ℓ-independence over local function fields

Christopher Lazda

Università di Padova

10th November 2016
1 Motivation

2 p-adic cohomology over local function fields

3 Spreading out and ℓ-independence

4 Fundamental groups
Motivation

p-adic cohomology over local function fields

Spreading out and \(\ell \)-independence

Fundamental groups

\[k = \text{field}, \ k^s = \text{separable closure}, \ G_k = \text{Gal}(k^s/k) \]
\[X/k \text{ variety (separated scheme of finite type)} \]
\[\ell \neq \text{char}(k) \text{ prime} \]

\[H^i_{\ell}(X) := H^i_{\text{ét}}(X_{k^s}, \mathbb{Q}_\ell) \]
\[\rho_\ell : G_k \to \text{GL}(H^i_{\ell}(X)) \]

Question

How does \(\rho_\ell \) depend on \(\ell \)? Is it ‘independent of \(\ell \)’ in some sense?
Example (Deligne)

Suppose that $k = \mathbb{F}_q$ is finite, and that X/k is smooth and proper. Then for all $n \in \mathbb{Z}$

$$\text{Tr} (\text{Frob}_k^n \mid H^i_\ell (X))$$

is in \mathbb{Q} and is independent of $\ell \neq p$.

Can also phrase this as follows: let $W_k \subset G_k$ consist of integral powers of Frob$_k$. Then $\forall \ell, \ell' \neq p$, and any alg. closed field $\Omega \supset \mathbb{Q}_\ell, \mathbb{Q}_{\ell'}$, \((\rho_\ell \mid W_k)^{ss} \otimes \Omega \cong (\rho_{\ell'} \mid W_k)^{ss} \otimes \Omega \)

Remark

Conjecturally $\left(\rho_\ell \mid W_k \right)^{ss} = \left(\rho_\ell \mid W_k \right)$.
In general, should exist an abelian category \mathcal{M}_k,\mathbb{Q} of (rational) mixed motives over k, cohomology groups $H^i_{\text{mot}}(X) \in \mathcal{M}_k,\mathbb{Q}$ and realisation functors

$$- \otimes \mathbb{Q}_\ell : \mathcal{M}_k,\mathbb{Q} \to \text{Rep}_{\mathbb{Q}_\ell}(G_k)$$

for all $\ell \neq \text{char}(k)$ such that

$$H^i_{\text{mot}}(X) \otimes \mathbb{Q}_\ell \cong H^i_\ell(X)$$

Example

Can construct a category of 1-motives $\mathcal{M}_k^{\leq 1},\mathbb{Q}$ ‘by hand’ independence results for curves and abelian varieties.
Now take F a local field with finite residue field k, $\ell \neq \text{char}(k)$.

Theorem (Grothendieck)

Every ℓ-adic representation of G_F is quasi-unipotent.

Can use this to construct

$$\text{WD} : \text{Rep}_{\mathbb{Q}_\ell}(G_F) \to \text{Rep}_{\mathbb{Q}_\ell}(\text{WD}_F)$$

with target the category of Weil–Deligne representations. These are continuous representations

$$\rho : W_F \to \text{GL}(V)$$

of the Weil group (for the discrete topology on V) together with a nilpotent map $N : V \to V(1)$.
Conjecture (Fontaine $C_{\text{WD}}(X, i)$)

X/F variety, $i \geq 0$. Then for any $\ell, \ell' \neq p$ and any alg. closed field $\Omega \supset \mathbb{Q}_\ell, \mathbb{Q}_{\ell'}$ we have

$$\text{WD}(H^i_\ell(X)) \otimes \Omega \cong \text{WD}(H^i_{\ell'}(X)) \otimes \Omega$$

as object of $\text{WD}_\Omega(W_F)$.

Conjecture (Fontaine $C_{\text{WD}}(X, i)_{\text{faible}}$)

Same, but replacing $\text{WD}(H^i_\ell(X))$ with $\text{WD}(H^i_\ell(X))^{F-ss}$.

For any family of Weil–Deligne representations $\{E_\ell\}_{\ell \in \mathcal{P}}$ we will say that they are (weakly) independence of ℓ if they satisfy the above conjecture.
If V is a Weil–Deligne representation, \exists! increasing filtration $M_\bullet V$ such that

$$N^k : \text{Gr}_k^M V \sim \to \text{Gr}_{-k}^M V(k)$$

Lemma (Deligne)

A family $\{E_\ell\}_{\ell \in \mathbb{P}}$ of Weil–Deligne representations is weakly independent of ℓ iff $\forall k \in \mathbb{Z}$

$$\text{Tr}(\cdot | \text{Gr}_k^M E_\ell) : \mathcal{W}_F \to \mathbb{Q}_\ell$$

takes values in \mathbb{Q} and is independent of ℓ.

Today: concentrate on the case when $F \cong k((t))$ is a local field of equicharacteristic.

1. How to extend these conjectures to include $\ell = p$?
2. Prove them when X/F is smooth and proper.
1 Motivation

2 p-adic cohomology over local function fields

3 Spreading out and ℓ-independence

4 Fundamental groups
Motivation

p-adic cohomology over local function fields
Spreading out and ℓ-independence
Fundamental groups

$k = \text{finite field, characteristic } p, \ F \cong k((t)), \ K = W(k)[1/p],\
\sigma = \text{Frobenius. For } \ell \neq p \text{ the functor}

$$WD : \text{Rep}_{\mathbb{Q}_\ell}(G_F) \to \text{Rep}_{\mathbb{Q}_\ell}(WD_F)$$

arises from the ℓ-adic local monodromy theorem \(\rightsquigarrow \) want to replace this with the p-adic monodromy theorem.

Definition

The Robba ring \mathcal{R} over K is the ring of analytic functions over K convergent on some half-open annulus $\{\eta \leq |t| < 1\}$.

Have a Frobenius $\sigma : \mathcal{R} \to \mathcal{R}$ and a derivation $\partial_t : \mathcal{R} \to \mathcal{R} \rightsquigarrow$ notion of a (φ, ∇)-module over \mathcal{R}. Denote the category $\mathbf{M} \Phi_{\nabla, \mathcal{R}}$.
Theorem (André, Mebkhout, Kedlaya)

Every (φ, ∇)-module M over \mathcal{R} is quasi-unipotent.

The theorem means that after making a finite separable extension of $F = k((t))$, and formally adjoining $\log t$, M admits a basis of horizontal sections.

Corollary

Let K^{un} denote the maximal unramified extension of K. Then there exists an exact, faithful functor

\[\text{M} \Phi_{\mathcal{R}} \rightarrow \text{Rep}_{K^{\text{un}}}(\text{WD}_F) \]
So what we want a theory of p-adic cohomology landing in the category $\mathcal{M}_{\Phi_\nabla}$, modelled on rigid/crystalline cohomology.

Set

$$\mathcal{E} := \hat{\mathcal{W}}[t][t^{-1}][1/p]$$

this is a complete DVF with residue field $F = k((t))$.
\Rightarrow rigid cohomology for varieties over F is a functor

$$H^*_\text{rig}(-/\mathcal{E}) : \text{Var}_F \to \mathcal{M}_{\Phi_\nabla}$$

to (φ, ∇)-modules over \mathcal{E}.
Note that we can write

\[\mathcal{R} = \left\{ \sum_{i \in \mathbb{Z}} a_i t^i \left| \begin{array}{c}
\forall \rho < 1, \quad |a_i| \rho^i \to 0 \text{ as } i \to \infty \\
\exists \lambda < 1 \text{ s.t. } |a_i| \lambda^i \to 0 \text{ as } i \to -\infty
\end{array} \right. \right\} \]

\[\mathcal{E} = \left\{ \sum_{i \in \mathbb{Z}} a_i t^i \left| \begin{array}{c}
\sup_i |a_i| < \infty \\
|a_i| \to 0 \text{ as } i \to -\infty
\end{array} \right. \right\} \]

So that \(\mathcal{E} \not\subseteq \mathcal{R} \) and \(\mathcal{R} \not\subseteq \mathcal{E} \).

Definition

\[\mathcal{E}^\dagger := \mathcal{E} \cap \mathcal{R} = \left\{ \sum_{i \in \mathbb{Z}} a_i t^i \left| \begin{array}{c}
\sup_i |a_i| < \infty \\
\exists \lambda < 1 \text{ s.t. } |a_i| \lambda^i \to 0 \text{ as } i \to -\infty
\end{array} \right. \right\} \]
\(\mathcal{E}^\dagger \) is a Henselian DVF with residue field \(F \), and we have

\[
\begin{array}{c}
\text{MΦ}^\triangledown_{\mathcal{E}^\dagger} \\
\text{MΦ}^\triangledown_{\mathcal{E}} \\
\text{MΦ}^\triangledown_R \\
\end{array}
\]

Theorem (Kedlaya)

The functor \(\text{MΦ}^\triangledown_{\mathcal{E}^\dagger} \rightarrow \text{MΦ}^\triangledown_{\mathcal{E}} \) is fully faithful, and if \(X \in \text{Var}_F \) is smooth and proper, \(H^i_{\text{rig}}(X/\mathcal{E}) \) is in the essential image.

Should think of \(\text{MΦ}^\triangledown_{\mathcal{E}^\dagger} \rightarrow \text{MΦ}^\triangledown_{\mathcal{E}} \) as analogous to the inclusion \(\text{Rep}^{\text{pst}}_{\mathbb{Q}_p}(G_K) \subset \text{Rep}_{\mathbb{Q}_p}(G_K) \).
Theorem (L., Pál)

Rigid cohomology descends to the bounded Robba ring \(\mathcal{E}^\dagger \), in other words \(\exists \) functor

\[
H^\ast_{\text{rig}}(-/\mathcal{E}^\dagger) : \text{Var}_F \rightarrow M\Phi^\nabla_{\mathcal{E}^\dagger}
\]

satisfying all the axioms of an ‘extended’ Weil cohomology theory, whose base change to \(\mathcal{E} \) is isomorphic to \(H^\ast_{\text{rig}}(-/\mathcal{E}^\dagger) \).

There also are versions with compact support, as well as support in a closed subscheme, and categories of coefficients \((F-)\text{Isoc}^\dagger(X/\mathcal{E}^\dagger)\) and \((F-)\text{Isoc}^\dagger(X/K)\) for this theory.
Corollary

Let X/F be a variety, then we can define a p-adic Weil–Deligne representation $H_p^i(X)$ associated to X via

$$H_{\text{rig}}^i(X/R) := H_{\text{rig}}^i(X/E^\dagger) \otimes R.$$

Hence we can extend Fontaine’s conjectures $C_{\text{WD}}(X,i)$ and $C_{\text{WD}}(X,i)_{\text{faible}}$ to include $\ell = p$.

Note that the p-adic Weil–Deligne representations are defined over $\mathbb{Q}_p' := K^\text{un}$. Set $\mathbb{Q}_\ell' = \mathbb{Q}_\ell$ if $\ell \neq p$.
1 Motivation

2 p-adic cohomology over local function fields

3 Spreading out and ℓ-independence

4 Fundamental groups
Theorem (Chiarellotto, L.)

Let X/F be smooth and proper, and $i \geq 0$. Then $C_{WD}(X, i)_{faible}$ holds.

The first key step consists of reducing to the following case.

Definition

Let X/F be smooth and proper, with semistable reduction. We say that F is globally defined if there exists a smooth curve C over k, a rational point $c \in C(k)$ with $\overline{k(C)}_c \cong F$ and a proper, flat scheme $\mathcal{X} \to C$, smooth away from c and semistable at c, such that $\mathcal{X} \times_C \text{Spec}(F) \cong X$.
Motivation

p-adic cohomology over local function fields
Spreading out and ℓ-independence
Fundamental groups

Proposition

Suppose that $C_{\text{WD}}(X, i)_{\text{faible}}$ holds for all smooth and proper F-varieties which are semistable and globally defined. Then $C_{\text{WD}}(X, i)_{\text{faible}}$ holds for all smooth and proper F-varieties.

Ingredients:

1. Alterations
2. Weight-monodromy conjecture
3. Cohomological descent
4. ‘Spreading out’ lemma
5. Uniqueness of ‘geometric weight filtrations’

Lemma

Assume that $\mathcal{X} \to \text{Spec}(\mathcal{O}_F)$ is semistable, and $n \geq 1$. Then there exists a globally defined semistable scheme $\mathcal{Y} \to \text{Spec}(\mathcal{O}_F)$ such that $\mathcal{X} \otimes \mathcal{O}_F/t^n \cong \mathcal{Y} \otimes \mathcal{O}_F/t^n$.
The proof of $C_{WD}(X, i)_{faible}$ for smooth and proper F-varieties therefore reduces to the following.

Theorem

Let C/k be a smooth curve $c \in C(k)$, $U = C \setminus c$, $F = \widehat{k(C)}_c$. Suppose that $\{\mathcal{F}_\ell\}_\ell$ is a collection of local systems on U, such that for all $u \in U$

$$\text{Tr}(\cdot | \mathcal{F}_\ell, \bar{u}) : \text{Frob}^Z_u \rightarrow \mathbb{Q}'_\ell$$

takes values in \mathbb{Q} and is independent of ℓ. Then for all $k \geq 0$

$$\text{Tr}(\cdot | \text{Gr}_k^M \mathcal{F}_\ell, \bar{c}) : \mathcal{W}_F \rightarrow \mathbb{Q}'_\ell$$

takes values in \mathbb{Q} and is independent of ℓ.

This was proved by Deligne for $\ell \neq p$; to include $\ell = p$ we use the theory of arithmetic \mathcal{D}^\dagger-modules.
What about mixed characteristic local fields? The weight monodromy conjecture is used in two key places, but the rest of the proof should work. So for smooth and proper varieties, $C(X, i)_{faible}$ would follow from the weight monodromy conjecture for X.

There are also results for proper varieties.

Theorem

Let X/F be proper, and $k \in \mathbb{Z}$. Then

$$
\sum (-1)^i \text{Tr}(\cdot | \text{Gr}_k^M H^i_\ell(X)) : W_F \to \mathbb{Q}_\ell
$$

has values in \mathbb{Q} and is independent of ℓ.
1 Motivation

2 p-adic cohomology over local function fields

3 Spreading out and ℓ-independence

4 Fundamental groups
What about other invariants such as homotopy groups?

Example

Unipotent π_1 is expected to be ‘motivic’ \leadsto should have ‘ℓ-independence’ results for this.

So let X be a pointed variety over F.

Definition

For $\ell \neq p$ define $\pi_1^\ell(X)$ to be the \mathbb{Q}_ℓ-pro-unipotent completion of $\pi_1^{\text{ét}}(X_F)$. This comes with an action of G_F.
When $\ell = p$ need to use Tannakian methods.

Definition

We define $\pi_1^p(X)$ to be the Tannaka dual of the category $\mathcal{N}\text{Isoc}^\dagger(\mathcal{X}/\mathcal{E}^\dagger)$ of unipotent overconvergent isocrystals on $\mathcal{X}/\mathcal{E}^\dagger$.

Thus $\pi_1^p(X)$ is a (pro-unipotent) affine group scheme over \mathcal{E}^\dagger.

Theorem (L.)

The group scheme $\pi_1^p(X)$ has a canonical structure as a ‘non-abelian’ (φ, ∇)-module over \mathcal{E}^\dagger.
Let ℓ be any prime. Set $L_\ell := \text{Lie}(\pi_1^\ell(X))$, $\mathcal{U}_\ell := \mathcal{U}(L_\ell)$, $a_\ell :=$ augmentation ideal.

$$\Rightarrow \mathcal{U}_\ell / a_\ell^k \in \text{Rep}_{\mathbb{Q}_\ell}(G_F) \ (\ell \neq p)$$

$$\mathcal{U}_p / a_p^k \in \text{M}_{\Phi_E}^\nabla$$

Conjecture ($C_{WD}(X, \pi_1)$)

For all $k \geq 1$ the Weil Deligne representations associated to $\mathcal{U}_\ell / a_\ell^k$ are independent of ℓ.

Over finite fields, can prove Frobenius semisimplicity for $\mathcal{U}_\ell / a_\ell^k$.
Theorem (Chiarellotto, L.)

Assume that X is smooth and proper over F with semistable reduction. Then $C_{\text{WD}}(X, \pi_1)$ holds.

As before, we reduce to the ‘globally defined’ case, and then show that the $\mathcal{U}_\ell / \alpha_\ell^k$ can be ‘spread out’ to local systems on some global model C of F.

Questions

1. Can we remove the semistable hypothesis?
2. Does the argument work for mixed characteristic local fields? (We know the weight-monodromy conjecture for H^1.)
Thank-you!