The homotopy exact sequence for overconvergent isocrystals
joint with Ambrus Pál

Christopher Lazda
Università di Padova

19th June 2017
1 Introduction

2 Pro-algebraic fundamental groups

3 Overconvergent isocrystals

4 Proof of p-adic HES
Let $F \to E \to B$ be a topological fibre bundle.
Let $F \to E \to B$ be a topological fibre bundle. Then there exists a long exact sequence

$$\ldots \to \pi_{n+1}(B) \to \pi_n(F) \to \pi_n(E) \to \pi_n(B) \to \pi_{n-1}(F) \to \ldots$$

of homotopy groups.
Let $F \to E \to B$ be a topological fibre bundle. Then there exists a long exact sequence

$$
\ldots \to \pi_{n+1}(B) \to \pi_n(F) \to \pi_n(E) \to \pi_n(B) \to \pi_{n-1}(F) \to \ldots
$$

of homotopy groups.

Question

What is the analogue of the in algebraic geometry?
Basic questions

Let $F \to E \to B$ be a topological fibre bundle. Then there exists a long exact sequence

$$\ldots \to \pi_{n+1}(B) \to \pi_n(F) \to \pi_n(E) \to \pi_n(B) \to \pi_{n-1}(F) \to \ldots$$

of homotopy groups.

Question

What is the analogue of the in algebraic geometry?

Question

What is the algebraic analogue of a fibre bundle?
Introduction
Pro-algebraic fundamental groups
Overconvergent isocrystals
Proof of p-adic HES

Basic questions

Let $F \to E \to B$ be a topological fibre bundle. Then there exists a long exact sequence

$$\ldots \to \pi_{n+1}(B) \to \pi_n(F) \to \pi_n(E) \to \pi_n(B) \to \pi_{n-1}(F) \to \ldots$$

of homotopy groups.

Question
What is the analogue of the in algebraic geometry?

Question

1. What is the algebraic analogue of a fibre bundle?
2. What is the algebraic analogue of π_n?
Basic questions

Let $F \to E \to B$ be a topological fibre bundle. Then there exists a long exact sequence

$$\ldots \to \pi_{n+1}(B) \to \pi_n(F) \to \pi_n(E) \to \pi_n(B) \to \pi_{n-1}(F) \to \ldots$$

of homotopy groups.

Question

What is the analogue of the in algebraic geometry?

Question

1. What is the algebraic analogue of a fibre bundle?
2. What is the algebraic analogue of π_n? Even π_1?
Basic answer: a smooth and proper morphism $X \to S$ of schemes.
What is an algebraic fibre bundle?

Basic answer: a smooth and proper morphism $X \to S$ of schemes.

Example

If S/\mathbb{C} is a variety, and $X \to S$ is smooth and proper, then $X(\mathbb{C}) \to S(\mathbb{C})$ is a topological fibre bundle.
What is an algebraic fibre bundle?

Basic answer: a smooth and proper morphism $X \rightarrow S$ of schemes.

Example

If S/\mathbb{C} is a variety, and $X \rightarrow S$ is smooth and proper, then $X(\mathbb{C}) \rightarrow S(\mathbb{C})$ is a topological fibre bundle.

More sophisticated answer: a morphism $X \rightarrow S$ admitting a proper hypercover $X_\bullet \rightarrow X$ and a compactification $X_\bullet \rightarrow \overline{X}_\bullet$ such that $\overline{X}_\bullet \rightarrow S$ is smooth and proper and $\overline{X}_\bullet \setminus X_\bullet$ is a relative NCD.
What is an algebraic fibre bundle?

Basic answer: a smooth and proper morphism $X \to S$ of schemes.

Example

If S/\mathbb{C} is a variety, and $X \to S$ is smooth and proper, then $X(\mathbb{C}) \to S(\mathbb{C})$ is a topological fibre bundle.

More sophisticated answer: a morphism $X \to S$ admitting a proper hypercover $X_\bullet \to X$ and a compactification $X_\bullet \to \overline{X}_\bullet$ such that $\overline{X}_\bullet \to S$ is smooth and proper and $\overline{X}_\bullet \setminus X_\bullet$ is a relative NCD.

Basic Setup

$f : X \to S$ is a smooth and projective morphism of varieties over a field k, with geometrically connected base and fibres. Fix $x \in X(k)$ and set $s = f(x)$.

Christopher Lazda
What is an algebraic fibre bundle?

Basic answer: a smooth and proper morphism $X \to S$ of schemes.

Example

If S/\mathbb{C} is a variety, and $X \to S$ is smooth and proper, then $X(\mathbb{C}) \to S(\mathbb{C})$ is a topological fibre bundle.

More sophisticated answer: a morphism $X \to S$ admitting a proper hypercover $X_\bullet \to X$ and a compactification $X_\bullet \to \overline{X}_\bullet$ such that $\overline{X}_\bullet \to S$ is smooth and proper and $\overline{X}_\bullet \setminus X_\bullet$ is a relative NCD.

Basic Setup

$f : X \to S$ is a smooth and projective morphism of varieties over a field k, with geometrically connected base and fibres. Fix $x \in X(k)$ and set $s = f(x)$.

Thus we expect to see a right exact sequence

$$\pi_1(X_s, x) \to \pi_1(X, x) \to \pi_1(S, s) \to 1$$

of fundamental groups (whatever they are!).
The étale fundamental group

If Y is a normal, connected, Noetherian scheme, and $\bar{y} \to Y$ is a geometric point, then Grothendieck defined the étale fundamental group $\pi_1^{\text{ét}}(Y, \bar{y})$.
The étale fundamental group

If Y is a normal, connected, Noetherian scheme, and $\bar{y} \to Y$ is a geometric point, then Grothendieck defined the étale fundamental group $\pi^\text{ét}_1(Y, \bar{y})$. It is uniquely characterised by the existence of an equivalence of categories

$$F\text{Ét}(Y) \cong \pi^\text{ét}_1(Y, \bar{y})\text{-FSet}$$

between finite étale covers of Y and finite (discrete) $\pi^\text{ét}_1(Y, \bar{y})$-sets, such that the forgetful functor

$$\pi^\text{ét}_1(Y, \bar{y})\text{-FSet} \to \text{FSet}$$

corresponds to the ‘fibre over \bar{y}’ functor

$$F\text{Ét}(Y) \to \text{FSet}.$$
The étale fundamental group

If Y is a normal, connected, Noetherian scheme, and $\bar{y} \to Y$ is a geometric point, then Grothendieck defined the étale fundamental group $\pi^\text{ét}_1(Y, \bar{y})$. It is uniquely characterised by the existence of an equivalence of categories

$$F\text{Ét}(Y) \cong \pi^\text{ét}_1(Y, \bar{y})\text{-FSet}$$

between finite étale covers of Y and finite (discrete) $\pi^\text{ét}_1(Y, \bar{y})$-sets, such that the forgetful functor

$$\pi^\text{ét}_1(Y, \bar{y})\text{-FSet} \to \text{FSet}$$

corresponds to the ‘fibre over \bar{y}’ functor

$$F\text{Ét}(Y) \to \text{FSet}.$$

Theorem (Grothendieck)

*Assume the Basic Setup, and let $\bar{x} \to x$ be a geometric point over x, with corresponding geometric point \bar{s} over s. Then the sequence

$$\pi^\text{ét}_1(X_{\bar{s}}, \bar{x}) \to \pi^\text{ét}_1(X, \bar{x}) \to \pi^\text{ét}_1(S, \bar{s}) \to 1$$

of pro-finite fundamental groups is exact.*
Introduction

Pro-algebraic fundamental groups

Overconvergent isocrystals

Proof of p-adic HES
Tannakian duality

Basic idea is that a pro-algebraic group G can be reconstructed from its category of representations $\text{Rep}(G)$.
Basic idea is that a pro-algebraic group G can be reconstructed from its category of representations $\text{Rep}(G)$.

Definition

A Tannakian category over a field F is a F-linear, abelian, rigid tensor category \mathcal{T}, such that:

1. $\text{End}(1) = F$;
2. There exists a faithful, exact, F-linear tensor functor $\omega: \mathcal{T} \to \text{Vec}_F'$ for some field extension F'/F.

Such a functor is called a fibre functor. If we can choose $F' = F$ then we say that \mathcal{T} is neutral Tannakian.

Theorem (Saavedra)

Let \mathcal{T} be a neutral Tannakian category over F, with fibre functor $\omega: \mathcal{T} \to \text{Vec}_F$.

Then there exists a unique pro-algebraic group $G = G(\mathcal{T}, \omega)$ over F, and an equivalence $\text{Rep}(G) \cong \mathcal{T}$ which identifies $\omega: \mathcal{T} \to \text{Vec}_F$ with the forgetful functor $\text{Rep}(G) \to \text{Vec}_F$.
Tannakian duality

Basic idea is that a pro-algebraic group G can be reconstructed from its category of representations $\text{Rep}(G)$.

Definition

A Tannakian category over a field F is a F-linear, abelian, rigid tensor category \mathcal{T}, such that:

1. $\text{End}(1) = F$;
Basic idea is that a pro-algebraic group G can be reconstructed from its category of representations $\text{Rep}(G)$.

Definition

A Tannakian category over a field F is a F-linear, abelian, rigid tensor category \mathcal{T}, such that:

1. $\text{End}(1) = F$;
2. there exist a faithful, exact, F-linear tensor functor $\omega : \mathcal{T} \to \text{Vec}_{F'}$ for some field extension F'/F.

Christopher Lazda

The homotopy exact sequence for overconvergent isocrystals
Tannakian duality

Basic idea is that a pro-algebraic group G can be reconstructed from its category of representations $\text{Rep}(G)$.

Definition

A Tannakian category over a field F is a F-linear, abelian, rigid tensor category \mathcal{T}, such that:

1. $\text{End}(1) = F$;
2. there exist a faithful, exact, F-linear tensor functor $\omega : \mathcal{T} \rightarrow \text{Vec}_{F'}$ for some field extension F'/F.

Such a functor is called a *fibre functor*. If we can choose $F' = F$ then we say that \mathcal{T} is *neutral* Tannakian.
Basic idea is that a pro-algebraic group G can be reconstructed from its category of representations $\text{Rep}(G)$.

Definition

A Tannakian category over a field F is a F-linear, abelian, rigid tensor category \mathcal{T}, such that:

1. $\text{End}(1) = F$;
2. there exist a faithful, exact, F-linear tensor functor $\omega : \mathcal{T} \to \text{Vec}_{F'}$ for some field extension F'/F.

Such a functor is called a *fibre functor*. If we can choose $F' = F$ then we say that \mathcal{T} is *neutral* Tannakian.

Theorem (Saavedra)

Let \mathcal{T} be a neutral Tannakian category over F, with fibre functor $\omega : \mathcal{T} \to \text{Vec}_{F}$.

Then there exists a unique pro-algebraic group $G = G(\mathcal{T}, \omega)$ over F, and an equivalence $\text{Rep}(G) \cong \mathcal{T}$ which identifies $\omega : \mathcal{T} \to \text{Vec}_{F}$ with the forgetful functor $\text{Rep}(G) \to \text{Vec}_{F}$.
Let Y be a normal, connected, Noetherian scheme, and $\text{Loc}^\text{ét}_{Q_\ell}(Y)$ the category of lisse Q_ℓ-sheaves on $Y_{\text{ét}}$. Then $\text{Loc}^\text{ét}_{Q_\ell}(Y)$ is neutral Tannakian over Q_ℓ, and any geometric point $\bar{y} \to Y$ provides a fibre functor

$$\text{Loc}^\text{ét}_{Q_\ell}(Y) \to \text{Vec}_{Q_\ell}$$

$$\mathcal{F} \mapsto \mathcal{F}_{\bar{y}}.$$

The corresponding fundamental group $\pi_1^\text{ét}(Y, \bar{y})_{Q_\ell}$ is the Q_ℓ-pro-algebraic completion of $\pi_1^\text{ét}(Y, \bar{y})$. This is ‘well-behaved’ only when ℓ is invertible on Y.

Christopher Lazda
The homotopy exact sequence for overconvergent isocrystals
Introduction

Pro-algebraic fundamental groups

Overconvergent isocrystals

Proof of p-adic HES

Examples

1. Let Y be a normal, connected, Noetherian scheme, and $\text{Loc}_{\mathbb{Q}_{\ell}}^{\text{ét}}(Y)$ the category of lisse \mathbb{Q}_{ℓ}-sheaves on $Y_{\text{ét}}$. Then $\text{Loc}_{\mathbb{Q}_{\ell}}^{\text{ét}}(Y)$ is neutral Tannakian over \mathbb{Q}_{ℓ}, and any geometric point $\bar{y} \to Y$ provides a fibre functor

$$\text{Loc}_{\mathbb{Q}_{\ell}}^{\text{ét}}(Y) \to \text{Vec}_{\mathbb{Q}_{\ell}}$$

$$\mathcal{F} \mapsto \mathcal{F}_{\bar{y}}.$$

The corresponding fundamental group $\pi_{1}^{\text{ét}}(Y, \bar{y})_{\mathbb{Q}_{\ell}}$ is the \mathbb{Q}_{ℓ}-pro-algebraic completion of $\pi_{1}^{\text{ét}}(Y, \bar{y})$. This is ‘well-behaved’ only when ℓ is invertible on Y.

2. Y/k a smooth, geometrically connected variety over a field k of characteristic 0. Then the category $\text{MIC}(Y/k)$ of vector bundles with integrable connection on Y is Tannakian over k. If there exists a rational point $y \in Y(k)$ it is moreover neutral Tannakian, and

$$y^{*} : \text{MIC}(Y/k) \to \text{Vec}_{k}$$

is a fibre functor. This gives rise to the de Rham fundamental group $\pi_{1}^{\text{dR}}(Y, y)$.

Christopher Lazda

The homotopy exact sequence for overconvergent isocrystals
More generally, if Y/k is a smooth, geometrically connected variety over any field k, then the category $\text{Strat}(X/k)$ of \mathcal{O}_X-coherent \mathcal{D}_X-modules is Tannakian over k. If there exists a rational point $y \in Y(k)$, then it is moreover neutral Tannakian, and

$$y^* : \text{Strat}(Y/k) \to \text{Vec}_k$$

is a fibre functor. This gives rise to the stratified fundamental group $\pi_1^{\text{strat}}(Y, y)$. If $\text{char}(k) = 0$ then $\pi_1^{\text{dR}}(Y, y) = \pi_1^{\text{strat}}(Y, y)$.
More generally, if Y/k is a smooth, geometrically connected variety over any field k, then the category $\text{Strat}(X/k)$ of \mathcal{O}_X-coherent \mathcal{D}_X-modules is Tannakian over k. If there exists a rational point $y \in Y(k)$, then it is moreover neutral Tannakian, and

$$y^* : \text{Strat}(Y/k) \to \text{Vec}_k$$

is a fibre functor. This gives rise to the stratified fundamental group $\pi_1^{\text{strat}}(Y, y)$. If $\text{char}(k) = 0$ then $\pi_1^{dR}(Y, y) = \pi_1^{\text{strat}}(Y, y)$.

If K is a complete, valued field of characteristic 0, and Y/K is a smooth, geometrically connected analytic variety, then the category $\text{MIC}(Y/K)$ of analytic vector bundles with integrable connection on Y is Tannakian over K. If $y \in Y(K)$ is a rational point, then it is neutral Tannakian, and

$$y^* : \text{MIC}(Y/K) \to \text{Vec}_K$$

is a fibre functor. The corresponding fundamental group is denoted $\pi_1^{dR}(Y, y)$.

Christopher Lazda
Assume the Basic Setup.
Assume the Basic Setup.

1. If \(\ell \neq \text{char}(k) \) then exactness of

\[
\pi_1^\text{ét}(X_{\bar{s}}, \bar{x})_{\mathbb{Q}_\ell} \to \pi_1^\text{ét}(X, \bar{x})_{\mathbb{Q}_\ell} \to \pi_1^\text{ét}(S, \bar{s})_{\mathbb{Q}_\ell} \to 1
\]

follows from ‘right exactness’ of the pro-algebraic completion functor.
Assume the Basic Setup.

1. If $\ell \neq \text{char}(k)$ then exactness of

$$\pi_1^{\text{ét}}(X_s, \bar{x})_{\mathbb{Q}_\ell} \to \pi_1^{\text{ét}}(X, \bar{x})_{\mathbb{Q}_\ell} \to \pi_1^{\text{ét}}(S, \bar{s})_{\mathbb{Q}_\ell} \to 1$$

follows from ‘right exactness’ of the pro-algebraic completion functor.

2. If $\text{char}(k) = 0$ and the base S is smooth, then exactness of

$$\pi_1^{\text{dR}}(X_s, x) \to \pi_1^{\text{dR}}(X, x) \to \pi_1^{\text{dR}}(S, s) \to 1$$

can be deduced over \mathbb{C} (more or less) using the Riemann–Hilbert correspondence. In general, it was proved using transcendental methods by Zhang.
Assume the Basic Setup.

1. If $\ell \neq \text{char}(k)$ then exactness of

$$
\pi_1^{\text{ét}}(X_{\bar{s}}, \bar{x})_{\mathbb{Q}_\ell} \to \pi_1^{\text{ét}}(X, \bar{x})_{\mathbb{Q}_\ell} \to \pi_1^{\text{ét}}(S, \bar{s})_{\mathbb{Q}_\ell} \to 1
$$

follows from ‘right exactness’ of the pro-algebraic completion functor.

2. If $\text{char}(k) = 0$ and the base S is smooth, then exactness of

$$
\pi_1^{\text{dR}}(X_s, x) \to \pi_1^{\text{dR}}(X, x) \to \pi_1^{\text{dR}}(S, s) \to 1
$$

can be deduced over \mathbb{C} (more or less) using the Riemann–Hilbert correspondence. In general, it was proved using transcendental methods by Zhang.

3. Again, if the base S is smooth, but now $\text{char}(k)$ is arbitrary, then exactness of

$$
\pi_1^{\text{strat}}(X_s, x) \to \pi_1^{\text{strat}}(X, x) \to \pi_1^{\text{strat}}(S, s) \to 1
$$

was proved by dos Santos. This gives a proof of exactness for π_1^{dR} in char 0 using only algebraic methods.
Assume the Basic Setup.

1. If $\ell \neq \text{char}(k)$ then exactness of

$$
\pi^\text{ét}_1(X_s, x)_{\mathbb{Q}_\ell} \to \pi^\text{ét}_1(X, x)_{\mathbb{Q}_\ell} \to \pi^\text{ét}_1(S, s)_{\mathbb{Q}_\ell} \to 1
$$

follows from ‘right exactness’ of the pro-algebraic completion functor.

2. If $\text{char}(k) = 0$ and the base S is smooth, then exactness of

$$
\pi^\text{dR}_1(X_s, x) \to \pi^\text{dR}_1(X, x) \to \pi^\text{dR}_1(S, s) \to 1
$$

can be deduced over \mathbb{C} (more or less) using the Riemann–Hilbert correspondence. In general, it was proved using transcendental methods by Zhang.

3. Again, if the base S is smooth, but now $\text{char}(k)$ is arbitrary, then exactness of

$$
\pi^\text{strat}_1(X_s, x) \to \pi^\text{strat}_1(X, x) \to \pi^\text{strat}_1(S, s) \to 1
$$

was proved by dos Santos. This gives a proof of exactness for π^dR_1 in char 0 using only algebraic methods.

4. We’ll come back to this one!
1. Introduction

2. Pro-algebraic fundamental groups

3. Overconvergent isocrystals

4. Proof of p-adic HES
Now suppose k is perfect and $\text{char}(k) = p > 0$. A p-adic analogue of $\text{MIC}(Y/k)$ or $\text{Strat}(Y/k)$ is given by the category of overconvergent isocrystals.
Now suppose k is perfect and $\text{char}(k) = p > 0$. A p-adic analogue of $\text{MIC}(Y/k)$ or $\text{Strat}(Y/k)$ is given by the category of overconvergent isocrystals.

To describe this category, let \mathcal{V} be a complete DVR with residue field k and fraction field K of characteristic 0. Assume that Y is smooth, and that there exists a projective formal scheme \mathcal{Y} over \mathcal{V} and an open embedding $Y \hookrightarrow \mathcal{Y}_k$ such that:
Now suppose k is perfect and $\text{char}(k) = p > 0$. A p-adic analogue of $\text{MIC}(Y/k)$ or $\text{Strat}(Y/k)$ is given by the category of overconvergent isocrystals.

To describe this category, let \mathcal{V} be a complete DVR with residue field k and fraction field K of characteristic 0. Assume that Y is smooth, and that there exists a projective formal scheme \mathcal{Y} over \mathcal{V} and an open embedding $Y \hookrightarrow \mathcal{Y}_k$ such that:

- \mathcal{Y} is smooth over \mathcal{V} in a neighbourhood of Y;
Now suppose k is perfect and $\text{char}(k) = p > 0$. A p-adic analogue of $\text{MIC}(Y/k)$ or $\text{Strat}(Y/k)$ is given by the category of overconvergent isocrystals.

To describe this category, let \mathcal{V} be a complete DVR with residue field k and fraction field K of characteristic 0. Assume that Y is smooth, and that there exists a projective formal scheme \mathcal{Y} over \mathcal{V} and an open embedding $Y \hookrightarrow \mathcal{Y}_k$ such that:

- \mathcal{Y} is smooth over \mathcal{V} in a neighbourhood of Y;
- the complement $\mathcal{Y}_k \setminus Y$ is a Cartier divisor on \mathcal{Y}_k.
Now suppose k is perfect and $\text{char}(k) = p > 0$. A p-adic analogue of $\text{MIC}(Y/k)$ or $\text{Strat}(Y/k)$ is given by the category of overconvergent isocrystals.

To describe this category, let \mathcal{V} be a complete DVR with residue field k and fraction field K of characteristic 0. Assume that Y is smooth, and that there exists a projective formal scheme \mathcal{Y} over \mathcal{V} and an open embedding $Y \hookrightarrow \mathcal{Y}_k$ such that:

- \mathcal{Y} is smooth over \mathcal{V} in a neighbourhood of Y;
- the complement $\mathcal{Y}_k \setminus Y$ is a Cartier divisor on \mathcal{Y}_k.

Definition

Let us call such an embedding $Y \hookrightarrow \mathcal{Y}$ a ‘good embedding’.
Now suppose k is perfect and $\text{char}(k) = p > 0$. A p-adic analogue of $\text{MIC}(Y/k)$ or $\text{Strat}(Y/k)$ is given by the category of overconvergent isocrystals.

To describe this category, let \mathcal{V} be a complete DVR with residue field k and fraction field K of characteristic 0. Assume that Y is smooth, and that there exists a projective formal scheme \mathfrak{Z} over \mathcal{V} and an open embedding $Y \hookrightarrow \mathfrak{Z}_k$ such that:

- \mathfrak{Z} is smooth over \mathcal{V} in a neighbourhood of Y;
- the complement $\mathfrak{Z}_k \setminus Y$ is a Cartier divisor on \mathfrak{Z}_k.

Definition

Let us call such an embedding $Y \hookrightarrow \mathfrak{Z}$ a ‘good embedding’.

Thus locally we have $Y = \{t \neq 0\}$ for some $t \in \mathcal{O}_\mathfrak{Z}$.
Now suppose k is perfect and $\text{char}(k) = p > 0$. A p-adic analogue of $\text{MIC}(Y/k)$ or $\text{Strat}(Y/k)$ is given by the category of overconvergent isocrystals.

To describe this category, let \mathcal{V} be a complete DVR with residue field k and fraction field K of characteristic 0. Assume that Y is smooth, and that there exists a projective formal scheme \mathcal{Y} over \mathcal{V} and an open embedding $Y \hookrightarrow \mathcal{Y}_k$ such that:

- \mathcal{Y} is smooth over \mathcal{V} in a neighbourhood of Y;
- the complement $\mathcal{Y}_k \setminus Y$ is a Cartier divisor on \mathcal{Y}_k.

Definition

Let us call such an embedding $Y \hookrightarrow \mathcal{Y}$ a ‘good embedding’.

Thus locally we have $Y = \{t \neq 0\}$ for some $t \in \mathcal{O}_\mathcal{Y}$. Let

$$sp : \mathcal{Y}_K \to \mathcal{Y}_k$$

be the ‘reduction mod p map’, so, again locally, the tube

$$\mathcal{Y} := sp^{-1}(Y)$$

is defined by $\{|t| \geq 1\}$.
Now suppose k is perfect and $\text{char}(k) = p > 0$. A p-adic analogue of $\text{MIC}(Y/k)$ or $\text{Strat}(Y/k)$ is given by the category of overconvergent isocrystals.

To describe this category, let \mathcal{V} be a complete DVR with residue field k and fraction field K of characteristic 0. Assume that Y is smooth, and that there exists a projective formal scheme \mathcal{Y} over \mathcal{V} and an open embedding $Y \hookrightarrow \mathcal{Y}_k$ such that:

- \mathcal{Y} is smooth over \mathcal{V} in a neighbourhood of Y;
- the complement $\mathcal{Y}_k \setminus Y$ is a Cartier divisor on \mathcal{Y}_k.

Definition

Let us call such an embedding $Y \hookrightarrow \mathcal{Y}$ a ‘good embedding’.

Thus locally we have $Y = \{ t \neq 0 \}$ for some $t \in \mathcal{O}_{\mathcal{Y}}$. Let

$$\text{sp} : \mathcal{Y}_K \to \mathcal{Y}_k$$

be the ‘reduction mod p map’, so, again locally, the tube

$$\mathcal{Y}[: = \text{sp}^{-1}(Y)$$

is defined by $\{|t| \geq 1\}$. We can therefore consider the ‘strict neighbourhoods’

$\mathcal{Y}[: \subset V_\lambda \subset \mathcal{Y}_K$ defined locally by $\{|t| \geq \lambda\}$ for $\lambda \to 1^-$.
If λ is close enough to 1, then the V_λ are smooth over K, and by definition

$$\text{Isoc}^\dagger(Y/K) \subset 2\text{-colim}_\lambda \text{MIC}(V_\lambda)$$

is a full subcategory defined by certain convergence conditions on the Taylor series.
If λ is close enough to 1, then the V_λ are smooth over K, and by definition

$$\text{Isoc}^\dagger(Y/K) \subset 2\text{-colim}_\lambda \text{MIC}(V_\lambda)$$

is a full subcategory defined by certain convergence conditions on the Taylor series. This doesn’t depend on any of the choices involved.
If \(\lambda \) is close enough to 1, then the \(V_\lambda \) are smooth over \(K \), and by definition

\[
\text{Isoc}^\dagger(Y/K) \subset \text{2-colim}_\lambda \text{MIC}(V_\lambda)
\]

is a full subcategory defined by certain convergence conditions on the Taylor series. This doesn’t depend on any of the choices involved.

Theorem (Crew)

If \(Y/k \) is geometrically connected, \(\text{Isoc}^\dagger(Y/K) \) is Tannakian over \(K \). If \(y \in Y(k) \) is a rational point, then it is neutral Tannakian, and

\[
y^*: \text{Isoc}^\dagger(Y/K) \to \text{Vec}_K
\]

is a fibre functor.
If λ is close enough to 1, then the V_{λ} are smooth over K, and by definition

$$\text{Isoc}^{\dagger}(Y/K) \subset \text{2-colim}_{\lambda} \text{MIC}(V_{\lambda})$$

is a full subcategory defined by certain convergence conditions on the Taylor series. This doesn’t depend on any of the choices involved.

Theorem (Crew)

*If Y/k is geometrically connected, $\text{Isoc}^{\dagger}(Y/K)$ is Tannakian over K. If $y \in Y(k)$ is a rational point, then it is neutral Tannakian, and

$$y^{*} : \text{Isoc}^{\dagger}(Y/K) \rightarrow \text{Vec}_{K}$$

is a fibre functor.*

We define the overconvergent fundamental group $\pi_{1}^{\dagger}(Y, y)$ to be the associated pro-algebraic group over K.

Christopher Lazda

The homotopy exact sequence for overconvergent isocrystals
Assume the Basic Setup, with ground field k perfect of characteristic $p > 0$, and smooth base S.
Assume the Basic Setup, with ground field k perfect of characteristic $p > 0$, and smooth base S.

Theorem (L., Pál)

The sequence

$$\pi^\dagger_1(X_s, x) \to \pi^\dagger_1(X, x) \to \pi^\dagger_1(S, s) \to 1$$

of pro-algebraic groups is exact.
In particular, this implies a weak form of the Lefschetz hyperplane theorem for p-adic fundamental groups.
In particular, this implies a weak form of the Lefschetz hyperplane theorem for p-adic fundamental groups.

Corollary

Let X be smooth, projective and geometrically connected, $Y \subset X$ a hyperplane section of dimension ≥ 1 and $y \in Y(k)$. Then the induced map

$$\pi^\dagger_1(Y, y) \to \pi^\dagger_1(X, x)$$

is surjective.
In particular, this implies a weak form of the Lefschetz hyperplane theorem for p-adic fundamental groups.

Corollary

Let X be smooth, projective and geometrically connected, $Y \subset X$ a hyperplane section of dimension ≥ 1 and $y \in Y(k)$. Then the induced map

$$\pi_1^\dagger(Y, y) \to \pi_1^\dagger(X, x)$$

is surjective.

Proof.

Put Y into a Lefschetz pencil $\widetilde{X} \to \mathbb{P}^1_k$ with a section $\mathbb{P}^1_k \to \widetilde{X}$, where $\widetilde{X} \to X$ is a blowup. Now apply the HES over the smooth locus of $\widetilde{X} \to \mathbb{P}^1_k$.

□
We can also use the HES to compare π_1^\dagger with $\pi_1^{\text{ét}}$.
We can also use the HES to compare π_1^\dagger with $\pi_1^{\text{ét}}$. So assume that $k = \bar{k}$, and that X/k is smooth, projective and connected. Fix $x \in X(k)$. Then we have a natural map

$$\pi_1^\dagger(X, x) \to \pi_1^{\text{ét}}(X, x)$$

induced by sending a finite étale cover $f : Y \to X$ to $f_* \mathcal{O}_Y^\dagger \in \text{Isoc}^\dagger(X/K)$.
We can also use the HES to compare π_1^\dagger with $\pi_1^{\text{ét}}$. So assume that $k = \bar{k}$, and that X/k is smooth, projective and connected. Fix $x \in X(k)$. Then we have a natural map

$$\pi_1^\dagger(X, x) \rightarrow \pi_1^{\text{ét}}(X, x)$$

induced by sending a finite étale cover $f : Y \rightarrow X$ to $f_*\mathcal{O}_Y^\dagger \in \text{Isoc}^\dagger(X/K)$.

Since $\pi_1^{\text{ét}}(X, x)$ is pro-finite this has to factor through the component group

$$\pi_0(\pi_1^\dagger(X, x)) \rightarrow \pi_1^{\text{ét}}(X, x).$$
We can also use the HES to compare π_1^\dagger with $\pi_1^\text{ét}$. So assume that $k = \bar{k}$, and that X/k is smooth, projective and connected. Fix $x \in X(k)$. Then we have a natural map

$$\pi_1^\dagger(X, x) \to \pi_1^\text{ét}(X, x)$$

induced by sending a finite étale cover $f : Y \to X$ to $f_* O_{Y/K}^{\dagger} \in \text{Isoc}^\dagger(X/K)$. Since $\pi_1^\text{ét}(X, x)$ is pro-finite this has to factor through the component group

$$\pi_0(\pi_1^\dagger(X, x)) \to \pi_1^\text{ét}(X, x).$$

Corollary

This induces an isomorphism $\pi_0(\pi_1^\dagger(X, x)) \cong \pi_1^\text{ét}(X, x).$
Applications (contd.)

We can also use the HES to compare π_1^\dagger with $\pi_1^{\text{ét}}$. So assume that $k = \bar{k}$, and that X/k is smooth, projective and connected. Fix $x \in X(k)$. Then we have a natural map

$$\pi_1^\dagger(X, x) \to \pi_1^{\text{ét}}(X, x)$$

induced by sending a finite étale cover $f : Y \to X$ to $f_* \mathcal{O}_Y^\dagger \in \text{Isoc}^\dagger(X/K)$.

Since $\pi_1^{\text{ét}}(X, x)$ is pro-finite this has to factor through the component group

$$\pi_0(\pi_1^\dagger(X, x)) \to \pi_1^{\text{ét}}(X, x).$$

Corollary

This induces an isomorphism $\pi_0(\pi_1^\dagger(X, x)) \cong \pi_1^{\text{ét}}(X, x)$.

Proof.

We want to show that any $E \in \text{Isoc}^\dagger(X/K)$ with finite monodromy group is trivialised by a finite étale cover of X. By a result of Crew, it suffices to show that E admits a Frobenius structure. Using the Lefschetz theorem, this can be reduced to the case of curves, where in fact it suffices to show that E can be trivialised by a finite *separable* map. We can now argue by lifting to characteristic 0.
1 Introduction

2 Pro-algebraic fundamental groups

3 Overconvergent isocrystals

4 Proof of p-adic HES
Two main steps:
Two main steps:

1. Prove that for a smooth and projective morphism $W \rightarrow V$ of smooth analytic varieties over K, with geometrically connected fibres and base, the homotopy sequence

$$\pi_{1}^{\text{dR}}(W_v, w) \rightarrow \pi_{1}^{\text{dR}}(W, w) \rightarrow \pi_{1}^{\text{dR}}(V, v) \rightarrow 1$$

is exact.
Two main steps:

1. Prove that for a smooth and projective morphism $W \to V$ of smooth analytic varieties over K, with geometrically connected fibres and base, the homotopy sequence

$$\pi_1^{dR}(W_v, w) \to \pi_1^{dR}(W, w) \to \pi_1^{dR}(V, v) \to 1$$

is exact.

2. Show how to reduce the algebraic result for isocrystals over k to the analytic result for vector bundles with integrable connection.
Two main steps:

1. Prove that for a smooth and projective morphism $W \to V$ of smooth analytic varieties over K, with geometrically connected fibres and base, the homotopy sequence

$$
\pi_1^{dR}(W_v, w) \to \pi_1^{dR}(W, w) \to \pi_1^{dR}(V, v) \to 1
$$

is exact.

2. Show how to reduce the algebraic result for isocrystals over k to the analytic result for vector bundles with integrable connection.

The first can be achieved by transporting dos Santos’ methods from algebraic geometry to analytic geometry. I will focus on explaining the second.
Since G can be recovered from $\text{Rep}(G)$, it is natural to ask if we can phrase exactness of a sequence

$$K \xrightarrow{a} G \xrightarrow{b} H \xrightarrow{} 1$$

in terms of the associated categories of representations.
Since G can be recovered from $\text{Rep}(G)$, it is natural to ask if we can phrase exactness of a sequence

$$K \xrightarrow{a} G \xrightarrow{b} H \rightarrow 1$$

in terms of the associated categories of representations.

Theorem (Esnault, Hai, Sun)

Let

$$K \xrightarrow{a} G \xrightarrow{b} H \rightarrow 1$$

be a sequence of pro-algebraic groups, such that $b \circ a$ is trivial and b is surjective. Then the sequence is exact iff the following three conditions hold.
Since G can be recovered from $\text{Rep}(G)$, it is natural to ask if we can phrase exactness of a sequence

$$K \xrightarrow{a} G \xrightarrow{b} H \xrightarrow{} 1$$

in terms of the associated categories of representations.

Theorem (Esnault, Hai, Sun)

Let

$$K \xrightarrow{a} G \xrightarrow{b} H \xrightarrow{} 1$$

be a sequence of pro-algebraic groups, such that $b \circ a$ is trivial and b is surjective. Then the sequence is exact iff the following three conditions hold.

1. For any $V \in \text{Rep}(G)$, $a^*(V)$ is trivial if and only if $V \cong b^*(W)$ for some $W \in \text{Rep}(H)$.
Since G can be recovered from $\text{Rep}(G)$, it is natural to ask if we can phrase exactness of a sequence

$$K \xrightarrow{a} G \xrightarrow{b} H \rightarrow 1$$

in terms of the associated categories of representations.

Theorem (Esnault, Hai, Sun)

Let

$$K \xrightarrow{a} G \xrightarrow{b} H \rightarrow 1$$

be a sequence of pro-algebraic groups, such that $b \circ a$ is trivial and b is surjective. Then the sequence is exact iff the following three conditions hold.

1. For any $V \in \text{Rep}(G)$, $a^*(V)$ is trivial if and only if $V \cong b^*(W)$ for some $W \in \text{Rep}(H)$.
2. If $V \in \text{Rep}(G)$, and $U_0 \subset a^*(V)$ is the largest trivial sub-object, then there exists some $V_0 \subset V$ such that $a^*(V_0) = U_0$.

Since G can be recovered from $\text{Rep}(G)$, it is natural to ask if we can phrase exactness of a sequence

$$K \xrightarrow{a} G \xrightarrow{b} H \xrightarrow{} 1$$

in terms of the associated categories of representations.

Theorem (Esnault, Hai, Sun)

Let

$$K \xrightarrow{a} G \xrightarrow{b} H \xrightarrow{} 1$$

be a sequence of pro-algebraic groups, such that $b \circ a$ is trivial and b is surjective. Then the sequence is exact iff the following three conditions hold.

1. For any $V \in \text{Rep}(G)$, $a^*(V)$ is trivial if and only if $V \cong b^*(W)$ for some $W \in \text{Rep}(H)$.

2. If $V \in \text{Rep}(G)$, and $U_0 \subset a^*(V)$ is the largest trivial sub-object, then there exists some $V_0 \subset V$ such that $a^*(V_0) = U_0$.

3. If $U \in \text{Rep}(K)$ is a sub-quotient of an object in the essential image of a^*, then it is a sub-object of such an object.
Since G can be recovered from $\text{Rep}(G)$, it is natural to ask if we can phrase exactness of a sequence

$$K \xrightarrow{a} G \xrightarrow{b} H \rightarrow 1$$

in terms of the associated categories of representations.

Theorem (Esnault, Hai, Sun)

Let

$$K \xrightarrow{a} G \xrightarrow{b} H \rightarrow 1$$

be a sequence of pro-algebraic groups, such that $b \circ a$ is trivial and b is surjective. Then the sequence is exact iff the following three conditions hold.

1. For any $V \in \text{Rep}(G)$, $a^*(V)$ is trivial if and only if $V \cong b^*(W)$ for some $W \in \text{Rep}(H)$.
2. If $V \in \text{Rep}(G)$, and $U_0 \subset a^*(V)$ is the largest trivial sub-object, then there exists some $V_0 \subset V$ such that $a^*(V_0) = U_0$.
3. If $U \in \text{Rep}(K)$ is a sub-quotient of an object in the essential image of a^*, then it is a sub-object of such an object.

In practise, (1) and (2) are rather straightforward to check, but (3) almost impossible.
What happens if we drop condition (3)?
Weak exactness

What happens if we drop condition (3)?

Definition

We say that a sequence

$$K \xrightarrow{a} G \xrightarrow{b} H \rightarrow 1$$

of pro-algebraic groups is weakly exact if $b \circ a$ is trivial, b is surjective, and the normal closure of $a(K)$ is ker b.
Weak exactness

What happens if we drop condition (3)?

Definition

We say that a sequence

\[K \xrightarrow{a} G \xrightarrow{b} H \rightarrow 1 \]

of pro-algebraic groups is weakly exact if \(b \circ a \) is trivial, \(b \) is surjective, and the normal closure of \(a(K) \) is \(\ker b \).

Proposition

Let

\[K \xrightarrow{a} G \xrightarrow{b} H \rightarrow 1 \]

be a sequence of pro-algebraic groups, such that \(b \circ a \) is trivial, and \(b \) is surjective. Then the sequence is weakly exact iff the following two conditions hold.

1. For any \(V \in \text{Rep}(G) \), \(a^*(V) \) is trivial if and only if \(V \cong b^*(W) \) for some \(W \in \text{Rep}(H) \).
2. If \(V \in \text{Rep}(G) \), and \(U_0 \subset a^*(V) \) is the largest trivial sub-object, then there exists some \(V_0 \subset V \) such that \(a^*(V_0) = U_0 \).
In geometric situations, (1) and (2) essentially boil down to the existence of a well-behaved push-forward functor.
Geometric push-forwards

In geometric situations, (1) and (2) essentially boil down to the existence of a well-behaved push-forward functor.

Proposition

Assume the Basic Setup, with k perfect of characteristic $p > 0$, and S smooth. Then there exists a push-forward functor

$$f_* : \text{Isoc}^\dagger(X/K) \to \text{Isoc}^\dagger(S/K)$$

right adjoint to f^*, such that

$$s^* f_* E \cong H^0_{\text{rig}}(X_s/K, E|_{X_s})$$

for all $E \in \text{Isoc}^\dagger(X/K)$.
Geometric push-forwards

In geometric situations, (1) and (2) essentially boil down to the existence of a well-behaved push-forward functor.

Proposition

Assume the Basic Setup, with k perfect of characteristic $p > 0$, and S smooth. Then there exists a push-forward functor

$$f_* : \text{Isoc}^\dagger(X/K) \to \text{Isoc}^\dagger(S/K)$$

right adjoint to f^*, such that

$$s^* f_* E \cong H^0_{\text{rig}}(X_s/K, E|_{X_s})$$

for all $E \in \text{Isoc}^\dagger(X/K)$.

Corollary

The sequence

$$\pi_1^\dagger(X_s, x) \to \pi_1^\dagger(X, x) \to \pi_1^\dagger(S, s) \to 1$$

is weakly exact.
We can now use this to reduce the proof of the HES to the case of curves.
We can now use this to reduce the proof of the HES to the case of curves. Take $f : X \to S$ as in the Basic Setup, and and fix $X \leftarrow \mathbb{P}_S^n$. Let d be the relative dimension, and assume that $d \geq 2$.
We can now use this to reduce the proof of the HES to the case of curves. Take $f : X \to S$ as in the Basic Setup, and and fix $X \hookrightarrow \mathbb{P}^n_S$. Let d be the relative dimension, and assume that $d \geq 2$. Let $\tilde{S} = \mathbb{P}^n_S$ be the dual projective space, and set

$$\tilde{X} := \{(x, H) \in X \times_S \mathbb{P}^n_S | x \in H\} \subset X \times_S \tilde{S}.$$
We can now use this to reduce the proof of the HES to the case of curves. Take $f : X \to S$ as in the Basic Setup, and fix $X \hookrightarrow \mathbb{P}^n_S$. Let d be the relative dimension, and assume that $d \geq 2$. Let $\tilde{S} = \mathbb{P}^n_S$ be the dual projective space, and set

$$\tilde{X} := \{ (x, H) \in X \times_S \mathbb{P}^n_S \mid x \in H \} \subset X \times_S \tilde{S}.$$

Let $U \subset \tilde{S}$ be the smooth locus of

$$\tilde{f} : \tilde{X} \to \tilde{S}$$

and \tilde{X}_U the base change.
We can now use this to reduce the proof of the HES to the case of curves. Take $f : X \to S$ as in the Basic Setup, and and fix $X \hookrightarrow \mathbb{P}^n_S$. Let d be the relative dimension, and assume that $d \geq 2$. Let $\tilde{S} = \mathbb{P}^n_S$ be the dual projective space, and set

$$\tilde{X} := \{ (x, H) \in X \times_S \mathbb{P}^n_S | x \in H \} \subset X \times_S \tilde{S}.$$

Let $U \subset \tilde{S}$ be the smooth locus of

$$\tilde{f} : \tilde{X} \to \tilde{S}$$

and \tilde{X}_U the base change. Lift x to a rational point $\tilde{x} \in \tilde{X}_U$, and set $\tilde{s} = \tilde{f}(\tilde{x})$.

Christopher Lazda

The homotopy exact sequence for overconvergent isocrystals
We can now use this to reduce the proof of the HES to the case of curves. Take $f : X \to S$ as in the Basic Setup, and and fix $X \hookrightarrow \mathbb{P}^n_S$. Let d be the relative dimension, and assume that $d \geq 2$. Let $\tilde{S} = \mathbb{P}^n_S$ be the dual projective space, and set $\tilde{X} := \{(x, H) \in X \times_S \mathbb{P}^n_S | x \in H\} \subset X \times_S \tilde{S}$.

Let $U \subset \tilde{S}$ be the smooth locus of $\tilde{f} : \tilde{X} \to \tilde{S}$ and \tilde{X}_U the base change. Lift x to a rational point $\tilde{x} \in \tilde{X}_U$, and set $\tilde{s} = \tilde{f}(\tilde{x})$. Then we have a commutative diagram

$$
\begin{array}{ccc}
\tilde{X}_s & \longrightarrow & \tilde{X}_U \\
\downarrow & & \downarrow \\
\tilde{X} & \longrightarrow & \tilde{S} \\
\downarrow & & \downarrow \\
X_s & \longrightarrow & X \longrightarrow S
\end{array}
$$

where $(\tilde{X}_U, \tilde{x}) \to (U, \tilde{s})$ is as in the Basic Setup, but with relative dimension $d - 1$.

Christopher Lazda

The homotopy exact sequence for overconvergent isocrystals
We therefore have the diagram

\[
\begin{array}{ccc}
\pi_1^\dagger(\tilde{X}_\tilde{s}, \tilde{x}) & \rightarrow & \pi_1^\dagger(\tilde{X}_U, \tilde{x}) \\
\downarrow & & \downarrow \\
\pi_1^\dagger(\tilde{X}_s, \tilde{x}) & \rightarrow & \pi_1^\dagger(\tilde{X}, \tilde{x}) \\
\downarrow & & \downarrow \\
\pi_1^\dagger(X_s, x) & \rightarrow & \pi_1^\dagger(X, x) \\
\rightarrow & & \rightarrow \\
\pi_1^\dagger(U, \tilde{s}) & \rightarrow & \pi_1^\dagger(U, s) \\
\rightarrow & & \rightarrow \\
1 & & 1
\end{array}
\]

and

\[
\begin{array}{ccc}
\pi_1^\dagger(\tilde{S}, \tilde{s}) & \rightarrow & \pi_1^\dagger(\tilde{S}, s) \\
\downarrow & & \downarrow \\
\pi_1^\dagger(X_s, x) & \rightarrow & \pi_1^\dagger(X, x) \\
\rightarrow & & \rightarrow \\
\pi_1^\dagger(S, s) & \rightarrow & \pi_1^\dagger(S, s) \\
\rightarrow & & \rightarrow \\
1 & & 1
\end{array}
\]

of fundamental groups.
We therefore have the diagram

\[
\begin{array}{cccccc}
\pi_1^\dagger(\tilde{X}_s, \tilde{x}) & \rightarrow & \pi_1^\dagger(\tilde{X}_U, \tilde{x}) & \rightarrow & \pi_1^\dagger(U, \tilde{s}) & \rightarrow & 1 \\
\downarrow & & \downarrow & & \downarrow & & \\
\pi_1^\dagger(\tilde{X}_s, \tilde{x}) & \rightarrow & \pi_1^\dagger(\tilde{X}, \tilde{x}) & \rightarrow & \pi_1^\dagger(\tilde{S}, \tilde{s}) & \rightarrow & 1 \\
\downarrow & & \downarrow & & \downarrow & & \\
\pi_1^\dagger(X_s, x) & \rightarrow & \pi_1^\dagger(X, x) & \rightarrow & \pi_1^\dagger(S, s) & \rightarrow & 1 \\
\end{array}
\]

of fundamental groups.

Lemma

The normal closure of the image of \(\pi_1^\dagger(\tilde{X}_s, \tilde{x}) \rightarrow \pi_1^\dagger(X_s, x) \) is the whole of \(\pi_1^\dagger(X_s, x) \).
We therefore have the diagram

\[
\begin{array}{cccccc}
\pi_1^\dagger(\tilde{X}_s, \tilde{x}) & \rightarrow & \pi_1^\dagger(\tilde{X}_U, \tilde{x}) & \rightarrow & \pi_1^\dagger(U, \tilde{s}) & \rightarrow & 1 \\
\pi_1^\dagger(\tilde{X}_s, \tilde{x}) & \rightarrow & \pi_1^\dagger(\tilde{X}, \tilde{x}) & \rightarrow & \pi_1^\dagger(\tilde{S}, \tilde{s}) & \rightarrow & 1 \\
\pi_1^\dagger(X_s, x) & \rightarrow & \pi_1^\dagger(X, x) & \rightarrow & \pi_1^\dagger(S, s) & \rightarrow & 1 \\
\end{array}
\]

of fundamental groups.

Lemma

The normal closure of the image of \(\pi_1^\dagger(\tilde{X}_s, \tilde{x}) \rightarrow \pi_1^\dagger(X_s, x)\) is the whole of \(\pi_1^\dagger(X_s, x)\).

By some diagram chasing we can therefore deduce that if the homotopy sequence for \(\tilde{X}_U \rightarrow U\) is exact, then so is the homotopy sequence for \(X \rightarrow S\). By induction we may therefore assume that \(d = 1\).
Now assume the Basic Setup, with \(f \) of relative dimension 1 and \(S \) smooth. Suppose that \(U \subset S \) is a Zariski open containing \(s \).
Now assume the Basic Setup, with f of relative dimension 1 and S smooth. Suppose that $U \subset S$ is a Zariski open containing s. Then we have a diagram

$$
\begin{array}{ccc}
\pi_1^+(X_s, x) & \longrightarrow & \pi_1^+(X_U, x) \\
\downarrow & & \downarrow \\
\pi_1^+(X_s, x) & \longrightarrow & \pi_1^+(X, x) \end{array}
\begin{array}{ccc}
\longrightarrow & \longrightarrow & \longrightarrow \\
\downarrow & \downarrow & \downarrow \\
\pi_1^+(U, s) & \longrightarrow & \pi_1^+(S, s) \\
\longrightarrow & \longrightarrow & \longrightarrow \\
& & 1
\end{array}
$$

of fundamental groups.
Now assume the Basic Setup, with f of relative dimension 1 and S smooth. Suppose that $U \subset S$ is a Zariski open containing s. Then we have a diagram

\[
\begin{array}{c}
\pi_1^\dagger(X_s, x) \longrightarrow \pi_1^\dagger(X_U, x) \longrightarrow \pi_1^\dagger(U, s) \longrightarrow 1 \\
\downarrow \quad \quad \quad \quad \downarrow \quad \quad \quad \quad \downarrow \\
\pi_1^\dagger(X_s, x) \longrightarrow \pi_1^\dagger(X, x) \longrightarrow \pi_1^\dagger(S, s) \longrightarrow 1
\end{array}
\]

of fundamental groups. Using weak exactness, we can see that exactness of the homotopy sequence for $X_U \to U$ implies exactness of the homotopy sequence for $X \to S$. Hence we can assume that the base $S = \text{Spec}(A_0)$ is affine.
Now assume the Basic Setup, with f of relative dimension 1 and S smooth. Suppose that $U \subset S$ is a Zariski open containing s. Then we have a diagram

$$
\begin{array}{cccccc}
\pi_1^\dagger(X_s, x) & \rightarrow & \pi_1^\dagger(X_U, x) & \rightarrow & \pi_1^\dagger(U, s) & \rightarrow & 1 \\
\uparrow & & \uparrow & & \downarrow & & \\
\pi_1^\dagger(X_s, x) & \rightarrow & \pi_1^\dagger(X, x) & \rightarrow & \pi_1^\dagger(S, s) & \rightarrow & 1
\end{array}
$$

of fundamental groups. Using weak exactness, we can see that exactness of the homotopy sequence for $X_U \rightarrow U$ implies exactness of the homotopy sequence for $X \rightarrow S$. Hence we can assume that the base $S = \text{Spec}(A_0)$ is affine.

In particular, we can lift S to a smooth affine \mathcal{V}-scheme $\text{Spec}(A)$, and the family $X \rightarrow S$ to a smooth projective family of curves over $\text{Spec}(A)$.
Thus there exist good embeddings $S \hookrightarrow \mathcal{G}$ and $X \hookrightarrow \mathcal{X}$ and a commutative, \textit{Cartesian} diagram

\[
\begin{array}{ccc}
X & \longrightarrow & \mathcal{X} \\
\downarrow & & \downarrow \\
S & \longrightarrow & \mathcal{G}
\end{array}
\]

such that the map $\mathcal{X} \rightarrow \mathcal{G}$ is smooth around X.

Christopher Lazda

The homotopy exact sequence for overconvergent isocrystals
Thus there exist good embeddings $S \hookrightarrow \mathcal{G}$ and $X \hookrightarrow \mathcal{X}$ and a commutative, *Cartesian* diagram

\[\begin{array}{ccc}
X & \longrightarrow & \mathcal{X} \\
\downarrow & & \downarrow \\
S & \longrightarrow & \mathcal{G}
\end{array} \]

such that the map $\mathcal{X} \rightarrow \mathcal{G}$ is smooth around X. Let \mathcal{x} be a lift of x to a K-point of $]X[$, and \check{s} the image of \check{x} in $]S[$.
Thus there exist good embeddings $S \hookrightarrow \mathcal{G}$ and $X \hookrightarrow \mathcal{X}$ and a commutative, \textit{Cartesian} diagram

\[
\begin{array}{ccc}
X & \rightarrow & \mathcal{X} \\
\downarrow & & \downarrow \\
S & \rightarrow & \mathcal{G}
\end{array}
\]

such that the map $\mathcal{X} \rightarrow \mathcal{G}$ is smooth around X. Let \mathcal{x} be a lift of x to a K-point of $]X[,$ and \mathcal{s} the image of \mathcal{x} in $]S[$.

If we now let W_λ the associated ‘strict neighbourhoods’ of $]X[$ and V_λ those of $]S[,$ then for λ closed enough to 1 there are induced \textit{smooth and projective} maps $W_\lambda \rightarrow V_\lambda$.

Christopher Lazda

The homotopy exact sequence for overconvergent isocrystals
Thus there exist good embeddings $S \hookrightarrow \mathcal{G}$ and $X \hookrightarrow \mathfrak{X}$ and a commutative, *Cartesian* diagram

\[
\begin{array}{ccc}
X & \longrightarrow & \mathfrak{X} \\
\downarrow & & \downarrow \\
S & \longrightarrow & \mathcal{G}
\end{array}
\]

such that the map $\mathfrak{X} \rightarrow \mathcal{G}$ is smooth around X. Let \tilde{x} be a lift of x to a K-point of \mathfrak{X}, and \tilde{s} the image of \tilde{x} in \mathcal{G}.

If we now let W_λ the associated ‘strict neighbourhoods’ of \mathfrak{X} and V_λ those of \mathcal{G}, then for λ closed enough to 1 there are induced *smooth and projective* maps $W_\lambda \to V_\lambda$. So by assumption there is an exact sequence

\[
\pi_1^{dR}(\mathfrak{X}_K, \tilde{s}, \tilde{x}) \to \pi_1^{dR}(W_\lambda, \tilde{x}) \to \pi_1^{dR}(V_\lambda, \tilde{s}) \to 1
\]

of pro-algebraic groups over K, for all λ close enough to 1.
Since we definition we have

\[\text{Isoc}^\dagger(X/K) \subset 2\text{-colim}_\lambda \text{MIC}(W_\lambda/K) \]
\[\text{Isoc}^\dagger(S/K) \subset 2\text{-colim}_\lambda \text{MIC}(V_\lambda/K) \]
\[\text{Isoc}^\dagger(X_s/K) \subset \text{MIC}(\mathfrak{X}_K, \tilde{s}/K) \]

stable by sub-quotients, we get a commutative diagram

\[
\begin{array}{ccccccccc}
\pi^\text{dR}_1(\mathfrak{X}_K, \tilde{s}, \tilde{x}) & \longrightarrow & \lim_{\lambda} \pi^\text{dR}_1(W_\lambda, \tilde{x}) & \longrightarrow & \lim_{\lambda} \pi^\text{dR}_1(V_\lambda, \tilde{s}) & \longrightarrow & 1 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
\pi^\dagger_1(X_s, x) & \longrightarrow & \pi^\dagger_1(X, x) & \longrightarrow & \pi^\dagger_1(S, s) & \longrightarrow & 1
\end{array}
\]

with exact top row. Again, some diagram chasing together with weak exactness lets us deduce exactness of the bottom row.
Thank-you!