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On étudie des estimations semiclassiques sur la résolvente d’opérateurs qui ne sont
ni elliptiques ni autoadjoints, que l’on utilise pour étudier le problème de Cauchy.
En particulier on obtient une description précise du spectre pres de l’axe imaginaire,
et des estimations de résolvente à l’intérieur du pseudo-spectre. On applique ensuite
les résultats à l’opérateur de Kramers–Fokker–Planck.

We study some accurate semiclassical resolvent estimates for operators that are
neither selfadjoint nor elliptic, and applications to the Cauchy problem. In particular
we get a precise description of the spectrum near the imaginary axis and precise
resolvent estimates inside the pseudo-spectrum. We apply our results to the
Kramers–Fokker–Planck operator.

Keywords FBI-Bargmann transform; Fokker–Planck; Kramers; Pseudo-
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1. Introduction

In certain applications one is interested in the long-time behavior of systems
described by a linear partial differential equation. For example, in kinetic equations
one studies the decay to equilibrium of various linear and nonlinear systems. For the
Kramers–Fokker–Planck equation, which will be studied here, exponential decay
was shown in Talay (1999) and an explicit rate was given in Hérau and Nier (2004),
following earlier results of Desvillettes and Villani (2001), who established explicit
decay of any polynomial order in t−1. In Hérau and Nier (2004), and Desvillettes
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690 Hérau et al.

and Villani (2001) more general discussions on decay to equilibrium in kinetic
equations can be found.

The study of the long-time behavior naturally leads one to study the spectrum,
and for nonselfadjoint problems that we study here, to study the growth of the
resolvent. For the Kramers–Fokker–Planck equation this is complicated in that
the operator whose time evolution is to be computed is not elliptic, but only
satisfies certain subellipticity conditions. To deal with this, Hérau and Nier exploit
the relation between the Kramers–Fokker–Planck operator and certain Witten
Laplacians. They obtain estimates for the decay to equilibrium in terms of the first
eigenvalue of this Witten Laplacian. More on the connection between the Kramers–
Fokker–Planck equation and Witten Laplacians can be found in Hellfer and Nier
(2005).

Resolvent estimates have been studied from a different perspective by a group of
authors interested in the notion of a pseudospectrum, i.e., the region in the complex
spectral plane where the resolvent may be large. In recent years there has been a
great interest in this area following work of Trefethen (1997), Davies (1999a,b),
Zworski (2001) and others. In Dencker et al. (2004) the authors studied the location
of the spectrum inside the spectrum in the semiclassical limit, and adapted subelliptic
estimates to this situation. Hitrik (2004) has obtained related results for operators
in one dimension.

In the present work we apply such ideas to a class of pseudodifferential
operators that includes the Kramers–Fokker–Planck operator. We obtain a number
of higher eigenvalues, in the semiclassical limit, for the original operator, i.e., not the
Witten Laplacian. We also obtain precise resolvent estimates. We use roughly the
same estimates as Dencker et al. (2004) in one region of phase space, while in other
regions we have to make important changes, and additions. This is then applied for
time evolution.

Evolution problems have also attracted recent interest (Davies, 2003; Tang and
Zworski, 1998; Burq and Zworski, 2001), and here a difficulty is the generally quite
wild growth of the resolvent inside the pseudospectrum. It is therefore of interest
that for a concrete physically interesting model, we are able to control the resolvent
sufficiently well to get quite precise results about the long-time evolution.

Spectral properties for some different Fokker–Planck equations (without the
subellipticity property) have been discussed by Kolokoltsov (2000). In probability
theory many other problems for equations with a small diffusive term have been
studied, see for example the monograph (Freidlin and Wentzell, 1984).

Our main example, the Kramers–Fokker–Planck operator, is given by

P = v · h!x − V ′"x# · h!v +
$

2
"−"h!v#

2 + v2 − hn# (1.1)

on !2n, where V is a "# potential, h is essentially the temperature, and x, v ∈ !n.
The operator P is derived from the original equation, introduced in one-dimensional
form by Kramers (1940), in Section 13 below (see also Risken, 1989; Hérau and
Nier, 2004). The time evolution problem is given by

"h!t + P#u"t% x% v# = 0% u"0% ·% ·# = u0&

D
ow

nl
oa

de
d 

by
 [U

V
A

 U
ni

ve
rs

ite
its

bi
bl

io
th

ee
k 

SZ
] a

t 0
2:

23
 0

8 
Ja

nu
ar

y 
20

13
 



Semiclassical Analysis for Kramers–Fokker–Planck Equation 691

As mentioned, we are interested in the low-temperature limit

0 < h % 1%

and the equations are rescaled according to the standard convention in semiclassical
analysis, where each derivative comes with an h. Our main result about the
Kramers–Fokker–Planck equation is the following theorem.

Theorem 1.1. Assume V is a Morse function and that outside a compact region,
&V ′"x#& ≥ c0 > 0. Assume also that the derivatives of V of order two or more are
bounded. Then there exist constants c%C ′ > 0 such that for every C > 1,

(a) For any fixed neighborhood ' of the eigenvalues of the quadratic approximation of
P&h=1 at the critical points, there exist h0, C

′′ > 0 such that for 0 < h ≤ h0, &z& ≤ C,
z )∈ ', and

h*u* ≤ C ′′*"P − hz#u*% ∀u ∈ # &

(b) There exists h1 > 0 such that for 0 < h ≤ h1, Re "z# ≤ c&z&1/3h2/3, &z& ≥ Ch, and

&z&1/3h2/3*u* ≤ C ′*"P − z#u*% ∀u ∈ # &

In fact this theorem on the Kramers–Fokker–Planck operator is a consequence
of a more general one. Let us first write the hypotheses that will be needed for the
symbol p of the more general operator pw that we shall study. We assume that p =
p1 + ip2 is a smooth function on !2n

x%( with p1 ≥ 0. (The previous space !2n
x%v now

becomes !n
x .)

Assumptions near the critical points. Assume that p has finitely many critical
points )1% )2% & & & % )N with p")j# = 0. Let *")# ≥ 0 be equivalent to the distance from
) to " += ,)1% )2% & & & % )N -, with *2 ∈ C#. We assume in the following that in a fixed
open ball $ containing " we have

"H1# p1 + .0H
2
p2
p1 ∼ *2 (1.2)

for a sufficiently small .0 > 0. The assumption that p")j# = 0 is for simplicity only.
As we shall see later, this implies that the critical points are nondegenerate.

Assumptions at infinity. In the following we use the notions of admissible
metrics and weights in the sense of the Weyl–Hörmander calculus, that we review
in Section 7. We first define an admissible metric on !2n

) with ) = "x% (#:

/0 = dx2 + d(2

02
%

where 0 = 0")#. There is no restriction to assume that 1 ≤ 0 ∈ "#, and we suppose
also that

"H2# 0 ∈ S"0% /0#% !0 ∈ S"1% /0#& (1.3)

If m is an admissible weight, recall that S"m% /0# is the class of "# symbols p
satisfying !1x!

2
(p")# = %"m")#0")#−&2&#. We suppose first that p is a symbol of order
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692 Hérau et al.

two but with the first and second derivatives better than what would be given by
the symbolic calculus:

"H3# p ∈ S"02% /0#% !p ∈ S"0% /0#% !2p1 ∈ S"1% /0#% !Hp2
p1 ∈ S"0% /0#& (1.4)

We now assume that outside any fixed neighborhood of " we have the gain

"H4# p1 + .0H
2
p2
p1 ∼ 02& (1.5)

Note that these assumptions are satisfied by the symbol of the Kramers–
Fokker–Planck operator (see Section 13). In order to give a unique assumption on
the whole space, we extend the function * to !2n to be a smooth function on !2n,
strictly positive away from ", and constant outside a fixed neighborhood of that
set. There is no restriction to assume that 0 = 1 inside the same neighborhood. Then
(1.2–1.5) can be summarized by

p1 + .0H
2
p2
p1 ∼ "0*#2& (1.6)

We have the following theorem for P = pw:

Theorem 1.2. Suppose p satisfies (H1–H4). Then there exist constants c, C ′ > 0 such
that for every C ≥ 1:

(a) For any fixed neighborhood ' of the eigenvalues of the quadratic approximations of
P&h=1

at the critical points, there exist h0%C
′′ > 0 such that for 0 < h ≤ h0, &z& ≤ C,

z )∈ ', and

h*u* ≤ C ′′*"P − hz#u*% ∀u ∈ # &

(b) There exists h1 > 0 such that for 0 < h ≤ h1, Re "z# ≤ c&z&1/3h2/3, &z& ≥ Ch, and

&z&1/3h2/3*u* ≤ C ′*"P − z#u*% ∀u ∈ # &

Here, if )0 is a critical point of p, we define the quadratic approximation P0 of
P to be the h = 1 quantization of

∑
&1+2&=2

1
1!2!!

1
x!

2
(p")0#x

1(2. As we shall see, P0 has
discrete spectrum and compact resolvent in a weighted space, and the eigenvalues
can be computed explicitly. (In fact, the spectrum is discrete even without weights
and this fact will be used in Section 11.)

Staying in the general case, we shall next give results about the spectrum and
the associated heat equation. We then define P to be the closure of pw with domain
# . In Section 7, we shall see that the Fefferman–Phong inequality implies that
Re "Pu% u# ≥ −Ch2*u*2, u ∈ # , and hence also for u ∈ &"P# (this is immediate in
the KFP case). In other words, P + Ch2 is accretive, and we shall assume

"H5# P + Ch2 is m-accretive% (1.7)

i.e., P + Ch2 has no accretive strict extension. In the KFP-case this has recently
been established in great generality by Hellfer and Nier (2005) and their results
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 693

imply (H5) under our assumptions on V . In the general case, we shall see that the
assumption

"H6# If u ∈ L2 and "pw + 1#u ∈ # % then u ∈ # %

implies, for h sufficiently small, that &"P# =
{
u ∈ L23 Pu ∈ L2

}
, and hence P + Ch2

is m-accretive.

Theorem 1.3. Suppose P satisfies (H1–H5) and let C > 0. Then there exists h0 > 0
such that for 0 < h ≤ h0, the spectrum of P in the disc D"0%Ch# is discrete, and the
eigenvalues are of the form

0j%k"h# ∼ h"4j%k + h1/Nj%k4j%k%1 + h2/Nj%k4j%k%2 + · · ·+#% (1.8)

where the 4j%k are the eigenvalues in D"0%C# (repeated with their multplicity) of the
quadratic approximation of P&h=1 at the critical point )k and Nj%k is the dimension of the
corresponding generalized eigenspace.

Here it is understood that C has been chosen, so that no quadratic
approximation has any eigenvalue on the boundary of the disc D"0%C#. The explicit
form of those eigenvalues will be given in Proposition 5.1 and in Section 13. Note
that they are distributed in an angle in !+ + i!, avoiding the imaginary axis (except
in 0).

As a consequence of the resolvent estimates and the description of the
eigenspaces we give the following theorem on the large time behavior of the
semigroup associated to P.

Theorem 1.4. Suppose P satisfies (H1)–(H5). Consider the set ,4jk- of eigenvalues
of the quadratic approximation of P&h=1

at the critical points (repeated with their
multiplicities) defined in the preceding theorem. Let b > 0 be such that the line Re z = b
avoids the set ,4jk- and define the finite set Jb = ,4j%k3Re "4j%k# < b-. Assume that the
4j%k in Jb are simple and distinct, we have

e−tP/h =
∑

4j%k∈Jb
e−t0j%k/h5j%k + %"1#e−tb in '"L2%L2#% (1.9)

where 0j%k is the eigenvalue of P associated with 4j%k and 5j%k the associated (rank one)
spectral projection. Here the term %"1# is with respect to t ≥ 0 and h → 0.

We construct explicitly a global weight function G with controled derivatives,
satisfying in particular G = %"h#, G′ = %"h1/2# and G′′ = %"1#. The main idea (also
used in many earlier works on resonances and nonselfadjoint operators) is that
we get the new leading symbol p ≈ p+ .

i
,p%G- with an increased real part, where

,&% &- is the Poisson bracket and . is small and fixed. We will use it both near the
critical points of p and at infinity. Contrary to the works mentioned earlier (but
similarly to Dencker et al., 2004), we need resolvent and evolution estimates in
the original L2 space and this requires G/h to be bounded in order to have an
equivalent norm on the weighted space. Consequently the estimates become more
delicate. The technical realization of this idea can be made either by using the FBI-
Bargmann transform and weighted spaces of holomorphic functions or by using
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694 Hérau et al.

pseudodifferential calculus (since G/h is bounded). We found it convenient to use
the first method near the critical points and the second one elsewhere. We choose
the semiclassical variant of the Weyl–Hörmander calculus with a metric sufficiently
general to cover the case of the KFP and related operators.

The plan of the article is the following. The next section is devoted to the
construction of G. In Sections 3 to 6 we work near the critical points by using the
Fourier–Bros–Iagolnitzer transform in a modified L2 space L2

6.
associated with G.

Here G will play the role of a local escape function. We recall in Section 3 some
basic facts about the FBI transform and construct the spaces L2

6.
. In Section 4 we

get local resolvent estimates for a truncated operator satisfying (H1). In Section 5
we recall some facts on the quadratic differential operators from Sjöstrand (1974)
and give a localized version of them. Then in Section 6 we compare the operator P
to its quadratic approximations at the critical points to get precise local resolvent
estimates near the critical points.

In Sections 7 to 9 we work away from the critical points of p in the real phase
space using the semiclassical Weyl–Hörmander calculus. Here p satisfies hypothesis
(H2–H4). Section 7 is devoted to some basic facts about the semiclassical Weyl
calculus and the construction of a metric adapted to the symbol p. In Sections 8
and 9 we get resolvent estimates using a multiplier method, where the symbol of the
multiplier is essentially 1+G/h.

In Section 10 we combine all the resolvent estimates given in Sections 3 to
9 and we prove Theorem 1.2. Section 11 is devoted to the proof of Theorem
1.3, i.e., the asymptotic expansion of the eigenvalues of P. We solve a Grushin
problem thanks to a slight variation of the resolvent estimates given in Section 10.
In Section 12 we prove Theorem 1.4 about the large time behavior of the semigroup
associated to P under hypothesis (H5). Eventually, in last section, we check that all
the hypotheses (H1–H4) are satisfied for the symbol of the KFP operator, which
proves Theorem 1.1.

2. Bounded Weight Function

The aim of this section is to build a weight function G defined in the whole space,
uniformly bounded by a multiple of h. Recall that $ is the fixed open ball appearing
in (H1). The result is

Proposition 2.1. Suppose p satisfies (H1–H4). Then there exists a constant C > 0 and
a function G ∈ "#"!2n

) # such that uniformly in h, . > 0 sufficiently small, we have

!kG = %"*"2−k#+# for *0 ≤ h1/2%

!kG = %"h"*0h#−k/3# in ,) ∈ $3 *0 ≥ h1/2-% (2.1)

!1x!
2
(G = %"h1−k/30−"min"&1&%1#+&2&#/3# outside $% &1&+ &2& = k&

Note that this implies G = %"h#, HG = %"h1/2#, and !2G = %"1#. Second, G is such that

(a) In $, if we let p denote an almost analytic extension and if we put p̃")#
def= p")+

i.HG")## = p̃1")#+ ip̃2")# where ) ∈ !2n, we have

p̃1 ≥
.

C
min""*0#2% "*0h#2/3#% p̃2 = %""*0#2#& (2.2)
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 695

(b) Outside $, we have

p1 + .Hp2
G ≥ .

C
"p1 + "h0#2/3#& (2.3)

2.1. The Construction Near the Critical Points

Let )j ∈ ". Fix T > 0. In a neighborhood of )j , we set

GT =
∫

kT "t#p1 / exp "tHp2
#dt% (2.4)

where kT "t# = k"t/T # and k ∈ ""R\,0-# is the odd function given by k"t# = 0 for
&t& ≥ 1/2 and k′"t# = −1 for 0 < &t& < 1/2. Notice that k and kT have a jump of size
1 at the origin. GT is a smooth function satisfying

Hp2
GT = 0p11T − p1% GT = %"*2#% 7GT = %"*#%

where

0p11T = 1
T

∫ T/2

−T/2
p1 / exp "tHp2

#dt&

Consider the dilated symbol

p̃ = p̃.")# = p")+ i.HG")## = p")#− i.HpG")#+ %".2&7G&2#%

with real and imaginary parts given by

p̃1 = p1")#+ .Hp2
G")#+ %".2&7G&2#

= "1− .#p1")#+ .0p11T + %T ".
2*2#% (2.5)

p̃2 = p2")#− .Hp1
G")#+ %".2&7G&2#&

Using (1.6) near ", we see that if we fix . > 0 small enough, depending on T , then
in an ".%T #-dependent neighborhood of )j , we have

p̃1 ≥
.

C
*2% p̃2 = %"*2#& (2.6)

Note in particular that p̃ takes its values in an angle around the positive real axis,
p̃1 2 p̃2& Note also that another choice of weight function near the critical point
could have been 8Hp2

p1 for 8 sufficiently small.

2.2. The Construction Away from the Critical Points

We work in a region

,)3 *0")# ≥ h1/2-& (2.7)

D
ow

nl
oa

de
d 

by
 [U

V
A

 U
ni

ve
rs

ite
its

bi
bl

io
th

ee
k 

SZ
] a

t 0
2:

23
 0

8 
Ja

nu
ar

y 
20

13
 



696 Hérau et al.

Let 9 ∈ "#
0 ":− 2% 2;) be a cutoff function equal to 1 in ;−1% 1:. Let M be a large

constant to be fixed later. We choose the function

G = h
Hp2

p1

"*0#4/3h1/3
9

(
Mp1

"h*0#2/3

)
% (2.8)

where we recall that * = *")# and 0 = 0")#.
We first check the bounds for the derivatives of G. Of course when Mp1 ≥

2"h*0#2/3, G = 0, and we have only to study the derivatives in the region where
Mp1 < 2"h*0#2/3.

Observe that the estimates (2.1) for G in
{
*0 ≥ h1/2

}
can be equivalently written

using the Riemannian metric

/h =
dx2

"*h#2/3
+ d(2

"*0h#2/3
%

by saying (in the Hörmander terminology of spaces of symbols, see Section 7) that

Lemma 2.2. G ∈ S"h% /h# and 7G ∈ S"h"*0h#−1/3% /h#.

Proof. For the following estimates of the derivatives we shall use this terminology
and stay in the region ,*0 ≥ h1/2- ∩ ,Mp1 < 2"h*0#2/3-. We work step by step by
studying the derivatives of each function entering in the composition of G.

Estimates of p. We know that p ∈ S"02%dx2 + d(2/02# from the hypothesis.
From the fact that p is a Morse function we get that p ∈ S""*0#2%dx2/*2 +
d(2/"*0#2#. For the same reason we have 7p ∈ S"*0%dx2/*2 + d(2/"*0#2#. Besides we
have on ,*0 ≥ h1/2-,

/h ≥
dx2

*2
+ d(2

"*0#2
≥ C−1/0% (2.9)

since *2 ≥ "*h#2/3 and "*0#2 ≥ "*0h#2/3 in this region. As a consequence we get that

7p ∈ S"*0% /h#& (2.10)

Estimates for p1. Since p1 is nonnegative with bounded second derivatives, we
can apply the well known inequality for W 2%# functions

&7f &2 ≤ 2f*f ′′*#% (2.11)

which yields &7p1& ≤ C
√
p1. Since p1 ≤ 2"h*0#2/3, we get that 7p1 = %""h*0#1/3#.

Since p1 has its second derivative bounded and (2.9) we get that

p1 ∈ S""*0h#2/3% /h#% and 7p1 ∈ S""*0h#1/3% /h#& (2.12)

Here we used that 72p1 ∈ S"1% /0# ⊂ S"1% /h#.

Estimates for powers of *0. Using (1.3), we first note that

*0 ∈ S

(
"*0#%

dx2

*2
+ d(2

"*0#2

)
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 697

Since 7"*0# ∈ S"1%dx2/*2 + d(2/"*0#2#, this gives for 1 ∈ !,

"*0#1 ∈ S""*0#1% /h#% and 7"*0#1 ∈ S""*0#1−1% /h#& (2.13)

Estimates of p1/"h*0#
2/3. From (2.12) and (2.13) with 1 = −2/3 we get

immediately that

p1

"h*0#2/3
∈ S"1% /h#&

Besides let us write

7"p1/"h*0#
−2/3# = "7p1#"h*0#

−2/3 + p17"h*0#
−2/3&

From the same estimates for the derivatives we get

"7p1#"h*0#
−2/3 ∈ S""h*0#−1/3% /h#%

and

p17"h*0#
−2/3 ∈ S""h*0#2/3 × h−2/3"*0#−5/3% /h# ⊂ S""h*0#−1/3% /h#%

where in the last inclusion we used *0 ≥ h1/2. Summing up we have proven that

p1/"h*0#
2/3 ∈ S"1% /h# and 7"p1/"h*0#

2/3# ∈ S""h*0#−1/3% /h#& (2.14)

Estimates of 9"Mp1/"h*0#
2/3#. An immediate consequence of the first part of

(2.14) is that

9

(
Mp1

"h*0#2/3

)
∈ S"1% /h#%

since 9 is "# with compact support. We need to estimate the derivatives of this
expression,

79

(
Mp1

"h*0#2/3

)
= M7

(
p1

"h*0#2/3

)
9′
(

Mp1

"h*0#2/3

)
&

For the same reason as before we have

9′
(

Mp1

"h*0#2/3

)
∈ S"1% /h#&

Using the second part of (2.14) and summing up, we have proven that

9

(
Mp1

"h*0#2/3

)
∈ S"1% /h# and 79

(
Mp1

"h*0#2/3

)
∈ S""h*0#−1/3% /h#& (2.15)

Estimates for Hp2
p1. We observe that Hp2

p1 = <"7p2% 7p1#, where < is the
canonical symplectic form. Using (2.10) for p2 and (2.12) for p1, we get

Hp2
p1 ∈ S""*0#"h*0#1/3% /h#&

D
ow

nl
oa

de
d 

by
 [U

V
A

 U
ni

ve
rs

ite
its

bi
bl

io
th

ee
k 

SZ
] a

t 0
2:

23
 0

8 
Ja

nu
ar

y 
20

13
 



698 Hérau et al.

From the hypothesis (1.4) and because p is a Morse function we can write

7Hp2
p1 ∈ S

(
*0%

dx2

*2
+ d(2

"*0#2

)
⊂ S"*0% /h#&

Summing up, we have proven that

Hp2
p1 ∈ S"h1/3"*0#4/3% /h# and 7Hp2

p1 ∈ S"*0% /h#& (2.16)

Estimates for Hp2
p1/"h

1/3"*0#4/3#. From the first parts of (2.16) and (2.13) with
1 = −4/3 we immediately get that Hp2

p1/"h
1/3"*0#4/3# ∈ S"1% /h#. Its derivative is

given by

7
Hp2

p1

h1/3"*0#4/3
= 7Hp2

p1

h1/3"*0#4/3
+Hp2

p17"h
−1/3"*0#−4/3#&

Using (2.16) and (2.13) we respectively get that

7Hp2
p1

h1/3"*0#4/3
∈ S""h*0#−1/3% /h#%

and

Hp2
p17"h

−1/3"*0#−4/3# ∈ S"h1/3"*0#4/3 × h−1/3*0#−7/3% /h# ⊂ S""*0#−1% /h#&

Using that *0 ≥ "*0h#1/3 in this formula gives

Hp2
p1

h1/3"*0#4/3
∈ S"1% /h# and 7

Hp2
p1

h1/3"*0#4/3
∈ S""h*0#−1/3% /h#& (2.17)

Estimates for G and end of the proof of Lemma 2&2. We can now prove the
estimates for G. From the first parts of (2.15) and (2.17) and multiplying by h, we
get that

G ∈ S"h% /h#&

From the second part of the same expressions we also get immediately that

7G ∈ S"h"h*0#−1/3% /h#&

This completes the proof of Lemma 2.2 and therefore of the estimates (2.1) when
*0 ≥ h1/2.

2.3. Proof of (2.2) in the Intermediate Region

We work here in the region ,) ∈ $3h1/2 ≤ *0-, but many of the estimates will be
valid also near infinity and used later, so we indicate when the validity is restricted
to a bounded region. Consider the function G defined in (2.8):

G = h
Hp2

p1

"*0#4/3h1/3
9

(
Mp1

"h*0#2/3

)
&
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 699

For p̃")#
def= p")+ i.HG")## = p̃1")#+ ip̃2")# in $, we have

p̃1 = p1 + .Hp2
G+ %".2&7G&2#%

p̃2 = p2 − .Hp1
G+ %".2&7G&2#& (2.18)

Let us estimate the remainders. From (2.1) we know that 7G = %"h2/3"*0#−1/3#. As
a consequence,

%".2&7G&2# = .2%"h4/3"*0#−2/3# ≤ .2%""h*0#2/3#% (2.19)

since h4/3"*0#−2/3 = %""h*0#2/3# when *0 ≥ h1/2. Let us now study the first two terms
of the expression of p̃1 depending on the size of p1.

Estimates when p1 is large. We work first in the elliptic region

,) ∈ !2n3Mp1 ≥ "h*0#2/3-&

From (2.1) and the fact of Hp2
= %"*0#, we get

Hp2
G = %""*0h#2/3#& (2.20)

Restricting the attention to $ we recall that the remainder in (2.19) is .2%""*0h#2/3#
and that

p̃1 = p1 + .Hp2
G+ .2%""*0h#2/3#&

Choosing . small enough yields

p̃1 ≥
"*0h#2/3

CM
&

On the other hand, we have, using the bound on the remainder and of HG, that

p̃2 = %""*0#2#&

Estimates when p1 is small. In the region

,) ∈ !2n3Mp1 ≤ "h*0#2/3-% (2.21)

we can write G = h
Hp2

p1
"*0#4/3h1/3

. We have, therefore,

p1 + .Hp2
G = p1 + .h

H2
p2
p1

"*0#4/3h1/3
+ .h"Hp2

p1#Hp2
""*0#−4/3h−1/3#& (2.22)

For the third term of (2.22) we use that &7p1& ≤ C
√
p1 ≤ C"h*0#1/3/

√
M ,

&7p2& ≤ C*0 and get, using also (2.13),

.h"Hp2
p1#Hp2

""*0#−4/3h−1/3# = .√
M

%"h# = .√
M

%""*0h#2/3#% (2.23)
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700 Hérau et al.

since *0 ≥ h1/2. We study next the sum of the first and the second term. We first
observe that

h

"*0#4/3h1/3
≤ 1%

and from (1.6), provided . < .0, we get

p1 + .h
H2

p2
p1

"*0#4/3h1/3
≥ .

.0

h

"*0#4/3h1/3
"p1 + .0H

2
p2
p1# ≥

..1
.0

"*0h#2/3& (2.24)

Therefore choosing M sufficiently large (and fixed from now on) gives

p1 + .Hp2
G ≥ ."*0h#2/3

C
& (2.25)

Since the remainder term in (2.19) is .2%""*0h#2/3#, and choosing . sufficiently small
again, we get on $

p̃1 ≥
."*0h#2/3

C
for * ≥ h

1
2 &

2.4. The Global Construction

We shall glue together the two weights constructed in the previous two subsections.
Let us denote by Gint the interior weight GT defined in (2.4) and Gout the one defined
in (2.8), where we recall that the constants T and M appearing in the definitions are
fixed. Recall also the main properties of these weights:






!kGint = %"*"2−k#+#%

p1 + .Hp2
Gint ≥

.

C
"*0#2%

in $% (2.26)

and





!kGout = %"h"*0h#−k/3#%

p1 + .Hp2
Gout ≥

.

C
"*0h#2/3%

for h1/2 ≤ *0& (2.27)

We now build a function G defined everywhere and satisfying Proposition 2.1. In
the following, we introduce an additional large real constant N to be fixed later. We
first build modified functions Gint and Gout.

Construction of a modified Gint. Let us introduce the function

p̂1
def= =

(
*0

4Nh1/2

)
p1%

where = ∈ C#
0 "!3 ;0% 1:# is a standard cutoff near 0, equal to 1 on ;0% 1: and to 0 on

;2%+#;. Notice that p̂1 = 0 when *0 ≥ 8Nh1/2 and that p̂1 = p1 when *0 ≤ 4Nh1/2.
Define now G̃int as in (2.4) but with p1 there replaced by p̂1. Then G̃int has its support
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 701

in ,)3 *0 ≤ 16Nh1/2- and coincides with Gint when *0 ≤ 2Nh1/2 (assuming that T has
been fixed sufficiently small). As a consequence we get that

p1 + .Hp2
G̃int ≥






.

C
"*0#2% when *0 ≤ 2Nh1/2%

0 everywhere&
(2.28)

Note that this implies the bounds:

p1 + .Hp2
G̃int ≥






.

C
"*0#2% when *0 ≤ h1/2%

.

C
"*0h#2/3% when h1/2 ≤ *0 ≤ Nh1/2%

.

C
N 4/3"*0h#2/3% when Nh1/2 ≤ *0 ≤ 2Nh1/2%

0% when *0 ≥ 2Nh1/2%

(2.29)

where for the second bound we used "*0#2 ≥ "*0h#2/3 when *0 ≥ h1/2, and for the
third bound "*0#2 ≥ N 4/3"*0h#2/3 when *0 ≥ Nh1/2.

Let us now study the derivatives of G̃int. Since G̃int = Gint when *0 ≤ 2Nh1/2, we
get that

!kG̃int = %"*"2−k#+# when *0 ≤ 2Nh1/2& (2.30)

When 2Nh1/2 ≤ *0 ≤ 16Nh1/2, G̃int inherits the properties of p̂1, i.e., !kG̃int =
%""Nh1/2#"2−k##, which yields

!kG̃int = Ck"N#%"h"h*0#
−k/3# when h1/2 ≤ *0 ≤ %"1# (2.31)

(of course this estimate is true when *0 ≥ 16Nh1/2 since G̃int is zero there).

Construction of a modified Gout. For the same = as before define

G̃out")#
def= Gout")#

(
1− =

(
*")#0")#

Nh1/2

))
&

We notice that G̃out = Gout when 0* ≥ 2Nh
1
2 and G̃out = 0 when 0* ≤ Nh

1
2 .

Therefore we have directly

p1 + .Hp2
G̃out ≥

{ .

C
"*0h#2/3% for 0* ≥ 2Nh

1
2 %

0% when *0 ≤ Nh1/2&
(2.32)

In the area Nh
1
2 ≤ 0* ≤ 2Nh

1
2 % we can write uniformly in N ≥ 1 that

p1 + .Hp2
G̃out ≥ "p1 + .Hp2

Gout#"1− =#− .GoutHp2
=

≥ −.&Gout&&&Hp2
=&&

(2.33)
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702 Hérau et al.

We know that Gout = %"h# and that &Hp2
=& ≤ &!p2&&!=& = %"*0 1

Nh1/2
#& This gives

&Gout&&Hp2
=& = %

(
*0h1/2

N

)
&

Now using *0 = "*0#2/3"*0#1/3 ≤ "*0#2/3"2N#1/3h1/6, we deduce that uniformly in
N ≥ 1,

&Gout&&Hp2
=& = %

(
"*0h#2/3

N 2/3

)
= %""*0h#2/3#&

Using this and (2.33) we find that

p1 + .Hp2
G̃out ≥ −.%""*0h#2/3#% when Nh

1
2 ≤ 0* ≤ 2Nh

1
2 &

Eventually we have the following bounds in the whole region *0 ≤ %"1#:

p1 + .Hp2
G̃out ≥






0% when *0 ≤ Nh1/2%

−C."*0h#2/3% when Nh1/2 ≤ *0 ≤ 2Nh1/2%
.

C
"*0h#2/3% when *0 ≥ 2Nh1/2&

(2.34)

For the derivatives of G̃out we can write immediately

!kG̃out = 0 = %"*"2−k#+#% when *0 ≤ h1/2% (2.35)

since G̃out = 0 there. In the intermediate region we check that

!k
(
=

(
*0

Nh1/2

))
= Ck"N#%"h

−k/2# = C ′
k"N#%""*0h#

−k/3#%

since *0 ≤ 2Nh1/2. Of course the same estimate is true in the larger region ,h1/2 ≤
*0- ∩$, since = is compactly supported. Now using !kGout = %"h"*0h#−k/3#, we get
the same estimate for G̃out

!kG̃out = Ck"N#%"h"*0h#
−k/3#% when h1/2*0 ≤ %"1#& (2.36)

The construction of G̃out is complete.

Construction of the weight function G. We finally pose

G = G̃in + G̃out

2
& (2.37)

Using the bounds (2.30, 2.31, 2.35, 2.36) for the derivatives of G̃in and G̃out, we
immediately get that

!kG =
{
%"*"2−k#+#% when *0 ≤ h1/2%

C ′
k"N#%"h"*0h#

−k/3#% in $ when h1/2 ≤ *0 ≤ %"1#%
(2.38)
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 703

i.e., the bounds given in the first two estimates of (2.1). On the other hand,
combining (2.29) and (2.34) gives

2p1 + 2.Hp2
G ≥






.

C
"*0#2% when *0 ≤ h1/2%

.

C
"*0h#2/3% when h1/2 ≤ *0 ≤ Nh1/2%

(
.

C
N 4/3 − C.

)
"*0h#2/3% when Nh1/2 ≤ *0 ≤ 2Nh1/2%

.

C
"*0h#2/3% when 2Nh1/2 ≤ *0%"1#&

Taking N sufficiently large and fixed from now on, and dividing by 2 gives with a
new constant C

p1 + .Hp2
G ≥






.

C
"*0#2% when *0 ≤ h1/2%

.

C
"*0h#2/3% when h1/2 ≤ *0 ≤ %"1#&

(2.39)

Let us now prove (2.2). This was already proven in (2.6) in the region *0 ≤ h1/2

since G = GT there. In the region h1/2 ≤ *0 ≤ %"1# we follow the same procedure.
We write

p̃")# = p")+ i.HG")## = p")#− i.HpG")#+ %".2&7G&2#%

with real part given by

p̃1 = p1")#+ .Hp2
G")#+ %".2&7G&2# = p1")#+ .Hp2

G")#+ .2%""*0h#2/3#%

since 7G = %""*0h#1/3# by Lemma 2.2 and the fact that *0 ≥ h1/2. Using (2.39) and
taking . small enough yields

p̃1 ≥
.

C
"*0h#2/3&

For the imaginary part p̃2 we directly write

p̃2 = p2")#− .Hp1
G")#+ %".2&7G&2# = %"*2#&

This completes the proof of Proposition 2.1 in the region *0 ≤ %"1#.

End of the proof of Proposition 2&1. We now work outside $. We first observe
that the estimate (2.25) remains valid, therefore in the region ,)3Mp1")# ≤
"h*")#0")##2/3- we get (2.3) from (2.24) and (2.21). In the region ,)3Mp1")# ≥
"h*")#0")##2/3- we use (2.20) and for . small enough we get

p1 + .Hp2
G ≥ .

C
"p1 + "h*0#2/3#&

The proof of Proposition 2.1 is complete. !
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704 Hérau et al.

3. Review of FBI Tools

The aim of this section is to review the definitions about the FBI transform and the
spaces associated to a function G satisfying the estimates of Proposition 2.1 in a
bounded region and equal to 0 elsewhere. Note in particular that it has its second
derivative bounded. The material here is essentially taken from Sjöstrand (1990).
In this section, and in Sections 4 and 6, we suppose that the symbol p satisfies
hypothesis (H1) and is bounded with all its derivatives everywhere.

3.1. Definitions and Main Properties

Let T be an FBI-Bargmann transform:

Tu"x# = Ch− 3n
4

∫
e

i
h>"x%y#u"y#dy% (3.1)

where we may choose >"x% y# = i
2 "x − y#2 as in the standard Bargmann transform.

Other quadratic > with the general properties reviewed in Sjöstrand (1996) are also
possible. The associated canonical transformation is given by

?T + "y%−!y>"x% y## 7→ "x% !x>"x% y##& (3.2)

We have the associated IR-space (see Sjöstrand, 1996 for the terminology),

@60
= ?T "!

2n#% 60"x# = −Im>"x% y0"x##% (3.3)

where y0 is the point where !n 8 y 7→ −Im>"x% y# takes its nondegenerate
maximum.

If P = pw, then by the metaplectic invariance,

TP = P̂T% P̂ = p̂w% (3.4)

we have the exact symbol relation

p̂ / ?T = p& (3.5)

Shortly, we will recall the definition of the Weyl quantization on the FBI-transform
side.

From now on, we work entirely on the FBI side, and we shall write P
instead of P̂ and similarly for the symbols. We introduce the spaces L2

60
=

L2"(n3 e−260/hL"dx##, where L"dx# is the Lebesgue measure, and H60
the subspace of

entire functions. The Weyl-quantization on H60
takes the form of a contour integral

Pu"x# = 1
"2Ah#n

∫∫

B= 2
i
!60
!x " x+y

2 #
ei"x−y#·B/hp

(
x + y

2
% B3h

)
u"y#dy dB& (3.6)

By p, we also denote an almost holomorphic extension of p to a tubular
neighborhood of @60

. If we introduce a "# function 90 equal to 1 near 0, we get
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 705

for u ∈ H60
:

Pu"x# = 1
"2Ah#n

∫∫

B= 2
i
!60
!x " x+y

2 #
ei"x−y#·B/h90"x − y#p

(
x + y

2
% B3h

)
u"y#dy dB+ R1u"x#%

where R1 = %"h## + L2
60

→ L2
60
. We make a contour deformation,

/t
def=
{
B = 2

i

!60

!x

(
x + y

2

)
+ it"x − y#

}
% 0 ≤ t ≤ t0% t0 > 0&

Stokes’ formula gives,

Pu"x# = 1
"2Ah#n

∫∫

/t0

e
i
h "x−y#·B90"x − y#p

(
x + y

2
% B3h

)
u"y#dy dB

+ 1
"2Ah#n

∫∫∫

/;0%t0 :

e
i
h "x−y#·Bu"y#!̄y%B

(
90"x − y#p

(
x + y

2
% B3h

))
∧ dy ∧ dB

+R1u"x#%

where /;0%t0: is the naturally defined union of all the /t for t ∈ ;0% t0:. The effective
kernel of the first integral, viewed as an operator on L2

60
, is %"h−n#e−

t0
h &x−y&2 , which

implies that this integral does indeed define a uniformly bounded operator: L2
60

→
L2
60
. The effective kernel of the second integral can be estimated by a constant times

∫ t0

0
h−ne−

t
h &x−y&2dist

((
x + y

2
% B

)
% @60

)#
dt

= %"1#
∫ t0

0
h−ne−

t
h &x−y&2"t&x − y&##dt = %"h##&

We conclude that

Pu"x# = 1
"2Ah#n

∫∫

B= 2
i
!60
!x " x+y

2 #+it0"x−y#
e

i
h "x−y#·B90"x − y#p

(
x + y

2
% B3h

)
u"y#dy dB+ R2u%

(3.7)

for u ∈ H60
, where R2 = %"h## + L2

60
→ L2

60
.

The aim of the next subsections is to introduce and study a new strictly
subharmonic function 6. related to G. As for 60, the function 6. is associated with
the space L2

6.
= L2"(n3 e−26./hL"dx## and its subspace of entire functions H6.

. These
spaces will be used later to get local resolvent estimates.

3.2. Definition and Derivative Estimates of !"

Recall that our weight function G")#, ) = "y% C# defined in Proposition 2.1 satisfies
the estimates in the region *0 ≤ %"1#:

7kG = %"*"2−k#+#% *")# ≤
√
h% (3.8)

7kG = %"h"h*#−
k
3 #% *")# ≥

√
h& (3.9)
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706 Hérau et al.

It follows that in the same region,

7kG = %"hr−k#% (3.10)

where

r")# += h
1
3 "h

1
2 + *")##

1
3 & (3.11)

Notice that

h
1
2 ≤ r ≤ h

1
2 + *% (3.12)

so that h
1
2 + *")# is uniformly of constant order of magnitude in B

(
)0%

1
C0
r")0#

)
if

C0 > 0 is large enough and independent of )0.
In B

(
)0%

1
C0
r")0#

)
we introduce the scaled variables )̃ by

) = )0 + r0)̃% r0 = r")0#& (3.13)

Then the scaled function G")0 + r0)̃# satisfies

7k
)̃ "G")0 + r0)̃## = %"h#% &)̃& < 1

C0
& (3.14)

Define the manifold @.G by

Im "y% C# = .HG"Re "y% C##& (3.15)

Then for . > 0 small enough, we have

?T "@.G# = @6.

def=
{
"x% (# ∈ (2n3 ( = 2

i

!6.

!x
"x#

}
% (3.16)

where 6."x# is a critical value w.r.t. "y% C#,

6."x# = v&c&"y%C#∈(n×!n"−Im>"x% y#− "Imy# · C+ .G"Rey% C##& (3.17)

We note that, when . = 0, the unique critical point is nondegenerate.
We are in the presence of the following general problem (where we change and

simplify the notation), namely to study the critical value

6."x# = v&c&yF."x% y#% x ∈ !n% y ∈ !n% (3.18)

where F."x% y# is a smooth real-valued function such that

y 7→ F0"x% y# has a unique nondegenerate critical point y0"x#% (3.19)

!2.F."x% y# = 0% (3.20)

!1x!
2
y!.F."x% y# = %"hr−&2&#% (3.21)
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 707

where r = h
1
3 "h

1
2 + *"y##

1
3 and *"y# ≥ 0 is a Lipschitz function. From (3.20)–(3.21)

we see that

!yF. − !yF0 = %
(
h.

r

)
% .% !2yF. − !2yF0 = %

(
h

r2
.

)
% 1%

for . % 1. So, for 0 ≤ . ≤ .0 % 1, we see that y 7→ F."x% y# has a unique critical
point y."x#, depending smoothly on "x% .#.

In order to estimate the derivatives of y."x# we work in an r0- neighborhood of
a variable point "x0% y0# = "x0% y0"x0##, r0 = r"*"y0##, and put x = x0 + r0x̃, y."x# =
y0"x0 + r0x̃#+ r0ỹ."x̃#, with ỹ0"x̃# = 0 where we hope that ỹ. = %".#. Then ỹ."x̃# is
the critical point of

ỹ 7→ 1
r20
"F."x0 + r0x̃% y0"x0 + r0x̃#+ r0ỹ#− F0"x0 + r0x̃% y0"x0 + r0x̃### =+ G."x̃% ỹ#%

(3.22)

with

!1x̃!
2
ỹG. = %"1#% !1x̃!

2
ỹ!.G."x̃% ỹ# = %

(
h

r20

)
% (3.23)

!ỹG0"x̃% 0# = 0% & det !2ỹG.& ≥ 1/C& (3.24)

Introducing the rescaled parameter .̃ by . = r20
h
.̃, !.̃ = r20

h
!., we have uniform

bounds on all the derivatives !1x̃!
2
ỹ!

$
.̃G. while !2ỹG. is uniformly nondegenerate, and

the same is therefore true about !1x̃!
$
.̃ỹ."x̃#, so

!1x̃!
$
.ỹ."x̃# = %

((
h

r20

)$)
%

!1x!
$
."y."x#− y0"x## = %

(
r

(
h

r2

)$

r−&1&
)
% (3.25)

r = r"x# = h
1
3 "h

1
2 + *"y0"x###

1
3 #&

The critical value G."x̃% ỹ."x## also satisfies !1x̃!
$
.̃"G."x̃% ỹ."x### = %"1#% so

!1x!
$
."F."x% y."x##− F0"x% y0"x### = %

(
r2
(
h

r2

)$

r−&1&
)
& (3.26)

We can Taylor expand this with respect to . and get

F."x% y."x## = F0"x% y0"x##+ F1"x#.+ F2"x#.
2 + · · · + FN−1"x#.

N−1 + RN "x% .#.
N %

where

F1"x# = ""!.#.=0F.#"x% y0"x##%

!1xFk"x# = %
(
r2
(
h

r2

)k

r−&1&
)
% k ≥ 1%

!1x!
$
.RN "x% .# = %

(
r2
(
h

r2

)N+$

r−&1&
)
&
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708 Hérau et al.

Returning to (3.17), we get

6."x# = 60"x#+61"x#.+ · · · +6N−1"x#.
N−1 + RN "x% .#.

N % (3.27)

where 61% & & & % 6N−1%RN satisfy the same estimates and

61"x# = G"y"x#% C"x##% "y"x#% C"x## = ?−1
T

(
x%

2
i

!60

!x
"x#

)
&

3.3. Study of P as an Operator on H!"

Recall that H6.
is the subspace of entire functions of L2

6.
= L2"(n3 e−26./hL"dx##.

Since 6. −60 = %".h#, we first notice that

e−C. ≤ *u*6.
/*u*60

≤ eC.%

and hence for instance

R1 = %"1#eC.h# + L2
6.

→ L2
6.
&

Similarly, the effective kernel of the integral in (3.7) as an operator: L2
6.

→ L2
6.

can
be estimated by

%"h−n#e−
t0
h &x−y&2+2C.%

corresponding to an operator of norm %"1#e2.C + L2
6.

→ L2
6.
.

With the previous t0 fixed, we now make the new contour deformation:

/t
def=
{
B = 2

i

!

!x
""1− t#60 + t6.#

(
x + y

2

)
+ it0"x − y#

}
% 0 ≤ t ≤ 1&

Along this contour we have, using (3.26), (3.12):

!̄y%B90"x − y#p

(
x + y

2
% B3h

)
= %"1#

(
&x − y&+ .

h

r" x+y
2 #

)#
≤ %"1#"&x − y&+ .h1/2##&

By Stokes’ formula, we see that

Pu"x# = 1
"2Ah#n

∫∫

B= 2
i
!6.
!x " x+y

2 #+it0"x−y#
e

i
h "x−y#·B90"x − y#p

(
x + y

2
% B3h

)
u"y#dy dB+ R.u%

(3.28)

for u ∈ H6.
% where

R. = %"1#"eC.h# + h## + L2
6.

→ L2
6.
& (3.29)

3.4. Quantization vs. Multiplication

The aim of this short subsection is to check formula (3.30) below, i.e., the equivalent
of Sjöstrand (1990, formula 1.6) for the Weyl quantization. Recall that the I-
lagrangian manifold @.G is defined by @.G = ,)+ i.HG")#3 ) ∈ !2n-, and that
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 709

G has bounded second derivatives. We also have ?T "@.G# = @6.

def= ,( = (."x#
def=

2
i
!6.

!x
"x#-. Notice that the second derivatives of 6., and the first ones of (."x#, are

bounded. Recall that p is (an almost analytic extension of) a "# symbol with all its
derivatives bounded. We get for u ∈ H6.

Pu"x# = 1
"2Ah#n

∫∫

/.

e
i
h "x−y#·B90"x − y#p

(
x + y

2
% B

)
u"y#dy dB+ R.u%

where /. = ,B = 2
i
!6.

!x
" x+y

2 #+ it0"x − y#- is the contour of integration and R. =
%"h## + L2

6.
7−→ L2

6.
. Sometimes we omit the subscript ..

We want to prove that for h sufficiently small,

"=Pu&u#H6.
=
∫

p.&u&2="x#e−26."x#/hL"dx#+ %"h#*u*2% (3.30)

where = has bounded derivatives (for example = = 1) and we define p. =
p"x% 2

i
!6.

!x
"x## to be the restriction of p to @6.

. The proof is a simple adaptation of
the proof given in Sjöstrand (1990). We first make the Taylor expansion of p,

p

(
x + y

2
% B

)
= p"x% ("x##+

∑
p"j#"x% ("x##"Bj − (j"x##

+
∑

p"j#"x% ("x##

(
yj − xj

2

)
+ r"x% y% B#& (3.31)

On /."x# we have "Bj − (j"x## = iC"x − y#, and r"x% y% B# = %"&x − y&2 + h##. The
effective kernel of the operator R corresponding to r is therefore of the form

&R"x% y#& = %"h−ne−C&x−y&2/2h&x − y&29̃"x − y##

= %"h−ne−C&x−y&2/2h&x − y&2/h#h% (3.32)

for C sufficiently large (since the second derivative of 6 is bounded). As a
consequence,

Re "Ru&u#6.
= %"h#*u*26.

& (3.33)

For the contribution to (3.30) from the second term of (3.31) we integrate by part
as in Sjöstrand (1990) and we see that this term is %"h#*u*26.

. For the third term we
simply write

"2Ah#−n
∫∫

/
e

i
h "x−y#·B

(∑
p"j#"x% ("x##

yj − xj
2

)
u"y#dy dB

=
∑

p"j#"x% ("x##"xj/2− xj/2#u"x# = 0&

It follows that we have (3.30).
Notice that we can take = to be Lipschitz in (3.30), and hence that relation can

be iteratated to give:

"=Pu&Pu#6.
=
∫

&p.&2&u&2="x#e−26."x#/hL"dx#+ %"h#*u*2& (3.34)
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710 Hérau et al.

4. Local Resolvent Estimates for Large z

Again in this section we suppose that p satisfies the hypothesis (H1) and that it is
bounded with all its derivatives outside a large compact set. The aim of this section
is to get resolvent estimates for functions localized near the critical points on the
FBI side, and for

h % &z&& (4.1)

We realize P as an operator with leading symbol p. = p&@.G
as TPT−1 + H6.

→ H6.
,

with @6.
= ?T "@.G#, and in the following we identify P with TPT−1. We have seen

that 726. is uniformly bounded and consequently (see (3.30)) we have with 6 = 6.

and scalar products and norms in L2
6.
,

"=Pu&u# =
∫

p.&u&2="x#e−26"x#/hL"dx#+ %"h#*u*2% (4.2)

where p. = p&@.G
is viewed as a function on @6.

, and ="x# ∈ C#
0 "(

n#. We replace in
this section the small parameter h in the construction of the function G by Ah where
A is some large constant. As a consequence for . fixed we get from Proposition 2.1
that p.")# satisfies the estimates

Rep.")# ≥
1
C0

min"*")#2% "Ah#
2
3 *")#

2
3 #% (4.3)

inside a large compact set K containing the support of =. From now on the
inequalities we give are to be understood in K. Note that C0 > 0 and the uniform
estimate on 726. do not depend on A.

Let =0 ∈ C#
0 "!% ;0% 1:# be a standard cutoff to a neighborhood of 0 ∈ ! and

consider

p̃.")# = p.")#+
1
C0

min"&z&% "Ah# 2
3 &z& 13 #=0

(
*")#2

&z&

)
& (4.4)

Then there exists a C1 > 0 such that

Re p̃.")# ≥
1
C1

"min"*")#2% "Ah#
2
3 *")#

2
3 ##+min"&z&% "Ah# 2

3 &z& 13 ##& (4.5)

Let us mention for further use that we can choose the support of =0 to be
contained in a sufficiently small neighborhood of 0, so that

&p.")#− z& ≥ &z&/C2% when =0

(
*")#2

&z&

)
)= 0& (4.6)

Write

@2 def= min"*")#2% "Ah#
2
3 *")#

2
3 #% and Z

def= min"&z&% "Ah# 2
3 &z& 13 #&

and denote
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 711

=&z&")#
def= =0

(
*")#2

&z&

)
3

then (4.4–4.5) can be written as

p. +
Z

C0
=&z& ≥

1
C1

"@2 + Z#&

Considering =&z& as a function of x on the FBI-transform side, we get from (4.2)

Re
(
=

(
P + Z

C0
=&z& − z

)
u&u
)
+ %"h#*u*2 ≥ 1

C3

( ∫
=@2&u&2e−26/hL"dx#+ Z"=u% u#

)
%

(4.7)

provided that = is nonnegative and (in addition to (4.1)):

Re z ≤ Z

C3
& (4.8)

Here C3 > 0 is some sufficiently large constant which is independent of A, and =&z&
in (4.7) denotes the natural multiplication operator on the FBI-side.

We shall combine (4.7) with an estimate for "=&z&u&u#, which we shall obtain
using the ellipticity property (4.6). This will be obtained using an estimate analogous
to (4.2) (that can also be found in Sjöstrand, 1990) but since the support of =&z& may
be very small we shall use a rescaling that also dilates the Planck constant.

Proposition 4.1. Under the assumptions (4.1, 4.8) we have

*=&z&u* ≤ C

(
1
&z& *"P − z#u*+

√
h

min"1% &z&#*u*
)
% (4.9)

for all u ∈ H6.
.

Proof. First assume &z& ≤ 1. Make the change of variables on the FBI-
transform side

x = &z& 12 x̃% hDx = &z& 12 h̃Dx̃% h̃ = h

&z& & (4.10)

Then

P"x%hDx3h#− z = &z&"P̃"x̃% h̃Dx̃3 h̃#− z̃#% (4.11)

z̃ = z

&z& % P̃"x̃% (̃3 h̃# = 1
&z&P"x% (3h#% "x% (# = &z& 12 "x̃% (̃#& (4.12)

If P"x% (3h# = p"x% (#+ hp1"x% (#+ h2p2"x% (#+ · · · (where we now consider the
symbols in the complex domain), we see that

P̃"x̃% (̃3 h̃# ∼
#∑

0

p̃j"x̃% (̃#h̃
j%
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712 Hérau et al.

where p̃ = p̃0 = 1
&z&p"&z&

1
2 "x̃% (̃##, p̃j"x̃% (̃# = &z&j−1pj"&z&

1
2 "x̃% (̃## are nice bounded

symbols, since p"x% (# = %""x% (#2#. Then, using (4.11),

1
&z& "P"x%hDx3h#− z# = "P̃"x̃% h̃Dx̃3 h̃#− z̃#% h̃ = h

&z& & (4.13)

L2
6 transforms into

L2
6̃
=
{
ũ3
∫

&ũ"x̃#&2e−26̃"x̃#/h̃L"dx̃# < #
}
%

with the naturally associated norm and with 6̃"x̃#/h̃ = 6"x#/h, so that

6̃"x̃# = 6"&z& 12 x̃#/&z&

has a uniformly bounded Hessian. Further, =&z&"x# = =1"x̃#.
We have (omitting the Jacobians)

∥∥∥∥
1
&z& "P − z#u

∥∥∥∥
2

6

= *"P̃ − z̃#ũ*2
6̃
≥ *=1"P̃ − z̃#ũ*2

6̃

=
∫

&=1"x̃#&2&p̃. − z̃&2&ũ&2e−26̃/h̃L"dx̃#− %
(
h̃
)
*ũ*2

6̃

=
∫

&=&z&"x#&2
1
&z&2 &p. − z&2&u&2e−26/hL"dx#− %

(
h

&z&

)
*u*26

≥ 1
C
*=&z&u*26 − %

(
h

&z&

)
*u*26&

Here we used (3.34) to obtain the second equality and (4.6) to get the last estimate.
In the case &z& ≥ 1, we get more directly

∥∥∥∥
1
&z& "P − z#u

∥∥∥∥
2

6

=
∫

&=&z&"x#&2
1
&z&2 &p. − z&2&u&2e−26/hL"dx#+ %"h#*u*26

≥ 1
C
*=&z&u*26 − %"h#*u*26& (4.14)

This completes the proof of Proposition 4.1. !

We can therefore write

Re "="P − z#u&u#+ 1
C0

Z"==&z&u&u#

≤ *"P − z#u**u*+ C

C0
Z

(
1
&z& *"P − z#u*+

√
h

min"1% &z&#*u*
)

*u*+ %"h#*u*2&
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 713

Combining this with (4.7), we get

z

C2
"=u&u# ≤

(
1+ C

C0

)
*"P − z#u**u*+ C

C0

√
h

min"1% &z&#Z*u*+ %"h#*u*2%

and writing = = 1+ "= − 1# yields

Z

C2
*u*2 ≤

(
1+ C

C0

)
*"P − z#u**u*+ C

C0

√
h

min"1% &z&#Z*u*

+%"h#*u*2 + CZ*"1− =#u**u*

Assuming h/min"1% &z&# sufficiently small independently of A, we get the main result
of this section:

Z*u* ≤ %"1# "*"P − z#u*+ Z*"1− =#u*# % (4.15)

where we recall the assumptions (4.1) and (4.8) on z.

5. The Quadratic Case

The main purpose of this first section is to get resolvent estimates for operators
with quadratic symbol. The main reference for this is Sjöstrand (1974), and all the
computations are explicit. In the special case of the quadratic Kramers–Fokker–
Planck operator, the form of the spectrum is well known (see for example Risken,
1989) and we compute it explicitly in Section 13.

5.1. Sectorial Property in a Linear Weighted Space and Applications

Let P0 be a quadratic operator in the sense that the symbol p = p1 + ip2 is a
complex-valued quadratic form and assume that the symbol satisfies p1 ≥ 0 and a
subelliptic estimate

p1 + .0H
2
p2
p1 ≥

.0
C
d2
0% (5.1)

where d0")# = &)&2. Note that this implies that p has 0 as unique critical point.
Now we use the weight

G0 = GT %

introduced in (2.4) near the critical point, and use the definition there in the whole
space. Since p is quadratic, so is G0, and we have for 0 < . ≤ .0

p1 + .Hp2
G0 ≥ .

C
d2
0% (5.2)

As in section 3 we use the global FBI transform with quadratic phase >

Tu"x# = Ch− 3n
4

∫
e

i
h>"x%y#u"y#dy&
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714 Hérau et al.

The canonical transformation associated with the FBI transform T is given by
?T + "y%−!y>"x% y## 7→ "x% !x>"x% y## and we define @60

= ?T "!2n# and 60"x# =
−Im>"x% y0"x##, where y0"x# is the point where !n 8 y 7→ −Im>"x% y# takes its
nondegenerate maximum.

We define

(2n ⊃ @.G0
def= ,"y% C#3 Im "y% C# = .HG0"Re "y% C##- (5.3)

and for . small enough we check that

?T "@.G0# = @60
.

def=
{
"x% (#3 ( = 2

i

!60
.

!x
"x#

}
%

where 60
. is defined using the following procedure: the function

F 0
. "x% y% C# = −Im>"x% y#− "Imy# · C+ .G0"Rey% C#

is quadratic and when . = 0 it has a unique nondegenerate critical point for x fixed.
By homogeneity, this is also the case for F 0

. . The unique critical point "y."x#% C."x##
depends linearly on x and smoothly on .. We finally write

60
."x# = v&c&"y%C#∈Cn×!n"−Im>"x% y#− "Imy# · C+ .G0"Rey% C##

From now on we work entirely on the FBI side, denoting by u a function on
the FBI side (instead of Tu), and by the same letter P0 the (unbounded) operator
on L2

60
.

P0u"x# =
1

"2Ah#n

∫∫

B= 2
i
!60
!x " x+y

2 #
e

i
h "x−y#·Bp

(
x + y

2
% B

)
u"y#dy dB&

Since the symbol of P0 is quadratic, it is holomorphic, and we also have the
following formula for P0 as an unbounded operator on L2

60
:

P0u"x# =
1

"2Ah#n

∫∫

B= 2
i
!60
!x " x+y

2 #+it0"x−y#
e

i
h "x−y#·Bp

(
x + y

2
% B

)
u"y#dy dB&

We can now make a new contour deformation, and we get an unbounded
operator again denoted P0 on the space L2

60
.
naturally associated with 60

. :

P0u"x# =
1

"2Ah#n

∫∫

B= 2
i
!60

.
!x " x+y

2 #+it0"x−y#
e

i
h "x−y#·Bp

(
x + y

2
% B

)
u"y#dy dB&

Of course coming back to the real side by the FBI transform, P0 can be viewed as
an unbounded operator on L2"!n# with symbol

p̃ = p")+ i.HG0#%
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 715

and here the symbol of P0 is quadratic and satisfies

p̃1 = p1")#+ .Hp2
G0")#+ %".2&7G0&2#%

p̃2 = p2")#− .Hp1
G0")#+ %".2&7G0&2#& (5.4)

Now each term is quadratic, so using the homogeneity, (5.2), and choosing . > 0
small enough, yields

p̃1 ≥
.

C
d2
0% p̃2 = %"d2

0#&

In particular, p̃ takes its values in an angle around the positive real axis, p̃1 ≥
.&p̃2&/C. As a consequence, we can apply to P0 as an unbounded operator on L2

60
.

the result of (Sjöstrand, 1974, Theorem 3.5), which gives with d"x# = &x&.

Proposition 5.1. Consider P0 as an operator on H60
.
. Then

(a) the spectrum of P0 is a set ,4l- given by
{
h

i

∑

Im 0j>0

(
1
2
+ kj

)
0j3 0j ∈ Sp"F#% kj ∈ )

}

%

where the 0js are the eigenvalues, repeated with their multiplicities, of the
fundamental matrix F of Hessp.

(b) Let z vary in a compact set K ⊂ ( disjoint from the union of the 4js; then

*"h+ d2#u* ≤ C*"P0 − hz#u*% *"h+ d2#
1
2 u* ≤ C*"h+ d2#−

1
2 "P0 − hz#u* (5.5)

where d"x# = &x& (essentially equal to &)&2 if we lift it to @6), and for u holomorphic
with "h+ d2#u ∈ L2

60
.
and "h+ d2#

1
2 u ∈ L2

60
.
, respectively.

Recall that the fundamental matrix of the quadratic form p is the matrix of the
(linearized) Hamilton flow and is given by

F =
(

p′′
(%x p′′

(%(

−p′′
x%x −p′′

x%(

)

Proof. This follows from (Sjöstrand, 1974, Theorem 3.5). Some remarks are needed.
First we note that the presence of the small parameter h is easy to deal with since
P0 is linearly conjugated with h"P0&h=1# by the symplectic change of coordinates
"x% (# → "h

1
2 x%h− 1

2 (#. We also notice that the eigenvalues of the fundamental matrix
F of p are the same as the ones of the fundamental matrix F̃ of p̃, also by a
symplectic change of variables. Point (b) of the proposition is a direct consequence
of (Sjöstrand, 1974, Theorem 3.5) and the change of symplectic coordinates "x% (# →
"h

1
2 x%h− 1

2 (#. !

In Section 13 we shall explicitly compute the eigenvalues in the case of the
Kramers–Fokker–Planck operator. In the next subsection we shall compare an
operator P with its quadratic approximation near its critical points: In order to get
a global a priori estimate for P − hz, we will need a truncated version of (5.5).
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716 Hérau et al.

5.2. Localized Resolvent Estimates

Let =0 ∈ C#
0 "(

n#, =0 = 1 near x = 0. We fix . > 0 small and write in this subsection
60 instead of 60

. . The simple idea is to apply (5.5) with u replaced by =0u and then
try to estimate the commutator ;P0% =0:u. However, =0u is not holomorphic, so we
will replace =0u by 5=0u, where 5 + L2

60 → H60 is the orthogonal projection.
The main result of this subsection is

Proposition 5.2. Let =0 ∈ C#
0 "(

n# be fixed and equal to 1 near 0, and fix k ∈ !. Then
for z varying in a compact set that does not contain any eigenvalues of P0&h=1, we have

*"h+ d2#1−k=0u* ≤ C*"h+ d2#−k=0"P0 − hz#u*+ %
(
h

1
2
)
*1Ku*% (5.6)

where K is any fixed neighborhood of supp"7=0#.

We need a series of technical preparations.

Estimates for ;P0% =0:. We have

;P0% =: =
∑

&1+2&=1

h=1%2"x#x
1"hDx#

2 + h2=0%0"x#%

where =1%2 ∈ C#
0 "(

n#, supp"=1%2# ⊂ supp7=0. We can conclude that

*;P0% =:u* ≤ Ch*1Ku*% (5.7)

where C depends on = and K is an arbitrarily small neighborhood of supp"7=#. Here
we also use that *1supp="hD#1u* ≤ C*1Ku*, if u is holomorphic near K.

Estimates for ;P0%5:. Recall (from, e.g., Sjöstrand, 1996) that 5 is given by

5u"x# = Ch−n
∫

e
2
h "D

0"x%ȳ#−60"y##u"y#L "dy#% (5.8)

where D 0"x% z# is the unique (second-order) holomorphic polynomial on (2n with
D 0"x% x̄# = 60"x#. Notice that

"!xD
0#"x% x̄# = !x6

0"x#% (5.9)

and recall the well known fact that

2ReD 0"x% ȳ#−60"x#−60"y# ∼ −&x − y&2& (5.10)

For &1+ 2& ≤ 2, we get by integration by parts,

;x1"hDx#
2%5:u"x# = Ch−n

∫
"x1"hDx#

2 − "−hDy#
2y1#e

2
h "D

0"x%ȳ#−60"y##u"y#L"dy#

= Ch−n
∫

e
2
h "D

0"x%ȳ#−60"y##a1%2"x% y3h#u"y#L"dy#%
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 717

where

a1%2 =
(
x1
(
hDx +

2
i
!xD

0"x% ȳ#

)2

−
(
− hDy +

2
i
!y6

0"y#

)2

/ y1
)
"1#&

Using (5.9), we see that

a1%2 =






0% &1+ 2& = 0%
b1"x% y#% &1+ 2& = 1%
b2"x% y#+ hb0% &1+ 2& = 2%

(5.11)

where bj is a homogeneous polynomial of degree j, vanishing on the diagonal when
j = 1% 2.

Relation (5.10) implies that the effective kernel of 5 + L2
60 → L2

60 is
%"h−ne−&x−y&2/"Ch##, so

&;x1"hD#2%5:u* ≤ %
(
h

1
2
)
×
{
*u*% &1+ 2& = 1%
*"h+ d2#

1
2 u*% &1+ 2& = 2&

It follows that

*;P0%5:u* ≤ %
(
h

1
2
)
*"h+ d2#

1
2 u*% (5.12)

since in the case of P0, we do not have to consider any commutators with x1"hD#2

with &1+ 2& = 1. The standard inequality

1+ &x&
1+ &y& ≤ 1+ &x − y&%

implies that

h
1
2 + d"x#

h
1
2 + d"y#

≤ 1+ &x − y&√
h

≤ C.e
.&x−y&2/h%

for every . > 0. It is therefore clear that we can conjugate ;P0%5: in (5.12) by
any power of h

1
2 + d. Indeed, the proof there shows that the effective kernel of

;P0%5:"h
1
2 + d#−1 is %"1#h

1
2−ne−&x−y&2/"Ch#. Hence

*"h 1
2 + d#−k;P0%5:u* ≤ %"h

1
2 #*"h 1

2 + d#1−ku*% (5.13)

for every k ∈ !.

Estimates for 1−5. We briefly recall Hörmander’s L2-method for the h!̄-
complex, following Sjöstrand (1996),

C#
0 "(

n# → C#
0 "(

n3∧0%1(n# → C#
0 "(

n3∧0%2(n# → · · · → C#
0 "(

n3∧0%n(n#&

We have here the natural Hilbert space norms induced by the weight e−260/hL"dx#.
Equivalently, we consider the conjugated complex e−60/hh!̄e6

0/h = h!̄+ !̄"60#∧ in
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718 Hérau et al.

the standard L2-spaces. The adjoint of the last complex is then given by h!̄∗ +
!"60#<. More explicitly,

h!̄+ !̄"60#∧ =
∑

Zjdz̄
∧
j % h!̄∗ + !"60#< =

∑
Z∗
j dz

<
j%

where Zj = h!z̄j + !z̄j6
0. The corresponding Hodge Laplacian is then

(
h!̄+ !̄

(
60
)∧)(

h!̄∗ + !
(
60
)<)+

(
h!̄∗ + !

(
60#<

)(
h!̄+ !̄

(
60
)∧)

=
∑

j%k

(
ZjZ

∗
k ⊗ dz̄∧j dz

<
k + Z∗

kZj ⊗ dz<kdz̄
∧
j

)

=
(∑

j

Z∗
j Zj

)
⊗ 1+ h

∑

j%k

2!z̄j!zk6
0dz̄∧j dz

<
k%

where we used that ;Zj%Z
∗
k: = 2h!z̄j!zk6

0 and the standard identity, dz̄∧j dz
<
k +

dz<kdz̄
∧
j = 0dzk&dz̄j1 = *j%k. In particular, the Hodge Laplacian

E1 = h!̄∗h!̄+ h!̄h!̄∗

on "0% 1#-forms can be identified with

Ẽ1 =
(∑

Z∗
j Zj

)
⊗ 1Cn + 2h"!z̄j!zk6

0#% (5.14)

acting on L2"(n3(n#. The strict plurisubharmonicity of 60 means that the
Hermitian matrix appearing in the last term in (5.14) is ≥ 1/C, and hence we get
the a priori estimate (now using for a while ordinary L2-norms

h

C
*u*2 +

∑
*Zju*2 ≤ "Ẽ1u&u#% (5.15)

leading first to

h*u* ≤ C*Ẽ1u* (5.16)

and then to

h
1
2 *Zju* ≤ C*Ẽ1u*& (5.17)

We can also write
∑

Z∗
j Zj =

∑
ZjZ

∗
j + %"h#, so Ẽ1 =

∑
ZjZ

∗
j + %"h#, and hence

"Ẽ1u&u# ≥
∑

*Z∗
j u*2 − Ch*u*2%

which together with (5.15) implies first

h*u*2 +
∑

*Zju*2 +
∑

*Z∗
j u*2 ≤ C"Ẽ1u&u#% (5.18)

and then

h
1
2 *Z∗

j u* ≤ C*Ẽ1u*& (5.19)
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 719

We also need to check that these estimates remain valid after conjugation of Ẽ1
by any power of h+ d2 or equivalently by any power of 0h+ d2, where 0 > 1 is
independent of h. This will follow from the following observations:

(1) "0h+ d2#−kZj"0h+ d2#k = Zj + k
h!zj "d

2#

0h+ d2
% and

∣∣∣∣
h!zj "d

2#

0h+ d2

∣∣∣∣ ≤
Chd

0h+ d2
≤ C

0
1
2

"0h#
1
2d

0h+ d2
h

1
2 ≤ 1"0#h

1
2 %

where 1"0# → 0 when 0 → #. A similar remark holds for "0h+ d2#−k

Z∗
j "0h+ d2#k.

(2) We have

Ê1 + = "0h+ d2#−kẼ1"0h+ d2#k

=
∑(

Z∗
j + o"1#h

1
2

)(
Zj + o"1#h

1
2

)
+ 2h"!z̄j!zk6

0#%

where o"1# refers to the limit 0 → #. Thus

Re "Ê1u&u# ≥
h

C
*u*2 +

∑
*Zju*2 − o"1#h

1
2 *u**Zju* − o"1#"hu&u#

≥ h

2C
*u*2 + 1

2

∑
*Zju*2% h*u*2 +

∑
*Zju*2 ≤ CRe ""Ê1#u&u#& (5.20)

Then do as before with Ẽ1 replaced by Re Ê1, to get

h*u*2 +
∑

*Zju*2 +
∑

*Z∗
j u*2 ≤ CRe "Ê1u&u#& (5.21)

Back to the original E1 we thus have (with the norms now being those of L2
60 ):

*E−1
1 * ≤ %

(
1
h

)
% *h!̄∗E−1

1 * ≤ %
(

1√
h

)
% (5.22)

as well as the same estimates for

"h+ d2#kE−1
1 "h+ d2#−k% "h+ d2#kh!̄∗E−1

1 "h+ d2#−k&

Now we use

1−5 = h!̄∗E−1
1 h!̄% (5.23)

to conclude that if =0 ∈ C#
0 "(

n# is fixed and equal to 1 near 0, and u is holomorphic
near supp =0, then

"1−5#"u=0# = h!̄∗E−1
1 "u"h!̄=0##

satisfies

*"h+ d2#k"1−5#"u=0#* ≤ Ckh
1
2 *u!̄=0*& (5.24)
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720 Hérau et al.

Recall that here and until further notice the norms are those of L2
60 .

Let =0 ∈ C#
0 "(

n# be fixed and = 1 near 0. Recall that z varies in a compact set
that does not contain any eigenvalues of "P0#h=1.

Proof of Proposition 5&2. We start from (5.5)

*"h+ d2#1−ku* ≤ C*"h+ d2#−k"P0 − hz#u*% (5.25)

for u holomorphic with "h+ d2#1−ku ∈ L2
60 . Replace u by 5=0u:

*"h+ d2#1−k5=0u* ≤ C*"h+ d2#−k"P0 − hz#5=0u*&

It follows that

*"h+ d2#1−k=0u* ≤ *"h+ d2#1−k5=0u*+ *"h+ d2#1−k"1−5#=0u*
≤ C*"h+ d2#−k"P0 − hz#5=0u*+ %

(
h

1
2
)
*u!̄=0*&

(5.26)

where we used (5.24) and h+ d2 ∼ 1 on supp !̄=0.
Here

*"h+ d2#−k"P0 − hz#5=0u*
≤ *"h+ d2#−k5=0"P0 − hz#u*+ *"h+ d2#−k;P0%5=0:u*
≤ C*"h+ d2#−k=0"P0 − hz#u*+ *"h+ d2#−k;P0%5=0:u*& (5.27)

Now

;P0%5=0:u = ;P0%5:=0u+5;P0% =0:u

= ;P0%5:5=0u+ ;P0%5:"1−5#=0u+5;P0% =0:u

= ;P0%5:"1−5#=0u+5;P0% =0:u% (5.28)

where we used that ;P0%5:5 = 0, since P0 conserves holomorphic functions.
Combining (5.28), (5.13), (5.24), (5.27), we see that

*"h+ d2#−k;P0%5=0:u* ≤ %"h#*1Ku*& (5.29)

Combining this with (5.26), (5.27), (5.29), we get (5.6). !

Remark 5.3. In Proposition 5.2 we can replace the norm L2
60

.
by L2

60
or any other

norm which is equivalent to the L2
60

.
norm for functions with support near K.

6. Local Resolvent Estimate for Small z

Again in this section we suppose that p satisfies the hypothesis (H1) and that it is
bounded with all its derivatives outside a large compact set K. We also replace for a
while the small parameter h by Ah in the construction of G, where A is some large
constant, and work in K.
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 721

Recall that G = GAh satisfies the estimates

7G = %"*2−k#+#% *")# ≤
√
Ah% (6.1)

7kG = %"Ah"Ah*#−k/3#% *")# ≥
√
Ah% (6.2)

implying

7kG = %"Ah""Ah#
1
3 "Ah+ *2#

1
6 #−k# = %"Ahr−k#% (6.3)

r")# += "Ah#
1
3 "Ah+ *2#

1
6 & (6.4)

Writing

p&@.G
= p. = p1 + ip2%

we recall that in K

p1 ≥ .
C
min"*")#2% "*Ah#

2
3 #% (6.5)

p2 = %"*2#& (6.6)

We represent @.G on the FBI-transform side by

( = 2
i

!6.

!x
"x#% 6. = 60 + .G̃"x3h#%

where G̃ has the same properties as G (cf. (3.27)). We also know that G̃ and 6. are
independent of h in the region &x& ≤

√
Ah. From now on . > 0 will be small and

fixed.
Assume for simplicity that " consists of just one point, corresponding to x = 0.

Let

p0"x% (# =
∑

&1+2&=2

!1x!
2
(p"0% 0#
1!2! x1(2 (6.7)

be the quadratic approximation of p, so that

p− p0 = %""x% (#3# = %""h+ "x% (#2#
3
2 #& (6.8)

We may assume that 6 = 6."x# is a quadratic function 60 in the region &x& ≤√
Ah and for x in that region, we realize p0"x%hDx#u with a contour as in (3.28).

The difference between the corresponding effective kernels of P = pw and P0 =
p0"x%hDx#u is then

%"1#h−ne−
t0
h &x−y&2"h+ &x&2 + &y&2# 3

2 = %"1#h−ne−
t0
h &x−y&2"h

3
2 + &x&3 + &x − y&3#&

We conclude that

*Pu− P0u*H6"&x&≤
√
Ah# ≤ %

(
"Ah#

3
2
)
*u*H6

& (6.9)
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722 Hérau et al.

Here both P and P0 are realized with a contour as in (3.28). However, p0 is a
polynomial and we check that if we replace P0u by the corresponding differential
expression

P0u =
(

∑

&1+2&=2

!1x!
2
(p"0% 0#
1!2! "x1"hD#2#w

)

u"x#%

then we commit an error w, satisfying

*w*H6"&x&≤
√
Ah# ≤ e−

1
Ch *u*H6

& (6.10)

Now for P0 we can apply Proposition 5.2 and Remark 5.3. We get that for every
fixed k ∈ ! and for z in a fixed compact set avoiding the eigenvalues of P0&h=1:

*"h+ d2#1−k=0u* ≤ C*"h+ d2#−k=0"P0 − hz#u*+ %"h
1
2 #*1Ku*% (6.11)

where K is any fixed neighborhood of supp"7=0#.
Notice that we can write the last term in (6.11) as %"h

1
2 #*"h+ d2#1−k1Ku*.

We now want to replace the fixed cutoff =0 in (6.11) by =0"x/
√
Ah# for A > 1

independent of h. Consider the change of variables, x =
√
Ahx̃, hDx =

√
Ahh̃Dx̃,

h̃ = 1/A. Then

p0"x%hDx# =
h

h̃
p0"x̃% h̃Dx̃# =+

h

h̃
P̃0%

and with d = d"x#, d̃ = d"x̃#:

h+ d2 = h

h̃
"h̃+ d̃2#% e−260"x#/h = e−260"x̃#/h̃&

Start from (6.11) with x%h replaced by x̃% h̃:

*"h̃+ d̃2#1−k=0"x̃#u* ≤ C*"h̃+ d̃2#−k=0"x̃#"P̃0 − h̃z#u*+ Ch̃
1
2 *"h̃+ d̃2#1−k1Ku*%

∥∥∥∥

(
h̃

h

)1−k

"h+ d2#1−k=0

(
x√
Ah

)
u* ≤ C

∥∥∥∥

(
h̃

h

)1−k

"h+ d2#−k=0

(
x√
Ah

)
"P0 − hz#u

∥∥∥∥

+Ch̃
1
2

∥∥∥∥

(
h̃

h

)1−k

"h+ d2#1−k1K

(
x√
Ah

)
u

∥∥∥∥%
∥∥∥∥"h+ d2#1−k=0

(
x√
Ah

)
u

∥∥∥∥ ≤ C

∥∥∥∥"h+ d2#−k=0

(
x√
Ah

)
"P0 − hz#u

∥∥∥∥

+ C√
A

∥∥∥∥"h+ d2#1−k1K

(
x√
Ah

)
u

∥∥∥∥& (6.12)

This estimate will be applied with k = 1/2.
We now return to the full operator P (on the FBI-side), and the norms and

scalar products will now be with respect to e−26/h, 6 = 6., . > 0 small and fixed.
Recall, however, that 6 = 60 in &x& ≤

√
Ah. Let = be a cutoff function equal to 1 in
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 723

a fixed neighbourhood of the critical points, but recall the simplifying assumption
that we only have one critical point corresponding to x = 0. Let us denote

@2 = h+min"d2% "dAh#
2
3 #& (6.13)

Using (3.30) as in Section 4, we get for z = %"1#,

*@u*2 ≤ C

(
Re "="x#"P − hz#u&u#+ C2

(
=20

(
x√
Ah

)
@u&@u

))
+ C ′*"1− =#@u**@u*&

(6.14)

Then using (6.12) we get, for 8 > 0,

*@u*2 ≤ C*@−1"P − hz#u**@u*+ C*@=0

(
x√
Ah

)
u*2 + C ′*"1− =#@u**@u*

≤ C

8
*@−1"P − hz#u*2 + C8*@u*2 + C̃*@−1=0

(
x√
Ah

)
"P0 − hz#u*2

+ C̃

A

∥∥∥∥@1K

(
x√
Ah

)
u

∥∥∥∥
2

+ C ′*"1− =#@u**@u*& (6.15)

Here we also need (and we can clearly generalize (6.9) for that purpose)

∥∥∥∥=0
(

x√
Ah

)
@−1"P − P0#u

∥∥∥∥ ≤ C"A#h
1
2 *@u*& (6.16)

Insertion in (6.15) gives

*@u*2 ≤ C

8
*@−1"P − hz#u*2 + C8*@u*2 + 2C̃

∥∥∥∥@
−1=0

(
x√
Ah

)
"P − hz#u

∥∥∥∥
2

+ C̃"A#h*@u*2 + C̃

A
*@u*2 + C ′*"1− =#@u**@u*&

Choosing first 8, 1/A small enough and then h small enough, we get

*@u* ≤ C*@−1"P − hz#u*+ C ′′*"1− =#@u*% (6.17)

and noticing that h ≤ @2 ≤ Ch2/3, we get the main result of this section,

h*u* ≤ C*"P − hz#u*+ C ′′h5/6*"1− =#u*& (6.18)

7. Review of Semiclassical Weyl Calculus

In this section we introduce some tools and make some remarks about the
translation into the semiclassical point of view of some basic facts on the classical
Weyl–Hörmander calculus.
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724 Hérau et al.

7.1. Weyl–Hörmander Calculus

First recall the framework of the Weyl–Hörmander calculus, which can be found in
(Hörmander, 1985, Chapter 18). We put a subscript cl everywhere here to emphasize
the fact the we are in the original (opposite to semiclassical) framework of the
calculus. Recall that the classical Weyl quantization is given for an admissible
symbol pcl (to be defined below) by

"pwcl
cl u#"x# =

1
"2A#n

∫∫
ei〈x−y%(〉pcl

(
x + y

2
% (

)
u"y#dy d(& (7.1)

Consider the symplectic space !2n equipped with the symplectic form < =∑n
i=1 d(i ∧ dxi. If g is a positive definite quadratic form, we define

g<cl"T # = sup
gcl"Y#=1

< "T% Y #2 % (7.2)

which is also a positive definite quadratic form. We say that gcl is a cl-admissible
metric if

∀X ∈ !2n% gcl%X ≤ g<cl%X "cl-uncertainty principle#%

∃C0 > 0 such that gcl%X"X − Y# ≤ C−1
0 B⇒

(
gcl%X/gcl%Y

)±1 ≤ C0 "cl-slowness#%

∃C1%N1 > 0 such that gcl%X/gcl%Y ≤ C1

(
1+ g<cl%X"X − Y#

)N1 "cl-temperance#%
(7.3)

for positive constants C0%C1%N1. Let us note that if the metric gcl depends on
a parameter (for example h), we call it cl-admissible if (7.3) occurs uniformly in
this parameter. The same is true for the cl-admissible weights we introduce now. A
cl-admissible weight is a positive function mcl on the phase space !2n, for which
there exists C̃0% C̃1% Ñ1 > 0 such that

gcl%X"X − Y# ≤ C̃0 B⇒ "mcl"Y#/mcl"X##
±1 ≤ C̃0 "cl-slowness#%

mcl"Y#/mcl"X# ≤ C̃1

(
1+ g<cl%X"X − Y#

)Ñ1 "cl-temperance#&
(7.4)

We define next the cl-uncertainty parameter 0cl, which is a special admissible weight
for g,

0cl"X# = inf
T∈!2n/,0-

(
g<cl%X"T #/gcl%X"T #

)1/2 ≥ 1& (7.5)

Let us now introduce some spaces of symbols. We say that a function pcl is a symbol
in S"mcl% gcl# if pcl ∈ "#"!2n#, and if the following seminorms are finite

sup
X∈!2n%gcl%X"Tj#≤1

∥∥∥
〈
p"k#
cl "X#%T1 ⊗ · · ·⊗ Tl

〉∥∥∥m−1
cl "X#& (7.6)

If mcl is of the form 04cl, we say that pcl is of order 4. For good symbols
(in S"mcl% gcl# classes for instance), we define the composition law Fcl such that
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 725

"pclFclqcl#
wcl = pwcl

cl / qwcl
cl by

"pclFclqcl#"x% (# = e
i
2 <""Dx%D(#%"Dy%DC##pcl"x% (#qcl"y% C#&y=x%C=(% (7.7)

and for pcl ∈ S"m1% gcl#, qcl ∈ S"m2% gcl#, if ,&% &- denotes the Poisson bracket,
then there is rcl ∈ S"m1m20

−2
cl % gcl# such that

pclFclqcl = pclqcl +
1
2i
,pcl% qcl-+ rcl& (7.8)

Recall eventually the Fefferman–Phong inequality, which will be used in the
next sections:

Proposition 7.1. Let pcl ∈ S"mcl% gcl#. If pcl ≥ 0, then there is a real symbol rcl ∈
S"mcl0

−2
cl % gcl# such that pw

cl ≥ rw. Hence if mcl = 02cl, then pw
cl is bounded from below.

7.2. Semiclassical Weyl–Hörmander Calculus

The original calculus already contains a parameter that plays the role of a Planck’s
constant, namely the inverse of the uncertainty parameter. In the semiclassical case
this is made more explicit, but basically this is only a reduction to the original
calculus by a change of variables.

For an admissible symbol p we first recall the definition of semiclassical Weyl
quantization:

pwu = 1
"2Ah#n

∫∫
p

(
x + y

2
% (

)
ei〈x−y%(〉/hu"y#dy d(% u ∈ # &

A straightforward computation shows that

pw = pwcl
cl where pcl"x% (# = p"x%h(#& (7.9)

Now observe that p belongs to a symbol class S"m% g# for a Riemanian metric g and
a positive function m if and only if pcl ∈ S"mcl% gcl#, where

mcl"x% (# = m"x%h(#% gcl%"x%(#"t% 8# = g"x%h(#"t%h8#&

Using definition (7.2) and (7.5) for defining respectively gcl, g, and 0cl, 0, we also get

g<cl%"x%(#"t% 8# = h−2g<"x%h(#"t%h8# and 0cl"x% (# = h−10"x%h(#& (7.10)

As a consequence it is natural to introduce the following definitions in the
semiclassical case:

Definition 7.2. We say that g is an admissible (or semiclassically admissible)
metric if

∀X ∈ !2n% gX ≤ h−2g<X "i.e., 0 ≥ h# (uncertainty principle)%
∃C0 > 0 such that gX"X − Y# ≤ C−1

0 B⇒ "gX/gY #
±1 ≤ C0 (slowness),

∃C1%N1 > 0 such that gX/gY ≤ C1

(
1+ h−2g<X"X − Y#

)N1 (temperance),
(7.11)

for positive constants C0%C1%N1.
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726 Hérau et al.

A direct definition holds for semiclassical weights. Using this (note that all this is
simply a change of variables) we can write

Lemma 7.3. The metric g is an admissible metric of uncertainty parameter 0 "≥ h# if
and only if gcl is an admissible metric of uncertainty parameter 0cl"≥ 1#, both uniformly
in 0 < h ≤ 1.

We can therefore translate into the semiclassical point of view all the classical
results. First observe that symbols of order 1 give bounded operators on L2"!n#.
Then the product formula is defined by

pw / qw = "pFq#w%

where

pFq"x% (%h# = e
ih
2 <""Dx%D(#%"Dy%DC##p"x% (%h#q"y% C%h#&y=x%C=(&

The asymptotic expansion is then given for p ∈ S"m1% g#, q ∈ S"m2% g# by

pFq = pq + h

2i
,p% q-+ h2r% (7.12)

where r ∈ S"m1m20
−2% g#. Recall eventually how to write the semiclassical

Fefferman–Phong inequality that will be used in the text:

Proposition 7.4. If p ≥ 0 then there is a real symbol r ∈ S"m0−2% g# such that pw ≥
h2rw. Hence if m = h−202, then pw is bounded from below uniformly with respect to h.

Remark 7.5. As an illustration, let us see what happens in the case of the constant
metric g = dx2 + d(2. It is the one generally used in semiclassical work. We check
immediately that it is admissible in the sense of definition 7.11, since gX = gY
for all X, Y and that g</g = 1 ≥ h. Of course the translation procedure gives
the Fefferman–Phong inequality: pw ≥ −Ch2 if p is real nonnegative with all its
derivatives bounded.

7.3. The Microlocal Metric #

We study now a particular metric used in the next sections.

Lemma 7.6. The metric defined on !2n by

/ = dx2

h2/3
+ d(2

42
% where 42 = p1 + "h0#2/3%

is (semiclassically) admissible.

Proof. Recall that we suppose that

/0 = dx2 + d(2/02% 0 = 0"x% (# ≥ 1%
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 727

is a cl-admissible metric. Let us prove the three points of (7.11). We first notice that

/< = 42dx2 + h2/3d(2%

therefore the uncertainty parameter of / is 4h1/3 and we have for h small

4h1/3 ≥ 01/3h2/3 ≥ h2/3 ≥ h%

therefore / satisfies the uncertainty principle.

Slowness of / . We take X = "x% (# and Y = "y% C# and we observe that if
/X"X − Y# ≤ C0, then

&x − y&2 ≤ C0h
2/3 and &(− C&2 ≤ C0

(
p1"X#+ "h0#2/3"X#

)
& (7.13)

Using a Taylor expansion and the fact that the the second derivative of p1 is
bounded, we can write that

p1"Y# ≤ p1"X#+ &7p1&&X − Y &+ C&X − Y &2

≤ p1"X#+ C ′√p1&X − Y &+ C&X − Y &2

≤ 2p1"X#+ C ′′&X − Y &2%

where for the second inequality we used inequality (2.11) for the nonnegative
function p1. Now use /X"X − Y# ≤ C0. We get

p1"Y# ≤ 2p1"X#+ C ′′&X − Y &2

≤ 2p1"X#+ C ′′C0

(
h2/3 + p1"X#+ "h0#2/3"X#

)

≤ C"p1"X#+ "h0#2/3"X##% (7.14)

since 0 ≥ 1. Formula (7.13) implies that

&x − y&2 ≤ C0% and &(− C&2 ≤ C00
2"X#%

and we get, using the slowness of /0 for C0 sufficiently small, that "h0#2/3"Y# ≤
C ′"h0#2/3"X#. Using this and (7.14) yields

p1"Y#+ "h0#2/3"Y# ≤ C"p1"X#+ "h0#2/3"X##%

that is to say 4"X# ≤ C4"Y#. This implies immediately that /Y ≤ C/X . Inverting the
roles of X and Y proves the slowness of / .

Temperance of / . Again we denote X = "x% (# and Y = "y% C#. Beginning from
the first line of (7.14) we write

p1"Y# ≤ 2p1"X#+ C ′′&X − Y &2

≤ C
(
p1"X#+ "h0#2/3"X#

)
"1+ h−2/3&X − Y &2#& (7.15)
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728 Hérau et al.

Notice that

h−2/<
X"X − Y# = h−2

((
p1"X#+ "h0#2/3"X#

)
&x − y&2 + h2/3&(− C&2

)

≥ h−4/3&X − Y &2

≥ h−2/3&X − Y &2%

since 0 ≥ 1 and for h ≤ 1. Hence

p1"Y# ≤ C
(
p1"X#+ "h0#2/3"X#

) (
1+ h−2/<

X"X − Y#
)
& (7.16)

Since /0 = dx2 + d(2/02 is cl-temperate, there exists a C0%N ≥ 1, such that

/0%X ≤ C0/0%Y
(
1+ /<

0%X"X − Y#
)N

&

Together with /<
0 = 02dx2 + d(2, this implies that

02"Y# ≤ C00
2"X#"1+ 02"X#&x − y&2 + &(− C&2#N

≤ C ′
00

2"X#"1+ 02/3"X#&x − y&2 + &(− C&2#3N (7.17)

≤ C ′
00

2"X#
(
1+ h−2

(
""h0#2/3"X#+ p1"X##&x − y&2 + h2/3&(− C&2

))3N
%

since h−4/3 ≥ 1 and p1 ≥ 0. Now we recognize in the parentheses a term of the form
h−2/<. Multiplying by h and raising to the power 1/3 gives

"h0#2/3"Y# ≤ C"h0#2/3"X#
(
1+ h−2/<

X"X − Y#
)N

&

Together with (7.15) this gives

42"Y# ≤ C42"X#
(
1+ h−2/<

X"X − Y#
)N

%

which implies /X ≤ /Y
(
1+ h−2/<

X"X − Y#
)N . Consequently, / is (semiclassically)

temperate. Eventually we have proven that / is a (semiclassically) admissible metric.
!

8. Resolvent Estimates Away from the Critical Points When !z! " h

In this section we suppose that p satisfies hypotheses (H2), (H3), (H4), and we shall
work away from a fixed neighborhood $ of the critical points and for &z& > h. The
main result of this section will be the estimate (8.20). At infinity in the phase space,
we shall use the machinery of the Weyl calculus. Let us consider the weight

42"x% (# = p1"x% (#+ "h0"x% (##2/3&

We notice that 4 ≥ h1/3. We use the metric defined in Lemma 7.6

/ = dx2

h2/3
+ d(2

42
& (8.1)
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 729

From the construction of the weight G in Proposition 2.1 (cf. (2.1), (2.8)), we know
that

g
def= G

h
∈ S"1% /# outside $%

since G = 0 when p1 ≥ 2"h0#2/3/M . There is no restriction to extend g near the
critical points and let it uniformly be in the class S "1% /#.

From Proposition 2.1, we have the following two estimates for our new g:

g ∈ S"1% /#% !g ∈ S"4−1% /#& (8.2)

We verify now that some other symbols are good symbols for the metric / . We
first observe the evident fact that S"m% /0# ⊂ S"m′% /# for all weights m′ ≥ m, since
/0 ≤ / . From (1.4) we get

!p ∈ S

(
0%dx2 + d(2

02

)
⇒ !p ∈ S"43h−1% /#% (8.3)

since 43 ≥ h0. Of course in this new class, p, !p are no more symbols of order 2
and 1, respectively. Nevertheless the real part p1 has a good behavior:

p1 ∈ S"42% /#& (8.4)

Indeed, 0 ≤ p1 ≤ 42, and since the second derivative of p1 is bounded we use (2.11)
to get &!p1& ≤ C

√
p1 ≤ C4. Moreover, !2p1 ∈ S"1%dx2 + d(2/02# gives !2p1 ∈ S"1% /#.

This implies (8.4).
From the preceding section we know that / is a (semiclassically) admissible

metric of uncertainty parameter h1/34. We have therefore the following symbolic
expansion for the composition of q1 ∈ S"m1% /# and q2 ∈ S"m2% /#:

q1Fq2"x% (%h# = q1q2"x% (%h#+
h

2i
,q1% q2- "x% (%h#+ h2R2"q1% q2#"x% (%h#% (8.5)

where

R2"q1% q2# ∈ S"m1m2"h
1/34#−2#& (8.6)

This means that in the remainder of order two in the asymptotic expansion of the
sharp product, we have a gain of "h1/34#−1 to the square in addition to the gain of h2

due to the semiclassical point of view. The Fefferman-Phong inequality reads for / :

Lemma 8.1. Let m be an h-admissible weight and q ∈ S"m% /#. If Req ≥ 0 then there
is a real symbol r ∈ S"mh2"h1/34#−2# such that Re "qwu% u# ≥ "rwu% u# for all u ∈ # .
In particular symbols in S"h−2"h1/34#2% /# with nonnegative real part correspond to
operators with real part bounded from below by an h-independent constant in the
operator sense.

For the symbols we deal with, we noted in (8.2-8.3) that !p and !g have better
symbolic estimates than the one given by the symbolic classes of p and g. This gives
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730 Hérau et al.

improvements to the symbolic calculus. Let us write explicitly the expansion of q1Fq2
to the order d,

"q1Fq2#"x% (%h# =
d−1∑

j=0

hj

j!

(
i

2
<"Dx%(%Dy%C#

)j

q1"x% (%h#q2"y% C%h#&y=x%C=(

+hdRd"q1% q2#"x% (%h#% (8.7)

where

Rd"q1% q2#"x% (%h#

=
∫ 1

0

"1− B#d−1

"d − 1#! e
iBh
2 <"Dx%(%Dy%C#

(
i

2
<"Dx%(%Dy%C#

)d

q1"x% (%h#q2"y% C%h#&y=x%C=(dB& (8.8)

The order (as a symbol in a class S"m% /#), computed as in the classical case, is
exactly the order of the symbol appearing on the second line

(
i

2
<"Dx%(%Dy%C#

)d

q1"x% (%h#q2"y% C%h#&y=x%C=(&

Now return to the case of p and g with d = 2. A straightforward computation using
(8.2–8.3) gives that

(
i

2
<"Dx%(%Dy%C#

)2

g"x% (%h#p"y% C%h#&y=x%C=( ∈ S"43h−1 × 4−1 × h−1/34−1% /#

⊂ S"h−4/34% /#%

hence

R2"g%p# ∈ S"h−4/34% /#%

so

gFp = gp+ h

2i
,g%p-+ r with r = h2R2"g%p# ∈ S"h2/34% /#& (8.9)

(Note that this implies r ∈ S"h1/342% /# ⊂ S"42% /# since h1/3 ≤ 4).
Let us now fix . > 0 and take z ∈ (. We can write for u ∈ # using (8.9) that

Re ""pw − z#u% "1− .g#wu# = Re """1− .g#F"p− z##wu% u#

= """p1 −Re z#"1− .g#+ .h,p2% g-/2− .Re r#wu% u#%
(8.10)

where r ∈ S"42% /# was defined in (8.9). Let us study the first two terms in the
asymptotic development of Re "p− z#F"1− .g#. For . sufficiently small, we have
from (2.3)

p1 +
.h ,p2% g-

2
≥ .1

(
"h0#2/3 + p1

)
= .14

2% (8.11)
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 731

when &"x% (#& ≥ %"1# far from the critical points (recall that G
def= hg in (2.3)). This

means that p1 + .0h ,p2% g- /2 is elliptic in S"42% /# far from the critical points.
Choose > ∈ "#

0 equal to 1 in a neighborhood of the critical points, so that

p1 +
.h,p2% g-

2
≥ .14

2 − C42>"x% (#& (8.12)

Recall that r ∈ S"h1/342% /#. Using this and choosing . sufficiently small yields

Re "p− z#F"1− .g# = "p1 −Re z#"1− .g#+ .h,p2% g-/2− .Re r

≥ c42 − 2max"Re "z#% 0#− 42>&
(8.13)

Let us now introduce

Z
def= h2/3&z&1/3&

We follow the preceding computations, and get with .2 > 0 that

c42 − 2max"Re "z#% 0#− C42>

≥ "c/2#42 + c

2
"42 − .2Z#+

(
c.2
2

Z − 2max"Re "z#% 0#
)
− C42>& (8.14)

We will bound from below each term of the right hand side. We assume that

c.2
2

Z ≥ 4Re "z#& (8.15)

It defines a region G in the complex plane, and if z is in this region the third term
of (8.14) is bounded from below by cZ. To study the second term we observe that
42 ≥ .2Z, since 02 ≥ &z&.32. Now choose a cutoff function 91"t# supported in the ball
of radius 2.32 and equal to one in the ball of radius .32. Then

c

2
"42 − .2Z# ≥ −c′′Z92

1

(
02

&z&

)

Summing up the preceding results we have obtained the following bound, where c,
C denote fixed constants:

"p1 −Re z#"1− .g#+ .h,p2% g-/2+ .Re r ≥ c"42 + Z#− CZ92
1"0

2/&z&#− C42>&
(8.16)

Note that 92
1"0

2/&z&# ∈ S"1% /0#. Now we want to go back to the operator side.
We first notice that dividing the two sides of (8.16) by Z yields an inequality in
S"h−142% /# uniformly in z, which we recall can be arbitrarily large. Indeed the
terms p1, h,p2% g-, r and 42 are in S"42% /# and since Z > h (from &z& > h) we get
that these operators divided by Z are in S"h−142% /#. The others (divided by Z) are
bounded by a constant since by hypothesis max ,Re "z#% 0- ≤ CZ, and a fortriori are
in S"h−142% /#.
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732 Hérau et al.

Let us apply the inequality of Fefferman–Phong, Lemma 8.1, in this class to
this operator. We get using (8.10–8.16) divided by Z and then multiplying by Z,

""42 + Z#wu% u# ≤ CRe ""pw − z#u% "1− .g#wu#+ CZ
(
92

1"0
2/&z&#wu% u

)

+C""42>#wu% u#+ Zh2Re "Rwu% u#% (8.17)

where h2R is of order h2"h−142#"4h1/3#−2 = h1/3 (recall that 4h1/3 is the uncertainty
parameter of /). Choosing h small enough and using (8.19) below gives

Zh2Rw ≤ 1
4
Z ≤ 1

2
"Z + 42#w%

and we therefore get for h small enough and another constant C,

""42 + Z#wu% u# ≤ CRe ""pw − z#u% "1− .g#wu#

+ CZ"92
1"0

2/&z&#wu% u#+ C""42>#wu% u#& (8.18)

We shall use

Lemma 8.2. We have
(
92

1"0
2/&z&#wu% u

)
≤ C

max"1%&z&2#*"pw − z#u*2 + Ch*u*2&

Let us suppose for a while that this lemma is proven. We first write that for .
sufficiently small,

Re ""pw − z#u% "1− .g#wu# ≤ C*"pw − z#u**u*&

Then we observe that 42 ≥ 0 and the Fefferman–Phong inequality in S"42% /# yields
"42#w ≥ −Ch4/3. Since Z > h, we have for h sufficiently small,

Z*u*2 ≤ 2""Z + 42#wu% u#& (8.19)

Then we use this result and the lemma which yields from (8.18) that

Z*u*2 ≤C*"pw − z#u**u*+Z
C

max"1% &z&2#*"p
w − z#u*2 +CZh*u*2 +C*"42>#wu**u*&

Choosing h sufficiently small and noticing that Z2 ≤ max"1% &z&2# yields the main
result of this section,

Z*u* ≤ C*"pw − z#u*+ C*"42>#wu*% (8.20)

where we recall that &z& > h and that Re "z# ≤ CZ
def= Ch2/3&z&1/3.

It remains to prove Lemma 8.2.

Proof of Lemma 8&2. We first observe that for &z& % %"1#, we have 92
1"0

2/&z&# =
0, since 0 ≥ 1 and the support of 91 is bounded. Therefore we can suppose that
&z& ≥ %"1#, since in the other case, the left member of the inequality in the lemma
is zero. To prove the result we can go back to the original metric dx2 + d(2/02.
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 733

We first notice that since p = %"02# we can choose the support of 91 (i.e., .1 in
(8.14)) such that

&p− z& ≥ &z&/2 on the support of 91&

We notice also that uniformly with respect to z, we have

"p− z#

&z& 91
02

&z& ∈ S

(
1%dx2 + d(2

02

)
&

We therefore have the following inequality in S
(
1%dx2 + d(2

02

)
:

92
1
02

&z& ≤ 4
&p− z&2
&z&2 92

1
02

&z&

≤ 4Re
"p− z#

&z& 91
02

&z&F
"p− z#

&z& 91
02

&z& + hR% (8.21)

where by the symbolic calculus, hR ∈ S"h0−1%dx2 + d(2/02# ⊂ S"h%dx2 + d(2/02#.
Using the Gårding inequality for this inequality, we get

(
92

1

(
02

&z&

)w

u% u

)
≤
∥∥∥∥

(
"p− z#

&z& 91
02

&z&

)w

u

∥∥∥∥
2

+ %"h#*u*2& (8.22)

We next use the symbolic calculus and get from (8.7) to first order and using the
notation from there

91
02

&z&F
p− z

&z& = 91
02

&z&

(
p− z

&z&

)
+ h

&z&R1

(
91

(
02

&z&

)
%p

)
& (8.23)

Now observe that uniformly in z ≥ %"1# we have

!

(
91

(
02

&z&

))
∈ S

(
0−1%dx2 + d(2

02

)
and !p ∈ S

(
0%dx2 + d(2

02

)
&

The first fact follows from !0 ∈ S"1%dx2 + d(2/02# and the second from (1.4).
Consequently we get a better estimate than the one that would be given by the
classical symbolic calculus in the class associated with the metric dx2 + d(2/02,
namely

R1

(
91

(
02

&z&

)
%p

)
∈ S

(
1%dx2 + d(2

02

)
&

Since &z& ≥ %"1#, we get that

h

&z&R1

(
91

(
02

&z&

)
%p

)
∈ S

(
h%dx2 + d(2

02

)
&
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734 Hérau et al.

Using this together with (8.22, 8.23) yields

(
92

1

(
02

&z&

)w

u% u

)
≤
∥∥∥∥

(
91

(
02

&z&

))w(p− z

&z&

)w

u

∥∥∥∥
2

+ "%"h#+ %"h2##*u*2& (8.24)

Since "91"0
2/&z&##w is bounded, we get the lemma. !

9. Resolvent Estimates Away from the Critical Points When z Is Small

We work again in this section with p satisfying (H2), (H3), (H4) and away from the
critical points, but for small z. Here the spectral parameter will be denoted hz for
z = %"1#. We recall some notations of the preceding section, namely

42 = p1 + "h0#2/3% / = dx2

h2/3
+ d(2

42
&

As in the preceding section, we fix . > 0 and work with our operator p satisfying
conditions (1.4–1.5). We can write, for u ∈ # ,

Re ""pw − hz#u% "1− .g#wu# = Re """1− .g#F"p− hz##w u% u#

= """p1 −Rehz#"1− .g#+ .h ,p2% g- /2+ .Re r#wu% u#%
(9.1)

following the same computations as in (8.10–8.16). We also get that

Re "1− .g#F"p− hz# = "p1 −Re hz#"1− .g#+ .h,p2% g-/2+ .Re r

≥ c42 − 2max"Re "hz#% 0#− 42>%
(9.2)

where > ∈ "#
0 is equal to 1 in a neighborhood of the critical points, and where

we recall that r ∈ S"h2/34% /# was defined in (8.9). Of course outside this fixed
neighborhood, and for h small enough, we have, using 4 ≥ h1/3,

42 > 2Re "hz#%

therefore with a new function >,

Re "p− hz#F"1− .g# ≥ c42

2
− 42>& (9.3)

We can now use the Fefferman–Phong inequality (Lemma 8.1). Indeed, each term
is in S"42% /# and we get

""42#wu% u# ≤ CRe ""pw − hz#u% "1− .g#wu#+ C""42>#wu% u#+Re "Rwu% u#% (9.4)

where R is of order h2 × 42 × "4h1/3#−2 = h4/3 from Lemma 8.1 (recall that 4h1/3 is
the uncertainty parameter of /). Choosing h small enough and noticing that

"42#w ≥ ch2/3
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 735

gives

ch2/3*u*2 ≤ ""42#wu% u## ≤ CRe ""pw − hz#u% "1− .g#wu#+ C""42>#wu% u#& (9.5)

We next write that for . sufficiently small,

Re ""pw − hz#u% "1− .g#wu# ≤ *"pw − hz#u**u*&

From this and (9.5) we get the main result of this section,

ch2/3*u* ≤ C*"pw − hz#u*+ C*"42>#wu*& (9.6)

10. Proof of Theorem 1.2

In this section we shall glue together all the results of the Sections 4, 6, 8 and 9. We
give the results here in the original variables and not on the FBI side.

In the following, we choose u ∈ # and we write U = Tu where T is the FBI–
Bargmann transform associated with the phase i"x − y#2/2. We also denote by P the
operator "=0p#w on the FBI side, where =0 is some "#

0 function equal to 1 in a very
large compact set (including the critical points).

Proof of (a). We suppose here that h&z& ≤ %"h#. Let us first recall the main result
(9.6) of Section 9:

h2/3*u* ≤ C*"pw − hz#u*+ C*"42>#wu*% (10.1)

where > is a cutoff function equal to 1 near the critical points. We choose once
and for all another cutoff function 9 equal to one in a larger neighborhood of the
critical points, so that 7>79 = 0. Then

h2/3*"1− 9#wu* ≤ C*"pw − hz#"1− 9#wu*+ C*"42>#w"1− 9#wu*&

Notice that "42>#w"1− 9#w = %"h## as a bounded operator in L2, since the supports
are disjoint. Moreover,

"pw − hz#"1− 9#w = "1− 9#w"pw − hz#+ h

2i
,9%p-w + %"h2#% (10.2)

where q
def= 1

2i,9%p- is a symbol with suppq ⊂ supp79, so that the support of q is
disjoint from the support of >. Hence

h2/3*"1− 9#wu* ≤ C*"1− 9#w"pw − hz#u*+ Ch*qwu*+ %"h2#*u*&

The L2-boundedness of "1− 9#w and the fact that h ≤ h2/3 give

h*"1− 9#wu* ≤ C*"pw − hz#u*+ Ch*qwu*+ %"h2#*u*& (10.3)

The main result of Section 6 on the FBI side states that

h*U*60
≤ *"P − hz#U*60

+ h5/6*"1− =#U*60
% (10.4)
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736 Hérau et al.

where = is an arbitrary cutoff function equal to 1 in a neighborhood of the critical
points. We can choose = equal to 1 in a neighborhood of supp9, where 9 is viewed
as a function on the FBI-side (i.e., 9 / ?−1, where ? is the canonical transform
associated with the FBI transform T ). With these notations we may write that > ≺
9 ≺ = ≺ =0 modulo a composition with ?. Coming back to the real side for the two
first terms of this inequality, and using the metaplectic invariance gives

h*u* ≤ *""=0p#w − hz#u*+ h5/6*"1− =#U*60
% (10.5)

and after replacing u by 9wu,

h*9wu* ≤ *""=0p#w − hz#9wu*+ h5/6*"1− =#T9wu*60
& (10.6)

Now we can treat the term *""=0p#w − hz#9wu* as in (10.2) and get rid of the term
=0 modulo a term of order h# and we get with the same q

h*9wu* ≤ *"pw − hz#u*+ h*qwu*+ %"h2#*u*+ h5/6*"1− =#T9wu*60
& (10.7)

We shall use the following standard lemma for which we briefly review the proof
at the end of this section.

Lemma 10.1. We have *"1− =#T9wu*60
= %"h##*u*.

We can therefore write

h*9wu* ≤ *"pw − hz#u*+ h*qwu*+ %"h2#*u*& (10.8)

Let us now glue together the results (10.3), (10.8) to get

h*"1− 9#wu*+ h*9wu* ≤ C*"pw − hz#u*+ Ch*qwu*+ %"h2#*u*& (10.9)

For the term Ch*qwu* we simply apply (10.1) with u replaced by qwu. This gives

h2/3*qwu* ≤ C*"pw − hz#qwu*+ *>wqwu*& (10.10)

Since > and q have disjoint support, we have >wqw = %"h## as an operator in L2.
Besides we have

"pw − hz#qw = qw"pw − hz#+ %"h#%

since q is with compact support. Therefore we get

h2/3*qwu* ≤ C*qw"pw − hz#u*+ Ch*u* ≤ *"pw − hz#u*+ Ch*u*% (10.11)

and eventually

h*qwu* ≤ *"pw − hz#u*+ Ch4/3*u*& (10.12)
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 737

Together with (10.9) this yields

h*"1− 9#wu*+ h*9wu* ≤ C*"pw − hz#u*+ %"h4/3#*u*% (10.13)

and using the triangle inequality *u* ≤ *"1− 9#wu*+ *9wu*,

h*u* ≤ C*"pw − hz#u*+ %"h4/3#*u*& (10.14)

Taking h small enough completes the proof of part (a) of the theorem. !

Proof of (b). In this section we suppose that &z& > h. We also denote in the
following

Z = &z&1/3h2/3&

We shall follow the proof of part (a). We first recall the main result (8.20) of
Section 8:

Z*u* ≤ C*"pw − z#u*+ C*"42>#wu*% (10.15)

where > is a cutoff function equal to 1 near the critical points. As in the preceding
section we choose once and for all another cutoff function 9 such that 9 2 >, and
we write

Z*"1− 9#wu* ≤ C*"pw − z#"1− 9#wu*+ C*"42>#w"1− 9#wu*&

As in (10.2), (10.3) we get

Z*"1− 9#wu* ≤ C*"pw − z#u*+ Ch*qwu*+ %"h2#*u*% (10.16)

where we recall q
def= 1

2i,9%p- is a symbol with support in 79.
We now recall the main result of Section 4 on the FBI side (see Equation (4.15)):

Z*U*60
≤ C"*"P − z#U*60

+ Z*"1− =#U*60
#% (10.17)

where = is an arbitrary cutoff function equal to 1 in a neighboorhood of the critical
points. We choose = 2 9 where 9 is viewed as a function on the FBI side. With
this notation we write as in the proof of (a) that > ≺ 9 ≺ = ≺ =0. Coming back to
the real side for the two first terms of this inequality, and using the metaplectic
invariance, gives

Z*u* ≤ C"*""=0p#w − z#u*+ Z*"1− =#U*60
#& (10.18)

Taking 9wu instead of u gives

Z*9wu* ≤ C
(
*""=0p#w − z#9wu*+ Z*"1− =#T9wu*60

)
& (10.19)

Now we can treat the term *"pw − z#9wu* as in (10.2) and we get with the same q

Z*9wu* ≤ C
(
*"pw − z#u*+ h*qwu*+ %"h2#*u*+ Z*"1− =#T9wu*60

)
& (10.20)
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738 Hérau et al.

Using Lemma 10.1 yields,

Z*9wu* ≤ C*"pw − z#u*+ Ch*qwu*+ %"h2#*u*+ Z%"h##*u*& (10.21)

Let us now combine (10.16), (10.21):

Z*"1− 9#wu*+ Z*9wu* ≤ C*"pw − z#u*+ Ch*qwu*+ %"h2#*u*+ Z%"h##*u*&
(10.22)

Now we can use (10.11) and we get with new constants

Z*"1− 9#wu*+ Z*9wu* ≤ C*"pw − z#u*+ %"h4/3#*u*+ %"h2#*u*+ Z%"h##*u*%
(10.23)

and the triangle inequality gives

Z*u* ≤ C*"pw − z#u*&

The proof of part (b) of the theorem is complete. !

Proof of Lemma 10&1. We have

*"1− =#T9wu*260
= "u% 9wT ∗"1− =#2T9wu# ≤ *u* *9wT ∗"1− =#2T9wu*%

where the adjoint T ∗ is w.r.t. the 60 inner product. We will show that T ∗"1− =#2T is
a pseudodifferential operator with Weyl symbol that is %"h## where "1− =#2 / ? and
all its derivatives vanish. Since 9 and "1− =# / ? have disjoint support, this shows
the result.

To simplify the notation we do the computations for T ∗=T . Recall that we
use the transform (3.1), with >"t% y# = i"t − y#2/2. The constant C in (3.1) is given
by 2−

n
2 A− 3n

4 . The function 60 equals −"Im t#2/2 and "= / ?#"x% (# = ="x − i(#. If we
write t = x − i(, then the kernel K"y% z# of T ∗=T is given by

K"y% z# = 2−n"Ah#−
3n
2

∫
e−i"x−y#·(/h−"x−y#2/"2h#+i"x−z#·(/h−"x−z#2/"2h#="x − i(#dx d(&

(10.24)

The phase function can be written as

i"y − z# · (
h
−
(
x − y + z

2

)2/
h− "y − z#2

4h
&

For the last term in this expression we have from a Fourier transformation

e−"y−z#2/"4h# = "Ah#−n/2
∫

ei"y−z#·"C−(#/h−"C−(#2/h dC&

Entering this in (10.24) we find that K"y% z# equals

2−n"Ah#−2n
∫

ei"y−z#·C/h−"x− y+z
2 #2/h−"C−(#2/h="x − i(#dx d(dC&
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 739

This formally equals a Weyl pseudodifferential operator with symbol

=̃"y% C# = "Ah#−n
∫

e−"y−x#2/h−"C−(#2/h="x − i(#dx d(&

It is clear that =̃ has the correct symbol property, and that =̃"y% C# = %"h## for "y% C#
such that "= / ?#"y% C# and all its derivatives vanish. This completes the proof. !

11. Asymptotic Expansion of the Eigenvalues

11.1. From A–Priori Estimates to the Resolvent

In the previous sections we obtained a priori estimates for z in a subset of (,
given by

*u* ≤ C*"P − z#u*% ∀u ∈ # "!n#& (11.1)

We will show that such estimates imply the existence of the resolvent of P.
We will first establish this for one particular value of z. For this purpose we

will use some functional analysis, and results given in Section 5.2 of Hellfer and
Nier (2005). Following Hellfer and Nier (2005) we define P + &"P# → L2"!n# with
domain &"P# = "#

0 "!
n#. We let P be its closure (further on we will simply write P

instead of P but for the moment we keep the distinction).
We show that # "!n# ⊂ &"P#. This follows if for u ∈ # "!n# there is a

sequence uj ∈ "#
0 "!

n# with uj → u in L2"!n# and Puj → Pu in L2"!n#. Such a
sequence is given by uj = =" x

j
#u"x#, where = ∈ C#

0 "!
n% ;0% 1:# is equal to 1 on a

neighborhood of 0. We have Puj = =" ·
j
#Pu+ ;P% =" ·

j
#:u → Pu, since the symbol of

the commutator tends to zero in S"0% /0#. By the definition of P we have that in fact
# "!n# is dense in &"P#.

Next we establish the existence of the resolvent for at least one value z0 in
the left complex half plane, when there is a real 00 such that P + 00 is maximally
accretive. For the Kramers–Fokker–Planck operator, this property is established in
proposition 5.5 of Hellfer and Nier (2005) with 00 = 0.

Proposition 11.1. Assume that P + 00 is maximally accretive. Then there is 01 > 00
such that "P + 01#

−1 exists and is a bounded operator on L2"!n#.

Proof. The accretivity of P + 00 means that ""P + 00#u% u# ≥ 0 for each u ∈ &"P#.
It follows that for each 0 > 00 we have

*"P + 0#u**u* ≥ ""P + 00#u% u#+ "0− 00#*u*2 ≥ "0− 00#*u*2% u ∈ &"P#%

hence

*u* ≤ "0− 00#
−1*"P + 0#u*% u ∈ &"P#& (11.2)

Hence P + 0 is injective.
Suppose now that there is a sequence uj ∈ # "!n# such that "P + 0#uj → v in

L2"!n# for some v ∈ L2"!n#. Denote vj = "P + 0#uj . Then by the estimate (11.2) it
follows that *uj − uk* → 0% j% k → #, hence uj converges to an element u in L2"!n#.
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740 Hérau et al.

Now "uj% vj# ∈ graph"P# and uj → u% vj → v in L2"!n#. Therefore the range *"P#
is closed. Theorem 5.4 of Hellfer and Nier (2005) and the fact that P is maximally
accretive imply that for some 01 > 00, the range of P + 01 is also dense in L2"!n#. It
follows that P + 01 is surjective, that the inverse "P + 01#

−1 exists, and that its norm
is bounded by 1

01−00
. !

Remark 11.2. Alternatively we could use the following additional properties

*u* ≤ C*"P∗ − z̄#u*% ∀u ∈ # "!n#% (11.3)

u ∈ L2"!n#% "P − z#u ∈ # "!n# ⇒ u ∈ # "!n#& (11.4)

(Here we let &"P# = ,u ∈ L2"!n#3Pu ∈ L2"!n#-.) The first property is similar to
the a priori estimate (11.1). The second property can for example be derived
from hypoelliptic estimates in a chain of weighted Sobolev spaces as given for the
Kramers–Fokker–Planck case in Theorem 3.1d) of Hérau and Nier (2004) (a result
valid under somewhat different conditions than used here). In short the argument
using (11.4) goes as follows. A standard argument estimate (11.3) and the Hahn–
Banach theorem imply the surjectivity of P − z. If u ∈ &"P# and "P − z#u = 0, then
(11.4) implies that u ∈ # "!n# and (11.1) that u = 0. Hence P + &"P# → L2"!n# is
injective, and "P − z#−1 + L2 → L2 is bounded and *"P − z#−1* ≤ C. One can also
show that under these assumptions # "!n# is dense in &"P# for the graph norm.

From now on we simply write P instead of P. To obtain the resolvent, we
consider an abstract situation. Let P + L2"!n# → L2"!n# be a closed operator and
assume (as we established above) that

# "!n# is dense in &"P#& (11.5)

Since &"P# has the norm *u*&"P# = *u*+ *Pu*, this means that for every u ∈ &"P#,
there is a sequence uj ∈ # , j = 1% 2% & & & , such that uj → u and Puj → Pu in L2.

Let ' ⊂ ( be a connected open set. Let z0 ∈ ' and assume that

"z0 − P#−1 + L2 → &"P# exists, (11.6)

*u* ≤ CK*"P − z#u*% ∀u ∈ # % z ∈ K% (11.7)

for every K ⊂⊂ '.

Proposition 11.3. Under these assumptions, "z− P#−1 exists for every z ∈ '.

Proof. Using (11.5), we see that the a priori estimate in (11.7) extends to all
u ∈ &"P#. In particular, z− P + &"P# → L2 is injective for z ∈ ', so it remains to
show that z− P is surjective. If "z1 − P#−1 exists for some z1 ∈ K ⊂⊂ ', then (11.7)
(extended to &"P#) implies that *"z1 − P#−1* ≤ CK . Hence *"z− z1#"z1 − P#−1* < 1
for &z− z1& < 1/CK , and we conclude that z− P + &"P# → L2 has a right inverse of
the form "z1 − P#−1"1+ "z− z1#"z1 − P#−1#−1. If in addition, z ∈ ', this right inverse
is equal to the resolvent.

If z ∈ ' is any given point, we take a smooth curve $ in ' from z0 to z,
and cover $ by finitely many discs D"zj% r#, j = 0% 1% 2% & & & %M , such that r < 1/C$,
zj+1 ∈ D"zj% r#. Hence "z− P#−1 exists. !
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 741

The same result is valid for Grushin problems. We keep the initial hypothesis
about P. Let R− + (N0 → L2, R+ + &"P# → (N0 be bounded and for simplicity
independent of z. Put

+"z# =
(
P − z R−
R+ 0

)
+ &"P#×(N0 → L2 ×(N0 & (11.8)

Assume still that (11.6) holds for some z0 ∈ '. Instead of (11.7), we assume

*u*+ &u−& ≤ CK"*"P − z#u+ R−u−*+ &R+u&#% z ∈ K% u ∈ # % u− ∈ (N0% (11.9)

for every K ⊂⊂ '. (Again, this extends to the case u ∈ &"P#.)

Proposition 11.4. Under the above assumptions, +"z# has a bounded inverse for
every z ∈ '.

Proof. As before, we notice that (11.9) implies that

*u*&"P# + &u−& ≤ CK"*"P − z#u+ R−u−*+ &R+u&#% u ∈ &"P#% u− ∈ (N0% z ∈ K%
(11.10)

with a new constant CK , so +"z# is injective for all z ∈ '.
For z = z0, "P − z0# + &"P# → L2 has a bounded inverse and is therefore a

Fredholm operator of index 0. Hence

Q +=
(
P − z0 0

0 O

)
+ &"P#×(N0 → L2 ×(N0

is Fredholm of index 0 and +"z0# has the same property, being a finite rank
perturbation of Q. Being injective by (11.9), it is bijective, and as in the preceding
proof, we see that +"z#−1 exists for all z ∈ ' with &z− z0& < 1/CK if z0 ∈ K. By the
same procedure as above, we get the result. !

11.2. Grushin Problem in the Quadratic Case

Let P0 be a quadratic operator on L2"!n#, so that P0 has the Weyl symbol∑
&1+2&=2 a1%2x

1(2 that we also denote by P0"x% (#. (We can also add a constant to our
symbol, but we shall avoid for simplicity to have linear terms in the symbol.) As in
Sjöstrand (1974), we assume that P0 is elliptic away from (0,0):

P0"x% (# )= 0% "x% (# ∈ !2n \ ,"0% 0#-& (11.11)

When n > 1 this implies that P0"!2n# is a proper cone in (, and when n = 1 we
assume that so is the case. Then P0 is a closed operator + L2 → L2 with domain
&"P0# = 0"x%D#1−2"L2# and the assumption (11.5) is fulfilled. P0 has a discrete
spectrum, and the eigenvalues are computed in Sjöstrand (1974) as recalled in
Section 5. They are contained in P0"!2n#.
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742 Hérau et al.

Let 00 ∈ ( be such an eigenvalue and let E00
⊂ &"P0# be the corresponding

space of generalized eigenvectors. Let e1% & & & % eN0
be a basis for E00

and let
f1% & & & % fN0

∈ # "!n# have the property that

det""ej&fk## )= 0& (11.12)

A possibly natural choice would be to let f1% & & & % fN0
be the dual basis in the space

E∗
0̄0

of generalized eigenvectors of P∗, associated with the eigenvalue 0̄0.
Put

R−u− =
∑

u−"j#ej% R+u = ""u&fj## ∈ (N0%

for u− = "u−"j## ∈ (N0 . For 0 ∈ neigh"00#, the problem

"P0 − 0#u+ R−u− = v% R+u = v+% (11.13)

has a unique solution "u% u−# ∈ &"P0#, for every "v% v+# ∈ L2 ×(N0 . In fact, let 5 +
L2 → E00

be the spectral projection and decompose u = u′ + u′′, v = v′ + v′′, with
u′′ = 5u, u′ = "1−5#u and similarly for v. Then the equation for u′ is "P0 − 0#u′ =
v′ and determines u′ ∈ &"P# uniquely. u′′ is completely determined by the condition
R+u

′′ = v+ − R+u
′, thanks to the assumption (11.12). Finally u− is determined by

R−u− = v′ − "P0 − 0#u′.
If we introduce the solution operator

, =
(
E E+
E− E−+

)
% by

(
u
u−

)
= ,

(
v
v+

)
%

then we also know that
(
@2−k

0 1

)
,
(
@k 0
0 1

)
is bounded (11.14)

for every k ∈ !, when @ = 0"x%D#1. We also notice that if M"0# denotes the matrix
of "0− P0#&E00

with respect to the basis e1% & & & % eN0
, then

E−+"0# = M"0#""ek&fj##−1& (11.15)

We now choose P0 as in Proposition 5.1, acting on H60
.
, where 60

. is a quadratic
form with @60

.
= ?T "@.G0# and G0 is a real quadratic form chosen as in 5.3. Here

. > 0 is small and fixed, and the earlier assumptions are fulfilled with the real phase
space replaced by @60

.
. As in Section 5 we now work with the h-quantization. Then

if 00 is an eigenvalue of the (h = 1) quantization, we get the well-posed Grushin
problem

"P0 − hz#u+ R−u− = v% R+u = v+% (11.16)

for z in some fixed neighborhood of 00. Here, we take

R+u"j# = "u&fj%h#L2
60
.

% R−u−
∑

u−"j#ej%h% (11.17)

D
ow

nl
oa

de
d 

by
 [U

V
A

 U
ni

ve
rs

ite
its

bi
bl

io
th

ee
k 

SZ
] a

t 0
2:

23
 0

8 
Ja

nu
ar

y 
20

13
 



Semiclassical Analysis for Kramers–Fokker–Planck Equation 743

with fj%h"x# = h− n
2 fj"

x√
h
#, and similarly for ej%h, so that

R+ = %"1# + L2
6.

0
→ (N0% R− = %"1# + (N0 → H6.

0
%

uniformly, when h → 0. More precisely, we have (cf. Proposition 5.1):

Proposition 11.5. For every "v% v+# ∈ H6.
0
×(N0 , the problem "11&16# has a unique

solution in the same space, and the solution satisfies d2u ∈ L2
6.

0
. Moreover, for every

fixed k ∈ !, we have the a priori estimate

h

∥∥∥∥

(
1+ d2

h

)1−k

u

∥∥∥∥+ &u−& ≤ C

(∥∥∥∥

(
1+ d2

h

)−k

v

∥∥∥∥+ h&v+&
)
& (11.18)

Proof. When h = 1, we simply translate the earlier result for (11.13) into a result
for (11.16) and get the estimate

*"1+ d2#1−ku*+ &u−& ≤ C"*"1+ d2#−kv*+ &v+&#& (11.19)

Now consider (11.16) for other values of h, and indicate the h-dependence by means
of super/subscripts. Let Uf"x# = h

n
2 f"

√
hx#, so that U is unitary: H6.

0%h
→ H6.

0%1
.

We further have

UPh
0 = hP1

0U% URh
− = R1

−% Rh
+ = R1

+U%

and the problem (11.16) (with general h) can be transformed into

h"P1
0 − z#Uu+ R1

−u− = Uv% R1
+Uu = v+% (11.20)

that we write as

"P1
0 − z#hUu+ R1

−u− = Uv% R1
+hUu = hv+& (11.21)

Applying (11.19) to this system, we get

h*"1+ d2#1−kUu*+ &u−& ≤ C"*"1+ d2#−kUv*+ h&v+&#&

Here

d"x#Uu"x# = U

(
d

(
x√
h

)
u"x#

)
= U

(
d"x#√

h
u"x#

)
%

and using the unitarity of U , we get (11.18). !

We can rewrite (11.18) equivalently as

*"h+ d2#1−ku*+ h−k&u−& ≤ C"*"h+ d2#−kv*+ h1−k&v+&#& (11.22)

In the following, it will be convenient to replace the fj in the definition of R1
+ by

=kfj , where =R"x# = =" x
R
# for some sufficiently large R > 0. Correspondingly, fh

j is
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744 Hérau et al.

replaced by =R"
x√
h
#fh

j . This will be only a small modification of Rh
+ and affects the

well-posedness of neither (11.16) nor the estimates (11.18), (11.22).
Mimicking Proposition 5.2, we have

Proposition 11.6. Let =0 ∈ C#
0 "(

n# be fixed and = 1 near x = 0, and fix k ∈ !. Then
for z in a neighborhood of 00, independent of k, we have the following estimate for the
problem (11.16) in H6.

0
(for . > 0 small and fixed and for h sufficiently small):

*"h+ d2#1−k=0u*+ h−k&u−& ≤ C"*"h+ d2#−k=0v*+ h1−k&v+&+ h
1
2 *1Ku*#% (11.23)

where K is any fixed neighborhood of supp =0.

Proof. Let 5 denote the orthogonal projection onto the holomorphic functions as
in Section 5. Applying 5=0 to the first equation in (11.16), we get, after some simple
calculations (using also that 5R− = R−, u = 5u),

"P0 − hz#5=0u+ R−u− = 5=0v+ ;P0%5=0:u+5"1− =0#R−u−%

R+5=0u = v+ − R+"1− =0#u− R+"1−5#=0u&
(11.24)

Here (5.29) tells us that

*"h+ d2#−k;P0%5=0:u* ≤ %"h#*1Ku*&

Since the ej decay exponentially and "h+ d2#−k5"h+ d2#k is uniformly bounded in
our weighted L2 space, it is also clear that

*"h+ d2#−k5"1− =0#R−u−* ≤ %"h##&u−&%

and since =fj has compact support, we have R+"1− =0# = 0, when h > 0 is small
enough. We also have &R+"1−5#=0u& ≤ %"h##*1Ku*. Applying this and (11.22) to
the problem (11.24), we get

*"h+ d2#1−k5=0u*+ h−k&u−& ≤ *"h+ d2#−k5=0v*+ %"h#*1Ku*+ %"h##&u−&
+ h1−k&v+&+ %"h##*1Ku*& (11.25)

According to (5.24), we have

*"h+ d2#1−k"1−5#=0u* ≤ %"h
1
2 #*1Ku*%

and using this and

*"h+ d2#−k5=0v* ≤ C*"h+ d2#−k=0v*

in (11.25), we get (11.23). !

Remark 11.7. Return to the case h = 1 and choose P0 as after the equation (11.15).
Since P0 is elliptic on @60

.
for 0 < . ≤ .0 with .0 small enough, an easy deformation

argument shows that the spectrum of P0 on H60
.
is independent of ., and similarly
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 745

for the generalized eigenvectors. The aim of this remark is to show that there exists
a * > 0 such that the generalized eigenvectors ej satisfy

ej ∈ H60
0−*&x&2& (11.26)

Rather than using deformation arguments as elsewhere in this paper, we shall
employ the alternative method of Fourier integral operators with complex phase,
and more precisely we shall study the evolution equation associated with P0.

Let us first recall some elementary facts from complex symplectic geometry
(as in Sjöstrand, 1996 and further references given there): On (n

x ×(n
( , we have

the complex symplectic "2% 0#-form < =∑n
1 d(j ∧ dxj and the real symplectic forms

Re<, −Im<. If t is a vector field on (2n of type (1,0), we let t̂ = t + t̄ be the
associated real vector field. Then if f is a holomorphic function, we let Hf denote the
Hamilton field (of type (1,0)) with respect to < and if g is a real-valued C1-function,
we let HRe<

g , H−Im<
g denote the Hamilton field of g with respect to Re< and −Im<

respectively. Then we have the relations

Ĥf = HRe<
Ref = −H−Im<

Imf % Ĥif = −HRe<
Imf = −H−Im<

Ref &

Using Fourier integral operators with quadratic phase in the complex domain,
we see that if 0 ≤ t ≤ t0, and u0 ∈ H60

, with 60 = 60
0, then we can solve the heat

equation

!

!t
u"t% x#+ P0u"t% x# = 0% u"0% x# = u0"x#%

and the solution operator e−tP0 is bounded H60
→ H6t

, where

@6t
= exp "tĤ 1

i P0
#"@60

# = exp
(
tH−Im<

ReP0

)
"@60

#& (11.27)

We further have the eikonal equation for 6"t% x# = 6t"x#:

!6

!t
+ReP0

(
x%

2
i

!6

!x

)
= 0% (11.28)

corresponding to the manifold

8 = !6

!t
% ( = 2

i

!6

!x
%

in !2
t%8 ×(2n

x%(, which is Lagrangian for the symplectic form d8 ∧ dt − Im<. (To get
(11.28) at least formally, differentiate *u"t% &#*2H6"t%&#

with respect to t.) Since ReP0 is
constant along the flow of H−Im<

ReP0
, we know that ReP0&@6t

≥ 0, so (11.28) shows that
!6
!t

≤ 0 and hence that

t 7→ 6t"x# is decreasing& (11.29)

Let L0 ⊂ @60
be the subspace, defined by ReP0 = 0, and notice that ReP0 ∼

dist"·%L0#
2 on @60

. In general, if f is a smooth function on an IR-manifold @, and
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746 Hérau et al.

f̃ denotes an almost holomorphic extension of f to a neighborhood of @, then at
the points where df is real, the Hamilton field H<@

f of f with respect to the real
symplectic form <@ = <&@ is equal to Ĥf̃ . Applying this to f = 1

i
P0, we get at the

points of L0:

Ĥ 1
i P0

= H
<@60
ImP0

&

Let Lt = exp "tĤ 1
i P0

#"L0# (cf (11.27)). Since H
<@60
ImP0

is transversal to L0 away from 0,
we deduce that t 7→ 5x"Lt# moves transversally to 5x"L0# away from 0 and since by
(11.28),

!6

!t
∼ −dist"x%5x"Lt##

2%

we conclude that for small t

6t"x# ≤ 60"x#−
t3

C
&x&2& (11.30)

If ej is an eigenvector of P0: P0ej = 0jej , 0j ∈ (, we first recall that ej ∈ H60+.&x&2 for
every . > 0, and conclude that e−tP0ej ∈ H6t+.&x&2 for every . > 0. On the other hand,
e−tP0ej = e−t0j ej , so ej = et0j e−tPej ∈ H6t+.&x&2 for every . > 0. Taking t > 0 small but
fixed, we then obtain (11.26) from (11.30). If 0j is a multiple eigenvalue , we also
have to take into account the possible Jordan blocks in the action of P0 on the
corresponding generalized eigenspace, but this only requires minor modifications in
the argument and we get (11.26) in general.

11.3. Estimate for the Semiglobal Problem

We now consider the situation in Section 6. P is now an h-pseudodifferential
operator acting in H6 = H6.

, and we define R+ = Rh
+, R− = Rh

− as in the preceding
subsection. As in Section 6, P0 is now the quadratic approximation of P at "0% 0#
and we shall use the fact that 6. = 60

. for &x& ≤
√
Ah for A > 1. Recall the estimate

(11.23) for solutions to (11.16) (for P0 and with norms in H60
.
#).

Again, we want to replace the fixed cutoff =0 in (11.23) by =0"
x√
Ah
# and consider

the change of variables x =
√
Ahx̃, hDx =

√
Ahh̃Dx̃, h̃ = 1/A.

P0"x%hDx3h# =
h

h̃
P0"x̃% h̃Dx̃3h# =+

h

h̃
P̃0%

and with d = d"x#, d̃ = d"x̃#:

h+ d2 = h

h̃
"h̃+ d̃2#% e−260"x#/h = e−260"x̃#/h̃%

and we relate our unknown functions by the unitary relation

u"x# = "Ah#−
n
2 ũ"x̃#% h

n
2 u"x# = h̃

n
2 ũ"x̃#& (11.31)
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 747

With these substitutions, the problem (11.16) becomes

h

h̃
"P̃0 − h̃z#ũ+ R̃−u− = ṽ% R̃+ũ = v+% (11.32)

and we can apply (11.23) to this new problem. A straightforward calculation gives

*"h+ d2#1−k=0

(
x√
Ah

)
u*+ h−k&u−&

≤ C

(∥∥∥∥"h+ d2#−k=0

(
x√
Ah

)
v

∥∥∥∥+ h1−k&v+&+
1√
A

∥∥∥∥"h+ d2#1−k1K

(
x√
Ah

)
u

∥∥∥∥

)
&

(11.33)

This estimate will be applied with k = 1/2.
We now return to the full operator P (on the FBI side) and the norms and

scalar products will now be with respect to e−26/hL"dx#, 6 = 6., with . > 0 small
and fixed. Recall, however, that 6 = 6.

0 in &x& ≤
√
Ah. We consider the semiglobal

Grushin problem

"P − hz#u+ R−u− = v% R+u = v+% (11.34)

in some fixed bounded open set containing the (projections of the) critical points.
For simplicity, we assume that the critical set is reduced to a single point,
corresponding to x = 0. Let = ∈ C#

0 be equal to 1 near 0.
Notice that by Remark 11.7, e−6/hR−u− is exponentially small away from any

fixed neighborhood of x = 0. Apply (6.14) with "P − hz#u = v− R−u−:

*@u*2 ≤ C ′Re "=v&u#+ C*@−1R−u−**@u*

+ C

(
=20

(
x√
Ah

)
@u&@u

)
+ C*"1− =#@u**@u*& (11.35)

Here @ was defined in (6.13). Using Remark 11.7 it is easy to check that

*@−1R−u−* ≤ C√
h
&u−&% (11.36)

and (11.35) becomes

*@u*2 ≤ C

(
*@−1v**@u*+ 1√

h
&u−&*@u*+

∥∥∥∥@=0

(
x√
Ah

)
u

∥∥∥∥
2

+ *"1− =#@u**@u*
)
&

(11.37)

Apply “2ab ≤ 1a2 + 1−1b2” with suitable 1’s to the first, second, and fourth terms
of the right-hand side and bootstrap away the *@u*2 terms. After removing the
squares, we get

*@u* ≤ C

(
*@−1v*+ 1√

h
&u−&+

∥∥∥∥@=0

(
x√
Ah

)
u

∥∥∥∥+ *"1− =#@u*
)
& (11.38)
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748 Hérau et al.

Apply (11.33) (for the Grushin problem for P0) with k = 1/2:

∥∥∥∥@=0

(
x√
Ah

)
u

∥∥∥∥+ h−1/2&u−&

≤ C

(∥∥∥∥@
−1=0

(
x√
Ah

)
v

∥∥∥∥+
∥∥∥∥@

−1=0

(
x√
Ah

)
"P − P0#u

∥∥∥∥+ h
1
2 &v+&

+ 1√
A

∥∥∥∥@1K

(
x√
Ah

)
u

∥∥∥∥

)

≤ C

(∥∥∥∥@
−1=0

(
x√
Ah

)
v

∥∥∥∥+ C"A#h
1
2 *@u*+ h

1
2 &v+&+

1√
A

∥∥∥∥@1K

(
x√
Ah

)
u

∥∥∥∥

)
%

where we used (6.16), to get the last estimate. Use this estimate in (11.38) after
adding h−1/2&u−& to both sides:

*@u*+ h− 1
2 &u−& ≤ C

(
*@−1v*+ C"A#h

1
2 *@u*+ h

1
2 &v+&

+ 1√
A
*@1K

(
x√
Ah

)
u*+ *"1− =#@u*

)
%

and choosing first A large enough and then h > 0 small enough, we get the basic a
priori estimate for the problem (11.34):

*@u*+ h− 1
2 &u−& ≤ C

(
*@−1v*+ h

1
2 &v+&+ *"1− =#@u*

)
& (11.39)

11.4. The Global Grushin Problem

Now let P be as in Theorem 1.2. Applying the inverse FBI transform we have
the obvious analogue of the Grushin problem and for that problem, we still have
(11.39) provided that we define @ to be a suitable h-pseudodifferential operator
whose symbol is equivalent to "h+min"d2% "Ahd#2/3##1/2, and interpret = as a
pseudodifferential cutoff. From (11.39), we get the weaker estimate

h*9wu*+ &u−& ≤ C"*v*+ h&v+&+ h5/6*"1− =#9wu*#% (11.40)

analogous to (10.7). This leads to

h*9wu*+ &u−& ≤ C"*v*+ h&v+&+ h*qwu*+ %"h2#*u*#% (11.41)

which is analogous to (10.8). On the other hand, we have (10.3), and as in Section
10, we finally get the global a priori estimate (analogous to (10.14)):

h*u*+ &u−& ≤ C"*v*+ h&v+&#& (11.42)

We are therefore exactly in the situation of the beginning of this section and
from Proposition 11.4 we get that the Grushin problem is well-posed.
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 749

11.5. Asymptotics for E−+ and for the Eigenvalues

For simplicity, we continue to assume that " is reduced to a single point, "0% 0#. We
may assume that the global Grushin problem for the original operator P, considered
in the preceding subsection, is of the form

"P − hz#u+ R−u− = v% R+u = v+% (11.43)

where z varies in a fixed neighborhood of an eigenvalue 00 ∈ (, of the quadratic
approximation P0 (with h = 1) of P at "0% 0#, and where

R−u− =
N0∑

j=1

u−"j#e
h
j "x#% R+u"j# = "u&fh

j "x##& (11.44)

Here

ehj "x# = h− n
4 ej

(
x√
h

)
% fh

j "x# = h− n
4 fj

(
x√
h

)
% (11.45)

and e1% & & & % eN0
form a basis for the generalized eigenspace E00

of P0, associated with
00. It is well known that we may take ej of the form

ej"x# = pj"x#e
i60"x#% (11.46)

where pj is a polynomial and 60"x# is a complex quadratic form such that @60
=

,"x%6′
0"x##- is the stable outgoing manifold @0 for the 1

i
HP0

-flow, and (by Remark
11.7) we know that

Im60 is positive definite. (11.47)

We may assume that the fj have an analogous form:

fj"x# = qj"x#e
iD0"x#% (11.48)

with qj polynomial and D0 a quadratic form with ImD0 positive definite.
Let @± be the stable outgoing (+) and incoming (−) manifolds through "0% 0#

for the 1
i
Hp-flow, where p is the principal symbol of P. Then @± are complex

Lagrangian manifolds defined to infinite order at "0% 0# and @0
+ = T"0%0#@+. Let

? be a complex canonical transformation: neigh""0% 0#3(2n# → neigh ""0% 0#3(2n#,
mapping ,( = 0- to @+ and ,x = 0- to @−. Let U be a formal elliptic Fourier
integral operator of order 0 quantizing ?, and consider

U−1PU += P̃%

whose symbol is well-defined mod %""x% (## + h##. The principal symbol p̃ of P̃
then vanishes on ,x = 0- and on ,( = 0- and therefore takes the form

p̃ =
∑

&1&=&2&=1

a1%2"x% (#x
1(2& (11.49)
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750 Hérau et al.

Using for simplicity the classical quantization of symbols, we get

P̃ =
∑

&1&=&2&=1

a1%2"x%hD#x1"hD#2 + ha"x%hD3h#% (11.50)

where a is a classical symbol of order 0. (We are now working with formal Taylor
series at "x% (# = "0% 0#.)

Put

+m
hom =

{ ∑

&1&=m

b1

(
x√
h

)1}
& (11.51)

Here b1 will in general be functions of h. When they are not, we say that∑
&1&=m b1

(
x√
h

)1 is homogeneous of order 0 in h (or even independent of h, with x/
√
h

viewed as independent variables). Then in the obvious way,

(
x√
h

)$

"
√
hD#* + +m

hom → +m+$−*
hom

is homogeneous of degree 0 in h.
Write

1
h
P̃ =

∑

&1&=&2&=1

a1%2"x%hD#

(
x√
h

)1

"
√
hD#2 + a"x%hD3h#& (11.52)

Write a ∼∑#
0 hjaj and Taylor expand a"x%hD3h# at "0% 0#:

a"x%hD3h# =
#∑

j=0

∑

$%*

hj+ &*&
2 + &$&

2
a"$#
j"*#"0% 0#

$!*!

(
x√
h

)*

"
√
hD#$& (11.53)

If &*& − &$& = k ∈ Z, then &$&+ &*& = &k&+ 2min"&*&% &$&#, so the general term in the
last sum can be written

hj+ &k&
2 +min"&$&%&*&# a

"$#
j"*#"0% 0#

$!*!

(
x√
h

)*

"
√
hD#$&

In conclusion the block matrix of

a"x%hD3h# +
#⊕

0

+m
hom →

#⊕

0

+m
hom%

is "h
&j−k&
2 Aj%k#, where Aj%k =

∑#
H=0 A

H
j%kh

H, and AH
j%k + +

k
hom → +j

hom is homogeneous of
degree 0. (We then say that Aj%k is a classical symbol of order 0.)

The same discussion applies to a1%2"x%hD# and hence also to h−1P̃, whose
matrix is

(
h

&j−k&
2 Pj%k

)
% Pj%k =

#∑

H=0

PH
j%kh

H% (11.54)
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 751

where PH
j%k + +

k
hom → +j

hom is homogeneous of degree 0. The leading part of h−1P̃ is
given by

1
h
P̃0 +=

∑

&1&=&2&=1

a1%2"0% 0#
(

x√
h

)1

"
√
hD#2 + a0"0% 0#%

in the following sense: h−1P̃0 has a block diagonal matrix in
⊕#

0 +m
hom, and P0

j%j is
equal to the restriction of h−1P̃0 to +j

hom.
Now we shall exploit that the exponent &j − k&/2 in (11.54) is an integer precisely

when j and k have the same parity. We therefore introduce

-e =
#⊕

0

+2k
hom% -o =

#⊕

0

+2k+1
hom & (11.55)

Then h−1P̃ + -e ⊕ -o → -e ⊕ -o has the block diagonal matrix
(
Pe%e% Pe%o

Po%e Po%o

)

% (11.56)

where Pe%e%Po%o%h
−1/2Pe%o%h

−1/2Po%e are classical symbols of order 0.
The Grushin problem for P̃ that we obtain from (11.43) is

"P̃ − hz#u+ R̃−u− = v% R̃+u = v+% (11.57)

with

R̃− = U−1R−% R̃+ = R+U& (11.58)

We want to decompose R̃± into even and odd degrees.
Return to P%P0 and notice that ;P0% I: = 0, where I is the involution I"u#"x# =

u"−x#. Consequently, E00
is invariant under I and splits into Ee

00
⊕ Eo

00
, with I = 1

on Ee
00
and I = −1 on Eo

00
. Let the corresponding dimensions be Ne, No, so that N0 =

Ne + No. We may assume that ej is even for 1 ≤ j ≤ Ne and odd for Ne + 1 ≤ j ≤ N0,
and we may choose fj with the same properties. Then pj"x#% qj"x# are even when
1 ≤ j ≤ Ne and odd otherwise.

Now write

ehj "x# = h− n
4−

mj
2 aj"x3h#e

i
60"x#

h % (11.59)

where

aj ∼
#∑

H=0

aH
j"x#h

H and aj"x# = %"&x&"mj−2H#+#% (11.60)

and actually, aj"x3h# = hmj/2pj"x/
√
h#, with mj = dopj . mj is even when 1 ≤ j ≤ Ne

and odd otherwise. Assume to fix the ideas that j ≤ Ne. Then

U−1"ehj # = h− n
4−

mj
2 ãj"x3h#e

i F"x#h % (11.61)
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752 Hérau et al.

where ãj satisfies (11.60). Moreover,

F"x# = %"x3#% (11.62)

since @60
is tangent to @6 so that @F is tangent to ,( = 0-.

Taylor expanding ãj and eiF/h =∑#
0 "iF"x##

k/"k!hk#, we see that

h
n
4U−1"ehj # ∈

#⊕

0

+m
hom% (11.63)

and when m is even, the component in +m
hom is a classical symbol of order 0 (and

the order tends to −# like −m/2, when m → #), while the component in +m
hom

is of order h1/2, when m is odd). The case j ≥ Ne + 1 is treated similarly, and we
conclude that

R̃− =
(
R̃ee

− R̃eo
−

R̃oe
− R̃oo

−

)

+ (Ne ⊕(No → -e ⊕ -o% (11.64)

where hn/4R̃ee
− , h

n/4R̃oo
− , hn/4−1/2R̃eo

− , h
n/4−1/2R̃oe

− are classical symbols of order 0.
Next, we do the same work with R̃+ and start from

R̃+u"j# = "u&tU"fj%h##& (11.65)

Possibly after a slight perturbation of D , we may assume that

tU"fj%h# = h− n
4 h− m̃j

2 b̃j"x3h#e
i
hG"x#% (11.66)

where m̃j , b̃j have the same properties as mj% ãj above, and m̃j is even for 1 ≤ j ≤
Ne and odd otherwise. Moreover detG′′"0# )= 0, and the scalar product in (11.65)
should be computed as a formal stationary phase integral. In doing so, we apply the
complex Morse lemma (to # order at x = 0) to reduce G to a quadratic form. If 1 is
a formal diffeomorphism with 1"0# = 0, and Au = 1∗u = u / 1, then A +

⊕#
0 +m

hom →⊕#
0 +m

hom has the same block matrix structure as h−1P̃ in (11.54). From these facts,
we get

R̃+ =
(
R̃ee

+ R̃eo
+

R̃oe
+ R̃oo

+

)
+ -e ⊕ -o → (Ne ⊕(No % (11.67)

where h−n/4R̃ee
+ , h

−n/4R̃oo
+ , h−n/4−1/2R̃eo

+ , h
−n/4−1/2R̃oe

+ are classical symbols of order 0.
Consider the rescaled problem which is equivalent to (11.57):

(
1
h
P̃ − z

)
u+ h

n
4 R̃−u− = v% h− n

4 R̃+u = v+% (11.68)

or in matrix form

+̃"z#

(
u
u−

)
=
(
v
v+

)
&
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 753

Let

, =
(
Ẽ Ẽ+

Ẽ− Ẽ−+

)

+
#⊕

0

+m
hom ⊕(N0 →

#⊕

0

+m
hom ⊕(N0

be the inverse. Decomposing

+̃"z# =
(
+̃ee +̃eo

+̃oe +̃oo

)

+ "-e ⊕(Ne#⊕ "-o ⊕(No# → "-e ⊕(Ne#⊕ "-o ⊕(No#%

where +̃ee, +̃oo, h− 1
2 +̃ , h− 1

2 +̃ are classical symbols of order 0, we get the same
decomposition for ,"z#. In particular,

Ẽ−+"z# =
(
Ẽee

−+ Ẽeo
−+

Ẽoe
−+ Ẽoo

−+

)

+ (Ne ⊕(No → (Ne ⊕(No (11.69)

has the same structure. The determinant of this matrix is a classical symbol of order
0. In fact,

(
h

1
2 0
0 1

)
Ẽ−+"z#

(
h− 1

2 0
0 1

)
=
(

Ẽee
−+ h

1
2 Ẽeo

−+

h− 1
2 Ẽoe

−+ Ẽoo
−+

)

has the same determinant and is a classical symbol of order 0 of the form

det Ẽ−+"0# ∼ detE0
−+"0#+ hf1"0#+ h2f2"0#+ · · · % (11.70)

where E0
−+"0# is the matrix given in (11.15) (there denoted without the superscript 0).

In particular, E0
−+"0# = "0− 00#

N0f"0# with f"0# )= 0, in the space of holomorphic
functions in a neighborhood of 00. This could also be deduced from the well known
formula

N0 = tr
1
2Ai

∫

$0

"0− P0#
−1d0 = 1

2Ai

∫ d
d0
detE0

−+
detE0

−+"0#
d0%

where $0 is a closed contour around 00. (We have of course the similar formula for
P%E−+, permitting to identify the zeros of E−+ and the eigenvalues of P, counted
with their multiplicities.)

Using Puiseux series for the partial sums in (11.70), we conclude that the
eigenvalues of h−1P̃ close to 00 have complete asymptotic expansions in powers
of h1/N0 :

0"h# = 00 + c1h
1/N0 + c2h

2/N0 + · · · &

Finally, it is clear from the construction that if

, =
(
E E+
E− E−+

)
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754 Hérau et al.

is the inverse of the global problem for P, then modulo %"h##,

E−+"z3h# = hẼ−+"z3h#% (11.71)

and hence the true eigenvalues of P have the same asymptotic expansions as above.
This completes the proof of Theorem 1.3.

12. The Evolution Problem

Let P be a closed densely defined unbounded operator acting on a complex Hilbert
space . . Assume that the spectrum of P is contained in

Re z ≥ 1
C
0Im z1* − C% (12.1)

for some constants C% * > 0. Assume also that

*"z− P#−1* ≤ C

0z1* % for Re z ≤ 1
2C

0Im z1* − 2C& (12.2)

For t > 0 we put

E"t# = 1
2Ai

∫

$
e−tz"z− P#−1dz% (12.3)

where $ is a contour to the left of the spectrum that outside a compact set coincides
with the curve

Re z = 1
3C

0Im z1* (12.4)

and is oriented in the direction of decreasing Im z. Clearly the integral converges
and defines a bounded operator that depends smoothly on t. We have

"!t + P#E"t# = 0% PE"t# = E"t#P& (12.5)

When u ∈ &"P# (the domain of P) we also have

lim
t→0

E"t#u = u& (12.6)

In fact, let z0 be to the left of $ and write

u = "z0 − P#−1v% v ∈ . & (12.7)

The resolvent identity gives

"z− P#−1"z0 − P#−1 = 1
"z− z0#

""z0 − P#−1 − "z− P−1#%
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 755

so for t > 0, we have

E"t#u = 1
2Ai

∫

$
e−tz 1

"z− z0#
"z0 − P#−1v dz− 1

2Ai

∫

$
e−tz 1

"z− z0#
"z− P#−1v dz& (12.8)

Here the first integral vanishes since we can push the contour to the right and
exploit the decay of the exponential. The second integral allows a limit when t → 0,
so we get

lim
t→0

E"t#u = − 1
2Ai

∫

$

1
"z− z0#

"z− P#−1v dz& (12.9)

Here the integrand is of norm %"0z1−1−*# in view of (12.2), and we can push the
contour to the left (around z0) and apply the residue theorem to get

lim
t→0

E"t#u = "z0 − P#−1v = u%

and (12.6) follows.
In the following we assume that P satisfies the assumptions (H1)–(H5) so that

Theorem 1.2 gives a localization of the spectrum to a union of a conic neighborhood
of the open positive axis and an infinite cusp away from the origin. We introduce
two contours, $ and $̃. Both contours are given by

Re z = 1
C0

h
2
3 &Im z& 13 (12.10)

in the region Re z > bh. Here C0 and b are positive constants such that b is different
from the real parts of the eigenvalues of the quadratic approximations of P with
h = 1. In the region Re z ≤ bh, $ is given by Re z = bh while $̃ joins bh+ iC3

0b
3h to

bh− iC3
0b

3h further to the left, so that $̃ is entirely to the left of the spectrum of P,
while $ will have a fixed finite number of eigenvalues, 00% & & & % 0N−1 to its left. Let $int
denote the vertical part of $ in the region Re z = bh, and let $ext denote the part of
$ in the region Re z ≥ bh.

On the exterior piece we have

*"z− P#−1* ≤ %"1#
h2/3&Im z&1/3 % (12.11)

and on the interior piece we have

*"z− P#−1* ≤ %"1#
h

& (12.12)

This holds since we have chosen b so that the distance from $int to the spectrum of
P is ≥ h/C. Further to the left in the region Re z ≤ bh, we also have *"z− P#−1* =
%"h# when dist "z% ,00% & & & % 0N−1-# ≥ h/C.

Assume for simplicity that the eigenvalues of the different quadratic
approximations are simple and distinct. Then

e−tP/h = 1
2Ai

∫

$̃
e−tz/h"z− P#−1dz =

N−1∑

0

e−t0j /h50j
+ 1

2Ai

∫

$
e−tz/h"z− P#−1dz& (12.13)
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756 Hérau et al.

Here 50j
is the (rank one) spectral projection associated with 0j , since the distance

from 0j with the other eigenvalues is ≥ h/C, and 50j
is uniformly bounded in norm

when h → 0.

Remark 12.1. If we drop the assumption on the eigenvalues of the quadratic
approximations, then for instance two eigenvalues 01 and 02 can be very close
together but separated from the others by h/C, and (since we are dealing with a
nonselfadjoint operator) we cannot state that 51 and 52 are uniformly bounded
when h → 0. But the sum 51 +52 will have this property and so will the term
e−01t51 + e−02t52 in (12.13). This kind of situation will appear when there is a
symmetry, and to have a more complete understanding in that case would include
problems about the tunnel effect.

We estimate the last integral in (12.13) using the decomposition $ = $int ∪ $ext:

1
2Ai

∫

$int

e−tz/h"z− P#−1dz = %"h#e−
t
h bh

1
h
= %"1#e−bt%

1
2Ai

∫

$ext

e−tz/h"z− P#−1dz = %"1#
∫ #

C3
0b

3h
e−

t
C0h

h
2
3 y

1
3 1

h
2
3 y

1
3

dy

= %"1#
t2

∫ #

tb
e−xx dx

= %"1#
(
1
t
+ 1

t2

)
e−tb&

Here and below, we let the prefactors %"1# depend on b% C0. Combining this with
(12.13), we get

e−tP/h =
N−1∑

0

e−t0j /h50j
+ %"1#

(
1+ 1

t
+ 1

t2

)
e−tb& (12.14)

It is quite possible that the last estimate improves for small t when we let e−tP/h act
on elements in the domain of P. Since P is accretive with ReP ≥ −Ch we can get
rid of the terms 1/t and 1/t2. The proof of Theorem 1.4 is complete.

13. Application to the Kramers–Fokker–Planck Operator

In this section we prove Theorem 1.1 and compute the eigenvalues of the Kramers–
Fokker–Planck operator with quadratic potential V :

P = v · h!x − V ′"x# · h!v +
$

2
"−"h!v#

2 + v2 − hn#& (13.1)

We will recall the classical procedure to obtain this operator by conjugation from

PFP = v · h!x − V ′"x# · h!v −
1
2
$h!v · "h!v + 2v#& (13.2)

In this article V is a "# potential with bounded derivatives of second and higher
order, and x, v ∈ !n. We suppose that V has a finite number of critical points.
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Semiclassical Analysis for Kramers–Fokker–Planck Equation 757

We observe (see, for example, Hérau and Nier, 2004) that the first two terms
form the Hamilton field X0 of the Hamiltonian q, where

q"x% v# = 1
2
v2 + V"x#% X0 = v · h!x − V ′"x# · h!v%

when v is considered as the dual variables of x. The Maxwellian is defined by

M = e−
2
h "

v2
2 +V"x##%

and we get the formally conjugated operator P = M1/2PFPM
−1/2 in (13.1).

13.1. Metrics and Hypotheses

In this section we check that the Kramers–Fokker–Planck operator satisfies the
hypotheses of the main theorem under the simple assumption that V is a Morse
function with bounded derivatives of order two and higher, such that &V ′"x#& ≥ 1/C
when &x& ≥ C. Denote by "(% C# the variable dual to "x% v#. Then

P = pw − $hn

2
% with p = $

2
"v2 + C2#+ iv · (− iV ′"x# · C&

(Note that for this operator pw = p"x%hDx#). We introduce the natural weight
associated to P

02"x% (% v% C# = 1+ "V ′"x##2 + (2 + v2 + C2%

and the metric

/0 = dx2 + dv2 + d(2 + dC2

02
&

We note that 0 is "# and that

0 ∈ S"0% /0#% 0′ ∈ S"1% /0#%

since V is with second derivative bounded. Let us now check that p satisfies the
symbolic estimates (1.4). Denoting p = p1 + ip2 and ) = "x% v% (% C# we get

p1")# =
$

2
"v2 + C2#%

p2")# = v · (− V ′"x# · C%
!p1")# = $"0% v% 0% C#%

!p2")# = $"−V ′′"x# · C% (% v%−V ′"x##%

!2p1")# = $





0 0 0 0
0 Id 0 0
0 0 0 0
0 0 0 Id



 % (13.3)

Hp2
")# = v · !x − V ′"x# · !v + C · V ′′ · !( − ( · !C%
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758 Hérau et al.

Hp2
p1")# = −$( · C− $V ′"x# · v%

!Hp2
p1")# = "−$V ′′"x# · v%−$V ′"x#%−$C%−$(#%

H2
p2
p1")# = −$v · V ′′"x# · v+ $"V ′"x##2 − $C · V ′′"x# · C+ $(2&

We get directly, using that the derivatives of V of order two and higher are bounded,
that

p1 ≥ 0% p ∈ S"02% /0#% !p ∈ S"0% /0#% !2p1 ∈ S"1% /0#% !Hp2
p1 ∈ S"0% /0#&

(13.4)

Besides, let us denote by
{
)j

}
the critical points of p. We notice that they are of

the form "xj% 0% 0% 0#, where
{
xj
}
are the critical points of V . By *2 we denote a "#

function equivalent to the distance to the set
{
)j

}
. Then for .0 sufficiently small we

have

p1 + .0H
2
p2
p1

= $
(
.0"V

′"x##2 + .0(
2 + v · "Id/2− .0V

′′"x## · v+ C · "Id/2− .0V
′′"x## · C

)

∼
{
*2 in a fixed compact set including the )js%
02 away from a neighborhood of the )js.

(13.5)

The last thing to check is that the metric /0 is (classically in the sense of (7.3))
admissible. A simple adaptation of Proposition 5.11 in Hellfer and Nier (2005)
shows that /0 is cl-admissible. Note that it is therefore semiclassically admissible (in
the sense of (7.11)), since in that case weaker assumptions are needed.

As a consequence we can apply to the Kramers–Fokker–Planck operator
P = pw − $hn/2 the main Theorem 1.2. In order to be complete we compute now
the eigenvalues of the quadratic approximation P0 of P near the critical points.

13.2. Eigenvalue Computation

Here we will compute explicitly the 0j that occur in the formula for the spectrum
given in Proposition 5.1. In addition we compute the constant term that also
contributes to the eigenvalues. Thus we obtain the spectrum up to o"h#. We
assume that p has a single critical point at x = 0 and that V is quadratic. After a
simultaneous orthogonal change of coordinates in x and in v, we may assume that

V"x# = 1
2

n∑

j=1

djx
2
j & (13.6)

(The assumption that V is a Morse function implies that all the dj are different
from 0.)

With this choice of V , the operator PFP equals

PFP = −1
2
$hn+ "x% v%Dx%Dv#W"x% v%Dx%Dv#

T % (13.7)
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where the matrix W is given by

W =





0 0 0 − i
2hV

′′
xx

0 0 i
2hI − i

2$hI

0 i
2hI 0 0

− i
2hV

′′
xx − i

2$hI 0 1
2h

2$I




&

As we explained, the operators P and P0 of Proposition 5.1 are obtained by
conjugation, which corresponds to a complex symplectic coordinate transformation
of the symbol. Since the eigenvalues of the linearization of the Hamilton flow are
invariant under such a transformation, we can use the unconjugated operator PFP
to compute them.

The matrix W is of the form W = 1
2

(
0 ihAT

ihA h2B

)
, where the 2n× 2n matrix

A =
( 0 I
−V ′′

xx −$I

)
is the linearization of the vector field component of PFP for h = 1.

The matrix corresponding to the linearization of the Hamilton field is given by

W ′ =
(
ihA h2B

0 −ihAT

)

& (13.8)

Because of (13.6), the eigenvalues of A are obtained simply by diagonalizing the
2× 2 matrices

( 0 1
−dj −$

)
. We find that the eigenvalues of A are given by

Hj%1 = − $

2
− 1

2

√
$2 − 4dj% Hj%2 = − $

2
+ 1

2

√
$2 − 4dj%

with j = 1% & & & % n. Let sj%k denote the sign of the real part of Hj%k:

sj%1 = sgn"Re "Hj%1## = −1% sj%2 = sgn"Re "Hj%2## = − sgn"dj#&

It follows that the eigenvalues of W ′ are given by

ihHj%1% ihHj%2% −ihHj%1% −ihHj%2%

and that the ones with positive imaginary part are given by

ihsj%1Hj%1 =
i

2
$h+ i

2
h
√
$2 − 4dj%

ihsj%2Hj%2 = − sgn"dj#

(
− i

2
$h+ i

2
h
√
$2 − 4dj

)
&

The constant term in (13.7) satisfies − 1
2$hn = 1

2 tr"A# = 1
2

∑n
j=1"Hj%1 + Hj%2#. Thus the

spectrum of the quadratic operator is given by
{
h

n∑

j=1

((
1
2
+ 1

2
sj%1 + kj%1

)
sj%1Hj%1 +

(
1
2
+ 1

2
sj%2 + kj%2

)
sj%2Hj%2

)
3 kj%1% kj%2 ∈ )

}
&

Remark 13.1. In the case of quadratic Kramers–Fokker–Planck, the lowest
eigenvalue of the spectrum is 0 if and only if all the sj%1% sj%2 are equal to −1, i.e., if
x = 0 is a minimum of V .
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