can often be extended to these other transforms. This is one reason to study the
Radon transform in this course. Another reason to study the Radon transform in a course on
Fourier analysis is that the two transforms are closely related, as we will see. Two standard
references are [6, 5]. These references were used to compile these notes, and some of the
formulations of the theorems and proofs were taken from them.

2 Basic properties of the Radon transform

We first describe some properties of the Radon transform. Obviously Rf(−θ,−s) = Rf(θ, s),
i.e. Rf is an even function on the cylindrical subset

Z = Sn−1 × R (2)

of Rn+1. We also write
Rθf(s) = Rf(θ, s)

Denoting by θ⊥ the hyperplane normal to θ the formula for Rf can also be written as∫
θ⊥
f(sθ + y) dy (3)

If f ∈ S (Rn), then Rf and Rθf are in the Schwartz spaces on R1 and Z respectively,
where the latter one is defined by using local coordinates or simply by restricting the function
in S (Rn+1) to Z.

Some important properties of the Radon transform follow from formulas involving convo-
lution and Fourier transforms. Whenever convolutions or Fourier transforms of functions on
Z are used, they are to be taken with respect to the second variable, i.e. for h, g ∈ S (Z)

h ∗ g(θ, s) =

∫
R1

h(θ, s− t)g(θ, t) dt,

ĥ(θ, σ) =

∫
R1

e−isσh(θ, s) ds.
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The relationship between the Radon transform and the Fourier transform is of fundamental
importance, and will later be used to prove the inversion formula. It is described in the
following theorem, the so-called Fourier slice theorem

Theorem 1. For f ∈ S (Rn) we have

R̂f(θ, σ) = f̂(σθ), σ ∈ R1. (4)

Proof. We have (with (Rθf)ˆ denoting the Fourier transform of Rθf)

(Rθf)ˆ(σ) =

∫
R1

e−iσsRθf(s) ds

=

∫
R1

e−iσs
∫
θ⊥
f(sθ + y) dy ds.

We now change integration variables. Instead of (s, y) ∈ R × θ⊥ we use x = sθ + y, then
x ∈ Rn and s = θ · x, dx = dy ds, hence

(Rθf)ˆ(σ) =

∫
Rn

e−iσθ·xf(x) dx

= f̂(σθ).

Next we will define a dual operator R#. We consider the inner product of Rf , f ∈ S (Rn)
and g ∈ S (Z). Using first the definition of the Radon transform, and then the change of
variables x = sθ + y, s = θ · x, dx = dy ds we have∫

Sn−1

∫
R1

Rf(θ, s)g(θ, s) ds dθ =

∫
Sn−1

∫
R1

∫
θ⊥
f(θs+ y)g(θ, s) dy ds dθ

=

∫
Sn−1

∫
Rn

f(x)g(θ, θ · x) dx dθ.

Changing the order of integration we thus find that∫
Sn−1

∫
R1

Rf(θ, s)g(θ, s) ds dθ =

∫
f(x)R#g(x) dx

R#g(x) =

∫
Sn−1

g(θ, x · θ) dθ.

Note that R,R# also form a dual pair in the sense of integral geometry: while R integrates
over all points in a plane, R# integrates over all planes through a points.

Like for the Fourier transform we can determine the Radon transform of the derivatives of
f in terms of the Radon transform of f , and similarly for the Radon transform of f multiplied
by polynomials. Without proof we give the following results

Rθ∂
α
x f = θα∂|α|s Rθf. (5)

The Fourier slice theorem can also be used to prove the following convolution property.

R(f ∗ g)(θ, s) =

∫
R1

Rf(θ, t)Rg(θ, s− t) dt. (6)
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3 Inversion formulas

In this section we derive an explicit inversion formula for R. For α < n we define the linear
operator Iα by

(Iαf)ˆ(ξ) = |ξ|−αf̂(ξ).

Iα is called the Riesz potential. If Iα is applied to functions on Z it acts on the second
variable. For f ∈ S , (Iαf)ˆ ∈ L1(Rn), hence Iαf makes sense and I−αIαf = f . For more
on Iα, see [5], section V.5.

Theorem 2. Let f ∈ S (Rn) and let g = Rf . Then, for any α < n, we have

f = 1
2(2π)1−n I−αR#Iα−n+1g. (7)

Proof. We follow the proof from [6]. The Fourier inversion formula gives

Iαf(x) = (2π)−n
∫
Rn

eix·ξ|ξ|−αf̂(ξ) dξ.

Using polar coordinates ξ = σθ this becomes

Iαf(x) = (2π)−n
∫
Sn−1

∫ ∞
0

eiσx·θ|σn−1−α|f̂(σθ) dσdθ.

Using the Fourier slice theorem the Fourier transform f̂ can be written in terms of (Rf) ,̂
resulting in

Iαf(x) = (2π)−n
∫
Sn−1

∫ ∞
0

eiσx·θ|σ|n−1−α(Rf)ˆ(θ, σ) dσdθ.

Replacing θ by −θ and σ by −σ and using that (Rf)ˆ is even yields the same formula with
the integral over (0,∞) replaced by the integral over (−∞, 0). Adding both formulas leads to

Iαf(x) = 1
2(2π)−n

∫
Sn−1

∫ ∞
−∞

eiσx·θ|σ|n−1−α(Rf)ˆ(θ, σ) dσdθ.

The inner integral can be expressed by the Riesz potential, hence

Iαf(x) = 1
2(2π)−n+1

∫
Sn−1

Iα+1−nRf(θ, x · θ) dθ = 1
2(2π)−n+1R#Iα+1−nRf(x).

Equation (7) is a very general inversion formula. For all dimensions n it provides a family
of inversion formulas parametrized by α. We want to make a couple of remarks, and look at
some special cases.

1. Putting α = n− 1 in (7) yields

f =
1

2
(2π)1−nI1−nRR#g.

For n odd, I1−n is simply a differential operator

I1−n = (−∆)(n−1)/2
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In particular for n = 3 we obtain the formula

f(x) = − 1

8π2
∆

∫
S2

g(θ, x · θ) dθ, (8)

where ∆ acts on the variable x. This formula was already derived by Radon.

2. Putting α = 0 in (7) we obtain

f =
1

2
(2π)1−nR#I1−ng, (9)

where I1−n acts on a function in R1. For h ∈ S (R1) we have

(I1−nh)ˆ(σ) = |σ|n−1ĥ(σ)

= (sign(σ))n−1σn−1ĥ(σ).

Multiplication by σn−1 corresponds to apply
(
−i dds

)n−1
. For odd n, the factor (sign(σ))n−1

is equal to one, and hence

f = 1
2(2π)1−n(−1)(n−1)/2R#g(n−1)(θ, x · θ), n odd.

For the factor sign(σ) that is present for even n, we note that the Hilbert transform can
be defined by

(Hh)ˆ(σ) = −i sign(σ)ĥ(σ)

for h ∈ S (R1). The Hilbert transform is a well-known operator in Fourier analysis and
signal processing. Because FP.V. 1

x = −iπ sign(ξ) (see Grubb exercise 5.11), it can also
be written as

(Hh)(s) =
1

π

(
P.V.

1

s

)
∗ h(s)

=
1

π
P.V.

∫ ∞
−∞

h(t)

s− t
dt.

(10)

We obtain
f = 1

2(2π)1−n(−1)(n−2)/2R#Hg(n−1)(θ, x · θ), n even. (11)

The Hilbert transform is non-trivial to compute numerically, due to the long tail of
the function P.V.1

s , which has to be truncated becauses in practice only finite data is
available. For numerical implementation the Fourier domain formula is a convenient
choice. On a computer, a 1-D fast Fourier transform can be performed relatively easily
(using the fast Fourier transform), and this leads to a very efficient implementation.

3. A filter is an operator that maps a function on R to a new function on R by convolu-
tion with a fixed function (the filter). The application of R# is called backprojection.
Formula (9) is therefore an example of filtered backprojection.

In practice, formula (9) must be modified, because data is contaminated with noise. The
operator I1−n magnifies the large frequencies strongly (it is unbounded as an operator
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of L2), in particular it magnifies the high-frequncy part of the noise, in such a way
that the noise can become stronger than the correct signal. To address this, filtered
backprojection formulas of the form

f ≈ R#(wb ∗ g). (12)

have been considered [6]. The function wb is chosen to get a good approximate image
by suppressing the large frequencies for which noise would be too large. For example it
can contain a cutoff function Φ(|σ|/b), with b the cutoff frequency, i.e.

ŵb =
1

2
(2π)1−n|σ|n−1Φ(|σ|/b).

Inversion formulas of the form (12) are called filtered backprojection.

4. In n = 3 dimensions, formula (8) shows that the inversion is local, i.e. the value of f(x)
only depends on the integrals of f over planes that intersect x, and a small neighborhood
of these (due to the derivative operator). The same is true for all odd n. For n even
this is not true, because the Radon transform present in (11) is not a local operator, as
can be seen from (10).

4 The support theorem

We next consider the support theorem. Clearly, when f is supported in a ball with radius
A, then Rf(θ, s) = 0 for all s > A. The support theorem addresses the opposite implication.
The theorem is as follows, for the proof see [5].

Theorem 3. (The support theorem.) Let f ∈ C(Rn) satisfy the following conditions:

(i) For each integer k > 0, |x|kf(x) is bounded.

(ii) There exists a constant A > 0 such that

Rf(θ, s) = 0 for |s| > A,

Then
f(x) = 0 for |x| > A.

5 The range

It turns out that the functions in the range of the Radon transform satisfy certain relations,
i.e. the range is not the entire space S (Z). The nature of these relations is described in the
following lemma. (The material in this section is from Helgason [5], which contains a full
treatment.)

Lemma 4. For each f ∈ S (Rn) the Radon transform Rf(θ, s) satisfies the following condi-
tion: For k ∈ Z+ the integral ∫

R
Rf(θ, s)sk ds

can be written as a homogeneous polynomial of degree k in θ1, . . . , θn.
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Proof. This is immediate from the relation∫
R
Rf(θ, s)sk ds =

∫
R

∫
θ⊥
skf(sθ + y) dy ds

=

∫
Rn

f(x)(x · θ)k dx.

The conditions in Lemma 4 are called the Helgason-Ludwig consistency conditions. In
accordance with this lemma we define the space

SH(Z) =

{
F ∈ S (Z)

∣∣∣∣For each k ∈ Z+,
∫
R F (θ, s)sk ds is a homoge-

neous polynomial in θ1, . . . , θn of degree k

}
.

We write
DH(Z) = C∞0 (Z) ∩SH(Z).

According to the lemma all functions in the range of R are part of SH , i.e.

R(S ) ⊂ SH .

The next theorem states that actually equality holds.

Theorem 5. The Radon transform f 7→ Rf is a linear one-to-one mapping of S (Rn) onto
SH(Z).

The proof can be found in [5].

6 Ill-posedness

In this section we give a brief introduction to ill-posedness, following chapter 4 of [6]. Let
H,K be Hilbert space, and let A be a linear bounded operator in from H into K. We consider
the problem

given g ∈ K, find f ∈ H such that Af = g, (13)

i.e. the problem of the inversion of A.
The problem (13) is called well-posed by Hadamard [4] if it is uniquely solvable (i.e. A is

bijective) for each g ∈ K and if the solution depends continuously on g. Otherwise, (13) is
called ill-posed. This means that for an ill-posed problem the operator A−1 does not exist,
or is not defined on all of K, or is not continuous. The practical difficulty with an ill-posed
problem is that even if its is solvable, the solution of Af = g need not be close to the solution
of Af = gε is gε is close to g.

In the sequel we will discuss how a meaningful solution to (13) can be defined. First we
consider the case that A is not surjective and/or not injective using the so called Moore-
Penrose generalized inverse. Then we will treat the case that the generalized inverse is not
continuous (unbounded).
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6.1 The Moore-Penrose generalized inverse

A pseudoinverse or generalized inverse is a linear map A+, such that generalizes the inverse
A−1. When A is injective and surjective, the problem (13) can be solved for all g and we
simply have A+ = A−1. When g is such that there is no f such that Af = g we define A+g
as the function f that minimizes ‖Af − g‖. This makes sense if g ∈ range(A) + range(A)⊥.
When there are multiple f that minimize ‖Af − g‖, we take for A+g the one with minimum
norm. One can show that A+ is a well-defined, possible unbounded, linear operator on
g ∈ range(A) + range(A)⊥.

Theorem 6. f = A+g is the unique solution of

A∗Af = A∗g (14)

in range(A∗).

Proof. f minimizes ‖Af − g‖ if and only (Af − g,Au) = 0 for all u ∈ H, i.e. if and only if
A∗Af = A∗g. Among all solutions of this equation the unique element with least norm is the
one in (ker(A))⊥ = range(A∗).

We remark that the system A∗Af = A∗g is usually called the normal equations. When
A is an m × n matrix, the operator A∗A is invertible if and only if A is injective. Hence we
must have m ≥ n and the columns must be linearly independent.

6.2 The singular value decomposition

We recall that the singular value decomposition of an m× n matrix M is a factorization

M = UΣV ∗,

where U is an m×m unitary matrix, V is an n×n unitary matrix, and Σ is an m×n diagonal
matrix with real, non-negative entries on the diagonal. It is convention to order the entries
of Σ in decreasing order.

When we denote the columns of U by uk, the columns of V by vk and the values on the
diagonal of Σ by σk, this implies that Mx can be written as

Mx =

min(m,n)∑
k=1

σk(x, vk)uk.

Using a slightly different notation, this will be our definition for the singular value decomposi-
tion in the case of L2 spaces, i.e. by a singular value decomposition we mean a representation
of A in the form

Af =

∞∑
k=1

σk(f, fk)gk, (15)

where (fk), (gk) are normalized orthogonal systems in H,K respectively and σk are positive
numbers, the singular values of A. We always assume the sequence {σk} to be bounded.
Then, A is a linear continuous operator from H into K with adjoint

A∗g =

∞∑
k=1

σk(g, gk)fk, (16)
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and the operators

A∗Af =

∞∑
k=1

σ2
k(f, fk)fk, (17)

AA∗g =
∞∑
k=1

σ2
k(g, gk)gk (18)

are self-adjoint operators in H,K respectively. The spectrum of A∗A consists of the eigenval-
ues of σ2

k with eigenelements fk and possibly of the eigenvalue 0 whose multiplicity may be
infinite. The same is true for AA∗ with eigenelements gk. The two eigensystems are related
by

A∗gk = σkfk, Afk = σkgk. (19)

Vice versa, if (fk), (gk) are normalized eigensystems of A∗A, AA∗ respectively such that (19)
holds, then A has the singular value decomposition (15). In particular, compact operatorsal-
ways admit a singular value decomposition.

Theorem 7. If A has the singular value decomposition (15), then

A+g =

∞∑
k=1

σ−1
k (g, gk)fk. (20)

For the finite-dimensional case is easily proved. For the infinite-dimensional we refer to
[6].

6.3 Ill-posedness and regularization

The presence of zero singular values in a matrix or operator A implies that this operator is not
injective and/or not surjective. However, also the presence of small singular values leads to
problems. From (23) it follows that if σk → 0, then A+ is unbounded, hence not continuous.

Let gε be an approximation to g such that ‖g − gε‖ ≤ ε. Knowing only gε, we can say
that |(g, gk)− (gε, gk)| < ε. If formula (23) is used with gε instead of g, the error in the k-th
coefficient satisfies

|σ−1
k (g, gk)− σ−1

k (gε, gk)| ≤ ε/σk. (21)

Since the right hand side becomes large for σk small, the contribution of gk to A+ cannot
be computed reliably for such k. Thus looking at the singular values and the correspond-
ing elements gk shows which features of the solution f of (13) can be determined from an
approximation gε to g and which can not!

This problem is handled by modifying the operator A+, depending on ε, using so called
regularization. A regularization of A+ is a family of linear continuous operators Tγ : K → H
which are defined on all of K and for which

lim
γ→0

Tγg = A+g (22)

on the domain of A+. Regularization is a large topic, of which we just discuss a small part.
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Obviously, ‖Tγ‖ → ∞ as γ → 0 if A+ is not bounded. With the help of a regularization
we can solve (13) approximately in the following sense. Let gε ∈ K be an approximation to
g such that ‖gε − g‖ ≤ ε. Let γ(ε) be such that, as ε→ 0,

(i) γ(ε)→ 0 (ii) ‖Tγ(ε)‖ε→ 0.

Then, as ε→ 0,

‖Tγ(ε)g
ε −A+g‖ ≤ ‖Tγ(ε)(g

ε − g)‖+ ‖Tγ(ε)g −A+g‖
≤ ‖Tγ(ε)‖ε+ ‖Tγ(ε)g −A+g‖
→ 0

Hence, Tγ(ε)g
ε is close to A+g if gε is close to g.

The number γ is called a regularization parameter. Determining a good regularization
parameter is one of the crucial points in the application of regularization methods. We will
not discuss this matter. We rather assume that we can find a good regularization parameter
by trial and error.

There are several methods for constructing a regularization.

6.4 The truncated singular value decomposition

We saw above that the coefficients k for which σk is small are poorly determined if g is replaced
by gε. A regularization method is to simply omit these coefficients. The truncated singular
value decomposition Tγ is defined by

A+g =
∑
k≤1/γ

σ−1
k (g, gk)fk. (23)

If follows from theorem 7 that Tγg → A+g as γ → 0, and Tγ is bounded with ‖Tγ‖ ≤
supk≤q/γ σ

−1
k .

6.5 The method of Tikhonov-Phillips

For completeness we mention the method of Tikhonov-Phillips, often simply called the Tikhonov
method. Here we put

Tγ = (A∗A+ γI)−1A∗ = A∗(A∗A+ γI)−1. (24)

Equivalently, fγ = Tγg can be defined to be the minimizer of

‖Af − g‖2 + γ‖f‖2. (25)

The operator (A∗A+γI) symmetric positive definite and its spectrum is contained in [γ,C] for
some real constant C. By functional analysis it follows that is has a bounded inverse. Using
further arguments from functional analysis it also follows that Tγg → A+g is g ∈ D(A+).
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7 Singular value decomposition of the Radon transform

In this section we study the singular value decomposition of the Radon transform. It was
established by Davison [2], for the general case of functions of n variables, assuming that both
the domain and the image space are suitable weighted spaces of square-integrable functions.
Here we consider the case of n = 2 dimensions, and we consider the most natural choice for
the weight in the image space, following [1].

We will first show the continuity of R between these weighted L2 spaces. Then we can
determine the singular value decomposition. This will involve a set of special functions (see
equation (30) below) that forms a basis for a certain L2 space. Such special functions perform
a similar role as the functions hn(x) = einx, . . . ,−2,−1, 0, 1, 2, . . . in Fourier analysis (the hn
form a basis for L2([0, 2π]) with periodic boundary conditions).

From the singular value decomposition we will see that the inversion problem for the Radon
transform is indeed ill-posed, because we will see that σk → 0. (Constructing regularized
inversion operators falls outside the scope of these notes.)

7.1 Continuity of the Radon transform on L2 spaces

Let Ω be the unit disk in R2. We will consider the Radon transform on functions f supported

in Ω. This means that Rf supported in Z1
def
= S1 × [−1, 1]. Let

w(s) = (1− s2)1/2,

which is such that the length of the intersection of a line x · θ = s with the unit disk is given
by 2w(s). By L2(Z1, w(s)−1) we denote the weighted L2 space with norm

‖g‖2L2(Z,q(θ,s)) =

∫
S1

∫ 1

−1
|g(θ, s)2|w(s)−1 ds dθ.

It turns out that this is quite a natural norm for the range of R. We have the following

Theorem 8. Let n = 2. The operator

R : L2(Ω)→ L2(Z1, (1− s2)−1/2)

is continuous and
‖Rf‖L2(Z1,(1−s2)−1/2) ≤

√
4π‖f‖L2(Ω). (26)

Proof. To start we will assume f is continuous and establish the estimate (26). It then follows
that R can be extended to f ∈ L2(Ω).

The Radon transform can be written as

(Rf)(θ, s) =

∫ w(s)

−w(s)
f(sθ + tθ⊥) dt, |s| ≤ 1. (27)

The right hand side can be viewed as the L2 inner product of the function 1[−w(s),w(s)] and
the function f . Applying the Cauchy-Schwarz inequality we find

|(Rf)(θ, s)|2 ≤ 2w(s)

∫ w(s)

−w(s)
|f(sθ + tθ⊥)|2 dt.
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so that ∫ 1

−1
w(s)−1|(Rf)(θ, s)|2 ds ≤ 2

∫ 1

−1

∫ w(s)

−w(s)
|f(sθ + tθ⊥)|2 dt ds

= 2

∫
Ω
|f(x)|2 dx.

(28)

Integrating over θ we find (26).

7.2 The singular value decomposition

To determine the SVD we look for the eigenvalues of RR∗, making use of (17). Like is common
in the study of eigenvalues of partial differential operators, we use separation of variables, i.e.
we assume g(θ, s) is of the form

g(θ, s) = S(s)Θ(θ), (29)

and try to find eigenfunctions of this form.
When performing integrations over θ ∈ S1 we will typically parametrize this as θ =

(cos(φ), sin(φ)) and integrate over φ from 0 to 2π.
Let Um(s) be the Chebyshev polynomials of the second kind, which are defined by

Um(s) =
sin[(m+ 1) arccos s]

sin(arccos s)
.

These polynomials are orthogonal with respect to the weight function w(s); more precisely
they satisfy the following orthogonality and normalization conditions∫ 1

−1
w(s)Um(s)Um′(s) ds =

π

2
δm,m′ .

Furthermore, the Um(s) form an orthogonal basis of the weighted L2 space L2([−1, 1], w(s)).
It follows from this that

the function Um(s)w(s)−1 form a basis for L2([−1, 1], w(s)−1). (30)

Let Z = L2(Z1, (1 − s2)−1/2). We consider the subspaces Zm which are defined as the
spaces containing the functions

gm(θ, s) =

√
2

π
w(s)Um(s)u(θ), m = 0, 1, . . . (31)

where u(θ) ∈ L2(S1). It turns out that the spaces Zm are invariant under RR∗, If gm is a
function in Zm, then, from the formulas for R and R∗ we obtain

(RR∗gm)(θ, s) =

√
2

π

∫ w(s)

−w(s)

∫ 2π

0
Um
[
θ′ · (sθ + tθ⊥)

]
u(θ′) dφ′ dt (32)

which we will show leads to

(RR∗gm)(θ, s) =
4π

m+ 1

√
2

π
w(s)Um(s)ū(θ), (33)
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where

ū(θ) =
1

2π

∫ 2π

0

sin[(m+ 1)(φ− φ′)]
sin(φ− φ′)

u(θ′) dφ′. (34)

To prove (33) and (34) we exchange the order of integration in (32) and we consider the
integral

I(s, θ, θ′) =

∫ w(s)

−w(s)
Um
[
θ′ · (sθ + tθ⊥)

]
dt.

If θ = (cosφ, sinφ) and θ′ = (cosφ′, sinφ′), we have θ·θ′ = cos(φ−φ′) and θ⊥·θ′ = − sin(φ−φ′).
Then, if we write s = cos ξ and ψ = φ− φ′, we obtain

I(cos ξ, θ, θ′) =

∫ sin ξ

sin ξ
Um(cos ξ cosψ − t sinψ) dt.

By the change of variable u = cos ξ cosψ − t sinψ this integral becomes

I(cos ξ, θ, θ′) =

∫ cos(ξ−ψ)

cos(ξ+ψ)

Um(u)

sin(ψ)
du

and by introducing the new variable u = cos η we finally obtain

I(cos ξ, θ, θ′) =
1

sinψ

∫ ξ+ψ

ξ−ψ
sin[(m+ 1)η] dη

=
2

m+ 1

sin[(m+ 1)ψ]

sinψ
sin[(m+ 1)ξ].

By substituting this expression in equation (32), with ψ = φ − φ′ and ξ = arccos s, we get
equations (33) and (34).

Next we must determine the eigenfunctions of the map u 7→ ū given in (34). A basis for
L2(S1) is given by the functions

Yl(θ) =
1√
2π
e−ilφ

It is straightforward to check that if u = Yl then

ū =

{
Yl if −m ≤ l ≤ m and l −m is even
0 otherwise.

Summarizing we obtain the following. Because the Um(s)w(s)−1 form a basis for L2([−1, 1], w(s)−1)
and the Yl form a basis for L2(S1), the functions

w(s)−1Um(s)Yl(θ) form a basis of L2(Z1, w(s)−1),

with m = 0, 1, . . ., and l ∈ Z. We define

um,k(θ, s) = w(s)−1Um(s)Ym−2k(θ)

then these are the eigenfunctions of RR∗ with nonzero eigenvalues

RR∗um,k = σ2
mum,k, k = 0, 1, . . . ,m

13



where

σm =

(
4π

m+ 1

)1/2

.

The functions

vm,k =
1

σm
R∗um,k

are the other part of the SVD. Without proof we note that they are given by

vm,k(x) = (2m+ 2)1/2Qm,|m−2k|(|x|)Ym−2k

(
x

|x|

)
.

where
Qm,l(r) = rlP

(0,l)
1
2

(m+l)
(2r2 − 1)

P
(α,β)
n (t) being the Jacobi polynomial of degree n.

We see that σm → 0, so that the inverse problem for the Radon transform is indeed ill-
posed. We also observe that RR∗ has many zero eigen values, corresponding to the fact that
R is not surjective (cf. Theorem 5).

The general case of n dimensions involves more knowledge of special functions (e.g. Gegen-
bauer polynomials) and their properties, and can be found in [2, 6].
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Boston, Inc., Boston, MA, second edition, 1999.

[6] F. Natterer. The mathematics of computerized tomography, volume 32 of Classics in Ap-
plied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 2001. Reprint of the 1986 original.

14


