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MODELING OF SEISMIC DATA IN THE DOWNWARD
CONTINUATION APPROACH∗

CHRISTIAAN C. STOLK† AND MAARTEN V. DE HOOP‡

Abstract. Seismic data are commonly modeled by a high-frequency single scattering approxi-
mation. This amounts to a linearization in the medium coefficient about a smooth background. The
discontinuities are contained in the medium perturbation. The high-frequency part of the wavefield in
the background medium is described by a geometrical optics representation. It can also be described
by a one-way wave equation. Based on this we derive a downward continuation operator for seismic
data. This operator solves a pseudodifferential evolution equation in depth, the so-called double-
square-root equation. We consider the modeling operator based on this equation. If the rays in the
background that are associated with the reflections due to the perturbation are nowhere horizontal,
the singular part of the data is described by the solution to an inhomogeneous double-square-root
equation.
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1. Introduction. In reflection seismology one places point sources and point re-
ceivers on the earth’s surface. The source generates acoustic waves in the subsurface,
which are reflected where the medium properties vary discontinuously. In seismic
imaging, one tries to reconstruct the properties of the subsurface from the reflected
waves that are observed. There are various approaches to seismic imaging, each based
on a different mathematical model for seismic reflection data with underlying assump-
tions. In general, seismic scattering and inverse scattering have been formulated in
the form of a linearized inverse problem for the medium coefficient in the acoustic
wave equation. The linearization is around a smoothly varying background, called
the velocity model, which is a priori also unknown.

In this paper and a companion paper [24] we study a method of seismic imaging
introduced by Clayton [6] and Claerbout [5]. The key concept in this method is the
construction of data of fictitious experiments carried out in the subsurface, at in-
creasing depths, from data observed at the earth’s surface. These so-called downward
continued data are then used for imaging the medium contrast as well as for a reflec-
tion tomographic procedure to estimate the smoothly varying background (known as
migration velocity analysis). The downward continuation approach to seismic imaging
has received much attention in the geophysical research literature, and it is currently
widely used in practice in various approximations [3, 19, 16].

The downward continuation of data is derived from the factorization of the wave
equation into two one-way wave equations. This factorization is closely connected to
the notion of wave splitting [28]. One-way wave equations, in various approximations,

∗Received by the editors January 7, 2004; accepted for publication (in revised form) October 8,
2004; published electronically April 26, 2005. This work was supported in part by the Mathematical
Sciences Research Institute through National Science Foundation grant DMS-9810361.

http://www.siam.org/journals/siap/65-4/43954.html
†Department of Applied Mathematics, University of Twente, Drienerlolaan 5, 7522 NB Enschede,

The Netherlands (c.c.stolk@ewi.utwente.nl).
‡Center for Wave Phenomena, Colorado School of Mines, Golden, CO 80401 (mdehoop@Mines.

EDU).

1388



MODELING OF SEISMIC DATA 1389

have been extensively used in applications other than seismics: for integrated optics
(see, e.g., [12]) and for underwater acoustics (see, e.g., [25, 7]).

There are basically two categories of seismic imaging methods. One category is
associated with the evolution of waves and data in time; the other is associated with
the evolution in depth (or another principal spatial direction). The first category
contains approaches known under the collective names of Kirchhoff migration [4] or
generalized Radon transform inversion, and reverse-time migration [21]; the second
category comprises the downward continuation approach. There are great compu-
tational advantages of the downward continuation approach to seismic imaging over
the Kirchhoff approaches. There are fundamental, theoretical advantages as well,
in particular with a view to the problem of estimating the smoothly varying back-
ground. These are analyzed in a separate paper [24]. For the Kirchhoff approach to
seismic imaging there is a solid mathematical theory, which treats seismic imaging
as an inverse problem and shows that singularities can be reconstructed [2, 20]. For
the downward continuation approach much research has gone into the development of
numerical one-way wave equations, but little is known from an analysis point of view.
For a constant coefficient background, the downward continuation method was cast
into an inverse problem in [1]. For the case of variable coefficients, which of course is
the case of interest in practice, there has been no such theory.

The purpose of this paper is to develop a mathematical theory for modeling
seismic reflection data in the downward continuation approach. As was done in the
analysis of Kirchhoff methods, we make use of techniques and concepts from microlocal
analysis, such as wave front set, denoted by WF(·), and Fourier integral operators;
see, e.g., [10] for background information on these concepts. We introduce the main
concepts and operators involved in the method. We then study the double-square-
root modeling operator. This modeling operator and its properties will be the point
of departure for the development of an inverse scattering theory [24].

In our notation we will distinguish the vertical coordinate z ∈ R from the hori-
zontal coordinates x ∈ R

n−1 and write (z, x) ∈ R
n. In these coordinates the scalar

acoustic wave equation with wave speed function c0(z, x) is given by

Pu = f, P = c0(z, x)−2∂2
t − ∂2

z −
n−1∑
j=1

∂2
xj
,(1.1)

where u = u(z, x, t) is the acoustic pressure. The equation is considered for t in a
time interval ]0, T [, together with an initial condition u(·, ·, 0) = 0. The solution to
(1.1) can be written as

u(z, x, t) =

∫ t

0

∫
G(z, x, t− t0, z0, x0)f(z0, x0, t0) dz0dx0dt0,(1.2)

where G is the Green’s function of (1.1). The source f can be a distribution.
To model the scattering of waves, we adopt the linearized scattering or Born

approximation. The linearization is in the wavespeed, around a smooth (C∞) back-
ground c0; for the full wavespeed function we write c = c0 + δc. The perturbation δc
may contain singularities. The perturbation in G at the acquisition surface z = 0 is
given by (see, e.g., [2])

δG(0, r, t, 0, s) =

∫
R+×Rn−1

∫ t

0

G(0, r, t− t0, z0, x0) 2c−3
0 (z0, x0)δc(z0, x0)(1.3)

× ∂2
t0G(z0, x0, t0, 0, s) dt0dz0dx0,
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where both s, r ∈ R
n−1. We assume that the acquisition manifold Y , which contains

the set of values of (s, r, t) used in the acquisition, is a bounded open subset of R
2n−2×

R+. The modeled data are then a function of (s, r, t) ∈ Y given by (1.3). We define
the Born modeling map F through (1.3) as the map from δc to δG evaluated at z = 0.
Since Y is bounded and the waves propagate with finite speed we may assume that
δc is supported in a bounded open subset X of R+ × R

n−1. Furthermore, we assume
that X ∩ {z = 0} = ∅. Naturally, (1.3) is, in general, not a complete model for raw
data measured in seismic experiments. It models data that are the input for imaging
and inversion and have undergone some processing.

We summarize some results in the literature about the modeling map, F . The
solution operator (1.2) is such that singularities in the solution propagate along bichar-
acteristics. Denote by p(z, x, ζ, ξ, τ) = −c(z, x)−2τ2 + ζ2 + ‖ξ‖2 the principal symbol
of P . Propagating singularities are in the characteristic set, given by the points
(z, x, t, ζ, ξ, τ) ∈ T ∗

R
n+1 with

p(z, x, ζ, ξ, τ) = −c(z, x)−2τ2 + ζ2 + ‖ξ‖2 = 0.(1.4)

The bicharacteristics are the solution curves of a Hamilton system with Hamiltonian
given by p,

d(z, x, t)

dλ
=

∂p

∂(ζ, ξ, τ)
,

d(ζ, ξ, τ)

dλ
= − ∂p

∂(z, x, t)
.(1.5)

Assuming that τ �= 0, the time t is strictly increasing or decreasing with λ and can
be used as parameter for the solution curve. To parameterize points on the solution
curves, we use the initial position (z0, x0), the take-off direction α ∈ Sn−1, the fre-
quency τ , which together define the initial cotangent vector (ζ0, ξ0) = −τc(z0, x0)

−1α,
and the time t (instead of λ). Points on the solution curves will be denoted by

η(t, z0, x0, α, τ) = (ηz(t, z0, x0, α, τ), ηx(t, z0, x0, α, τ), t,(1.6)

ηζ(t, z0, x0, α, τ), ηξ(t, z0, x0, α, τ), τ).

The variable τ is invariant along the Hamilton flow. We take t = 0 as the initial value
for t (note that (1.5) are time translation invariant).

To ensure that δG defines a continuous map from E ′(X) to D′(Rn × R
n×]0, T [)

and that the restriction of δG to Y is a Fourier integral operator we make the following
assumption on c0.

Assumption 1. There are no rays from (0, s) to (0, r) with travel time t such
that (s, r, t) ∈ Y . For all ray pairs connecting (0, r) via some (z, x) ∈ X to (0, s) with
total time t such that (s, r, t) ∈ Y , the rays intersect the plane z = 0 transversally at
r and s.

We also assume that rays from such a point (z, x) ∈ X intersect the surface z = 0
only once, because all reflections must come from the region z > 0 (the subsurface).
The first part of the assumption excludes direct rays, or a pair of incident and reflected
rays with scattering angle π. The second part of the assumption excludes rays grazing
the plane z = 0. Concerning the second part, strictly only caustics grazing the plane
z = 0 have to be excluded. In practice the wave speed near the surface is much
lower than in the interior of the earth, and waves from the interior arrive under small
angles with the vertical. So from a geophysical point of view one is only interested
in incoming rays that intersect the measurement surface transversally. We have the
following theorem. (See [10] for a general reference on Fourier integral operators.)
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Theorem 1.1 (see [20, 17]). With Assumption 1 the map F is a Fourier integral
operator E ′(X) → D′(Y ) of order (n− 1)/4 with canonical relation

(1.7){
(ηx(ts, z, x, β, τ), ηx(tr, z, x, α, τ), ts + tr, ηξ(ts, z, x, β, τ), ηξ(tr, z, x, α, τ), τ ; z, x, ζ, ξ)|
ts, tr > 0, ηz(ts, z, x, β, τ) = ηz(tr, z, x, α, τ) = 0, (ζ, ξ) = −τc0(z, x)−1(α + β),

(z, x, α, β, τ) ∈ subset of X × (Sn−1)2 × R\0
}
⊂ T ∗

R
2n−1
(s,r,t) × T ∗

R
n
(z,x).

In this paper, we express F in terms of a depth-continuation operator, and we
study the properties of this operator. The main contributions of this paper are the
following:

(i) We define an upward continuation operator H(z, z0) using the solution op-
erators to one-way wave equations. Its adjoint will be the downward continuation
operator. Intuitively this operator maps data from a fictitious experiment carried out
at depth z0 to data from an experiment carried out at depth z, z < z0. Subject to
Assumption 2 in the main text—stating, essentially, that the rays in the background
that are associated with the reflections are nowhere tangent to horizontal—we prove
that the data Fδc are given by

∫∞
0

(. . . )H(0, z)(. . . )g(z, ·, ·, ·) dz, where the dots are
pseudodifferential factors specified below and g = g(z, s, r, t) is given by mapping
c−3
0 δc to a function E2E1(c

−3
0 δc) of (z, s, r, t) using the maps

(1.8)

E1 : D′(Rn) → D′(R2n−1) : (c−3
0 δc)(z, x) 	→ h(z, x̄, x) = δ(x− x̄)(c−3

0 δc)(z, x̄+x
2 ),

E2 : D′(R2n−1) → D′(R2n) : h(z, x̄, x) 	→ δ(t)h(z, x̄, x)

(Theorem 5.1).
(ii) We show that the operator H(z, z0) solves the initial value problem for a first-

order pseudodifferential evolution equation in depth, known as the double-square-root
(DSR) equation. The data can be identified with the solution to an inhomogeneous
DSR equation, with inhomogeneous term g (section 3). The computation of the map
from g to data and the computation of its adjoint can be done by marching in depth
using the DSR equation. This is the basis of DSR modeling and imaging methods in
geophysics.

(iii) The modeling operator can be written as the composition of a Fourier integral
operator representing depth-to-time conversion, with a locally invertible canonical
relation (Theorem 4.2) and the operator E1.

It should be mentioned that our Assumption 2 can be quite restrictive. However,
the limited aperture of seismic acquisition yields a natural cutoff so that, in general,
a large part of the observed data can be modeled with the approach presented in this
paper.

In general, the downward continuation approach results in a more complete com-
putation of the wave propagation and diffraction in the modeling of seismic reflection
data than the one based on the geometrical optics approximation underlying the
Kirchhoff approach. Fast algorithms have been designed to solve the DSR equation;
as compared with numerical algorithms solving the full wave equation, the advantage
of using the DSR equation becomes significant in space dimension 3 (and higher).

The outline of the paper is as follows. In section 2 we discuss one-way acoustic
equations. In section 3 we use these to define the upward/downward continuation
operator H, and we describe some of its properties. Section 4 contains our result on
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depth-to-time conversion. In section 5 we show that the data can be modeled using
the downward continuation method. The last section is about the relation between
our assumption and the Bolker condition that occurs in the inversion.

2. Directional decomposition, single-square-root equations. Singulari-
ties of solutions to the wave equation, which propagate with velocity with nonzero
vertical (z) component, are described by a first-order pseudodifferential evolution
equation in z. This follows from a well-known factorization argument; see, e.g., [26].
In [22] the approximation of solutions to the wave equation by solutions to an evolu-
tion equation in z is discussed. Such an equation is called a one-way wave equation
or single-square-root (SSR) equation. We summarize the structure and properties
of this one-way wave equation that we need for the upward/downward continuation
approach to seismic data processing.

To determine whether the velocity vector at some point of a ray (cf. (1.5)) is close
to horizontal, we use the angle with the vertical, defined to be in [0, π/2] and given

by tan(θ) = ‖ξ‖
|ζ| . We recall that the propagating singularities are microlocally in the

characteristic set given by (1.4). Given a point (z, x, ξ, τ) with ‖ξ‖ < c(z, x)−1|τ |,
there are two solutions ζ to (1.4), given by ζ = ±b, where b = b(z, x, ξ, τ) is defined
by

b(z, x, ξ, τ) = −τ
√
c(z, x)−2 − τ−2ξ2.(2.1)

The sign is chosen such that ζ = ±b corresponds to propagation with ±dz
dt > 0. There

is also an angle associated with (z, x, ξ, τ) given by the solution θ ∈ [0, π/2] of the
equation

sin(θ) = c(z, x)‖τ−1ξ‖.(2.2)

When this angle is smaller than π/2 along a ray segment, then the vertical velocity dz
dt

does not change sign, and the ray segment can be parameterized by z. The maximal
z-interval such that arcsin(c(z, x)‖τ−1ξ‖) < θ for given θ along the bicharacteristic
determined by the initial values (z, x,±b, ξ, τ) will be denoted by

]zmin,±, zmax,±[=]zmin,±(z, x, ξ, τ, θ), zmax,±(z, x, ξ, τ, θ)[;(2.3)

see also Figure 1. Furthermore, we define a set

Iθ = {(z, x, t, ζ, ξ, τ) | arcsin(c(z, x)‖τ−1ξ‖) < θ, |ζ| < C|τ |},(2.4)

where C is some constant that is everywhere larger than c(z, x)−1.

The SSR equation. To obtain a one-way wave equation, the wave equation is
written as the following first-order system in z:

∂

∂z

(
u
∂u
∂z

)
=

(
0 1

−A(z, x,Dx, Dt) 0

)(
u
∂u
∂z

)
+

(
0
f

)
,(2.5)

where Dx = −i ∂
∂x , Dz = −i ∂

∂z , and A(z, x,Dx, Dt) = c0(z, x)−2D2
t − D2

x. Then
the system is transformed by using a family of matrix pseudodifferential operators
Q(z) = Q(z, x,Dx, Dt) with(

u+

u−

)
= Q(z)

(
u
∂u
∂z

)
,

(
f+

f−

)
= Q(z)

(
0
f

)
.(2.6)
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zmin zmax

1τ ξarcsin(c(z,x)||  -     ||)

z

θ

0

Fig. 1. Definition of zmin,± and zmax,±, which give the maximal interval where
arcsin(c(z, x)‖τ−1ξ‖) is in the interval [0, θ]. Here, (z, x, ξ, τ) lies on a bicharacteristic.

The functions (u+, u−) satisfy a pseudodifferential system of equations. Let θ2 < π/2
be a given angle. (In the next subsection we need another angle, θ1, with 0 < θ1 <
θ2 < π/2, hence the subscript 2.) With suitably chosen Q it is shown in [22] that the
system that results from applying the transformation (2.6) to (2.5) is diagonal on Iθ2 .
It then follows that (2.5) is equivalent to two equations of the form(

∂

∂z
− iB±(z, x,Dx, Dt)

)
u± = f±,(2.7)

microlocally on Iθ2 . These are called the one-way wave or SSR equations. The princi-
pal part of B± is equal to ±b, while its subprincipal part depends on the normalization
of Q(z). We choose the normalization such that B± are self-adjoint and Q satisfies

Q(z, x, ξ, τ) = 1
2

(
a1/4 −i sgn(τ)a−1/4

a1/4 i sgn(τ)a−1/4

)
+ order

(
− 1

2 − 3
2

− 1
2 − 3

2

)
,

Q(z, x, ξ, τ)−1 =

(
a−1/4 a−1/4

i sgn(τ)a1/4 −i sgn(τ)a1/4

)
+ order

(
− 3

2 − 3
2

− 1
2 − 1

2

)(2.8)

with a = a(z, x, ξ, τ) = c0(z, x)−2τ2 − ξ2.
It appears that only two components of Q(z) and Q(z)−1 are needed in the anal-

ysis. To clarify this, we first observe that multiplication by i sgn(τ) in the frequency
domain corresponds to the application of a Hilbert transform with respect to the time
variable, which we denote by H. Next, we use the relation between Q(z)∗ and Q(z)−1,(

1 0
0 −1

)
Q(z)−1∗ = 2Q(z)

(
0 −H
H 0

)
,

shown to hold microlocally in [22, (59)]. (This relation also appears in [8, (II.49)].)
We let

Q+ = Q+(z, x,Dx, Dt) = 2Q1,2H, Q− = Q−(z, x,Dx, Dt) = −2Q2,2H,

where we choose a convenient normalization such that both Q± have principal symbol
a1/4. It follows with these definitions that

u = Q∗
+u+ + Q∗

−u−,(2.9)

f± = ∓ 1
2HQ±f.(2.10)
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The above procedure does not prescribe the symbol of the operator B− for
arcsin(c(z, x)‖τ−1ξ‖) > θ2. We will assume that B− is a first-order family of pseu-
dodifferential operators with real homogeneous principal symbol. This implies that
the evolution problem (2.7) has well-defined solutions satisfying energy estimates.

Propagation of singularities and introduction of a microlocal cutoff.
Here, we discuss how the wave field is approximated by solutions of (2.7). This ap-
proximation is valid microlocally on part of the cotangent bundle T ∗

R
n+1
(z,x,t). We

consider the approximation of upward traveling waves using the equation for u−,
where we assume that there are only upward traveling singularities at depth z0, hence
u+(z0, ·) ∈ C∞. The treatment of downward traveling waves using the equation for
u+ is analogous.

Consider the initial value problem for P0,−
def
= ∂z − iB−,

P0,−u− = 0, z < z0, Q∗
−u−(z0, ·) = u(z0, ·).(2.11)

Let J−(z0, θ) be defined by

J−(z0, θ) = {(z, x, t, ζ, ξ, τ) ∈ Iθ | τ−1ζ > 0 and zmax,−(z, x, ξ, τ, θ) ≥ z0}.(2.12)

The solutions to (2.11) agree with the solutions to the original wave equation mi-
crolocally on the set J−(z0, θ2) in the following way. Suppose that WF(u) ∩ {z =
z0, τ

−1ζ < 0} = ∅ (i.e., at depth z0 all singularities are propagating in the − di-
rection), and let u− be a solution to (2.11); then it follows from the propagation of
regularity/propagation of singularities result that

u ≡ Q∗
−u−(2.13)

microlocally on the set J−(z0, θ2) [22]. Here, we say that u ≡ v microlocally on a set
Γ ⊂ T ∗

R
n if WF(u− v) ∩ Γ = ∅.

The solutions to (2.11) have propagating singularities, also in the part of the phase
space where arcsin(c(z, x)‖τ−1ξ‖) ≥ θ2, but there the singularities of the solution
are in general incorrect in the sense that they do not correspond to solutions of the
original wave equation. For such singularities we introduce a pseudodifferential cutoff.
Let θ1 be given with 0 < θ1 < θ2. We assume we have a pseudodifferential cutoff
ψ1 = ψ1(z, z0, x,Dx, Dt) with symbol satisfying

ψ1(z, z0, x, ξ, τ) ∼ 1 on J−(z0, θ1),(2.14)

ψ1(z, z0, x, ξ, τ) ∈ S∞ outside J−(z0, θ2), if z − z0 > δ > 0.(2.15)

Then we have

ψ1u ≡ ψ1Q
∗
−u−.(2.16)

We reformulate this result in terms of the solution operators, the propagators.
By G0,−(z, z0) we will denote the solution operator to the evolution problem (2.11),
defined to map u−(z0, ·) to u−(z, ·). We assume that the full one-way propagator is
then given by

G−(z, z0) = ψ1(z, z0)G0,−(z, z0).(2.17)
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Here, we let z < z0. This can also be written as a pseudodifferential cutoff applied
prior to G0,−. We denote this different cutoff also by ψ1 but with the order of z, z0

interchanged, so that

G−(z, z0) = G0,−(z, z0)ψ1(z0, z).(2.18)

In this paper this is all we need to know about the pseudodifferential cutoff ψ1.
But it raises the question of an explicit recipe for computing ψ1: Can it, for example,
be computed with a modified evolution equation in depth? This is indeed the case.
It was established in [22, 23] that such a pseudodifferential cutoff can be generated
by adding a dissipative term to P0,−. Instead of P0,− one considers the operator

P− = ∂z − iB±(z, x,Dx, Dt) − C(z, x,Dx, Dt)(2.19)

with C a first-order pseudodifferential operator with homogeneous, nonnegative real
principal symbol, satisfying certain conditions. The operator ψ1(z, z0) is then a (z, z0)-
family of pseudodifferential operators with symbol in S0

ρ,1−ρ(R
n ×R

n), such that the

derivatives ∂j+kψ1

∂zj
0∂

k
z

are in S
(j+k)(1−ρ)
ρ,1−ρ (Rn×R

n) for z �= z0, where ρ can be any number

satisfying 1
2 < ρ < 1 (see [23]). For the theory of such operators, see, e.g., [27, 14].

Let the elements (z, x, t, ζ, ξ, τ) of the wave front set of f be such that τ−1ζ > 0
(corresponding to propagation direction ∂z

∂t < 0). Consider u− defined by

u−(z, ·) =

∫ ∞

z

G−(z, z0)

(
1

2
HQ−(z0)

)
f(z0, ·) dz0,(2.20)

assuming also that f = 0 on a neighborhood of the plane given by z. We have that
Q∗

−u−(z, ·) ≡ u(z, ·), where u is the solution to (1.1) with f replaced by (ψ1(z0, z) −
Q−1

− [Q−, ψ1(z0, z)])f . Here the square brackets denote a commutator.
We use the notation γ(z, z0, x0, t0, ξ0, τ) for the bicharacteristic of P0,− parame-

terized by z. In components we write them as (note that they are time translation
invariant)

γ(z, z0, x0, t0, ξ0, τ) = (z, γx(z, z0, x0, ξ0, τ), γt(z, z0, x0, ξ0, τ) + t0,(2.21)

− b(z, γx, γξ, τ), γξ(z, z0, x0, ξ0, τ), τ).

Properties of G−. The operator G−(z, z0) is a Fourier integral operator with
canonical relation

{(γx, t0 + γt, γξ, τ ;x0, t0, ξ0, τ)} ⊂ T ∗
R

n × T ∗
R

n,(2.22)

where γx = γx(z, z0, x0, ξ0, τ) and the same for γt, γξ as in (2.21).
The operators B± are self-adjoint. It follows that G0,−(z, z0) is unitary. But then

G−(z, z0)
∗G−(z, z0) = ψ1(z0, z)

∗ψ1(z0, z),(2.23)

and G−(z, z0)
∗G−(z, z0) is one microlocally where ψ1(z0, z) is one.

Numerical methods for one-way wave propagation are described, e.g., in [9] and
[13] and in the references given in those papers.

3. Downward/upward continuation and the DSR equation. In this sec-
tion we construct the data downward/upward continuation operator, and we establish
some of its properties.
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Data model. In preparation of the downward/upward continuation approach to
seismic data modeling, we rewrite (1.3) in the form

δG(0, r, t, 0, s) =

∫
Rn−1×R+

∫
Rn−1

∫ t

−∞

∫
R+

G(0, r, t− t0, z, x)(3.1)

× 2∂2
t0R(z, x, x̄, t0 − t̄0)

×G(z, x̄, t̄0, 0, s) dt̄0 dt0 dx̄dxdz,

where

R(z, x, x̄, t0) = δ(t0)δ(x− x̄)

(
δc

c30

)(
z,

x̄ + x

2

)
(3.2)

so that

R = E2E1c
−3
0 δc(3.3)

with the definitions in (1.8). Changing variables of integration, i.e., t0 	→ t′0 = t0 − t̄0,
(3.1) can be written in the form of an integral operator acting on the distribution R,

δG(0, r, t, 0, s) =

∫
R+

{∫
R

∫
Rn−1

∫
Rn−1

(∫
R+

G(0, r, t− t′0 − t̄0, z, x)(3.4)

×G(z, x̄, t̄0, 0, s) dt̄0

)

× 2∂2
t′0
R(z, x, x̄, t′0) dx̄dxdt′0

}
dz,

in between the braces, the contributions of which are integrated over depth z.
Using the reciprocity relation of the time-convolution type for the Green’s func-

tion, we arrive at the integral representation

δG(0, r, t, 0, s) =

∫
R+

{∫
Rn−1

∫
Rn−1

∫
R

(∫ t−t0

0

G(0, r, t− t0 − t̄0, z, x)(3.5)

×G(0, s, t̄0, z, x̄) dt̄0

)

× 2∂2
t0R(z, x, x̄, t0) dx̄dxdt0

}
dz.

Upon substituting (3.3) into this representation we obtain a mapping δc(z, x) →
δG(0, r, t, 0, s) as encountered in Theorem 1.1. The associated operator kernel appears
to propagate singularities from two different scattering points, x̄ and x, at each depth
z, to the surface at z = 0.

To arrive at an upward continuation formulation of data modeling, the idea is to
substitute in (3.5) for the Green’s functions their upward propagating constituents.
Thus we replace these Green’s functions in accordance with (2.9), (2.10), using only
the u− constituent. So, for the Green’s functions G(z, x, t − t0, z0, x0) in (3.5) we
substitute the kernel of the operator

1

2
HQ∗

−(z, x,Dx, Dt)G−(z, z0)Q−(z0, x0, Dx0 , Dt0),(3.6)
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viewed as a function of (z, x, t, z0, x0, t0). Naturally, a time convolution of two one-
way Green’s functions appears. This is the motivation of the definition, by its kernel,
of an operator H(z, z0), z < z0 on functions of (s, r, t),

(H(z, z0))(s, r, t, s0, r0, t0)(3.7)

=

∫
R

(G−(z, z0))(s, t− t0 − t̄0, s0)(G−(z, z0))(r, t̄0, r0) dt̄0.

Here (G−(z, z0))(r, t̄0, r0, 0) denotes the distribution kernel of G−(z, z0), and (H(z, z0))
(s, r, t, s0, r0, t0) denotes the distribution kernel of H(z, z0).

As an alternative formulation, we can write the operator H(z, z0) as the compo-
sition of two operators obtained by a tensor product. We recall that if ψ1, ψ2 are two
operators with kernels Kψ1

(x, x̄), Kψ2(y, ȳ), then their tensor product ψ1 ⊗ ψ2 has
kernel given by the product Kψ1(x, x̄)Kψ2(y, ȳ) and maps functions of (x̄, ȳ) to func-
tions of (x, y). We denote the identity operator acting on functions of s by Ids and
similarly for Idr. If ψ is an operator acting in the (x, t) variables, then we will write
ψs, ψr for the operator acting in the (s, t) variables or the (r, t) variables, respectively.
Then we can also write (3.7) as

H(z, z0) = (Ids ⊗G−,r(z, z0)) ◦ (G−,s(z, z0) ⊗ Idr).(3.8)

Since the tensor product of two operators is a well-defined operator, this shows that
H(z, z0) is well defined. If ψ is an operator on functions of (x, t), then we will often
simply write ψs instead of ψs ⊗ Idr. The map H(z, z0), z < z0, is the upward
continuation operator.

If ψ1 and ψ2 are operators on functions of (x, t) and are time translation invariant,
then ψ1,s and ψ2,r commute, which can be derived by writing out the distribution
kernel of the compositions. The factors G−,s and G−,r can be written as compositions
ψ1,sG0,−,s, G0,−,sψ1,s (and similarly for r) using (2.17), (2.18). It follows that the
operator H can be written as a composition ψ2(z, z0)H0(z, z0), where H0 is given by
(3.7) with G− replaced by G−,0 and ψ2(z, z0) = ψ1,s(z, z0)ψ1,r(z, z0). The operator
ψ2(z, z0) is pseudodifferential with symbol

ψ2(z, z0, s, r, σ, ρ, τ) = ψ1(z, z0, s, σ, τ)ψ1(z, z0, r, ρ, τ).(3.9)

We can also write H(z, z0) = H0(z, z0)ψ2(z0, z) with ψ2 defined by (3.9) as well, but
with z, z0 interchanged.

Replacing both source and receiver Green’s functions, the result is the replacement
of the integral in the parentheses of (3.5) by − 1

4Q
∗
−,s(0)Q∗

−,r(0)H(0, z)Q−,s(z)Q−,r(z),
where we denote Q−,s(z) = Q−(z, s,Ds, Dt), and similarly for Q−,r(z). Therefore,
we define the DSR modeling operator as

FDδc = Q∗
−,s(0)Q∗

−,r(0)

∫ Z

0

H(0, z)Q−,s(z)Q−,r(z)
1
2D

2
t (E2E1c

−3
0 δc)(z, ·, ·, ·)dz,

(3.10)

where Z is some large number such that supp(δc) is contained in ]0, Z[×R
n−1.

In Theorem 5.1 we will show that, in general, FD differs from F by a pseudodif-
ferential cutoff and that under a certain assumption FD models the singular part of
the data. We first derive some important properties of H.
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The DSR equation. It follows from differentiating expression (3.8) for H with
respect to z, using the fact that B−(z, r,Dr, Dt) and G−,s(z, z0) commute, that the
operator H0(z, z0) is a solution operator for the Cauchy initial value problem for the
so-called DSR equation, given by(

∂

∂z
− iB−(z, s,Ds, Dt) − iB−(z, r,Dr, Dt)

)
u = 0.(3.11)

Using Duhamel’s principle (cf. (1.2)), it follows that

u(z, s, r, t) =

∫ Z

z

(H(z, z0)g(z0, ·, ·, ·))(s, r, t) dz0(3.12)

solves the inhomogeneous DSR equation,

(3.13)(
∂

∂z
− iB−(z, s,Ds, Dt) − iB−(z, r,Dr, Dt) − C(z, s,Ds, Dt) − C(z, r,Dr, Dt)

)
u

= g(z, s, r, t), 0 ≤ z < Z,

with zero initial condition, u(Z, s, r, t) = 0. It follows from (3.10) that FDδc is given by
Q∗

−,s(0)Q∗
−,r(0) acting on the solution u at z = 0 of an inhomogeneous DSR equation

with

g = Q−,s(z)Q−,r(z)
1
2D

2
tR(3.14)

and Z such that δc is supported in 0 < δ < z < Z as before.
The bicharacteristics associated with (3.13) are, in the notation of (2.21), given

by

(3.15) Γ(z, z0; s0, r0, t0, σ0, ρ0, τ) = (γx(z, z0, s0, σ0, τ), γx(z, z0, r0, ρ0, τ), t0

+ γt(z, z0, s0, σ0, τ) + γt(z, z0, r0, ρ0, τ), γξ(z, z0, s0, σ0, τ), γξ(z, z0, r0, ρ0, τ), τ).

They are defined on the intersection of the maximal intervals associated with
source ray coordinates (z, s, σ, τ) and receiver ray coordinates (z, r, ρ, τ); let θ be
given as in the previous section. The intersection will be denoted by ]Zmin, Zmax[=
]Zmin(z, s, r, σ, ρ, τ, θ), Zmax(z, s, r, σ, ρ, τ, θ)[, where we have

Zmin(z, s, r, σ, ρ, τ, θ) = max(zmin,−(z, s, σ, τ, θ), zmin,−(z, r, ρ, τ, θ)),(3.16)

Zmax(z, s, r, σ, ρ, τ, θ) = min(zmax,−(z, s, σ, τ, θ), zmax,−(z, r, ρ, τ, θ)).(3.17)

Let g(z, s, r, t) be supported in the set 0 < δ < z < Z. As mentioned, the map
g 	→ u given by (3.12) maps g to the solution of the inhomogeneous DSR equation
(3.13) at z = 0. Motivated by (3.10), we define an operator L by modifying (3.12)
with pseudodifferential factors Q−,s, Q−,r and setting z = 0 as follows:

Lg = Q∗
−,s(0)Q∗

−,r(0)

∫ Z

0

H(0, z)Q−,s(z)Q−,r(z)g(z, ·, ·, ·) dz.(3.18)

Our next result states that H and L are Fourier integral operators and gives a
representation of the kernel of H as an oscillatory integral. Consider the following set:

{(Γ(0, z, s, r, t, σ, ρ, τ); z, s, r, t,−b(z, s, σ, τ) − b(z, r, ρ, τ), σ, ρ, τ) |(3.19)

(s, r, t, σ, ρ, τ) ∈ T ∗
R

2n−1
(s,r,t), 0 > Zmin(z, s, r, t, σ, ρ, τ, θ2)}.
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As will be clear from the proof below, this set is a canonical relation. Let y0 =
(s0, r0, t0), η0 = (σ0, ρ0, τ). A convenient choice of phase function for the canonical
relation is described by Maslov and Fedoriuk [18]. They state that one can always
use a subset of the cotangent vector components as phase variables. There is always
a set of local coordinates for the canonical relation of the form

(z, y0I , η0J , s, r, t),(3.20)

where I ∪ J is a partition of {1, . . . , 2n− 1}. It follows from Theorem 4.21 in Maslov
and Fedoriuk [18] that there is a function S = S(z, y0I , η0J , s, r, t), such that locally
the canonical relation (3.19) is given by

y0J = − ∂S

∂η0J
, ζ =

∂S

∂z
,(3.21)

η0I =
∂S

∂y0I
, (σ, ρ, τ) = − ∂S

∂(s, r, t)
.(3.22)

Here we take into account the fact that we have a canonical relation, which introduces
a minus sign for (σ, ρ, τ).

Lemma 3.1. H(z, z0) is a Fourier integral operator with canonical relation

(3.23) {(Γ(z, z0, s, r, t, σ, ρ, τ); s, r, t, σ, ρ, τ) |
(s, r, t, σ, ρ, τ) ∈ T ∗

R
2n−1
(s,r,t)\0, z0 > Zmin(z, s, r, t, σ, ρ, τ, θ2)}.

The operator L is a Fourier integral operator with canonical relation (3.19). The
kernel of H(0, z) admits microlocally an oscillatory integral representation with phase
variables η0J , given by

(3.24) (H(0, z))(s0, r0, t0, s, r, t)

= (2π)−(2n−1+|I|)/2
∫

A(z, y0, η0J , s, r, t) exp[i(S(z, y0I , η0J , s, r, t)+〈η0J , y0J〉)] dη0J

such that the principal part a of the amplitude A satisfies

|a(z, y0, η0J , s, r, t)| =

∣∣∣∣ ∂(σ, ρ, τ)

∂(y0I , η0J)

∣∣∣∣
1/2

(3.25)

with

(σ(z, y0I , η0J , s, r, t), ρ(z, y0I , η0J , s, r, t), τ(z, y0I , η0J , s, r, t))(3.26)

= − ∂S

∂(s, r, t)
(z, y0I , η0J , s, r, t)

in accordance with (3.22).

Proof. The operators G−,s(z, z0) and G−,r(z, z0) are Fourier integral operators as
noted at the end of section 2 (subject to the substitution of x by s or r, respectively).
We consider G−,s(z, z0). Locally there are Maslov phase functions for its canonical
relation (cf. (2.22)), similar to the one described above, here with phase variables
(τ, σ0J′), where I ′ ∪ J ′ is a partition of {1, . . . , n − 1}. Thus G−,s(z, z0) is a locally
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finite sum
∑

j G
(j)
−,s(z, z0), where the kernels of G

(j)
−,s(z, z0) admit oscillatory integral

representations of the form

(3.27) (G
(j)
−,s(z, z0))(s, t, s0)

=

∫
A′(s, s0, σ0,J ′ , τ) exp[i(S′(z, z0, s, s0I′ , σ0J′ , τ) − 〈σ0J′ , s0J′〉 − τt)]dσ0J′dτ.

We denote the canonical relation of G
(j)
−,s(z, z0) by Λ

(j)
s (cf. (2.22)). Similarly, we have

G−,r(z, z0) =
∑

k G
(k)
−,r(z, z0) in which the kernels of G

(k)
−,r(z, z0) admit oscillatory

integral representations of the above type with phase variables (τ, ρ0J′′), amplitude
A′′, and phase function S′′(z, z0, r, r0I′′ , ρ0J′′ , τ) − 〈ρ0J′′ , r0J′′〉 − τt. We denote the

canonical relation of G
(k)
−,r(z, z0) by Λ

(k)
r . But then the kernel of H(z, z0) is given

by a sum
∑

j,k H
(j,k)(z, z0). Entering expressions of the type (3.27) for G

(j)
−,s(z, z0)

and G
(k)
−,r(z, z0) into (3.7), and performing the t̄0 integration, we find the following

expression for the kernel of H(j,k)(z, z0):

(3.28) (H(j,k)(z, z0))(s, r, t, s0, r0, t0) =

∫
2πA′(s, s0, σ0,J ′ , τ)A′′(r, r0, ρ0,J ′′ , τ)

× exp[i(S′(z, z0, s, s0I′ , σ0J′ , τ) − 〈σ0J′ , s0J′〉
+ S′′(z, z0, r, r0I′′ , ρ0J′′ , τ) − 〈ρ0J′′ , r0J′′〉 − τt)] dσ0J′ dρ0J′′ dτ.

It is not difficult to verify that −i times the argument in the exponent is a nonde-
generate phase function. Because A′ and A′′ are symbols supported inside a region
with ‖σ‖ < C|τ | and ‖ρ‖ < C|τ | it follows that A′A′′ is a symbol and that (3.28)
is a Fourier integral operator. From the phase function it follows that the canonical
relation of H(j,k)(z, z0) is given by the points

(s, r, t0 + t1 + t2, σ, ρ, τ ; s0, r0, t0, σ0, ρ0, τ)

with

(s, t1, σ, τ ; s0, 0, σ0, τ) ∈ Λ(j)
s and (r, t2, ρ, τ ; r0, 0, ρ0, τ) ∈ Λ(k)

r .

Taking the union over (j, k) results in (3.23).

Using (3.18) and the fact that H is given by a sum of terms of the form (3.28),
it also follows that L is a Fourier integral operator with canonical relation (3.19), as
usual for the solution operators of first-order hyperbolic equations.

The phase function S(z, y0I , η0J , s, r, t)−〈η0J , y0J〉), with S as described in (3.21)–
(3.22), describes locally the canonical relation of H(0, z). Therefore the kernel of
H(0, z) has microlocally an oscillatory integral representation of the form

(3.29) (H(0, z))(y0, s, r, t) = (2π)−(2n−1+|I|)/2

×
∫

A(z, y0, η0J , s, r, t) exp[i(S(z, y0I , η0J , s, r, t) + 〈η0J , y0J〉)] dη0J .

Then the adjoint H(0, z)∗ has amplitude A(z, y0, η0J , s, r, t) and phase −S(z, y0I , η0J ,
s, r, t) − 〈η0J , y0J〉. Hence, the kernel of the composition H(0, z)∗H(0, z) has the
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oscillatory integral representation

(3.30) (2π)−(2n−1)

∫
A(z, y0, η0J , s′, r′, t′)A(z, y0, η0J , s, r, t)

× exp(i[−S(z, y0I , η0J , s
′, r′, t′) + S(z, y0I , η0J , s, r, t)]) dy0Idη0J .

We expand the phase as a function of (s′, r′, t′) in a Taylor series about (s, r, t) and
identify the gradient

(3.31) − ∂S

∂(s, r, t)
(z, y0I , η0J , s, r, t)

= (σ(z, y0I , η0J , s, r, t), ρ(z, y0I , η0J , s, r, t), τ(z, y0I , η0J , s, r, t)).

Applying a change of variables, (y0I , η0J) 	→ (σ, ρ, τ), the phase takes the form

〈(σ, ρ, τ), (s′ − s, r′ − r, t′ − t)〉.(3.32)

In the text preceding (2.23) it was noted that G0,−(z, z0) is unitary. It follows using
(3.8) that H0(z, z0) is also unitary. Therefore, the operator H(0, z)∗H(0, z) must be
a pseudodifferential operator (in (s, r, t)) with symbol 1 in the set of (s, r, t, σ, ρ, τ),
where ψ2 is equal to 1. We conclude that the principal part a of the amplitude A is
given by

|a(z, y0, η0J , s, r, t)| =

∣∣∣∣ ∂(σ, ρ, τ)

∂(y0I , η0J)

∣∣∣∣
1/2

.(3.33)

4. Depth-to-time conversion. For h = h(z, s, r) we consider the mapping

K : h 	→ Q∗
−,s(0)Q∗

−,r(0)

∫ Z

0

H(0, z)Q−,s(z)Q−,r(z)(E2h)(z, ·, ·, ·)dz;(4.1)

we have K = LE2 (cf. (3.18)). The DSR modeling operator (cf. (3.10)) is then given
by

FDδc =
1

2
D2

tKE1c
−3
0 δc.(4.2)

This factorization is exploited in seismic applications such as imaging.
First we make the following observation. We use the notation Θ = Θ(z, s, r, σ, ρ, τ)

for the sum −b(z, s, σ, τ)− b(z, r, ρ, τ) appearing in the canonical relation (3.19) of L,

Θ(z, s, r, σ, ρ, τ) = −b(z, s, σ, τ) − b(z, r, ρ, τ).(4.3)

Because of expression (2.1) the map τ 	→ ζ = Θ is strictly monotone when Θ is real.
Taking as domain only the τ where the two square roots are real, we find the following
lemma. The inverse of this map will be denoted by Θ−1.

Lemma 4.1. Suppose (z, s, r, σ, ρ) are given, let c = max(c(z, s)‖σ‖, c(z, r)‖ρ‖),
and let d =

√
|σ2 c(z,s)2

c(z,r)2 − ρ2| if c(z, s)‖σ‖ ≥ c(z, r)‖ρ‖ and d =
√
|ρ2 c(z,r)2

c(z,s)2 − σ2|
otherwise. The map τ 	→ Θ(z, s, r, σ, ρ, τ) is a diffeomorphism ] −∞,−c[∪ ]c,∞[ →
] −∞,−d[∪ ]d,∞[.

The maximal depth Zmax associated with (z, s, r, σ, ρ, τ, θ) also has an associated
maximal time, given by

Tmax(z, s, r, σ, ρ, τ, θ) = −Γt(Zmax(z, s, r, σ, ρ, τ, θ), s, r, σ, ρ, τ).(4.4)
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We define a subset Ωθ of T ∗
R

2n−1
(s,r,t), such that t is bounded by Tmax,

Ωθ = {(s, r, t, σ, ρ, τ) | 0 < t < Tmax(0, s, r, σ, ρ, τ, θ)}.(4.5)

We have the following result about K.
Theorem 4.2. The operator K is microlocally a Fourier integral operator with

canonical relation consisting of a set of points,

(4.6) {(Γ(0, z, s, r, 0, σ, ρ, τ); z, s, r,Θ(z, s, r, σ, ρ, τ), σ, ρ) |
z, s, r, σ, ρ, τ ∈ R

4n−2, 0 < Zmin(z, s, r, σ, ρ, τ, θ2)}.

This canonical relation is the graph of an invertible map Σ:

{(z, s, r, ζ, σ, ρ) | 0〈z, 0〉Zmin(z, s, r, σ, ρ,Θ−1(z, s, r, ζ, σ, ρ), θ2)} → Ωθ2 .(4.7)

The map K converts depth to time, which is indeed the way seismologists often
look at modeling.

Proof. The operator K is the composition of (3.18) and E2. The first is a Fourier
integral operator with canonical relation given by (3.19). The operator E2 is a Fourier
integral operator with canonical relation given by

{(z, s, r, 0, ζ, σ, ρ, τ ; z, s, r, ζ, σ, ρ) | (z, s, r, ζ, σ, ρ) ∈ T ∗
R

2n−1
(z,s,r)\0, τ ∈ R\{0}}.(4.8)

In general, the composition of two canonical relations Λ1 ⊂ T ∗(X × Y )\0, Λ2 ⊂
T ∗(Y × Z)\0, X,Y, Z open subsets of R

nX ,RnY , respectively, R
nZ , is said to be

transversal if

Λ1 × Λ2 intersects T ∗X × (diag T ∗Y ) × T ∗Z transversally.

In the particular case of the canonical relations of L and E2, their composition is
transversal if at the solution τ of

−bs − br = ζ(4.9)

we have dΘ
dτ �= 0; see, e.g., Theorem 2.4.1 in [10]. Because by the previous lemma this

is the case, it then follows that the composition LE2, hence K, is a Fourier integral
operator. The composition of the canonical relations is equal to (4.6).

The canonical relation of K is parameterized by (z, s, r, σ, ρ, τ) in a subset of
R

4n−2. To show that it is invertible we must show that the projections of (4.6) on
the two sets given in (4.7) are both diffeomorphisms. By the previous lemma this
is clear for the projection on the right-hand side of (4.7). For the projection on the
left-hand side of (4.7) it follows from Lemma 25.3.6 of [15] and the fact that the right
projection has maximal rank that the linearization of this projection is invertible.
Thus it remains to be shown that the equation

(s0, r0, t0, σ0, ρ0, τ0) = Γ(0, z, s, r, 0, σ, ρ, τ)(4.10)

determines a unique point (z, s, r, σ, ρ, τ) when (s0, r0, t0, σ0, ρ0, τ0) is in Ωθ2 , the
right-hand side of (4.7). The point (s0, r0, t0, σ0, ρ0, τ0) determines a DSR bichar-
acteristic Γ(z, 0, s0, r0, t0, σ0, ρ0, τ0). The t component will be denoted here by Γt =
t0 − γt(z, 0, s0, σ0, τ) − γt(z, 0, r0, ρ0, τ). We have a solution to (4.10) if and only if

Γ(z, 0, s0, r0, t0, σ0, ρ0, τ0) − (s, r, 0, σ, ρ, τ) = 0.(4.11)
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In particular, we have that Γt(z, 0, s0, r0, t0, σ0, ρ0, τ0) = 0. Because Γt depends
strictly monotonically on z, this equation uniquely determines z. The other equa-
tions uniquely determine s, r, σ, ρ, τ . If z < Zmax(0, s0, r0, σ0, ρ0, τ), then there is a
DSR bicharacteristic connecting (s0, r0, t0, σ0, ρ0, τ) at depth 0 with (s, r, t, σ, ρ, τ) =
Γ(z, 0, s, r, t0, σ, ρ, τ) at depth z; hence it follows that then 0 > Zmin(z, s, r, σ, ρ, τ),
and vice versa. So using definition (4.4) this point (z, s, r, σ, ρ, τ) is such that 0 >
Zmin(z, s, r, σ, ρ, τ, θ2) precisely when t < Tmax(0, s0, r0, σ0, ρ0, τ0, θ2). This completes
the proof of the theorem.

5. Modeling in the single-scattering approximation. The replacement of
the wave equation Green’s function by a pair of one-way Green’s functions leads to a
cutoff in the modeling of the scattered wave field. To describe when all the singularities
of the data are modeled by the DSR method, we need the following assumption. We
use some angle θ, 0 < θ < π/2, with the vertical as introduced in section 2.

Assumption 2 (DSR assumption). If (z, x) ∈ X and α, β ∈ Sn−1, ts, tr > 0
depending on (z, x, α, β) are such that ηz(ts, z, x, β, τ) = ηz(tr, z, x, α, τ) = 0, then

c(z, x)−1 ∂ηz
∂t

(t, z, x, β, τ) < − cos(θ), t ∈ [0, ts],(5.1)

c(z, x)−1 ∂ηz
∂t

(t, z, x, α, τ) < − cos(θ), t ∈ [0, tr].(5.2)

It is clear that this assumption is stronger than Assumption 1. In general the set
of rays violating this assumption is not small, but it can contain an open subset of
the canonical relation (1.7), depending on the properties of the background medium.
This limits the applicability of the method discussed here, which however is still useful
in many cases, as discussed in the introduction.

In the following theorem we give the DSR modeling formula, and we give the
result in terms of a cutoff acting on Fδc. The symbol ψ2(0, z, s, r, 0, σ, ρ, τ) can be
pulled back to a symbol that is a function of (s, r, t, σ, ρ, τ) by the inverse of the map
Σ given by (4.6), (4.7).

Theorem 5.1. If Assumption 2 is satisfied with θ = θ1, then FDδc ≡ Fδc.
There is a pseudodifferential operator ψD = ψD(s, r, t,Ds, Dr, Dt) with principal sym-
bol given by the pull back mentioned just above of ψ2, that is, 1 on Ωθ1 , and is in S−∞

outside Ωθ2 , such that

FDδc ≡ ψDFδc.(5.3)

Proof. We reconsider the modeling operator F of Theorem 1.1 and use its de-
scription by (3.5). In this proof, we denote by Gs the map from a function f(z, s, t)
to (Gsf)(z, s, t) =

∫
R×Rn−1×R

G(z, s, t− t0, z0, s0)f(z0, s0, t0) dz0ds0dt0; cf. (1.2). Mo-
tivated by (3.5) and the introduction of H in (3.8), we consider the operator M =
(Idr ⊗Gs)◦ (Gr⊗ Ids), which maps functions of (zs, zr, s, r, t) to functions of (zs, zr, s,
r, t). In our application, we consider M as a map of functions in z > δ to functions on
a small neighborhood of zs = 0, zr = 0. By an argument similar to the first part of the
proof of Lemma 3.1, it follows that M is a Fourier integral operator, with canonical
relation consisting of a set of points

{(ηz,s, ηz,r, ηx,s, ηx,r, t + ts + tr, ηζ,s, ηζ,r, ηξ,s, ηξ,r, τ ; zs, zr, s, r, t, ζs, ζr, ρ, σ, τ)},
(5.4)
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where (ζs, σ) = −τc(zs, s)
−1β, (ζr, ρ) = −τc(zr, r)

−1α, ηz,s = ηz(ts, zs, s, β, τ), and
similar for the other components, and for the r-components, cf. (1.6); α, β ∈ Sn−1 as
in Theorem 1.1.

Denote by R4(z) the restrictions to zs = z and zr = z of functions f(zs, zr, s, r, t)
and by E4(z) the map that maps a function f(s, r, t) to (E4(z)f)(zs, zr, s, r, t) =
δ(zs − z)δ(zr − z)f(s, r, t). It follows, from writing out the distribution kernel of
M , and using the remark below (2.20), that for distributions in (zs, zr, s, r, t) with
singularities with τ−1ζs > 0 and τ−1ζr > 0, we have

R4(0)ME4(z)ψ
′
2(z, 0) = −1

4
Q∗

−,s(0)Q∗
−,r(0)H(0, z)Q−,s(z)Q−,r(z),(5.5)

modulo a regularizing operator, where ψ′
2 = ψ2 −Q−1

−,sQ
−1
−,r[Q−,sQ−,r, ψ2]. Since for

F the rays come from one side of the surface z = 0, we can apply this to (3.5).
Denote by E5 the map that maps a function f(z, s, r, t) to (E5(z)f)(zs, zr, s, r, t) =
δ(zs − zr)f( zs+zr

2 , s, r, t). It follows that we have

R4(0)ME5ψ
′
2(z, 0)E2E1(c

−3
0 δc) ≡ 1

4KE1(c
−3
0 δc),(5.6)

modulo a regularizing operator.

We can find an operator ψ′(z, s, r,Dz, Ds, Dr) such that the principal symbol
ψ′

2 − ψ′ is zero on the set ζ = −b(z, s, σ, τ) − b(z, r, ρ, τ). Namely, first set (for the
principal symbol) ψ′(z, s, r, ζ, σ, ρ) = ψ′

2(z, 0, s, r, σ, ρ,Θ
−1). Then the map ME5(ψ

′
2−

ψ′) is a Fourier integral operator with highest-order amplitude equal to zero. With
lower-order terms in ψ′ we find that we can replace ψ′

2 in (5.6) by an operator ψ′ =
ψ′(z, s, r,Dz, Ds, Dr). The operator ψ′ commutes with E2. Hence, if h = h(z, s, r),
we have that

R4(0)ME5E2ψ
′h = Kh,(5.7)

modulo a smoothing operator. Because of equality (5.7), R4(0)ME5E2 is an invertible
Fourier integral operator with canonical relation given by (4.6), microlocally on a
neighborhood of the set where ψ′ is not in S−∞. Now define microlocally on a
neighborhood of the set where ψ′ is not in S−∞,

ψD = R4(0)ME5E2ψ
′(R4(0)ME5E2)

−1.(5.8)

By Egorov’s theorem this is a pseudodifferential operator with symbol as in the the-
orem and we have

ψDR4(0)ME5E2 = K,(5.9)

modulo a smoothing operator. It follows that (5.3) is satisfied.

6. The Bolker condition. It follows from (4.2) and from Theorem 4.2 that
the canonical relation of FD in (3.10) satisfies Guillemin’s [11] Bolker condition: The
projection of the canonical relation (1.7) on T ∗Y \0 is an embedding.

Indeed, Assumption 2 is stronger than this condition, as can be seen from the
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arguments in the proof of Theorem 4.2. This fact will be important for the inverse
scattering based on modeling data by FD.
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