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Abstract

Seismic data are commonly modeled by a linearization around a smooth background medium in combination with a
high frequency approximation. The perturbation of the medium coefficient is assumed to contain the discontinuities. This
leads to two inverse problems, first the linearized inverse problem for the perturbation, and second the estimation of the
background, which is a priori unknown (velocity estimation). Here we give a reconstruction formula for the linearized
problem using the downward continuation approach. The reconstruction is done microlocally, up to an explicitly given
pseudodifferential factor that depends on the aperture. Our main result is a characterization of the wave-equation angle
transform, derived from downward continuation, that generates the common image point gathers as an invertible Fourier
integral operator, microlocally. We show that the common image point gathers obtained with this particular angle trans-
form are free of so called kinematic artifacts, even in the presence of caustics. The assumption is that the rays in the back-
ground that are associated with the reflections due to the medium perturbation are nowhere horizontal. Finally, making
use of the mentioned angle transform, pseudodifferential annihilators of the data are constructed. These annihilators detect
whether the data are contained in the range of the modeling operator, which is the precise criterion in migration velocity
analysis to determine whether a background medium is acceptable, even in the presence of caustics.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In reflection seismology one places point sources and point receivers on the earth’s surface. Each source
generates acoustic waves in the subsurface, that are reflected where the medium properties vary discontinuously.
The recorded reflections that can be observed in the data are used to reconstruct these discontinuities. In this
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List of symbols

Symbol Description and Equation
c0 (z, x) background wavespeed, below (1)
dc (z, x) wavespeed contrast, below (1)
g bicharacteristics (wave equation), (2)
s frequency, (2)
G Green’s function (wave equation) below, (1)
dG scattered wavefield (Born approximation), (3)
Y acquisition manifold
X subsurface manifold
ts source-ray traveltime, (4)
tr receiver-ray traveltime, (4)
d data
C�,h cone of propagating wave directions
B� single-square-root operator, (5)
b principal symbol of B�
C damping operator, (6)
Q� decomposition operator (component), (5)
G� one-way wave propagator
c bicharacteristics (one-way wave equation), (7)
H double-square-root propagator, (8)
C bicharacteristics (double-square-root equation), (10)
E1 extension operator, (13)
R1 ¼ E�1 restriction operator, (29)
E2 extension operator, (14)
R2 ¼ E�2 restriction operator, (28)
L (15)
�L (34)
K depth-to-time conversion operator, (17)
�K (33)
A amplitude (�K), (38)
S generating function (�K), (38)
R map associated with canonical relation of K

wD (18)
FD scattering operator, (16), (25)
Xh (19)
Zmax below, (19)
Tmax (19)
wY tapered mute, (20)
N normal operator, (20)
p (22)
K (22)
E3 extension operator, (23)
R3 ¼ E�3 restriction operator above, (56)
E4 extension operator, (24)
AWE angle transform below, (25), (74)
H frequency-to-vertical-wavenumber map
az (36)
N (35)
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�N (37)
W, W0 (45)
U, Un�1 (47), (46)
�W above, (53)
�U (55)
V above, (50)
v cutoff function, (56)
C0 (58)
WWE above, (74), (75)
| amplitude correcting factor, (86)
Mj offset multiplication operator above, (92)
Wj annihilator, (93)
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paper, together with an earlier paper, which will be referred to as Paper I [27], we develop an inverse scattering
method using a downward continuation approach. The notion of downward continuation refers to the con-
tinuation of surface seismic data into the subsurface. The purpose is to provide a mathematical foundation of
the downward continuation approach to seismic data processing. (In particular that part of seismic data pro-
cessing that involves migration.)

Our main analytical tools will be from microlocal analysis, see e.g. the general references [9,32,12–14]. This
should not come as a surprise. Indeed, the successful formation of images by migration is based on the prop-
agation of wave fronts along the rays of geometrical acoustics. The theory of microlocal analysis precisely cap-
tures this behavior of the solutions of wave equations, and is therefore a natural tool for the analysis of seismic
migration. A number of the references below also use microlocal techniques.

We study the inversion of seismic data with an acoustic model. Let z 2 R denote the vertical (depth) coor-
dinate, x 2 Rn�1 the horizontal coordinate(s) and t the time, and let c = c (z, x) be the wave speed, then, assum-
ing constant density of mass, the scalar wave equation for acoustics is given by
Pu ¼ f ; P ¼ cðz; xÞ�2
o2

t � o2
z �

Xn�1

j¼1

o2
xj
: ð1Þ
When the wavespeed c is smooth, the singularities of the solution propagate along curved trajectories, char-
acteristics, while discontinuities in the wavespeed lead to reflections.

In practice, to model seismic reflection data (1) is not used directly, but a linearization is invoked, togeth-
er with a separation of ‘‘scales’’. The linearization is in the coefficient c around a smooth background c0,
c = c0 + dc. We denote the Green’s function of (1) with velocity c0 by G, with G = 0 for t < 0. The
perturbation dc is assumed to contain the short wavelength variations of c, and has no long wavelength
components. Note that this is only a partial linearization: The dependence of the wavefield on c0 is still
nonlinear. The high-frequency part of the perturbation in the Green’s function, which we denote by dG,
models the once reflected waves, whence this approximation is called the high-frequency single scattering
approximation.

In the seismic inverse problem, both the smooth background c0 and the perturbation dc are unknown and
have to be reconstructed from the reflection data. This leads to two related inverse problems. The first one is
the linear inverse problem of reconstructing dc given c0. The solution of this problem is used in the estimation
of c0, the second problem, which is highly nonlinear. The purpose of this paper is to develop and analyze meth-
ods based on downward continuation for these two inverse problems; the advantages of the downward con-
tinuation approach in the presence of caustics are elucidated in Section 1.4 below.

1.1. Microlocal analysis and linearization of the scattering problem

The bicharacteristics, g with components (gz, gx, gf, gn) in phase space, that describe the propagation of sin-
gularities by the wave equation are the solutions to a Hamilton system, derived from the principal symbol of



582 C.C. Stolk, M.V. de Hoop / Wave Motion 43 (2006) 579–598
P, and will be parameterized by initial position (z0, x0), take-off direction a 2 Sn�1, frequency s, which together
define the initial cotangent vector (f0, n0) = �sc (z0, x0)�1a, and time t,
gðt; z0; x0; a; sÞ ¼ ðgzðt; z0; x0; a; sÞ; gxðt; z0; x0; a; sÞ; t; gfðt; z0; x0; a; sÞ; gnðt; z0; x0; a; sÞ; sÞ: ð2Þ
Here the evolution parameter is the time t. Note that s is invariant along the Hamilton flow (see e.g. the intro-
duction and chapter 5 of [9]).

Hörmander’s wave front set will be denoted by WF(u), for a distribution u in D0ðRkÞ for some k [12, chapter
8]. For the further analysis, we also need the following notion of microlocal equivalence. Let u; v 2 D0ðRkÞ.
Then u � v, microlocally on C � T �Rk n 0, if WF(u � v) \ C = ;.

The data are assumed to be modeled by dG (zr, r, t, zs, s), for zr = zs = 0. Here s 2 Rn�1, r 2 Rn�1 denote the
horizontal source and receiver position, respectively. We have (cf. Paper I and [16])
dGð0; r; t; 0; sÞ ¼
Z

dz
Z

dx
Z

dt0Gð0; r; t � t0; z; xÞ 2dcðz; xÞ
c0ðz; xÞ3

o2
t Gðz; x; t0; 0; sÞ: ð3Þ
We assume that the data are available for (s, r, t) in a bounded open subset Y, called the acquisition manifold,
of R2n�2 � Rþ. Except for Remark 2.5 we assume that no further restrictions apply to Y; the acquisition geom-
etry is maximal. The modeling or scattering operator F is, for given c0, defined as the map from dc to dG

restricted to Y. Since Y is bounded and the waves propagate with finite speed we may assume that dc is sup-
ported in a bounded open subset X of Rn�1 � Rþ. We furthermore assume that X \ fz ¼ 0g ¼ ;.

Under certain conditions, the operator F is a Fourier integral operator [21] with canonical relation
fðgxðts; z; x; b; sÞ; gxðtr; z; x; a; sÞ; ts þ tr; gnðts; z; x; b; sÞ; gnðtr; z; x; a; sÞ; s; z; x; f; nÞjts; tr > 0;

gzðts; z; x; b; sÞ ¼ gzðtr; z; x; a; sÞ ¼ 0; ðf; nÞ ¼ �sc0ðz; xÞ�1ðaþ bÞ; ðz; x; a; b; sÞ
2 subset of X � ðSn�1Þ2 � R n 0g � T �R2n�1

ðs;r;tÞ � T �Rn
ðz;xÞ; ð4Þ
see also the discussion in the introduction of Paper I; for a general reference of Fourier integral operators, see
[9]. We note that WF (dG) is contained in the composition of this canonical relation with WF(dc).

1.2. The downward continuation method

The main topic of this paper is the so-called wave-equation or downward continuation approach [5,4,19] to
seismic inverse scattering. We summarize and discuss the results of Paper I. Key ingredients in this approach
are an operator H (z, z0) and its adjoint H (z, z0)*, where for technical reasons z0 > z. Let the data be denoted
by d = d (s, r, t). The result of acting with H (0, z)* on d has the geophysical interpretation of the data that
would have been measured if the plane containing sources and receivers would be at depth z (this interpreta-
tion is not exact, it ignores certain pseudodifferential factors affecting the amplitude in the data, and can only
be made after restriction to positive times of H (0, z)*d). Thus H (z, z0) and its adjoint are operators acting on
distributions of ðs; r; tÞ 2 Rn�1 � Rn�1 � R. In the following paragraphs we will discuss this in more detail. We
start with so called one-way wave equations.

1.2.1. One-way wave propagation

Let C�,h be the cone C�;h ¼ fðvz; vxÞ 2 R� Rn�1jkvxk < tanðhÞjvzj and vz < 0g. One-way wave equations
describe only waves propagating with ray velocities, ðvz; vxÞ ¼ dðgz;gxÞ

dt , inside such a cone, where h < p
2
. Numer-

ical one-way wave equations have been extensively studied, see e.g. [4,22], or [8] and references therein. For the
analysis of such equations, see [25]. In this section, we summarize some of the aspects needed here.

The essential property of one-way wave equations is that they give solutions to the wave equation microl-
ocally for singularities propagating along bicharacteristics that stay in C�;h1

, for some given h1. To make this
precise, we consider a bicharacteristic going through some point (z0, x0, t0, f0, n0, s), and assume that

(1) the associated velocity vector dðgz;gxÞ
dt stays in C�;h1

along some open interval including (z0, x0, t0, f0, n0, s);
(2) u satisfies Eq. (1) with f satisfying f � 0 microlocally on this interval of the bicharacteristic;
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(3) the function f is in C1 on a neighborhood of (z0, x0, t0) and (z0, x0, t0, �f0, n0, s0) 62WF(u) (this would
generate a singularity with vertical propagation velocity vz > 0, i.e. in the opposite direction as those in
C�;h1

).

Then Q��u� � u on this bicharacteristic, where Q� = Q� (z, x, Dx, Dt) is an elliptic pseudodifferential oper-
ator with symbol i sgn ðsÞjsj�1=2ðc�2

0 � s�2jjnjj2Þ�1=4, and u� is the solution to an initial value problem in z,
ðoz � iB�Þu� ¼ 0; z < z0; Q��u�jz¼z0
� ujz¼z0

; ð5Þ
with B� a pseudodifferential operator with principal symbol given by
�bðz; x; n; sÞ ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0ðz; xÞ�2 � s�2jjnjj2

q
:

Here we use the notations Dx = �iox. Such B� and Q� exist for any fixed h1 <
p
2
.

We assume that singularities propagating with velocity outside the cone C�;h2
, h1 < h2 <

p
2
, are strongly

damped. This damping can be obtained by introducing a new term Cu� in the differential equation, where
C (z, x, Dx, Dt) is a suitably chosen pseudodifferential operator, see [25]; such an approach was followed in
a finite-difference scheme for the paraxial approximation to the one-way wave equation in [29, IV.D]. We thus
replace (5) by the one-way wave equation with damping,
ðoz � iB� � CÞu¼0; z < z0: ð6Þ

Denote by G� (z, z0) the evolution operator associated with this equation, mapping initial values at z0 to the
solution at z. Then HQ��ðz; x;Dx;DtÞG�ðz; z0ÞQ�ðz0; x0;Dx0

;Dt0Þ models microlocally the upgoing constituents
of the solution operator to (1), in the sense that its distribution kernel is microlocally equal to G (z, x, t, z0, x0).
Here H denotes the Hilbert transform in time.

G� (z, z0) propagates singularities along the bicharacteristics of oz � i B�; they are parameterized by z, ini-
tiated at (z0, x0) and n0, and denoted as c (z, z0, x0, n0, s). In components, we write them as (note that they are
time translation invariant)
cðz; z0; x0; t0; n0; sÞ ¼ ðz; cxðz; z0; x0; n0; sÞ; ctðz; z0; x0; n0; sÞ þ t0;�bðz; cx; cn; sÞ; cnðz; z0; x0; n0; sÞ; sÞ: ð7Þ
1.2.2. Upward/downward continuation

In Paper I, we defined an operator H (z, z0), called the upward continuation operator, by a composition of
two one-way wave Green’s functions. It acts on distributions of ðs; r; tÞ 2 Rn�1 � Rn�1 � R, and is given by
Hðz; z0Þ ¼ ðIds � G�;rðz; z0ÞÞ � ðG�;sðz; z0Þ � IdrÞ: ð8Þ

Here, G�,s (z, z0) acts in the (s, t) variables, and Ids is the identity operator on functions of s, and a similar
notation is assumed for G�,r (z, z0) and Idr. We observed in Paper I that G�,r, B�,r, Cr commute with G�,s,
B�,s, Cs. From this it follows that H (z, z0) is the solution operator of the initial value problem for the so-called
double-square-root (DSR) equation
o

oz
� iB�ðz; s;Ds;DtÞ � iB�ðz; r;Dr;DtÞ � Cðz; s;Ds;DtÞ � Cðz; r;Dr;DtÞ

� �
u ¼ 0; 0 6 z < z0; ð9Þ
i.e., the solution to (9) with initial value u (z0, s0, r0, t0) = v (s0, r0, t0) is given by H (z, z0)v. There are bicharac-
teristics associated with (9) and they are given by
Cðz; z0; s0; r0; t0; r0; q0; sÞ ¼ ðcxðz; z0; s0; r0; sÞ; cxðz; z0; r0; q0; sÞ; t0 þ ctðz; z0; s0; r0; sÞ
þ ctðz; z0; r0; q0; sÞ; cnðz; z0; s0; r0; sÞ; cnðz; z0; r0; q0; sÞ; sÞ: ð10Þ
The adjoint H (0, z)* is used to compute the downward continued data (for example, by method of generalized
screen expansion [8]).

To justify the substitution for the time convolution of the two Green’s functions in (3) by H, we will need

Assumption 1. (DSR assumption) If (z, x) 2 X and a, b 2 Sn�1, ts, tr > 0 depending on (z, x, a, b) are such that
gz (ts, z, x, b, s) = gz (tr, z, x, a, s) = 0 and (gx (ts, z, x, b, s), gx (tr, z, x, a, s), ts + tr) 2 Y (cf. (4)), then
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cðz; xÞ�1 ogz

ot
ðt; z; x; b; sÞ < � cosðh1Þ; t 2 ½0; ts	; ð11Þ

cðz; xÞ�1 ogz

ot
ðt; z; x; a; sÞ < � cosðh1Þ; t 2 ½0; tr	: ð12Þ
1.2.3. Factorization of the scattering operator
We will denote by FD the scattering operator but with the one-way Green’s functions substituted for the

Green’s functions (cf. (3)). In Section 5 of Paper I, we compared this scattering operator, in the downward
continuation approach, with the original operator F. To write FD in convenient form, we first define two
mappings,
E1 : D0ðRnÞ ! D0ðR2n�1Þ : cðz; xÞ7!dðx� �xÞc z;
�xþ x

2

� �
; ð13Þ

E2 : D0ðR2n�1Þ ! D0ðR2nÞ : hðz;�x; xÞ7!dðtÞhðz;�x; xÞ; ð14Þ
and a mapping L : E0ðR2n
ðz;s;r;tÞÞ ! D0ðR2n�1

ðs;r;tÞÞ by
Lg ¼ Q��;sð0ÞQ��;rð0Þ
Z Z

0

Hð0; zÞQ�;sðzÞQ�;rðzÞgðz; 
; 
; 
ÞÞðs; r; tÞdz: ð15Þ
It was shown that
F D :
1

2
c�3

0 dc! D2
t LE2E1ð12c

�3
0 dcÞ: ð16Þ
In the above, for given z, g ¼ E2E1ð12c�3
0 dcÞ has the interpretation of kernel of a reflection operator. (Note that

we have absorbed a multiplication by 2c3
0 in FD unlike the definition in Paper I.)

For the composition LE2 we introduced the notation K,
K ¼ LE2: ð17Þ
The operators L and K are Fourier integral operators, see Paper I, Lemma 3.1 and Theorem 4.2. We found
(Theorem 5.1) that there is a pseudodifferential operator wD such that
F D
1
2
c�3

0 dc
� �

� wDF dc or F D
1
2
c�3

0 
 � wDF : ð18Þ
The operator wD can be called a pseudodifferential cutoff, it is 1 on the set Xh1
, and in S�1 outside Xh2

, with
0 < h1 < h2 < p/2 and where Xh is given by
Xh ¼ fðs; r; t; r; q; sÞjt < T maxð0; s; r; r;q; s; hÞg: ð19Þ

Here the maximal time Tmax = Tmax (0, s, r, r, q, s, h) is determined by the canonical relation of K from the
maximal depth, Zmax = Zmax (0, s, r, r, q, s, h), that is the upper boundary of the maximal interval containing
z = 0 for which the source and receiver rays satisfy the DSR assumption at h = h1.

1.3. The reconstruction of dc given c0

There are a number of results concerning the approximate reconstruction of dc given c0. Those differ in the
assumptions on the dimension of the acquisition manifold and on the behavior of the rays (e.g. whether caus-
tics are allowed) [1,11,17,16,23]. The approach common in these works is to first establish that the scattering
operator is a Fourier integral operator and determine its canonical relation, and then to introduce a trial
inverse scattering operator with the transpose canonical relation, but with a symbol that needs to be deter-
mined. This approach stems from the notion of imaging.

We introduce a function wY 2 C10 ðY Þ that goes smoothly to zero near the boundary of Y. Applying the
imaging after modeling yields the composition of operators N: = F*wYF, called the normal operator. The Bol-
ker condition of Guillemin [10] is
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Assumption 2. The projection of the canonical relation (4) on T*Yn0 is an embedding.

Since (4) is a canonical relation that projects submersively on the subsurface variables (z, x, f, n), the pro-
jection of (4) on T*Yn0 is immersive [14, 25.3.6]. Therefore only the injectivity in the assumption needs to be
verified [16].

Theorem 1.1. With Assumption 2 the operator N is a pseudodifferential operator.

Applying the adjoint F*wY to the data d yields the normal equation,
Nðz; x;Dz;DxÞdc ¼ F �wY d: ð20Þ
Thus, the problem becomes to invert this normal operator. Microlocally the inverse of N exists, where its prin-
cipal symbol is nonzero. The subset of T �Rn

ðz;xÞ n 0 where this is the case is determined as follows. The principal
symbol of the normal operator is nonzero at (z, x, f, n) whenever there is a point (s, r, t, r, q, s; z, x, f, n) in the
canonical relation (4) with (s, r, t, r, q, s) in the support of wY. The mentioned subset is representative for the
‘‘illumination’’ of dc by the available data.

In the reconstruction of dc, seismologists distinguish between imaging, which produces a function that has
singularities at the same position as the ones in dc, and methods that also correctly compute the size of the
singularities or the discontinuities. In the latter case they speak of inversion, or of true-amplitude imaging.
Thus F*wY is an imaging operator, while hNi�1F*wY is an inversion operator, where hNi�1 is the regularized
parametrix of N, that is an inverse microlocally for a subset of T �Rn

ðz;xÞ where the symbol of N is nonzero. The
inversion operator reconstructs microlocally dc.

The first result of this paper concerns the reconstruction of dc in the downward continuation approach. In
Section 2 we derive the normal equation in this approach from the Born DSR modeling operator, FD, and
derive a reconstruction equation in Theorem 2.2. This theorem is the downward continuation counterpart
of Theorem 1.1. The adjoint F �D is factorized into a product of operators to emphasize the different steps that
compose an algorithm for reconstruction. It is anticipated that, because of the cutoff wD in (18), fewer singu-
larities in dc will be reconstructed than if the original operator F* were used for the imaging. For example,
vertical reflectors that could be illuminated by turning rays are not reconstructed. In many practical cases this
disadvantage is however not so important.

1.4. A processing method for identifying acceptable c0

The results of Section 3 concern the determination of c0 through migration velocity analysis. Here it is
exploited that the reconstruction of dc is an overdetermined problem. Indeed dc is a function of n variables,
and d of 2n � 1 variables. Beylkin [1] gives conditions so that dc can be reconstructed by an operator Ass, say,
from a subset of dimension n of the data, given c0. An n dimensional subset of data are obtained, for instance,
by taking the source coordinate constant. In conventional migration velocity analysis the data are viewed as
an (n � 1)-parameter family of such subsets, which results in an (n � 1)-dimensional family of reconstructions.
If we denote the (n � 1) parameters by p, and the family of reconstructions of dc by Ass[c0]d (z, x, p), then this
gives the following criterion for the determination of c0:
ðAss½c0	dÞðz; x; pÞ is independent of p; ð21Þ

at least microlocally. In migration velocity analysis some c0 is constructed based on this criterion. Note that c0

need not be uniquely determined by the singular part of the data, that is why we say ‘‘acceptable’’ c0.
In the presence of caustics the conditions of [1] are generally violated, and the application of Ass (which can

still be defined in this case) results in images with so called kinematic artifacts, that correspond to nonlocal

singular contributions to AssF [17,18]. As a result, (21) is no longer valid. To remedy this, the parameter p
can be chosen to no longer parameterize a subset of data, but instead to parameterize the angle between
in- and out-going rays at the image point. In the Kirchhoff approach to seismic inverse scattering it has been
proposed to use a generalized Radon transform to generate a set of images parameterized by angle (such an
operator will be referred to as angle transform) [3,33]. However, in the presence of caustics, artifacts were
identified in numerical examples [3,28], also in this case. Such artifacts are attributed to contributions from
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nonlocal operators to the composition of the generalized Radon transform with the modeling operator F. By
microlocal analysis of the Kirchhoff approach the presence of artifacts was shown in [24].

The second and main result of this paper is to show that there is a downward continuation based
angle transform, AWE, that is artifact free under much weaker conditions than those of Beylkin [1] (The-
orem 3.1). In particular, the presence of caustics is allowed. The map AWE is defined in Section 3, and
resembles an operator introduced in [6] to study angle dependent reflection coefficients. In (16) we
observe that
E2E1
1
2
c�3

0 dc
� �

¼ ð2pÞ�n
Z

1
2
c�3

0 dc
� �

z;
�xþ x

2

� �
� exp½ihð�x� xÞ; pis	 expðitsÞjsjn�1dpds

¼: KE3E4ð12c
�3
0 dcÞ; ð22Þ
where K is a pseudodifferential operator with symbol jsjn�1, and E3 : D0ðR2n�1Þ ! D0ðR2nÞ,
E4 : D0ðRnÞ ! D0ðR2n�1Þ are given by
E3f ðz;�x; x; tÞ ¼ ð2pÞ�ðn�1Þ
Z

dðt � hðx� �xÞ; piÞ f z;
�xþ x

2
; p

� �
dp; ð23Þ

E4
1
2
c�3

0 dc
� �� �

ðz; x; pÞ ¼ 1

2
c�3

0 dc
� �

ðz; xÞ; ð24Þ
respectively, so that
F D ¼ D2
t LKE3E4: ð25Þ
By the map E4 the perturbation 1
2
c�3

0 dc is viewed as being p dependent as if it were a reflection coefficient. The
angle transform AWE is derived, in the imaging process, from the adjoint E�3KL�. In the above, p is, given the
singular direction from the wavefront set of dc, obtained through trigonometric formulae related to scattering
angles [7].

We show that AWEF is a p-family of pseudodifferential operators, which implies that nonlocal singular con-
tributions are absent and data are mapped to a set of images (Theorem 3.1). In addition we show that AWE is
an invertible Fourier integral operator. We introduce an appropriate modification, denoted byeAWE ¼ eA WE½c0	 such that eAWE½c0	F ½c0	 is a p-family of pseudodifferential operators with symbol 1, microlocal-
ly, hence mapping data to a set of reconstructions (Proposition 3.2). In [7] it was confirmed numerically that
this angle transform does not generate artifacts in the presence of caustics.

The third result concerns the construction of operators we will refer to as annihilators of the data. The
notion of acceptable background model c0 can now be made precise by requiring that the data are in the range
of the modeling operator FD[c0]. The criterion that the data d 2 range (FD[c0]) becomes equivalent to
ðeAWE½c0	dÞðz; x; pÞ is independent of p; ð26Þ

microlocally, where p can be identified with the integration variables in E3 (cf. (23)). Thus, the criterion for
migration velocity analysis (21) is extended to allow for background media with caustics.

Eq. (26) reveals the redundancy in the data. The existence of pseudodifferential operators that annihilate the
singular part of the data are associated with this redundancy [26]. The annihilators are related to the differ-
ential semblance measure in the framework of Beylkin’s conditions, for estimating the background medium
[30]. Annihilators of the data in the downward continuation approach can be derived from eAWE. In addition,
we construct in Section 4 a different annihilator, W, such that kWdkL2 measures the focusing at r = s of the
downward continued data restricted to t = 0.

2. Imaging and reconstruction in the downward continuation approach

Conceptually, the first step in the reconstruction of the perturbation dc given the background, c0, is apply-
ing the adjoint of the linear modeling map to the data. This is the process of imaging. We present a normal
equation similar to (20) based on the double-square-root (DSR) modeling operator (16). The operator F* in
the right hand side of (20) is replaced by F �D, so that the right hand side can be computed using the downward
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continuation approach summarized in the introduction. As in Theorem 1.1 and the discussion below it, this
leads to reconstruction modulo a pseudodifferential operator for which an explicit expression is given.

First, we discuss the geometric or kinematic considerations pertaining to the reconstruction and the preven-
tion of imaging artifacts. The operator FD is a Fourier integral operator whose canonical relation is a subset of
that of F containing the elements with (z, x, a, b) such that Assumption 1 applies, with angle given by h2 below
(18). It follows that in this case Assumption 2 can be replaced by the following weaker assumption

Assumption 3. If several elements of (4) project to the same point in T*Y, then none of the (z, x, a, b) that
describe these elements are such that Assumption 1 is satisfied.

In effect this assumption implies that the cutoff wD has symbol in S�1 for points in T*Y where the projec-
tion from (4) is not injective. A cartoon of two ray pairs such that Assumption 3 is violated is given in Fig. 1.
As discussed in Paper I, Section 6, the DSR Assumption 1 is stronger than Assumption 2, so is also sufficient
for Theorem 1.1 to hold.

Second, we discuss a factorization of F �D, and the different adjoints of operators that make up this factor-
ization. In this way we obtain insight in the structure of the imaging operator and in the different steps in algo-
rithms to implement it.

Consider the factorization of FD given in Eq. (16). The adjoint operator H (0, z)* propagates the data down-
ward and backward in time. The adjoint of operator L is given by
Fig. 1.
equal t
ðL�dÞðz; s; r; tÞ ¼ Q��;sðzÞQ��;rðzÞHð0; zÞ
�Q�;sð0ÞQ�;rð0Þd; ð27Þ
which yields, in general, a nonvanishing outcome for t < 0 also. The adjoint of extension operator E2 is given
by the restriction R2 defined by
gðz; s; r; tÞ7!ðR2gÞðz; s; rÞ ¼ gðz; s; r; 0Þ; ð28Þ

while the adjoint of extension operator E1 is given by the restriction R1 defined by
hðz; s; rÞ7!ðR1hÞðz; xÞ ¼ hðz; x; xÞ: ð29Þ

In any algorithm derived from the inverse scattering approach developed in this paper, the operator L* is the
key component; the computation of L*d would be implemented as a ‘marching’ in depth z. The restrictions R1,
R2 represent the imaging conditions and are applied at each depth after the data are downward continued.

The adjoint of the depth-to-time conversion operator, K = L E2 equals
K� ¼ R2L�: ð30Þ

The canonical relation of K maps points (z, s, r, f, r, q) in a subset of T �R2n�1 n 0 diffeomorphically to points
(s0, r0, t0, r0, q0, s) in a subset of the cotangent acquisition space T �R2n�1 n 0 (Theorem 4.2 of Paper I). We de-
note this map by R. The adjoint K* maps singularities according to the inverse R�1. Furthermore, for given
(z, s, r, r, q), we have a mapping s # f = H (z, s, r, r, q, s) with inverse s = H�1(z, s, r, f, r, q) (Lemma 4.1
of Paper I).

Third, we analyze the normal operator derived from FD. In the downward continuation version of (20), the
operator on the left hand side is given by F �DwY F . Here wY = wY (s, r, t) is a smooth cutoff function on Y that is
Cartoon of two ray pairs such that Assumption 3 is violated. The two trajectories between the reflection points are assumed to have
raveltime.
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zero near the boundary of Y, that we introduced to account for the limited acquisition aperture. Suppose now
that K 0 is defined as K, but with angles for the cutoff (contained in G�,s, G�,r) given by h01; h

0
2 instead of h1, h2,

such that 0 < h1 < h2 < h01 < h02 < p=2. Then K is supported in the region where the cutoff that forms part of
K 0 is equal to 1. Define an operator F 0D by F 0D ¼ D2

t K 0E1 (cf. (16)–(18)). Then FD can be written as F D ¼ wDF 0D,
modulo a regularizing operator. Hence
F �DwY F ¼ F 0D � w�DwY F 0D
1

2
c�3

0 

� �

; ð31Þ
modulo a regularizing term. Thus, we can compute the symbol of F �DwY F using the downward continuation
expression for F. Substituting (16), we have that
F �DwY F D ¼ R1 K�D2
t wY D2

t K E1: ð32Þ

The first step in our computation of the symbol of this operator will be to evaluate K�D2

t wY D2
t K. To simplify

the evaluation, we introduce intermediate operators �L and �K that correspond with operators L and K, respec-
tively, with the Q� operators removed,
�K ¼ �LE2 ð33Þ

with
�Lg ¼
Z Z

0

Hð0; zÞgðz; 
; 
; 
Þ dz: ð34Þ
We note, however, that Q�,s and Q�,r do not commute with E2.

Lemma 2.1. The composition K�D2
t wY D2

t K is a pseudodifferential operator of order 0 with principal symbol

R* (wY|wD|2) (z, s, r, f, r, q) N (z, s, r, f, r, q), where N is given by
Nðz; s; r; f;r; qÞ ¼ ðR�a0Þðz; s; r; f; r; qÞ � azðs; r; r; q;H�1ðz; s; r; f; r; qÞÞ�Nðz; s; r; f; r; qÞ ð35Þ

where
azðs; r; r; q; sÞ ¼ s2jbðz; s; r; sÞj�1jbðz; r; q; sÞj�1 ð36Þ

and
�Nðz; s; r; f;r; qÞ�1 ¼ oH
os
ðz; s; r; r; q;H�1ðz; s; r; f; r; qÞÞ

����
����

¼ c0ðz; sÞ�2ðc0ðz; sÞ�2 � s�2jjrjj2Þ�1=2
h

þc0ðz; rÞ�2ðc0ðz; rÞ�2 � s�2jjqjj2Þ�1=2
i

s¼H�1ðz;s;r;f;r;qÞ
:

ð37Þ
Proof. From the fact that the canonical relation of K is invertible (the graph of a diffeomorphism denoted by
R before) between subsets of T �R2n�1 n 0, it follows that K*wYK is a pseudodifferential operator. We calculate
the principal symbol of K�D2

t wY D2
t K.

First, we evaluate the symbol of �K� �K microlocally, ignoring the cutoffs; its principal part we denote by
�Nðz; s; r; f; r; qÞ. We recall that the kernel of operator H (0, z) has microlocally an oscillatory integral
representation with amplitude A = A (z, y0, g0J, s, r, t) and a phase function associated with generating
function, S = S (z, y0I, g0J, s, r, t), where y0 = (s0, r0, t0) and g0 is the corresponding cotangent vector, and
{I, J} is a partition of {1, . . . ,2n � 1} (Lemma 3.1 of Paper I). The kernel of operator �K has an oscillatory
integral representation similar to the one of H (0, z),
�Kðy0; z; s; rÞ ¼ ð2pÞ�ð2n�1þjJ jÞ=2

Z
Aðz; y0; g0J ; s; r; 0ÞeiðSðz;y0I ;g0J ;s;r;0Þþhg0J ;y0J iÞ dg0J ð38Þ
which follows upon considering the action of �L on d (t) Æ distribution (z, s, r) and carrying out the t integration.
(The factors of 2p follow the convention used, for example, in [9].)
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We evaluate, microlocally, �K� �K. Using (38) and integrating out one set of g0J variables, the kernel of �K� �K
can be written as
ð2pÞ�ð2n�1Þ
Z

Aðz0; y0; g0J ; s0; r0; 0ÞAðz; y0; g0J ; s; r; 0Þ expði½�Sðz0; y0I ; g0J ; s
0; r0; 0Þ

þ Sðz; y0I ; g0J ; s; r; 0Þ	Þ dg0J dy0I ð39Þ
Next we identify the gradient
� oS
oðz; s; rÞ ðz; y0I ; g0J ; s; r; 0Þ ¼ ðfðz; y0I ; g0J ; s; r; 0Þ; rðz; y0I ; g0J ; s; r; 0Þ; qðz; y0I ; g0J ; s; r; 0ÞÞ: ð40Þ
Applying a change of variables of integration, (y0I, g0J) # (f, r, q), the phase in the oscillatory integral repre-
sentation of the kernel of �K� �K takes the form
hðf;r; qÞ; ðz0 � z; s0 � s; r0 � rÞi; ð41Þ

a Jacobian, j oðf;r;qÞ

oðy0I ;g0J Þ
j�1, appears in the amplitude, so that the amplitude of �K� �K has principal part (using the

expression for A from Lemma 3.1 of Paper I)
oðf; r; qÞ
oðy0I ; g0JÞ

����
�����1

oðr; q; sÞ
oðy0I ; g0J Þ

����
����
t¼0

: ð42Þ
For fixed (z, s, r, r, q) the map s # f = H (z, s, r, r, q, s) is invertible on a set given by jsj sufficiently large:
s = H�1 (z, s, r, f, r, q) (Lemma 4.1 of Paper I). Carrying out the multiplication of determinants, it follows
that the principal part of the symbol of �K� �K is microlocally given by
�Nðz; s; r; f; r; qÞ ¼ oH
os
ðz; s; r;r; q;H�1ðz; s; r; f; r; qÞÞ

����
�����1

: ð43Þ
To obtain K�D2
t wY D2

t K involves the composition of �K� �K with pseudodifferential operators. First, the
composition
�K�Q�;sð0ÞQ�;rð0ÞD2
t wY D2

t Q��;sð0ÞQ��;rð0Þ�K ð44Þ
is carried out with the aid of Egorov’s theorem. This leads to a factor R* (s2wYa0) in the principal symbol (for
the definition of R, see the text below (30)). Secondly, having obtained a pseudodifferential operator (in (44)),
the inclusion of the factors Q��;sðzÞ;Q��;rðzÞ and Q�,s (z), Q�,r (z) – in between �L and E2 – is carried out with the
standard calculus of pseudodifferential operators. This leads to a factor (H�1 (z, s, r, f, r, q))�2 az (s, r, r, q,
H�1 (z, s, r, f, r, q)) in the principal symbol. It follows that the principal part of the symbol of K�D2

t wY D2
t K

is, microlocally, given by NR* wY. With the pseudodifferential cutoff wD taken into account we obtain the re-
sult of the lemma. h

We now determine the symbol of the normal operator in (32) and develop the downward continua-
tion analogue of (20). To this end, we define an operator W using the operator K 0 introduced above
(31), by W ¼ K 0 � D2

t w
�
DwY D2

t K 0. It follows from the lemma that W is pseudodifferential in
S0

qðR2n�1 � R2n�1Þ (for some q, 1
2
< q < 1, see Section 2 of Paper I) with principal symbol, that we denote

by W0, given by
W0ðz; s; r; f; r; qÞ ¼ Nðz; s; r; f; r; qÞðR�ðwDwY ÞÞðz; s; r; f; r; qÞ; ð45Þ

in which the second factor reveals the illumination. Starting from the DSR Born modeling (16), we obtain the
following reconstruction result.

Theorem 2.2. Suppose Assumption 3 is satisfied. Then there is a pseudodifferential operator U = U (z, x, Dz, Dx)

of order n � 1, U 2 Sn�1
q

1
2 < q < 1
� �

, with principal symbol
Un�1ðz; x; f; nÞ ¼
Z

Rn�1

W0 z; x; x; f; 1
2
n� h;

1

2
nþ h

� �
dh; ð46Þ
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such that
Uðz; x;Dz;DxÞ 1
2
c�3

0 dc
� �

¼ R1K�D2
t wY d; ð47Þ
where d = Fdc is the Born modeled data (16).

Proof. Because of Theorem 1.1 and the modeling formula (16), the right-hand side of (47) is equal to a
pseudodifferential operator acting on 1

2
c�3

0 dc,
R1K�D2
t wY d ¼ R1WE1

1
2
c�3

0 dc
� �

:

It remains therefore to compute the symbol of the composition of operators R1WE1, cf. (31). The kernel of this
composition has an oscillatory integral representation
ð2pÞ�ð2n�1Þ
Z

R2n�1

Wðz; x; x; f; r; qÞ eihðz;x;xÞ�ðz0 ;x0 ;x0Þ;ðf;r;qÞi dqdrdf

¼ ð2pÞ�ð2n�1Þ
Z Z

Rn

Z
Rn�1

Wðz; x; x; f; 1
2
n� h; 1

2
nþ hÞ dh eiððz�z0Þfþhðx�x0Þ;niÞ dndf; ð48Þ
upon changing variables of integration, r ¼ 1
2
n� h, q ¼ 1

2
nþ h. The support of the integrand in the inner inte-

gral is bounded by an inequality of the form |h| 6 C(|f| + 1), due to the cutoff wD. Using this we next show that
the inner integral is a symbol in Sn�1

q ðRn � RnÞ. We have the inequality
oa

oðz; xÞa
ob

oðf; nÞb
Z

Rn�1

W z; x; x; f; 1
2
n� h; 1

2
nþ h

� �
dh

6 C0ðjfj þ 1Þn�1 max
jhj<Cðjfjþ1Þ

o
a

oðz; xÞa
o

b

oðf; nÞb
W z; x; x; f; 1

2
n� h; 1

2
nþ h

� �
; ð49Þ
so that the symbol estimates follow from the symbol estimates for W.
From this symbol property it follows that R1WE1 is a pseudodifferential operator of order n � 1, with

principal symbol (46).
Applying the above results to the expression (16) for the Born modeled data leads to the statement of the

theorem. h

The symbol of 1
2
c�3

0 F �DwY F ¼ F �w�DwY F also follows from the computation of F *F of Ten Kroode et al. [16,
theorem 4.1], upon inserting w Dðs; r; t; r; q; sÞwY ðs; r; tÞ in their formula (64). Our purpose was to show that
this computation is independent of the results of [16]. Also, our method is easily modified for the result
(55) below.

The right-hand side of (47) produces an image of (the singularities of) dc; to obtain an estimate of dc

requires the construction and application of the parametrix of U microlocally.

Remark 2.3. Note that in (47) the operator U (z, x, Dz, Dx) depends on the Hamiltonian flow associated with
the background medium in the depth interval [0, z]. To account for the principal part of this operator, cf. (45)
and (46), one requires a ray computation to determine R* separate from the downward continuation of the
data with K *.

Remark 2.4. Theorem 2.2 follows a least-squares data fitting approach to linearized inverse scattering. How-
ever, departing from this approach, we can derive a reconstruction equation the pseudodifferential operator in
which only accounts for illumination effects. By the calculus of Fourier integral operators, the operator K can
be written as K ¼ Q�;sð0ÞQ�;rð0Þ�KV modulo a smoothing operator, where V is an operator with principal
symbol
V ðz; s; r; f; r; qÞ ¼ jsj�1ðc0ðz; sÞ�2 � s�2jjrjj2Þ�1=4ðc0ðz; rÞ�2 � s�2jjqjj2Þ�1=4
���
s¼H�1ðz;s;r;f;r;qÞ
We replace the normal equation in the downward continuation approach by the following equation,
�K� �KVE1
1
2
c�3

0 dc
� �

¼ �K�Q��;sð0Þ
�1Q��;rð0Þ

�1D�2
t d: ð50Þ
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Applying V �1 �N�1, we obtain the equation
V �1 �N�1 �K� �KV E1
1
2
c�3

0 dc
� �

¼ V �1 �N�1 �K�Q��;sð0Þ
�1Q��;rð0Þ

�1D�2
t d; ð51Þ
microlocally, which reduces by (38)–(43) in the proof of Lemma 2.1 to
�W E1
1
2
c�3

0 dc
� �

¼ V �1 �N�1 �K�Q��;sð0Þ
�1Q��;rð0Þ

�1D�2
t wY d ð52Þ
in which �W is a pseudodifferential operator with principal symbol �W0 ¼ R�ðwDwY Þ (compare (45)). Therefore
R1
�W E1

1
2
c�3

0 dc
� �

¼ R1V �1 �N�1 �K�Q��;sð0Þ
�1Q��;rð0Þ

�1D�2
t wY d: ð53Þ
Substituting �W for W in (46) then leads to the reconstruction equation
�Uðz; x;Dz;DxÞ
1

2
c�3

0 dc
� �

¼ R1V �1 �N�1 �K�Q��;sð0Þ
�1Q��;rð0Þ

�1D�2
t wY d ð54Þ
with
�Uðz; x; f; nÞ ¼
Z

Rn�1

�Wðz; x; x; f; 1
2
n� h; 1

2
nþ hÞ dh: ð55Þ
The principal symbol of �Uðz; x;Dz;DxÞ can in general be zero for some parts of phase space, due to aperture
effects (see e.g. chapter 4 of [2]) so that a regularized inverse is required for the final reconstruction of 1

2
c�3

0 dc
(microlocally where �Uðz; x;Dz;DxÞ is invertible). The symbol �W contains a factor �N, which is simpler than the
factor N contained in W, because of the absence of the pullback R*a0, compare (35) and (37). So the expression
for �U is simpler than the expression for U, and therefore we prefer this equation for the development of a prac-
tical algorithm.

Remark 2.5. Depending on the background medium, the reconstruction can also be done using data on a sub-
manifold Y 0 of Y. Let R 0 be the restriction of a function on Y to Y 0, so that the forward map for this case is
given by R 0F. In suitable local coordinates (y 0, y00) on Y such that y00 = 0 defines Y 0, the adjoint E 0 of R 0 is given
by the map (E 0f) (y 0, y00) = f (y 0)d (y00). Conditions such that F �E0w0Y R0F is pseudodifferential are given in [17].
Reconstruction modulo a pseudodifferential operator is done in this case by first applying the map E 0 to
the data, and then applying the previous procedure. Applying E 0 to the data simply means adding zeroes
where there is no data in Y.
3. The wave-equation angle transform, common-image-point gathers

A method to generate multiple images of the medium contrast from the data follows from beamforming,
here denoted by R3, applied to the downward continued data, g say,
R3 : gðz; s; r; tÞ7!ðR3gÞðz; x; pÞ ¼
Z

Rn�1

g z; x� h
2
; xþ h

2
; hp; hi

� �
dh:
Indeed, with the aid of (22) and (23), identifying R3 with the adjoint of E3, the modeling operator
can be written in the form F D ¼ D2

t LKE3E4 (cf. (25)). Following (partly) the process of imaging, that
is, taking adjoints, we define the wave-equation angle transform, AWE, containing a cutoff function v,
as
AWE ¼ R3vL�D2
t ; ð56Þ
where the composition of v and R3 is
R3v : gðz; s; r; tÞ7!ðR3vgÞðz; x; pÞ ¼
Z

Rn�1

gðz; x� h
2
; xþ h

2
; hp; hiÞvðz; x; hÞ dh; ð57Þ
where v (z, x, h) is a compactly supported cutoff function the support of which contains h = 0. For each x, the
function (z, p) # (AWEwYd) (z, x, p) is a so-called common-image-point gather.
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The work in this section was motivated by the papers [6] and [20], where a map similar to AWE was intro-
duced. In the paper [6] the purpose was imaging of reflectors with angle-dependent reflection coefficients. The
paper [20] suggested that this map could be suitable to obtain common-image point gathers in the presence of
multipathing, which is indeed what we show here.

First, we analyze the properties of AWE mostly from a geometrical perspective. Then we derive a p-depen-
dent reconstruction equation that replaces (47) or (54).

Theorem 3.1. Suppose Assumption 1 holds. Let C0 be an upper bound for c0. Assume that
kpk < pmax < C�1
0 : ð58Þ
Then AWE is a Fourier integral operator such that AWE F is a smooth p-family of pseudodifferential operators in

(z, x). Let C1 be an upper bound for
oc�2

0

ox , C2 an upper bound for c�1
0 . If in addition the function h # v (z, x, h) of

(56), contained in AWE, is supported in B(0, R), where R depends on h2, C0, C1, C2, then the canonical relation of

AWE corresponds to an invertible map from a subset of T �R2n�1
ðs;r;tÞ to a subset of T �R2n�1

ðz;x;pÞ that has nonempty inter-

section with the set # = 0 (where # denotes the p-covector).

Proof. By Assumption 1 we have that F ¼ F Dð12c�3
0 
Þ, modulo a regularizing term. So for the first statement it

is sufficient to show that AWEFD is a p-family of pseudodifferential operators (pseudodifferential operators
depending on a parameter p).

The Schwartz kernel of the map R3v equals
d x� sþ r
2

� 	
d hp; r � si � tð Þ d z� z0ð Þ v z; x; r � sð Þ

¼ ð2pÞ�n�1

Z
vðz; x; r � sÞ eiðhn;x�sþr

2 iþsðhp;r�si�tÞþfðz�z0ÞÞ dn ds df: ð59Þ
It defines a Fourier integral operator with canonical relation
z;
sþ r

2
; p; f; n; ðr � sÞs; z; s; r; hp; r � si; f; n

2
þ ps;

n
2
� ps; s

� �
jðz; s; r; p; f; n; sÞ 2 subset of R4n�1


 �
� T �R2n�1

ðz;x;pÞ n 0� T �R2n
ðz;s;r;tÞ n 0: ð60Þ
Using the change of variables, n = r + q, p ¼ r�q
2s , this canonical relation can be parameterized by the coordi-

nates of T �R2n
ðz;s;r;tÞ n 0 except t, that is (z, s, r, f, r, q, s)
z;
sþ r

2
;
r� q

2s
; f; rþ q; ðr � sÞs; z; s; r;

r� q
2s

; r � s
D E

; f; r; q; s
� 	

jðz; s; r; f; r; q; sÞ 2 subset of R4n�1
n o
� T �R2n�1

ðz;x;pÞ n 0� T �R2n
ðz;s;r;tÞ n 0: ð61Þ
The projection of this canonical relation on T �R2n
ðz;s;r;tÞ n 0 is a hypersurface defined by
t ¼ r� q
2s

; ðr � sÞ
D E

: ð62Þ
The map d # L*wYd is a Fourier integral operator with canonical relation
fðz; cxðz; 0; s0; r0; sÞ; cxðz; 0; r0; q0; sÞ; t0 þ ctðz; 0; s0; r0; sÞ þ ctðz; 0; r0; q0; sÞ;
� bðz; s0; r0; sÞ � bðz; r0; q0; sÞ; cnðz; 0; s0; r0; sÞ; cnðz; 0; r0; q0; sÞ; s; s0; r0; t0; r0; q0; sÞ j
ðs0; r0; t0; r0; q0; sÞ 2 T �R2n�1 n 0; z 2 Rþg � T �R2n

ðz;s;r;tÞ � T �R2n�1
ðs0;r0;t0Þ ð63Þ
derived from the canonical relation of H (0, z)*, cf. (10). This canonical relation is parameterized by
(z, s0, r0, t0, r0, q0, s), and is time translation invariant (in t0). The line in the projection of this canonical rela-
tion on T �R2n

ðz;s;r;tÞ n 0 parameterized by t0 for fixed (s0, r0, r0, q0, s) intersects the hypersurface (62) transversal-
ly. It follows that the composition of the canonical relations (63) and (60) is transversal. This composition is
parameterized by (z, s0, r0, r0, q0, s). It follows that R3vL*, and hence AWE ¼ R3vL�D2

t , are Fourier integral
operators. Let p (z) denote the value of r�q

2s along a certain DSR bicharacteristic with initial values
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(s0, r0, t0, r0, q0, s), and let t(z) denote the time and h (z) denote the value of r � s. The elements of the canon-
ical relation of AWE correspond to solutions (z, s0, r0, r0, q0, s) of t (z) � hp (z), h(z)i = 0.

To analyze the composition AWEFD, we first analyze the composition L�D4
t wY LE2E1, that maps the

perturbation 1
2c
�3
0 dc ¼ ð12c�3

0 dcÞðz0; xÞ to the downward continued data as a function of (z, s, r, t). This
composition is a Fourier integral operator with canonical relation
fðz; cxðz; z0; x; r0; sÞ; cxðz; z0; x; q0; sÞ; ctðz; z0; x; r0; sÞ þ ctðz; z0; x; q0; sÞ;
f; cnðz; z0; x; r0; sÞ; cnðz; z0; x; q0; sÞ; s; z0; x; f0; r0 þ q0Þj
ðz; z0; x; f0; r0; q0Þ 2 a subset of R3n; s such that f0 ¼ Hðz0; x; x; r0;q0; sÞ; f
¼ Hðz; cxðz; z0; x; r0; sÞ; cxðz; z0; x; q0; sÞ; cnðz; z0; x; r0; sÞ; cnðz; z0; x; q0; sÞ; sÞg: ð64Þ
Here, the propagation of singularities upward by L and downward by L* is along the same DSR
bicharacteristics.

We now show that the composition AWED2
t LE2E1 is a Fourier integral with canonical relation contained in
fðz; x; p; f; n; 0; z; x; f; nÞ j ðz; x; f; nÞ 2 T �Rn
ðz;xÞ n 0; kpk < pmaxg: ð65Þ
From that it follows that AWEFD is a p-family of pseudodifferential operators. Indeed, the projection of (64)
on T �R2n

ðz;s;r;tÞ intersects the hypersurface (62) at z 0 = z, since only then r � s = 0 and t = 0, leading to elements
in (65), see Fig. 2. Since singularities propagate with speed less than C0, if (1, vs, vr, vt, vf, vr, vq, 0) derived from
dC
dz is a tangent vector to the DSR bicharacteristic C (cf. (10); the first component vz = 1), then kvr�vsk

vt
6 C0, cf.

(10). By integrating this inequality we find that kr � sk 6 C0jtj along C. On the other hand, for points (z, x, p,
f, n, h;s, r, t, r, q, s) in (60), one has that jtj ¼ jhp; r � sij 6 pmaxkr � sk < C�1

0 kr � sk. From this, it follows that
the composition of (64) with (60) contains no elements outside (65). It follows also that the composition of (64)
with (60) is transversal.

Finally, we show that AWE is invertible. To this end, we investigate the projections of the canonical relation
of AWE on the first component T �R2n�1

ðz;x;pÞ n 0 and on the second component T �R2n�1
ðs;r;tÞ n 0, respectively. The

projection of the canonical relation of AWE on the second component T �R2n�1
ðs;r;tÞ n 0 is invertible if each DSR

bicharacteristic with initial values (s0, r0, t0, r0, q0, s), parameterized by z, intersects the hypersurface (62) at
most once and transversally. We reconsider the equation, t(z) � hp(z), h(z)i = 0, defining the canonical relation
of AWE. To estimate the derivative of the left-hand side, we will argue that
ot

oz
� pðzÞ; oh

oz
ðzÞ

� 

< ��0 ð66Þ
for some �0 > 0 depending on pmax and R as in the theorem. Indeed, note that the factor
1� pðzÞ; oh

oz
ðzÞ
�

ot

oz

� 

(DSR   rays)

planes

wave fronts

tim
e

1
0

t=ph offset

t=C h

unique
contribution
to integral

–

–

Fig. 2. Contribution to the kernel of AWED2
t LE2E1 (here, n = 2; h = r � s is offset).
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is bounded away from zero. Also, note that ot
oz is strictly negative while j ot

oz jP 2
C0

. Since according to the Ham-
ilton equations,
dcn

dz
¼ ob

ox
¼ � s

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�2

0 � s�2knk2
q oc�2

0

ox
; ð67Þ
it follows that k op
oz ðzÞk 6

C2

2
C1

cosðh2Þ
. So, if khk < C3

cosðh2Þ
C0C1C2

, it follows that
op

oz
ðzÞ; hðzÞ

� 
����
���� < C3

1

2C0

< �0 ð68Þ
by an appropriate choice of C3. This implies that the function z # t(z) � hp(z), h(z)i is monotone. Hence the
projection of the canonical relation of AWE on T �R2n�1

ðs;r;tÞ n 0 is invertible.
From canonical relation (60) we now establish that, given z; sþr

2 ¼ x; r; q, the map (h = s � r,
s) # (# = (r � s)s, f = H(z, s, r, r, q, s)) is invertible for h sufficiently small. Assume that (h1, s1) maps to
(#1, f1) and that (h2, s2) maps to (#2, f2) with #2 = #1. We show that f1 > f2 if s1 > s2. Estimating the difference
H z; xþ 1
2
h1; x� 1

2
h1; r; q; s1

� �
�H z; xþ 1

2
h2; x� 1

2
h2; r; q; s2

� �
; ð69Þ
using the bounds
ob
os

����
���� ¼ c�2

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�2

0 � s�2knk2
q
�������

�������P
C5

C4

; ð70Þ
in which C4 depends on the lower and upper bounds of c0, and C5 ¼ 1
C2

2

is a lower bound for c�2
0 , and (cf. (67))� �
ob
ox

����
���� ¼ s

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�2

0 � s�2knk2
q oc�2

0

ox

������
������ 6

s
oc�2

0

ox

��� ���
L1

C6

; ð71Þ
where C6 depends on h2 and the upper and lower bounds of c0, yields the estimate
f1 � f2 P
C5ðs1 � s2Þ

C4

�
oc�2

0

ox

��� ���
L1

s1kh1 � h2k
C6

: ð72Þ
Since #2 = #1, (h1 � h2)s1 = h2(s2 � s1), so that
C5ðs1 � s2Þ
C4

�
oc�2

0

ox

��� ���
L1

s1kh1 � h2k
C6

¼ ðs1 � s2Þ
C5

C4

�
oc�2

0

ox

��� ���
L1

C6

kh2k

2
64

3
75: ð73Þ
The right-hand side of this equality is strictly greater than zero for kh2k sufficiently small, since s1 � s2 > 0. It
follows from this that f1 > f2. We conclude that the projection of the canonical relation of AWE on T �R2n�1

ðz;x;pÞ n 0
is invertible as well. It follows also that the linearization of this projection is invertible. This establishes the last
statement of the theorem. h

To conclude this section we determine, at the principal symbol level, the modification of (56) that
leads to reconstruction of singularities of dc microlocally for each p subject to kpk < pmax. Like the
reconstruction in (47) of Theorem 2.2, the reconstruction is microlocal. The three cutoffs, v and wY,
wD, must be taken into account. The canonical relation of AWE defines a map
(s, r, t, r, q, s)! (z, x, p, f, n, #) (where # is the p-covector); there is also an associated value of
h = r � s through (60). By pull back with the inverse of the mentioned map, one can map the symbols
wY, wD to symbols in the variables (z, x, p, f, n, #). By the mentioned evaluation of h one obtains by pull
back the cutoff v in these variables also. We defineWWE = WWE (z, x, p, f, n, #) as the product of these
symbols. With this definition we have
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Proposition 3.2. Define eAWE by
ðeAWEdÞðz; x; pÞ ¼ |�1R3
�N�1Q�;sðzÞ

�1Q�;rðzÞ
�1�L�Q��;sð0Þ

�1Q��;rð0Þ
�1D�2

t wY d; ð74Þ
in which �N ¼ �Nðz; s; r;Hðz; s; r; r; q; sÞ; r; qÞ is independent of t (the corresponding operator is convolutional in

time), and where the symbol of | is defined in (86) and (87) below. Suppose Assumption 1 holds. Suppose that

v is 1 on a neighborhood of h = 0 and h # v (z, x, h) is supported in B(0, R) (cf. Theorem 3.1), then eAWE is an

invertible Fourier integral operator. Let the symbol WWE be as defined above. The composition eAWEF is a p-family

of pseudodifferential operators with principal symbol WWE (z, x, p, f, n, 0).

The microlocal reconstruction hence follows from
ðWWEðz; x; p;Dz;Dx; 0Þ þ orderð�1ÞÞ 1
2
c�3

0 dc
� �

¼ eAWEd: ð75Þ
We note that WWE accounts purely for illumination and cannot be compensated for.

Proof. We consider the operator R3
�N�1�L��LE2E1 or the map
1
2
c�3

0 dc
� �

7!
Z

�NðzÞ�1Hð0; zÞ�
Z

Hð0; z0ÞE2E1
1
2
c�3

0 dc
� �

dz0
� �

x� h
2
; xþ h

2
; ph

� �
dh; ð76Þ
and evaluate, microlocally, its principal symbol. This principal symbol will be the principal symbol of operator
| in the theorem. In this proof, we will omit the cutoff functions that are part of the symbols; the calculations
will be valid microlocally on the support of a cutoff.

Using an oscillatory integral representation of H similar to the one in the proof of Theorem 2.2, we
find that the principal contribution to the kernel of this map, as a function of (z, x, p; z 0, x 0), can be
written as
ð2pÞ�ð2n�1Þ
Z

�N z; x� 1

2
h; xþ 1

2
h;H z; x� 1

2
h; xþ 1

2
h;� oS

os
;� oS

or
;� oS

ot

� �
;� oS

os
;� oS

or

� ��1

� Aðz; x� 1
2
h; xþ 1

2
h; ph; y0; g0J ÞAðz0; x0; x0; 0; y0; g0J Þ � ei½URðz;x;p;z0 ;x0 ;y0I ;g0J Þ	 dy0I dg0J dh; ð77Þ
in which oS
os ;

oS
or ;

oS
ot are evaluated at ðz; x� 1

2
h; xþ 1

2
h; ph; y0I ; g0J Þ, and where
URðz; x; p; z0; x0; y0I ; g0J Þ ¼ �S z; x� 1
2
h; xþ 1

2
h; ph; y0I ; g0J

� �
þ Sðz0; x0; x0; 0; y0I ; g0J Þ: ð78Þ
We expand this phase in a Taylor series about (z 0, x 0, h) = (z, x, 0) and identify the gradient at (z, x, 0),
� oUR

oz
ðz; x; x; 0; y0I ; g0J Þ ¼fðz; x; x; 0; y0I ; g0J Þ; ð79Þ

� oUR

ox
ðz; x; x; 0; y0I ; g0J Þ ¼rðz; x; x; 0; y0I ; g0J Þ þ qðz; x; x; 0; y0I ; g0J Þ; ð80Þ

� oUR

oh
ðz; x; x; 0; y0I ; g0J Þ ¼ � 1

2
rðz; x; x; 0; y0I ; g0J Þ þ 1

2
qðz; x; x; 0; y0I ; g0J Þ þ psðz; x; x; 0; y0I ; g0JÞ; ð81Þ
where
� oS
oðs; r; t; zÞ ðz; x; x; 0; y0I ; g0J Þ ¼ ðrðz; x; x; 0; y0I ; g0J Þ; qðz; x; x; 0; y0I ; g0J Þ; sðz; x; x; 0; y0I ; g0J Þ; fðz; x; x; 0; y0I ; g0J ÞÞ:

ð82Þ
Applying a change of variables, (y0I, g0J) # (f, r, q), the phase takes the form
fðz� z0Þ þ hrþ q; x� x0i þ 1
2
ðq� rÞ þ ps; h

� �
; with s ¼ H�1ðz; x; x; f; r; qÞ: ð83Þ
The amplitude factor �N�1AA (at h = 0) becomes equal to one by the calculations in the proof of Theorem 2.2.
Upon changing integration variables, r ¼ 1

2
n� #; q ¼ 1

2
nþ #, the oscillatory integral (77) takes the leading-or-

der form
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ð2pÞ�ð2n�1Þ
Z

eiðfðz�z0Þþhn;x�x0iþh#þsp;hiÞ dfdnd#dh; s ¼ H�1 z; x; x; f; 1
2
n� #; 1

2
nþ #

� �
: ð84Þ
By the method of stationary phase (see e.g. [9, section 1.2]) the following integral is a symbol
ð2pÞ�ðn�1Þ
Z

eih#þH�1ðz;x;x;f;1
2
n�#;1

2
nþ#Þp;hi d#dh; ð85Þ
it follows from (84) that this equals to highest order the symbol of eAWEF . By the method of stationary phase
the principal part of this symbol is given by
|ðz; x; p; f; nÞ :¼ oðh#þH�1p; hiÞ
oðh; #Þ

����
����
�1

2

; ð86Þ
evaluated where h = 0 and # is such that # + H�1p = 0. By evaluating this, we find that
oðh#þH�1p; hiÞ
oðh; #Þ

����
����

1
2

¼ oð#þH�1pÞ
o#

����
���� ¼ det I þ p � oH�1

o#

� �����
���� ¼ det I þ p � oH�1

oq
� oH�1

or

� �� �����
����; ð87Þ
evaluated at s = r = x and r ¼ 1
2
n� #;q ¼ 1

2
nþ #. This completes the proof. h

Remark 3.3. Since eAWE is invertible, microlocally, we have obtained the following diagram as suggested by
Symes [31]
E0ðX � EÞ �!
~A�1

WE
D0ðY Þ

WWE " " Id

E0ðX Þ !F D
D0ðY Þ

ð88Þ
where E ¼ fp 2 Rn�1 j kpk < pmaxg as in Theorem 3.1 (cf. (58)). In this diagram – through the introduction of
E0ðX � EÞ – the redundancy in the data, measured by dim Y � dim X, is manifest.
4. Annihilators

As discussed in the introduction, the inverse problem of determining the background medium c0 can be
addressed by making use of the redundancy in the data. The background medium must be such that the data
is in the range of the operator F. The data are in the range of FD, if the angle transform generates a collection
of identical images of 1

2
c�3

0 dc, parameterized by p = (p1, . . ., pn�1), microlocally. It follows that we have the
following criterion
ðeAWE½c0	dÞðz; x; pÞ is independent of p; ð89Þ

microlocally, or
o

opi

ðeAWE½c0	dÞðz; x; pÞ ¼ 0; ð90Þ
microlocally. Seismologists recognize this as ‘‘alignment’’ of the singularities in common-image-point gath-
ers. Of course it must be taken into acount that eAWE is only a microlocal inverse, so (90) is not valid
globally.

The criterion (90) can be restated as that certain pseudodifferential operators annihilate the singular part of
the data, see [26]. With the approach based on inversion for dc using subsets of data (discussed in the intro-
duction) this is closely related to differential semblance [30]. A construction of such operators, annihilators,
follows straightforwardly from the angle transform introduced in the previous section. On transformed dataeAWEd, i.e. on common-image-point gathers, annihilators are given by o

opi
, i = 1, . . ., n � 1, cf. (90). Indeed, using

Proposition 3.2, it follows that where there is illumination, o
opi

eAWEd ¼ 0 (cf. (75)). Annihilators of the data then
follow to be
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o

ot

� ��1

heAWEi�1 o

opi

eAWE ð91Þ
as pseudodifferential operators of order zero, where heAWEi�1 is a regularized inverse for eAWE, that is supported
microlocally on a subset of T �R2n�1

ðz;x;pÞ where eAWE is invertible. Such annihilators are not uniquely defined. In-
deed (91) can be composed on the left by any invertible order 0 pseudodifferential operator and we still have an
annihilator, of the same order.

We now derive an alternative definition of an annihilator. This definition is motivated by the observation
that
o

opi

R3

o

ot

� ��1

g

�����
p¼0

¼
Z

Rn�1

MjðR2gÞ z; x� h
2
; xþ h

2

� �
vðz; x; hÞdh;
where Mj denotes the multiplication by hj = (rj � sj), and v was introduced in (56). We have MjE1 = 0, since
(rj � sj)d(r � s) = 0. We observe first that using Theorem 4.2 of Paper I,
MjK�D2
t d ¼ K�D4

t KMjE1
1
2
c�3

0 dc
� �

þ ½Mj;K�D4
t K	E1

1
2
c�3

0 dc
� �

: ð92Þ
The first term vanishes (because MjE1 = 0), and the second term is of lower order, so Mj is to highest order an
annihilator for K�D2

t d.
To derive from (92) a pseudodifferential annihilator of the data, MjK�D2

t is multiplied on the left by D2
t K.

We must also have the support of the operator on the left smaller than the support of the operator on the right
of Mj. So suppose w0Y is in C10 ðY Þ and is 1 on supp (wY), and K 0 is defined as K but with pseudodifferential
cutoff at larger angles of propagation h01, h02 as introduced above (31). Define
W j ¼ wY D2
t KMjhK 0�D2

t w
0
Y D2

t K 0i�1K 0�D2
t w
0
Y ; ð93Þ
where we recognize NK 0 :¼ K 0�D2
t w
0
Y D2

t K 0 from Lemma 2.1. Then we have

Theorem 4.1. With Assumption 1, the Wj and the operators (91) are annihilators of the data.

We note that annihilators Wj are essentially multiplicative and do not require a differentiation as in (91),
and hence are the ones to be used in practical implementations.

We could define eK ¼ KN�1=2
K as a modification of K so that D2

t
eK is unitary – at least where wD is 1. Then

1
2

P
jkW j½c0	dk2 simplifies approximately to (the norm does not change by removing D2

t
eK from the annihilators)
1
2

X
j

kW j½c0	dk2 � 1

2

Z
ðkr � sk2jeK �D2

t dj2 þ lower order termsÞdzdsdr; ð94Þ
This expression is small when the time-to-depth converted data eK �D2
t d are ‘‘focused’’ at r = s.

Migration velocity analysis is the estimation of c0 (the background or ‘‘velocity model’’) based upon the
alignment expressed by (90). Traditionally, the updating of the velocity model is carried out interactively.
The problem of updating c0 so that the data will be contained in the range of FD is now cast in a minimum norm
optimization problem. In practice, such problems can be addressed by, for example, the conjugate gradient
method. Liu and Bleistein [15] developed an automated method for updating c0 on the basis of the curvature
of misalignment at p = 0 using ray perturbation theory. It was also done using the data subset based annihila-
tors (differential semblance [30]). Annihilators, Wj = Wj[c0], replace the necessity to estimate this curvature
from the p-family of images. They depend on the background medium. The semi-norm ð

P
jkW j½c0	dk2Þ

1
2 detects

whether c0 was an acceptable choice or not. The functional 1
2

P
jkW j½c0	dk2 can be viewed as the downward

continuation analog of the differential semblance functional of Symes [30] with the advantage that our
annihilator admits the formation of caustics. Of course, the same is true with the Wj replaced by the operators
in (91).
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