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Kinematics of shot-geophone migration

Christiaan C. Stolk!, Maarten V. de Hoop?, and William W. Symes®

ABSTRACT

Recent analysis and synthetic examples have shown that
many prestack depth migration methods produce nonflat im-
age gathers containing spurious events, even when provided
with a kinematically correct migration velocity field, if this
velocity field is highly refractive. This pathology occurs in all
migration methods that produce partial images as indepen-
dent migrations of data bins. Shot-geophone prestack depth
migration is an exception to this pattern: each point in the
prestack image volume depends explicitly on all traces with-
in the migration aperture. Using a ray-theoretical analysis,
we have found that shot-geophone migration produces fo-
cused (subsurface-offset domain) or flat (scattering-angle do-
main) image gathers, provided there is a curvilinear coordi-
nate system defining pseudodepth with respect to which the
rays carrying significant energy do not turn, and that the ac-
quisition coverage is sufficient to determine all such rays. Al-
though the analysis is theoretical and idealized, a synthetic
example suggests that its implications remain valid for prac-
tical implementations, and that shot-geophone prestack
depth migration could be a particularly appropriate tool for
velocity analysis in a complex structure.

INTRODUCTION

The basis of migration velocity analysis is the semblance princi-
ple: prestack migrated data volumes contain flat image gathers, i.e.,
are at least kinematically independent of the bin or stacking parame-
ter, when the velocity is correct (Kleyn, 1983; Yilmaz, 1987). Migra-
tion velocity analysis (as opposed to standard NMO-based velocity
analysis) is needed most urgently in areas of strong lateral velocity
variation, i.e., complex structures such as salt flanks, chalk tectonics,
and overthrust geology. However, strong refraction implies multiple

raypaths connecting source and receiver locations with reflection
points, and multiple raypaths imply that the semblance principle is
not valid; i.e., image gathers are not in general flat, even when the
migration velocity closely approximates the true propagation veloc-
ity (Stolk and Symes, 2004).

The failure of the semblance principle in complex structures af-
flicts all prestack migration techniques in which each data bin cre-
ates an independent (partial) image of the subsurface. This category
includes many variants of common-shot, common-offset, and com-
mon-scattering-angle migration (Nolan and Symes, 1996, 1997; Xu
et al., 2001; Stolk, 2002; Brandsberg-Dahl et al., 2003; Stolk and
Symes, 2004). Note that gathers fail to be flat for numerous reasons
other than the explanation given in Stolk and Symes (2004). The
causes include finite migration aperture and data frequency content,
numerical inaccuracies in traveltime computation or wavefield ex-
trapolation, and (of course) inaccurate migration velocity. The result
in Stolk and Symes (2004) shows that, even if all of these other
sources of error are corrected, a geometric obstruction to flat gathers
remains.

Because these kinematic artifacts interfere destructively (“stack
out”) in the final image formation, their presence is mostly an issue
for velocity analysis (and possibly for inference of elastic parame-
ters). As shown, for example, in Nolan and Symes (1997), in image
gathers produced with inaccurate velocities, the artifacts are indis-
tinguishable from the actual events and thus can obstruct successful
velocity updating. The artifacts we are concerned with here are sin-
gular artifacts and need to be distinguished from so-called low-fre-
quency artifacts that, for example, have been observed in images ob-
tained with reverse time migration.

However, one well-known form of prestack image formation does
not form partial images as independent prestack migrations of data
bins: this is Claerbout’s survey-sinking migration (Claerbout, 1971,
1985). This migration method commonly is implemented using an
approximate one-way wave equation to extrapolate the source and
receiver wavefields. Such depth-extrapolation implementation pre-
sumes that rays carrying significant energy do not turn horizontal.

Manuscript received by the Editor 22 January 2009; revised manuscript received 18 June 2009; published online 15 December 2009.
Korteweg-de Vries Institute for Mathematics, Amsterdam, The Netherlands. E-mail: c.c.stolk @uva.nl.
Purdue University, Center for Computational and Applied Mathematics and Geo-Mathematical Imaging Group, West Lafayette, Indiana, U.S.A. E-mail:

mdehoop @purdue.edu.

Rice University, Department of Computational and Applied Mathematics, The Rice Inversion Project, Houston, Texas, U.S.A. E-mail: symes @caam.rice

.edu.
© 2009 Society of Exploration Geophysicists. All rights reserved.

WCA19

Downloaded 28 Apr 2010 to 145.18.20.105. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



WCA20

Source and receiver wavefields might be extrapolated separately and
correlated at each depth (shot-profile or shot-record migration), or
extrapolated simultaneously (double-square-root [DSR] equation-
based migration); in principle, the two produce equivalent image
volumes (Stolk and De Hoop, 2001; Biondi, 2003; Stolk and De
Hoop, 2005, 2006). In either case, the prestack migration output at
each image point depends on a range of sources and receivers, not on
data from a single bin defined by fixing any combination of acquisi-
tion parameters.

This study comprises an analysis of the kinematics of an idealized
version of Claerbout’s migration method. We call this, for want of a
better name, shot-geophone migration. We emphasize that this term,
as used in this study, does not imply any particular method of wave-
field extrapolation, or a choice between separate or simultaneous ex-
trapolation of source and receiver wavefields. Our idealized shot-
geophone migration encompasses shot-profile and DSR migration
methods; all practical realizations of these can be viewed as approxi-
mations of our idealized method. In fact, even depth extrapolation
(one-way wave propagation) is not intrinsic to the definition of this
idealized migration operator. Both two-way reverse time and Kirch-
hoff (diffraction sum) realizations are possible and inherit the same
theoretical properties.

Our analysis demonstrates that a semblance principle appropriate
for shot-geophone migration holds (at least theoretically) regardless
of velocity field complexity, assuming (1) the single scattering ap-
proximation accurately describes the data; (2) there is a curvilinear
coordinate system defining pseudodepth with respect to which the
rays carrying significant energy do not turn; (3) the survey contains
enough data to determine wavefield kinematics (for example, areal
or “true 3D” acquisition in general, or narrow-azimuth data plus
mild crossline heterogeneity); and (4) the migration velocity field is
kinematically correct. In the flat coordinate system, this result was
established by Stolk and De Hoop (2001). Here, we give a simpler
derivation of this property and extend it to allow for a large class of
“turning rays.”

The semblance principle appropriate for shot-geophone migra-
tion takes several roughly equivalent forms, corresponding to sever-
al available methods for forming image gathers. Schultz and Sher-
wood (1982), Claerbout (1985), and others define image gathers de-
pending on (subsurface) offset and depth; in such offset image gath-
ers, energy is focused at zero offset when the velocity is kinematical-
ly correct. De Bruin et al. (1990) and Prucha et al. (1999) give one
definition of angle image gathers, and Sava and Fomel (2003) sug-
gest another. Such gathers are functions of scattering angle and
depth. In both cases, the correct migration velocity focuses energy at
zero slope; i.e., angle image gathers are flattened at the correct mi-
gration velocity. In consequence, angle imaging via shot-geophone
migration, using either method of angle gather formation mentioned
above, is not equivalent, even kinematically, to Kirchhoff common-
angle imaging (Xu et al., 2001; Brandsberg-Dabhl et al., 2003). In-
deed, the latter typically generates kinematic artifacts when multiple
raypaths carry important energy.

Theoretical properties are interesting only insofar as they have an
observable practical effect. We present a synthetic example in which
the prestack image volume has the properties predicted by the theo-
ry. We chose an example for which prior analysis already had shown
the existence of kinematic artifacts in common-offset or common-
scattering-angle Kirchhoff migration. We used a shot-geophone mi-
gration based on solving Helmholtz equations (Sirgue and Pratt,
2004). Apart from any implementation defects or limitations of the
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data, image amplitudes might have only an indirect relation to re-
flection strength and might disappear altogether in shadow zones.
However, where image energy is present, it will be focused (offset
image gathers) or appear in flat events (angle image gathers), with no
apparent kinematic artifacts. The apparent fidelity of the examples to
the theory also supports our contention that the theoretical predic-
tions of our analysis survive implementation imperfections.

The semblance principle is a result of the mathematical structure
of shot-geophone migration, not of any particular approach to its im-
plementation. Migration operators are dual or the adjoint to model-
ing operators. The various prestack migration operators are the ad-
joint to extended Born modeling operators, and differ in the way in
which Born modeling is extended. The ray geometry of these ex-
tended modeling operators is central to our analysis. The semblance
principle and imaging condition of each prestack migration operator
are inherent in the definition of the corresponding extended Born
model, which in some sense explains these concepts.

Schultz and Sherwood (1982) observe that the focusing property
of shot-geophone migration might serve as the basis for an approach
to velocity estimation. Velocity analysis based on focusing is consid-
ered also by Faye and Jeannot (1986), MacKay and Abma (1992),
and Nemeth (1995). Its freedom from artifacts suggests that shot-
geophone migration could be a particularly appropriate tool for mi-
gration velocity analysis of data acquired over complex structures.
Some investigations of this idea have been carried out (Shen et al.,
2003; Sava and Biondi, 2004; Albertin et al., 2006; De Hoop et al.,
2006).

We begin with a description of the idealized shot-geophone mi-
gration operator as the adjoint to an extended Born (single-scatter-
ing) modeling operator. All prestack migration methods, including
those based on data binning, can be described in this way: as the ad-
joint to extended modeling of some sort. The basic kinematics of
shot-geophone prestack migration then follow easily from the high-
frequency asymptotics of wave propagation. We summarize these
kinematic properties and present the outline of a complete derivation
in Appendix A. The artifact-free result of Stolk and De Hoop (2001)
follows readily from the general kinematic properties already de-
scribed, for offset image gathers and angle image gathers in the style
of Sava and Fomel (2003).

We also review an alternative construction of angle image gathers
because of De Bruin et al. (1990). We show how the semblance prop-
erty for this form of angle-domain migration, extended to curvilinear
coordinates, follows from the general properties of shot-geophone
migration in Appendix B. Finally, we present an example illustrating
the semblance property, using 2D synthetic data of significant ray-
path complexity. The example contrasts the angle image gathers pro-
duced by (Kirchhoff or generalized Radon transform) common-
scattering-angle migration (De Hoop and Bleistein, 1997; Xu et al.,
2001; Brandsberg-Dahl et al., 2003) with those produced by shot-
geophone migration. Kinematic artifacts appear and can be unam-
biguously identified as kinematic artifacts in the former, but do not
appear in the latter. See Table 1 for our notation of fields and opera-
tors.

SHOT-GEOPHONE MIGRATION AS THE ADJOINT
OF EXTENDED BORN MODELING

We assume that sources and receivers lie on the same depth plane,
and we adjust the depth axis so that the source-receiver plane is z
= 0. This restriction can be removed at the cost of more complicated
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notation (and numerics): itis not essential. Nothing about the formu-
lation of the migration method presented below requires that data be
given on the full surface z = 0.

Although all of the examples to be presented later are two-dimen-
sional, the construction is not. In the following, x (and other boldface
letters) denote either two- or three-dimensional vectors. Source lo-
cations are X,; receiver locations are X,.

Single scattering
The causal acoustic Green’s function G(x,;x;) for a point source
atx = X, is the solution of

1 &G
x az(m) V2G(x,1x,) = 8(x — x,)8(1), (1)

withG =0,r < 0.

In common with all other migration methods, shot-geophone mi-
gration is based on the Born or single-scattering approximation. De-
note by r(x) = Sv(x)/v(x) a relative perturbation of the velocity
field. Linearization of the wave equation yields for the correspond-
ing perturbation of the Green’s function

1 986G 21(x) o2
2 o —5—(x,55x,) — VidG(x,1:x,) = 2EX;526(xtx)

2)

whose solution has the integral representation at the source and re-
ceiver points X,,X;,

SG(X,,55X,) = —de Z(X)deG — 7x,)G(X,7;X,).

3)

In equation 2, we assume that the background velocity field v is
smooth, whereas the perturbation r captures the discontinuities.

The singly scattered field is the time convolution of G with a
source wavelet (or the space-time convolution with a radiation pat-
tern operator, for more complex sources). Because the principal con-
cern of this study involves kinematic relationships between the data
and image, we ignore the filtering by the source signature (i.e., re-
place it with a delta function). This effective replacement of the
source by an impulse does not seem to invalidate the predictions of
the theory, although the matter is certainly worthy of more study.

The Born modeling operator F[v] is

Flulr(x,,t:x,) = 6 G(X,.1;X,). (4)

Common-offset modeling and migration

Basic versions of all prestack migration operators result from two
additional modeling steps: (1) extend the definition of reflectivity to
depend on more spatial degrees of freedom, inserted somehow into
the Born modeling formula (equation 2 or 3) in such a way that when
the extra degrees of freedom are present in some specific way
(“physical reflectivity”), Born modeling is recovered, and (2) form
the adjoint of the extended modeling operator: this is a prestack mi-
gration operator. The output of the adjoint operator is the prestack
image; it depends on the same degrees of freedom as the input of the
modeling operator.

WCA21

Prestack common-offset modeling results from replacing
2r(x)/v*(x) with R(x,h), where h is vector half-offset: h = %(x,
— X,); X is not necessarily located below the midpoint. Denote by x,,
= %(x, + x,) the corresponding midpoint vector.

The additional degrees of freedom mentioned in step one above
are the components of the source-receiver half-offset. This extended
reflectivity is inserted into the Born modeling formula to give the ex-
tended common-offset modeling operator F. [ v]:

Feo[vIR(X,.15X,) = u(X,.1:X,), (5)

where

e
u(x,, + h,t;x,, —h) = @deR(X’h)de

XG(x,t — 7;X,, + h)G(x,7:x,, — h).
(6)

If R(x,h) = 2r(x)/v*(x) is actually independent of h, then the out-
put u(x,,1;X,) of equation 6 is identical to the perturbational Green’s
function § G(x,.;X,) as is clear from comparing equations 6 and 3. In
other words, the Born forward modeling operator is the “spray” op-
erator

r(x)— R(x,h) = 2r(x)/v?(x), (7)

followed by the extended common-offset modeling operator.

Table 1. List of fields and operators.

Symbol Description Equation
d Reflection data 8
v Velocity field

r Reflectivity 2
g Riemannian metric 37
S Action functional 39
G Green’s function 1
oG Single-scattered field 3
F Born modeling operator 4
R. R Extended reflectivity 6 and 16
F., Common-offset modeling operator 5 and 6
F Shot-geophone modeling operator 9 and 10
F Restricted modeling operator 25 and 26
Wy Source field 18
u* Adjoint field 19
D, D Sunken survey 32
1. Common-offset imaging 8
I, 1. . Shot-geophone imaging 13 and 17
I, “Horizontal” subsurface offset imaging 30
A, Generation of image gathers via 31

Radon transform in offset, depth
B, Generation of image gathers via 34

Radon transform in offset, time
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The common-offset migration operator is the adjoint of this inte-
gral operator; its output is the offset-dependent prestack image vol-
ume, a function of the same type as the extended common-offset re-
flectivity:

F. [v]ld(x,h) = Io(x.h),
a*d
I.,(x,h) = | dx,, dt?(xm + h,t;x,, — h)

deTG(X,t — 7%, + h)G(x,7;x,, — h).

(8)

Therefore, the adjoint of Born modeling (migration, per se) is com-
mon-offset migration followed by the adjoint of the “spray” opera-
tor: this adjoint is the operator that sums or integrates in h, i.e., the
stack operator.

Actually, the operator defined in equation 8 is only one possible
common-offset migration operator. Many others follow through the
application of various weights, filters, and approximations. For ex-
ample, leaving off the second time derivative in equation 8 amounts
to filtering the data before the application of F " [v]. Most notably, re-
placement of the Green’s functions in equation 8 by the leading
terms in their high-frequency asymptotic expansions results in the
familiar Kirchhoff common-offset migration operator. All of these
variations define adjoints to (approximations of) the modeling oper-
ator with respect to appropriate inner products on domain and range
spaces. Most important for this investigation, all share a common ki-
nematic description. Therefore we ignore all such variations for the
time being, and refer to equation 8 as defining “the” common-offset
migration operator.

Note that both modeling and migration operators share the proper-
ty that their output for a given h depends only on the input for the
same value of h; i.e., they are block diagonal on common-offset data
bins. This binwise action is responsible for the production of kine-
matic artifacts when the velocity field refracts rays sufficiently
strongly (Stolk and Symes, 2004).

Shot-geophone modeling and migration

Shot-geophone modeling results from a different extension of re-
flectivity: replace 2r(x)/v?(x) by R(x,h), where h is the subsurface
(half)-offset mentioned in the introduction. Although this extension
has exactly the same degrees of freedom as the common-offset ex-
tended reflectivity, the two are conceptually quite different; h here
has nothing to do with the surface source-receiver half-offset %(x,
—X,).

The shot-geophone modeling operator F[ v]is given by

FIuIR(x,.1:X,) = u(X,.1:X,), 9
where the field u is defined by

e
u(xX,,5x,) = ?fdxfth(x,h)

deTG(X +h,s— 7;x,)G(x — h,7;x;). (10)

Note that here, x does play the role of subsurface midpoint, although
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having nothing to do with the surface source-receiver midpoint.
The field u(x,1;x,) is identical to 6 G(x,t;x,) when

2r(x)

v*(x)

i.e., when the generalized reflectivity is concentrated at offset zero.
Therefore Born modeling is shot-geophone modeling following the

mapping

R(x,h) = S(h), (11)

6(h). (12)

The shot-geophone migration operator is the adjoint of the shot-
geophone modeling operator. It produces an image volume with the
same degrees of freedom as the extended shot-geophone reflectivity,

F*[v]d(x,h) = Is-g(x’h)’

a*d
I o(x,h) = [ dx, | dx dt?(xr,t;xs)

deTG(X +h,t— 7;x,)G(x — h,7;x,).

(13)

Note that in equations 10 and 13 all input variables are integrated to
produce the value at each output vector. The computation is not
block diagonal in h, in contrast to the common-offset operators de-
fined in equations 6 and 8.

Born migration is shot-geophone migration followed by the ad-
joint of the mapping defined in equation 12, which is

R(X,h)Hw, (14)
vi(x)
or shot-geophone migration followed by extraction of the zero-off-
set section.
For some purposes, it turns out to be convenient to introduce sunk-
en source and receiver coordinates

X, =x+h, X;=x-h, (15)
and the source-receiver reflectivity R by
_ X, +X, X,— X _
R(X,.X,) = R(——) ie., R(x+hx —h)
2 2
= R(x,h), (16)

and similarly for the image volume /.. Change the integration vari-
ables in equation 13 to get the sunken source-receiver variant of
shot-geophone migration:

- &’d
I ,(X,.X,) = | dx, | dx, dtg(x,,t;xs)

deTG(i,,t— 7:X,)G(X,,7:x,). (17)

Replacement of the Green’s functions in this formula by their
high-frequency asymptotic (ray-theoretical) approximations results
in a Kirchhoff-like representation of shot-geophone migration.
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Adjoint state formulation

Equation 17 can be reproduced by solving (forward in time) the
wave equation for the source field w,,
L0 ) — Vi) = 5056 - %), (19)
— (X,5X,) — Vow(X,55X,) = 0(1) o (X — Xy),
Uz(X) 8[2 S. xS S. S.

in parallel with solving (backward in time) the wave equation for the
adjoint field u*,

1 azu* -
m?(x,t;xs) — Vi (x,1;x)

a*d
= dx?(x,,t;xs)ﬁ(x -X,), (19)

followed by the crosscorrelation at zero time lag,

is-g(iﬂis) = J\dxsfdTu*(ir’T;Xs)wx(ix»'r;xx)' (20)

(An implementation of this formulation avoids asymptotic approxi-
mations inherent in the downward-continuation formulation, and
admits, in principle, highly irregular source and receiver spacing as
these appear in global earth applications. The construction of one-
way wave equations in the presence of general vertical and lateral
velocity variation, and making use of techniques from microlocal
analysis, used in the downward-continuation formulation, holds
only asymptotically.)

KINEMATICS OF SHOT-GEOPHONE MIGRATION

An event in the data is characterized by its moveout: locally, by a
moveout equation = T(X,,X,), and infinitesimally by the source and
receiver slownesses

pf = VXrT’ pS = VXST' (21)

Significant energy with this moveout implies that locally near
(x,,X,,t) the data contains a plane-wave component with wavenum-
ber (wp,,wp,,»), » being temporal frequency. These coordinates
(position, wavenumber) give the (geometric) phase space represen-
tation of the event.

Note that for incomplete coverage (aperture or sampling), an
event in the data typically will not determine its moveout uniquely.
For example, in conventional marine streamer geometry, with the
streamers oriented along the x-axis, the y-component of p, is not de-
termined by the data. However, in present-day (possibly zigzag)
wide-azimuth towed streamer (WATS) acquisition geometry (Mich-
ell et al., 2006; Barley and Summers, 2007), p, and p; are deter-
mined. In the discussion to follow, p, and p, are assumed to be com-
patible with a reflection event. Likewise, a reflector (in the source-
receiver representation) at (X,,X,) with wavenumber (k,.K;) is char-
acterized in (image volume) phase space by these coordinates.

Kinematics with general (3D) subsurface offset

The kinematic description of shot-geophone migration relates the
phase space coordinates of events and reflectors. An event or reflec-
tion with phase space representation

WCA23

(Xr’XS’T(Xr’XS)’wpr’pr’w) (22)

is the result of a reflector with (source-receiver) phase space repre-
sentation (X,,X,.k,.K;) exactly when both of the following occur:

o Aray (X,,P,) is leaving the source point X,(0) = x, attime f = 0
with ray parameter P,(0) = p, and arriving at X(7,) = X, att = 1,
with ray parameter P(z,) = —k,/ w.

e Aray (X,,P,) is leaving X,(z,) =X, at ¢ = t, with ray parameter
P,(z,) = K,/ w and arriving at the receiver point X,(z, + ;) = x, at
time t = T(x,,x,) = 1, + , with ray parameter P,(¢, + t,) = p,-

Figure 1 illustrates this kinematic relation. Appendix A provides a
derivation.

Note that because P, P, are ray slowness vectors, a length relation
necessarily exists between k,, K, namely,

L _
U(ir) - ||Pr(tr)|| - |(1) N
1 k
Ly = 23)
v(X,) |w
whence
k| o)
— . 24
k|~ oG, (24

The kinematics of shot-geophone migration are somewhat
strange, so it is reassuring to see that for physical reflectors (i.e.,
R(x,h) = r(x) 8 (h)) the relation just explained becomes the familiar
one of reflection from a reflecting element according to Snell’s law.
A quick calculation shows that such a physical R (cf. equation 16)
has a significant local plane-wave component near (X,,X,) with
wavenumber (k,,k,) only if X, = X, = x and r has a significant local
plane-wave component near x with wavenumber k, = k, + k;. From
equation 24, k, and k, have the same length; therefore their sum K, is
also their bisector, which establishes Snell’s law. Thus a single
(physical) reflector at x with wavenumber Kk, gives rise to a reflected
event at frequency w exactly when the rays (X,,P,) and (X,,P,) meet
at x at time t,, and the reflector dip k, = w(P(t,) — P,(z,)), which is
the usual kinematics of single scattering. See Figure 2.

It is possible now to answer this question: In the shot-geophone
model, to what extent does a data event determine the corresponding
reflector? The rules derived above show that the reflection point
(X,,X,) must lie on the Cartesian product of two rays (X,P,) and
(X,,P,), consistent with the event, and the total time also is deter-
mined. If the coverage is complete, so that the event uniquely deter-

Xs; Ps Xr, Pr

ts+t, =t
’ o
Lta =t S(X.(t), ~Ps(ts))
= (yr, —kr/w)

§ (X,(t)), ~P+(£)))

(X, PN
(Xs(ts), Ps(ts))
= (¥s, —ks/w)

Figure 1. Ray-theoretical relation between data event and double re-
flector.
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mines the source and receiver rays, then the source-receiver repre-
sentation of the source-receiver reflector must lie along this uniquely
determined ray pair. This fact contrasts dramatically with the imag-
ing ambiguities prevalent in all forms of prestack depth migration
based on data binning (Nolan and Symes, 1996, 1997; Prucha et al.,
1999; Xu et al., 2001; Stolk, 2002; Brandsberg-Dahl et al., 2003;
Stolk and Symes, 2004). Even when coverage is complete, in these
other forms of prestack migration strong refraction leads to multiple
ray pairs connecting data events and reflectors, whence ambiguous
imaging of a single event in more than one location within the
prestack image volume.

Nonetheless, reflector location still is not uniquely determined by
shot-geophone migration, as defined above, for two reasons:

1. Only the total traveltime is specified by the event! Thus if X;
= X,(¢,).X, = X,(t,) are related as described above to the event
determining the ray pair, so is X! = X(#/),X! = X,(¢/) with ¢,
+t. =t +1t =t,. SeeFigure 1.

2. Incomplete acquisition, for example, limited to a narrow azi-
muth range, might prevent the event from determining its full
3D moveout, as mentioned above. Therefore a family of ray
pairs, instead of a unique ray pair, could correspond to the
event.

Kinematics with horizontal subsurface offset

One way to view the remaining imaging ambiguity in shot-geo-
phone migration as defined so far is to recognize that the image point
coordinates (X,.X,) (or (x,h)) are six-dimensional (in three dimen-
sions), whereas the data depend on only five coordinates (X,.,X;) (at
most). Formally, restricting one of the coordinates of the image point
to be zero at least would make the variable counts equal, so that un-
ambiguous imaging at least would be conceivable. Because physical
reflectivities are concentrated at zero (vector) offset, it is natural to
restrict one of the offset coordinates to be zero. The conventional
choice, beginning with Claerbout’s definition of survey-sinking mi-
gration (Claerbout, 1985), is the depth coordinate.

We assume that the shot-geophone reflectivity R(x,h) takes the
form

R(x.,h) = R.(x,h.h,) 5 (h,), (25)
leading to the restricted modeling operator:

Xs; Ps x’rAv Pr

st =1t
Zs =2

Ik
(Ps(ts) - Pr(ts))“k/w

Figure 2. Ray-theoretical relation between data event and physical
(single) reflector.
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_ 9
F[v]R.(x,.t;x,) = ;jdxjdhxjdhy&(x,hx,hy)

X JdTG(X + (hy,hy,0).t — 7:%,)G(x — (hy,hy,0),7:X,) (26)

(cf. equations 9 and 10). The kinematics of this restricted operator
follows directly from that of the unrestricted operator, developed in
the preceding section. Note that equation 25 with the presence of the
factor 8 (h.) is the natural choice of R for implementations based on
the double-square-root (DSR) equation.

Denote X, = (X,.,y,.2,).k; = (k, .k, .k, ), and so on. For horizontal
offset, the restricted form of the reflectivity in midpoint-offset coor-
dinates (equation 25) implies a similarly restricted form for its de-
scription in sunken source-receiver coordinates:

_ _ 7.+ 7.

R(ir’is) = Rz(fr’fs’}_}r’yﬂ%> 5(21‘ - Zs) . (27)
Fourier transformation shows that R has a significant plane-wave
component with wavenumber (k,.k,) precisely when R, has a signif-
icant plane-wave component with wavenumber &, ..k, .k, .k . (k.
+ k). Thus aray pair (X,,P,),(X,,P,) compatible with a data event
with phase space coordinates (X,.X,,T(X,,X,),0p,,wp,,®») images at a
point X, (t,) =X,.(t) =z, P..(t) — P.(t) =kJw, X, (1) =x,
P, (t,) = k,./ w,and so on at image phase space point

(& T T 2K oK oKy s o) (28)

The adjoint of the modeling operator defined in equation 26 is the
horizontal offset shot-geophone migration operator

FTvld(x,h.hy) = Iy, (Xhhy), (29)

where

82
Iyo (X, 1hy) = fdxrfdxxfdta—tzd(xr,t;xs)

X JdTG(X + (hyhy,0),t = 73%,)G(x — (hy,hy,0),75X,).

(30)

As mentioned before, operators and their adjoints enjoy the same ki-
nematic relations, so we have described already the kinematics of
this migration operator.

Semblance property of horizontal offset image gathers
and the DSR condition

As explained by Stolk and De Hoop (2001), Claerbout’s survey-
sinking migration is kinematically equivalent to shot-geophone mi-
gration as defined here, under three assumptions: (1) subsurface off-
sets are restricted to horizontal (i, = 0); (2) rays (either source or re-
ceiver) carrying significant energy are nowhere horizontal, i.e., P,
> 0,P,. < 0 throughout the propagation; and (3) events in the data
determine full (4D) slowness P,.,P,.

We call the second condition the “DSR” condition, for reasons ex-
plained by Stolk and De Hoop (2001).

Claim. Under these restrictions, the imaging operator F * can im-
age aray pair at precisely one location in image-volume phase space.
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When the velocity is correct, the image energy is concentrated there-
fore at zero offset in the image volume [, ,.

The proof presented by Stolk and De Hoop (2001) uses oscillatory
integral representations of the operator F, and its adjoint. However,
the conclusion also follows directly from the kinematic analysis
above and the DSR condition.

Indeed, note that the DSR condition implies that depth is increas-
ing along the source ray and decreasing along the receiver ray; other-
wise put, depth is increasing along both rays, if you traverse the re-
ceiver ray backward. Therefore depth can be used to parameterize
the rays. With depth as the parameter, time is increasing from zero
along the source ray and decreasing from ¢, along the receiver ray
(traversed backward). Thus the two times can be equal (to z,) at ex-
actly one point.

Because the scattering time ¢, is uniquely determined, so are all the
other phase space coordinates of the rays. If the ray pair is the inci-
dent-reflected ray pair of a reflector, then the reflector must be the
only point at which the rays cross because there is only one time 7, at
which X, _(¢,) = X,..(¢,). See Figure 3. Therefore, in the infinite fre-
quency limit, the energy of this incident-reflected ray pair is imaged
at zero offset, consistent with Claerbout’s imaging condition.

If, furthermore, coverage is complete, whence the data event
uniquely determines the full slowness vectors and hence the rays,
then it follows that a data event is imaged at precisely one location,
namely the reflector that caused it, and in particular focuses at zero
offset. This is the offset version of the result established by Stolk and
De Hoop (2001), for which we now have given a different (and more
elementary) proof.

Semblance property of angle image gathers via Radon
transform in offset and depth

According to Sava and Fomel (2003), angle image gathers A.
might be defined via a Radon transform in offset and depth of the off-
set image gathers constructed above, i.e., the migrated data volume
I, ,(X,h,,h,) (defined in equation 30) for fixed x,y:

Az(xty’g’px’py) = fdhxfdh)'ls-g,z(x7y’§ + th)C

+ pthhx»hy)s (31)

in which { denotes the z-intercept parameter, and p, and p, are the x-
and y-components of the offset ray parameter. The ray parameter
components then might be converted to angle (Sava and Fomel,
2003; Fomel, 2004; Sava and Fomel, 2005a, 2005b). It follows from
this formula that, if the energy in I, ,(X,h,,h,) is focused, i.e., local-
ized, on h, = 0,h, = 0, then the Radon transform A, will be (essen-
tially) independent of p,,p,. In other words, when displayed for fixed
x,y with { axis plotted vertically and p, and p, horizontally, the
events in A, will appear flat. The converse is true also. This is the
semblance principle for angle gathers.

SEMBLANCE PROPERTY OF ANGLE
GATHERS VIA RADON TRANSFORM
IN OFFSET AND TIME

The angle gathers defined by De Bruin et al. (1990) are based on
migrated data D(x,h,,h,,T), i.e., depending on a time variable T in
addition to the variables (x,h,,h,). Such migrated data are given, for
example, by the following modification of equation 30:

WCA25

az
D(x,h,hy,T) = fdxsfdxrj'dtgd(xr,t;xs)

X deG(X + (hx7hy70)’t o T;Xr)G(X - (hx7hy70)a7-;xs)

= fdxsfdru*(x + (hyhy,0),T + 73X )wy

X (x = (hy.hy,0),7:X,) (32)

(which represents a successive evaluation of laterally shifted time
correlations accumulated over all shots; cf. equations 18 and 19). As
we have done with other fields, we denote by D the field D referred to
sunken source and receiver coordinates.

Again, this migration formula can be obtained as the adjoint of a
modified forward map, mapping an extended reflectivity to data,
similarly as above. In this case, the extended reflectivity depends on
the variables (x.,h,.h,,T), with physical reflectivity given by
r(x)6(h,)8(h,)(T). This physical reflectivity is obtained by a time
injection operator,

(JR) (%, %0, 7T 5ot) = R(X,, %07, 5,2 8(1). (33)

To obtain a migrated image volume, the extraction of zero-offset
data in equation 14 is preceded by extracting the 7' = 0 data from D.
Setting T to zero in equation 32 yields the shot-geophone migration
output defined in equation 30.

Angle gathers generated via Radon transform in offset and time of
D(x,h,,h,,T) were introduced by De Bruin et al. (1990) and dis-
cussed further in Prucha et al. (1999). We denote these gathers by

Bz(xvpx»py) = fdhxf dhyD(X’hx’hy’pxhx + pyhy)X(h)s (34)

where x () is an appropriately chosen tapered mute restricting the
range of i values (Stolk and De Hoop, 2001). Angle gathers are ob-
tained upon converting the ray-parameter components to angles (De
Hoop etal., 2003; see also Fomel, 2004).

Note that the Radon transform in equation 34 is evaluated at zero
(time) intercept. The dependence on z is carried by the coordinate
plane in which the Radon transform is performed, instead of by the
(z — ) intercept as was the case with the angle gathers A, defined pre-
viously. Note also that B, requires the field D, whereas A, might be
constructed with the image output.

In Appendix B, we prove that the energy in B, is located only at the
true scattering point independent of (p,,p,). Indeed, the semblance

Xs; Ps X7, Pr

ts+t, =1
25 = 2

X, (ts), —Pr{ts)

(), PotoN

Figure 3. Ray geometry for double reflector with horizontal offset
only.
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property also holds for the angle transform via Radon transform in
the offset time domain, provided that equation B-6 holds.

Pseudodepth and turning rays

The analysis developed above can be generalized to accommo-
date a large class of turning rays. To this end, we introduce curvilin-
ear coordinates and the notion of pseudodepth (see Sava and Fomel,
2005a,2005b), which leads to the curvilinear DSR condition.

In our notation here, we distinguish between horizontal coordi-
nates x, = (x,y), (o = 1,2) and the vertical coordinate z. Similarly,
the curvilinear coordinates are denoted by (X,y,Z), and we write X,
= (X,y), for the “horizontal” coordinates; 7z will represent
pseudodepth. Our curvilinear coordinates are not connected to the
rays associated with the source or receiver Green’s functions; they
should reflect the geologic setting.

We need the metric g associated with the new coordinates. With
the original (flat) coordinates, we associate the metric g;; = & (we
use upper and lower indices as in Riemannian geometry). Then

o deyay | alxy.2)f
8il= o0 — e (35)
axy,2) T axy.2)
with associated volume element |det g|"2dxdydz = |;;—“;’;|dfdy~df.

We use the summation convention: summation over repeated indices

is implicit (in other words, this equation is a shorthand for g;
o3 Wy oalny.2)
T Skstary e CheE s

~ =i ~ =
&) &2

). The inverse metric equals

g'= . ) (36)

a(x7yvz)] a(x’yvz)k
The coordinate Z defines a local pseudodepth if % i % and
d(xc_;—?Z) s % Thus, the local pseudodepth Z will play a special role,

) Z
different from (X,7). We assume that a pseudodepth can be defined at
least in target regions, where the metric g;; must be of the form

g &2 O
g~ij =81 &» O 5 (37)
0 0 gu3/y

the inverse metric gV is of the same form. In addition, g, denotes
the elements of the 2 X 2 matrix

~ g 11 g 12
oo’ = ( —_ ~ b (3 8)
821 822/ go’
i.e., the horizontal part of the metric. For our analysis, we need only
local coordinates and a Riemannian metric of the form 37.
The transformation of the acoustic wave equation is done most

naturally using a variational formulation. This yields an action func-
tional

=3 [«

where p is the density, and « is the compressibility whence
¢7? = pk. The wave equation follows from the Euler-Lagrange
equations derived from this action. The variation of this action under
v (the derivative if u — u + v) can be written as

ou |2
i p Vul* + uf |dxdydzat,

(39)

Stolk et al.

b v du
6,8S= Kga—p_IVv-Vu-i-vf dxdydzdt

b *u
=f ffv<_K¥+ V-(p 'Vu) +f)dxdydzdt,

(40)

where the second step was obtained by integration by parts, using
thatv = 0 fort = a and ¢t = b. Because this must be true for all v, the
wave equation follows.

We define the transformed wavefield as u(x,y,7)
= u(x(x,y,2),y(%,5,2),2(X,¥,Z)). To obtain the wave equation in the
new coordinates (see also Friedlander, 1976), we transform the ac-
tion. In the new coordinates, it becomes

=3[ []]»

B 1(3(55,912) oit )_(a(f,yiz) oit >+~f}
P A(x,y,2) (%, 5.2) ) \9(x,y,2) d(X,7.2)

i | 2
ot

a(x,y,2)

—— " | dxdydzd. (41)
A(x,y,2)

By an argument similar to that above, it follows that the wave equa-

tion has new coefficients (which now are anisotropic), «| 32—;%) and
p!| %@’f and reads
axy.2) | 0% d . ax,y,z) | .. oa
Kl |l —T===\p~ — g—
AxXy.2) | o Xy Xy | axy.zy
a(x,y,z)
=f|l ——— (42)
A(X.5.2)
or
a(x,y.z) | 0%t a( aﬁ)
Kl |77~ =la 2
ox,y,z) | orr  9z\ 9z
9 = a(x,y,2) o il iy (x,y,2)
ox” A(%.5.2) oz’ A(%.7,2)
(43)
a(x,y,2)

with @ = p~'1g%| iGrol- In the case of flat coordinates, assuming
that p is constant, the Green’s function (cf. equation 1) satisfies equa-
tion 43 subject to the substitution f = pS(x — x,) 5(7).

Asymptotic ray theory corresponding with the solutions of equa-
tion 42 is governed by the Hamiltonian 7, obtained from the symbol
of the wave operator on the left-hand side, which in curvilinear coor-
dinates is given by
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e |
H(x7y’z’px’py’pz) = E(px’py?pz)igl]

X (x(%.5.2).y(%5.2.2Z5.2D) (PoPy-P.)j ¢ = (pr) ™
(44)
here, (p..p,.p.) are the components of a slowness vector in curvilin-

ear coordinates. Singularities propagate along rays, with tangent, or
velocity, vectors given by

dX oH
(0,(0),0,(1),0,(1)) = W ) (45)
ol ylVz

Where the Riemannian metric attains the form 37, the X-velocity sat-
isfies

59(1) = ¢*g°7 P, (46)

expressing the relation between group velocities and slowness vec-
tors. Moreover,

dP IH
—=—, (47)
dr - 9(x.3.2)

and the length of the slowness vector is such that H(X,3.,Z,7..p,.P.)
1

z.
Equation 34 is replaced by

B.RF PR, = f dS( ) DEFZ R i) (i),

(48)
where
dS(hyhy) = |j(hehy) j(hehy)| Pdh,dh,, — (49)
in which
— (XX, -
.(hx’hv = @’ Xy = XS()C - hx’y - h‘,,Z),
' &(hmh\) %'_’

=X

X, =X, (X+ 1,5+ }7,,,2’)

[ —

=X,

(50)
using that Zis a pseudodepth. We now assume that the source and re-
ceiver rays become nowhere horizontal in the curvilinear coordinate
system. We refer to this assumption as the curvilinear DSR condi-
tion. An example of a violation of this condition, which leads to the
generation of artifacts, is illustrated in Figure 4.

In Appendix B, we prove that the energy in the angle transform de-
fined in equation 48 is located only at the true scattering point inde-
pendent of p.

EXAMPLE

We illustrate the semblance property established in the preceding
pages for shot-geophone migration. In an example containing a low
velocity lens, we expose the dramatic contrast between image (or
common-image-point) gathers produced by shot-geophone migra-
tion and those produced by other forms of prestack depth migration.

WCA27

The formation of caustics leads to failure of the semblance principle
for Kirchhoff (or generalized Radon transform) common-scattering-
angle migration. The DSR assumption is satisfied for the acquisition
offsets considered. For the shot-geophone migration, we use a meth-
od based on solving Helmholtz equations (Sirgue and Pratt, 2004):
we use a fourth-order finite-difference scheme in space and apply
second-order absorbing boundary conditions. We form angle image
gathers according to equation 34.

The example is used in Stolk (2002) and Stolk and Symes (2004)
to show that common-offset and Kirchhoff (or generalized Radon
transform) common-scattering-angle migration produce strong ki-
nematic artifacts in strongly refracting velocity models. The velocity
model (Figure 5) consists of a slow Gaussian lens embedded in a
constant background. This model is strongly refracting through the
formation of triplications in the ray fields. Below the lens, at a depth
of 2 km, we placed a flat, horizontal reflector. We synthesized data
using a (4-,10-,20-,40-) Hz zero-phase band-pass filter as (isotro-
pic) source wavelet, and a (centered) finite-difference scheme — of
order 2 in time and 4 in space, with perfectly matched layer (PML)
absorbing boundary conditions all around — with adequate sam-
pling. A typical shot gather over the lens (Figure 6, shot position at
—500 m) shows a complex pattern of reflections, from the flat re-
flector, that have propagated through the lens.

We migrated the data with the above-mentioned approach. Figure
7 shows the image, which clearly reproduces the reflector. An angle
image gather is shown in Figure 8; for comparison, we show the
Kirchhoff common-scattering-angle image gather in Figure 9 at the
same location (reproduced from Stolk and Symes, 2004), each trace
of which is obtained by Kirchhoff migration restricted to common
angle. The Kirchhoff image gather clearly is contaminated by nu-
merous energetic nonflat events, whereas the wave-equation image
gather is not. The geometry of these artifacts is computed directly
and indicated by solid lines. Artifacts in the Kirchhoff image gather
must be nonflat and can be removed by “dip” filtering in depth and
angle, but only if the velocity model is perfectly well known.

For comparison, we generated a source image gather via reverse
time migration at the same location as the other two image gathers;

‘ _‘(ifwu szoat)

~A A
(lecat_: Zscat

Figure 4. Violation of the curvilinear DSR condition leading to the
generation of artifacts in the angle gathers. The traveltimes associat-
ed with the ray segments indicated by |l are equal, and the imaging
ambiguity here occurs between points (¥2,,7%,) and (32,,72.).

Downloaded 28 Apr 2010 to 145.18.20.105. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



WCA28

see Figure 10. We note, again, the presence of artifacts now comput-
ed with a wave-equation approach, but with a different geometry be-
cause common-source and common-angle restrictions imply the use
of different data subsets. However, the appearance of the artifacts in
both cases is very similar.

DISCUSSION

The literature contains some comparisons of Kirchhoff and wave
equation migration (e.g., Albertin et al., 2002; Fliedner et al., 2002).

Lateral position (km)
-1 0 1

Depth (km)

0.6 0.8 1.0 1.2
Velocity (km/s)

Figure 5. Lens velocity model over flat reflector.

Receiver position (km)
—1 0

Time (s)

Figure 6. Lens model, shot record at shot location —0.5 km.

Stolk et al.

Performance differences identified in these reports have been as-
cribed to a wide variety of factors, such as differences in antialiasing
and decimation strategies, choice of time fields used in Kirchhoff
imaging, and “fidelity” to the wave equation. These factors surely af-
fect performance, but they reflect mainly implementation decisions.
The difference identified and demonstrated in this study, on the other
hand, is fundamental: it flows from the differing formulations of
prestack imaging (and modeling) underlying the two classes of
methods. No implementation variations can mask it.

From a processing or data flow point of view, the (wave-equation)
angle transform generating image gathers via Radon transform in
subsurface offset and time distinguishes itself from common-angle
(Kirchhoff) migration through (curvilinear) survey sinking applied
to all the data prior to forming angle gathers in the subsurface instead
of restricting the surface data (in a velocity-field-dependent man-
ner).

0.5

Depth (km)

15

-15 -1 -0.5 0 05 1 1.5
Lateral position (km)

Figure 7. Wave equation image of the flat reflector using all the data
generated over the lens model illustrated in Figure 5.

Angle (°)
20 40 60

Depth (km)
N

2.4

Figure 8. Lens model, common-image-point gather obtained with
the wave-equation angle transform at x,, = 0.3 km.
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The idea of using nonhorizontal subsurface offset while forming
common-image-point gathers has been explored quite recently. Nu-
merical investigations of Biondi and Shan (2002) suggest that re-
verse-time (two-way) wave equation migration, as presented here,
could be modified by inclusion of nonhorizontal offsets to permit the
use of turning energy, and indeed to image reflectors of arbitrary dip.
This latter possibility has been understood in the context of (stacked)
images for some time (Yoon et al., 2003). Biondi and Shan (2002)
present prestack image gathers for horizontal and vertical offsets,
which suggest that a similar flexibility might be available for the
shot-geophone extension.

Biondi and Symes (2004) give a local analysis of shot-geophone
image formation using nonhorizontal offsets. Globally the forma-
tion of kinematic artifacts in a horizontal/vertical offset image vol-
ume cannot be entirely ruled out; however, kinematic artifacts can-
not occur at arbitrarily small offset, in contrast to the formation of ar-
tifacts at all offsets in binwise migration. Here, we have provided a
rigorous framework with general subsurface offsets upon introduc-
ing curvilinear coordinates for incorporating “turning rays” while

Angle (°)

2.0

Depth (km)

2.4

Figure 9. Lens model, common-image-point gather obtained with
the Kirchhoff angle transform at x,, = 0.3 km. The curves in gray in-
dicate the different kinematic artifacts as predicted by ray-based
computations, all of which have residual moveout.

Source position (km)
-2 -1 0 1 2

Depth (km)
N

2.4

Figure 10. Lens model, source common-image-point gather ob-
tained via reverse time migration at x,, = 0.3 km.
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preserving the semblance property of angle gathers.

The “enough-data” condition listed in the introduction and as-
sumed throughout this study is an important one. For arbitrary 3D
complexity in the migration velocity field, validity of the semblance
principle requires areal coverage (“true 3D” data). In particular, we
cannot guarantee the absence of kinematic artifacts in shot-geo-
phone migration of narrow-azimuth data unless the velocity model
is assumed to have additional properties, for example, mild crossline
heterogeneity, which compensate to some extent for the lack of azi-
muths. This issue is discussed a bit more in the concluding section.

Anintriguing and so far theoretically untouched area concerns the
potential of multiple narrow-azimuth surveys, with distinct central
azimuths, to resolve the ambiguities of single-azimuth imaging.

True-amplitude adaptations of shot-geophone migration and the
generation of angle image gathers, based on the one-way wave equa-
tion, are developed in the literature; see Stolk and De Hoop (2001,
2006), De Hoop (2004), Joncour et al. (2005), and Zhang et al.
(2007).

CONCLUSION

We have demonstrated, mathematically and by example, that
shot-geophone migration produces artifact-free image volumes, as-
suming (1) a kinematically correct and relatively smooth velocity
model, (2) a (local) curvilinear coordinate system and an associated
Riemannian metric admitting the introduction of pseudodepth with
respect to which incident energy travels “downward” and reflected
energy travels “upward,” and (3) enough data to uniquely determine
rays corresponding to events in the data. In an example, we com-
pared shot-geophone migration with Kirchhoff common-scattering-
angle migration. Although the latter technique bins data only implic-
itly, it is like other binwise migration schemes, such as common-oft-
set migration, in generating kinematic image artifacts in prestack
data when the velocity model is sufficiently complex to strongly re-
fract waves.

‘We have shown that implementation has, at most, a secondary im-
pact on kinematic accuracy of shot-geophone imaging. Its basic ki-
nematics is shared not just by the two common-depth-extrapolation
implementations — shot profile, double square root — but also by a
variant of reverse time imaging and even by a Kirchhoff or general-
ized Radon transform operator of appropriate construction. Natural-
ly these various options differ in numerous ways, in their demands
on data quality and sampling and in their sensitivity to various types
of numerical artifacts. However, in the ideal limit of continuous data
and discretization-free computation, all share an underlying kine-
matic structure and offer the potential of artifact-free data volumes
when the assumptions of our theory are satisfied, even in the pres-
ence of strong refraction and multiple arrivals at reflecting horizons.

It remains to address three shortcomings of the theory. The first is
its reliance on a (local) curvilinear coordinate system and corre-
sponding “DSR” assumption. This restricts the class of allowable
“turning rays” (but reflections off a vertical salt flank, where
pseudodepth becomes close to horizontal, can satisfy this assump-
tion).

A second limitation of our main result is the assumption that ray
kinematics is determined completely by the data. Of course, this is
no limitation for the 2D synthetic examples presented above. With
the advent of WATS acquisition, this limitation is overcome as well.
However, most contemporary data are acquired with narrow-azi-
muth streamer equipment. For such data, we cannot in general rule
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out the appearance of artifacts resulting from multiple ray pairs satis-
fying the shot-geophone kinematic imaging conditions.

However, two observations suggest that all is not lost in this situa-
tion. First, for an ideal “2.5D” structure (independent of a crossline
coordinate) and perfect linear survey geometry (no feathering), all
energetic rays remain in the vertical planes through the sail line, and
our analysis applies without alteration to guarantee imaging fidelity.
Second, the conditions that ensure absence of artifacts are open; i.e.,
small perturbations of velocity and source and receiver locations
cannot affect the conclusion. Therefore, shot-geophone imaging fi-
delity is robust against mild crossline heterogeneity and small
amounts of cable feathering. Note that nothing about the formulation
of our modeling or (adjoint) migration operators requires areal ge-
ometry: the operators are perfectly well defined for narrow-azimuth
data.

A third, and much more fundamental, limitation pertains to migra-
tion itself. Migration operators are essentially adjoints to linearized
modeling operators. The kinematic theory of migration requires that
the velocity model be slowly varying on the wavelength scale, or at
best be slowly varying except for a discrete set of fixed, regular inter-
faces. The most challenging contemporary imaging problems, for
example, subsalt prospect assessment, transgress this limitation, in
many cases violently. Salt-sediment interfaces are among the un-
knowns, especially bottom salt, are quite irregular, and are perhaps
not even truly interfaces. Clever solutions are being devised for
these difficult imaging problems, but the theory lags far, far behind
the practice.
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APPENDIX A

REFLECTIONS TO REFLECTORS

In this appendix, we establish the relation between the appear-
ance of events in the data and the presence of reflectors in the migrat-
ed image. This relation is the same for the forward modeling opera-
tor and for its adjoint, the migration operator.

The reasoning presented here shares with Stolk and De Hoop
(2001) the identification of events, respectively reflectors, by high-
frequency asymptotics in phase space, but differs in that it does not
explicitly use oscillatory integral representations of F[v]. Instead,
this argument follows the pattern of Rakesh’s analysis of shot-pro-
file-migration kinematics (Rakesh, 1988). It can be made mathemat-
ically rigorous by means of the so-called Gabor calculus in the har-
monic analysis of singularities (Duistermaat, 1973, chap. 1).

Our analysis is based on the recognition that the shot-geophone
predicted data field u(x,,1;X,), defined by equation 10, is the value at
X = x, of the space-time field u(X,1;X,), which solves

Stolk et al.

1 ou _ o
Uz—(i)?(x,t;xx) — Vau(x,1:x,)

82
= fth(i - h,h)gG(i —2h,5x,). (A-1)

This equation follows directly by applying the wave operator to both
sides of equation 10.

The appearance of an event at a point (X,,X,.Z,,) in the data volume
is equivalent to the presence of a sizable Fourier coefficient for a
plane-wave component

el —PX =P, X)) (A-2)

in the acoustic field for frequencies w within the bandwidth of the
data, even after muting out all events at a small distance from
(XX t4).

Note that the data does not necessarily fully determine this plane-
wave component, i.e., the full 3D event slownesses p,,p,. In this ap-
pendix, p,.p, are assumed to be compatible with the data in the sense
justexplained.

Assume that these frequencies are high enough relative to the
length scales in the velocity so that such local plane-wave compo-
nents propagate according to geometric acoustics. This assumption
tacitly underlies much of reflection processing, and in particular is
vital to the success of migration.

In other words, solutions of wave equations such as A-1 carry en-
ergy in local plane-wave components along rays. Let (X,(7),P,(z))
denote such a ray, so that X,(z,,) = x,,P.(7,,) = p,- Then at some
point, the ray must pass through a point in phase space at which the
source term (right-hand side) of equation A-1 has significant energy.
Otherwise, the ray never would pick up any energy at all, and there
would be no event at time #,,, receiver position X,, and receiver slow-
ness p,. (Supplemented with proper mathematical boilerplate, this
statement is the celebrated propagation of singularities theorem of
Hormander [Taylor, 1981; Hormander, 1983].)

The source term involves a product and an integral in some of the
variables. The Green’s function G(X,,?,X,) has high-frequency com-
ponents along rays from the source, i.e., at points of the form
(X,(1,),P(7,)), where X,(0) = x, and 7,=0. (Of course, this is just
another instance of the propagation of singularities, as the source
term in the wave equation for G(X,,1,,X,) is singular only at (x,,0).) In
other words, viewed as a function of X, and 7,, G(-,-;x,) will have
significant Fourier coefficients for plane waves

giw(Px(lS)-iS+ls)' (A-3)
We characterize reflectors in the same way, i.e., there is a (dou-

ble) reflector at (X,,X,) if R has significant Fourier coefficients of a
plane wave

ei(ks-is' +k, X)) (A-4)

for some pair of wavenumbers k,k,, and for generic points (X!,X/)
near (X,,X,). Presumably then, the product R(X,x)G(X/,1,;X,) has a
significant coefficient of the plane-wave component

(&g + WP (1)) X] + K, x + 1) (A-5)

for X! near X,, X near X,; note that implicitly we have assumed that X,
(the argument of G) is located on a ray from the source with time 7.
The right-hand side of equation A-1 integrates this product over X;.
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This integral will be negligible unless the phase in X; is stationary;
that is, to produce a substantial contribution to the right-hand side of
equation A-1, itis necessary that

X, = X,(t,), k;+ 0Pz, =0. (A-6)

Supposing that this is so, the remaining exponential suggests that
the right-hand side of equation A-1 has a sizable passband compo-
nent of the form

ei(k,»x+wtx) (A—7)

for x near X,. As argued above, this right-hand side will give rise to a
significant plane-wave component in the solution u arriving at x, at
time 7, = t, + ¢, exactly when a ray arriving at X, at time ¢,, starts
from a position in space-time with the location and wavenumber of
this plane wave, attime t, = 1, — t,; i.e.,

X,(t,) =%,, oP/(t,)=Kk,. (A-8)

We end this appendix with a remark about the case of complete
coverage; i.e., sources and receivers densely sample a fully 2D area
on or near the surface. Assuming that the effect of the free surface has
been removed so that all events might be viewed as samplings of an
upcoming wavefield, the data (2D) event slowness uniquely deter-
mines the wavefield (3D) slowness through the eikonal equation.
Thus an event in the data is characterized by its (3D) moveout: local-
ly, by a moveout equation z = T(x,,X,), and infinitesimally by the
source and receiver slownesses

pPs = VxST» P= erT' (A—9)

In this case, the data event uniquely determines the source and re-
ceiverrays.

APPENDIX B

PROOF OF SEMBLANCE PROPERTY

In this appendix, we prove the semblance property of angle gath-
ers via Radon transform in offset and time.

Formulation in ‘“global” depth

Our starting point is equation 34 combined with equation 32. We
first need to establish at which points (x,h,,h,,T) significant energy
of D(x,h,,h,,T) is located. The argument for Dis slightly different
from the argument for Z,g,z because D depends also on the time. For
Z_gyz, there was a kinematic relation (X,,X,,t,,,@p,,wPp,,®) to a point in
phase space (XX, Y5V 2.k;s 1.k .ks ).k, k) Where the energy in Ts,g.z
is located. The restriction of D to time 7 is the same as the restriction
to time 0, but using time-shifted data d( .,r + T,.). Therefore we can
follow almost the same argument as for the kinematic relation of
Lig,

We find that for an event at (X,,X,,Z,,,p,,wp,,®) to contribute at
D, restricted to time 7, we must have (x,,y,,z) on the ray X, say, at
time 7/, i.e., (x,,,,2) = X,(#!). Then (x,,y,,z) must be on the ray X,,
say, at time 7, i.e., (x,,y,,z) = X,(#!). The situation is displayed in
Figure B-1, using midpoint-offset coordinates. Furthermore, the
sum of the traveltimes from x, to (x,,y,,z) and from X, to (x,,y,.z)
mustbe equaltoz,, — T.Itfollows that?] — ¢, = T.

Now consider an event from a physical reflection at X(z,)
= X,(#,) = (XgeavYVscanZscar)- We use the previous reasoning to find

WCA31

where the energy in D is located (in midpoint-offset coordinates).

We denote by (v, (1),0,,(1),0, (1)) the ray velocity for the source ray
%". The horizontal “sunken source” coordinates (x — h,y — h,)

then satisfy

Is

Xscat — ()C - hx) = jdlvs’x(l‘), (B'l)

s

Is

Yscat (y - hv) = fdtvs,y(t)-

’

Iy

or the “sunken receiver” coordinates, we find

"
tA‘

()C + hx) — Xgcat = fdtvr,x(t)’ (B-2)

"

t,T

(y + hy)  Yscat = fdtvr,y(t)-

Is

Adding up the x-components of these equations, and separately the
y-components of these equations, gives

" "

tx ts
2hx = fvx(t)dt7 2hy = fl)y(t)dt, (B_3)
I I

s s

where now the velocity (v,(7),v,(¢)) is from the source ray fort < z,,
and from the receiver ray for r > ¢,. Let us denote by v .« the maxi-
mal horizontal velocity along the rays between (XgeqYscanZscar) and
the points (x,,y,,z) and (x,,y,,z); then we have

2||(hx’hv)|| = |t/vl - t;|vH,max = |T|UH,max' (B‘4)

For the 2D case, we display the situation in Figure B-2. The energy in
D is located in the shaded region of the (A,,T) plane indicated in this
figure. In three dimensions, this region becomes a cone.

The angle transform in equation 34 is an integral of D over a plane
in the (h,,h,,T) volume given by

(xscat ) Zscat)

Figure B-1. Ray geometry for offset-time angle-gather construction
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T =p,h,+ pyh,. (B-5) Iy
Suppose now that Kot — (X — ]:;x) = fdtﬁs,x(t)v (B-9)
2 g
\p?+ p§< . (B-6)
Ullmax Iy
Then we have

VR + . (B-7)

In Figure B-2 (the 2D case), this means that the lines of integration
are not in the shaded region of the (4,,T) plane. In three dimensions,
the planes of integration are not in the corresponding cone. The only
points where the planes of integration intersect the set of (%,,h,,T),
where energy of D is located, are points with 7= 0, h, = h, = 0. It
follows that the energy in the angle transform of equation 34 is locat-
ed only at the true scattering point independent of (p,.p,). We con-
clude that the semblance property also holds for the angle transform
via Radon transform in the offset time domain, provided that B-6
holds.

The bound v, need not be a global bound on the horizontal
component of the ray velocity. The integral in equation 34 is over
some finite range of offsets, hence on some finite range of times, so
that the distance between, say, the midpoint X in equation 34 and the
physical scattering point is bounded. Therefore, v} ., should be a
bound on the horizontal component of the ray velocity on some suf-
ficiently large region around x.

|T] = pshs + pyhy| <

Il,max

Formulation in (local) pseudodepth

We adapt the analysis presented in the previous subsection to the
case of curvilinear coordinates defining a metric with a structure of
the type 37.

When ignoring the zZ-component of velocity, it is immediate that

59¢ 25,07 =1. (B-8)
The relevant geometry is displayed in Figure B-3. We now consider
an event from a reflection at a point (Xyeu, VscanZsca) that is reached by
the source ray at time 7, and connects to the receiver by the receiver
ray taking as initial time ¢,. Following the propagation of singulari-
ties in D, the “horizontal” sunken source coordinates satisty

Offset hy
_ojnl

Figure B-2. Cone in phase space for energy admitted to angle-gather
construction.

Ve — (= }7}) = fdtﬁs,y(t);

’

tS

the “horizontal” sunken receiver coordinates satisfy

Is

— Xgear T (55+ Ex) = fdtar,x(t)7

"

(B-10)

Is

_yscat + (}7+ Ey) = fdtﬁr,y(t)~

"
to
s

Adding up these equations results in

" "
ZS ZS

2h, = f dio (1), 2h,= j dtv (1), (B-11)

t.)' t.)'

where (0,(1),0,(1)) is taken from the source ray for t < ¢, and from
the receiverray for ¢ > .

We introduce a tensor B, that is assumed to satisfy the “bound”
(cf. equation B-8)

w’B o~ o225 a’
oW =W g W . (B-12)

Using the particular structure of the metric tensor, we obtain the esti-
mate

(37 scat» Zs‘cat )

Figure B-3. Ray geometry for offset-time angle-gather construction
with respect to curvilinear coordinates.
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"
ts

2(h"B, 0" )2 < f (67¢ 728,507 ) 2di=|t) — | = |T]

>

!

ZX

(B-13)

which replaces equation B-4. We conclude that the energy in Dislo-
cated within the cone in (7, tJZ.,T) space defined by this equation.

The angle transform is an integral of D overa plane in (fzx,ﬁy,T)
space givenby 7 = ﬁgﬁ”. Let B*’ denote the elements of the inverse
of the matrix B,,. Suppose that

PeB7" By <2, (B-14)
which replaces equation B-6. With
Poh”| = (BB 5yr) (R Byyrh”)2,  (B-15)
itthen follows that
1T\ = |5, 1’| <2(h"B, . h" )2, (B-16)

which replaces equation B-7. Using the same arguments as before, it
follows, again, that the energy in the angle transform (cf. equation
48) is located only at the true scattering point independent of .
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