
Chapter 2

Molecular clouds

Figure 2.1: The Eagle Nebula at a distance of 1800 pc
viewed with HST/ACS in 2004. The structure is about
9.5 ly (∼ 3 pc) high.

This chapter lays the foundation for understand-
ing the physics and chemistry of the material from
which stars eventually form. Molecular clouds are
a dense component of the interstellar medium and
they comprise about 50% of the total interstellar
gas of a galaxy. The following sections summa-
rize first some observational aspects of molecular
clouds, such as their sizes, appearance at various
wavelength and in various tracers, and their con-
stituents. We then move to learning some funda-
mental molecular physics of simple molecules such
as H2 and CO and how to understand the origin of
molecular lines. The third section focuses on the
various heating and cooling processes in a molec-
ular cloud that govern the energy balance of the
dust and gas. This topic will be picked up in a
later chapter on irradiated disks, where we will
encounter a similar set of heating and cooling pro-
cesses. The last section gives a brief introduction
into astrochemistry, introducing the basic princi-
ples of chemistry in space. We discuss there the
chemical composition of molecular clouds. Also
the astrochemistry will come back at a later stage
when we talk about the chemistry of protoplane-
tary disks.

2.1 Observational properties of molecular clouds

A cloud is a region of the interstellar medium with densities larger than 10 − 30 cm−3. Diffuse clouds can
have somewhat lower densities. Clouds move through the galaxy as entities. However, they are generally not
spherical, but rather irregular with filamentary structures (Fig. 2.1). Depending on their extinction, AV ,
these clouds are more or less transparent to the interstellar UV radiation coming from the hot O and B stars
in our galaxy. At an extinction larger than AV ∼ 0.5, most of the hydrogen is in molecular form. Table 2.1
lists the typical properties of molecular clouds found from studies within our own galaxy. We will focus in
the following on some of the examples listed in the last column to illustrate the appearance and properties
of these clouds.
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Table 2.1: Physical properties of molecular clouds (from Stahler & Palla 2004)
Cloud type AV ntot L T M Example

[mag] [cm−3] [pc] [K] [M⊙]

Diffuse 1 500 3 50 50 ζ Ophiuchi
Giant Molecular Cloud 2 100 50 15 105 Orion
Dark Clouds

Complexes 5 500 10 10 104 Taurus-Auriga
Individual 10 103 2 10 30 B1

Dense Cores/Bok Globules 10 104 0.1 10 10 TMC-1/B335

2.1.1 Dust and gas in clouds

Figure 2.2: Sky map for Taurus-Auriga region. CO col-
umn densities from Ungerechts and Thaddeus (1987) are
shown as dotted lines for flux densities of 3, 5, 10, 25 and
40 K km s−1. Open triangles indicate the positions of
optically visible T Tauri stars, while core sources from
the Beichman et al. (1986) and Myers et al. (1987)
surveys are plotted as open squares. The new IRAS
sources discussed in this paper are indicated by stars
(new class i sources), filled triangles (new TTS), or large
crosses (galaxies and apparent field stars). The position
of some objects have been offset for clarity (caption and
figure from Kenyon et al. 1990).

As the interstellar medium, molecular clouds also
consist of gas and dust with a typical mass ratio of
100. The dust in these regions is typically cold and
can thus be detected through its thermal emission
at submm and mm wavelength. At those wave-
length, the extinction is very low and the emis-
sion can be optically thin. If that is the case,
the observations trace the total dust mass resid-
ing in the molecular cloud. However, for accurate
mass determinations, the dust emissivity needs to
be known and the typical uncertainty can be up
to a factor 3.

Most of the gas is in the form of molecular
hydrogen. However, as we will see later in this
chapter, H2 as a symmetric molecule does not pos-
sess a permanent dipole moment. Hence, the in-
frared transitions are forbidden and intrinsically
weak which makes it difficult to observe H2. The
second most abundant molecule is CO and that
one has a rich spectrum of rotational lines that
are easily excited at the low temperatures of these
clouds. The ground rotational transition for ex-
ample has an excitation temperature of 5 K and a
wavelength of 2.6 mm. The rotational lines have
very high Einstein A coefficients and low critical
densities (ncr < 104 cm−3, the critical density is
the one, where collisional rates populating and de-
populating a particular energy level dominate over
radiative rates), which means that they are gener-
ally in LTE, but also that they are very optically
thick. A way out is to use CO isotopes such as
13C16O and 12C18O, which are a factor 60 and 500 lower in abundance than the main isotope 12C16O. All
these lines can be easily observed with ground-based radio telescopes. Gas line observations also have the
advantage that they carry kinematic information about the velocity field in the cloud (line profile and width
of the line). In addition, magnetic field strength can be measured through the Zeeman splitting of molecular
lines.
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2.1.2 Low mass star forming clouds

Fig. 2.2 shows a map of the CO molecular emission (J=1-0) in the Taurus-Auriga molecular cloud (d ∼
140 pc). Taurus-Auriga is a low-mass star forming region, i.e there are no massive O and B stars forming
that irradiate the molecular gas. The total gas mass in this region is ∼ 104 M⊙. The figure nicely shows how
the young stars are scattered throughout the entire cloud complex. The sensitivity of this IRAS (Infrared
Astronomical Satellite) survey allowed the detection of young stars brighter than 0.5 L⊙. More recently,
Spitzer observations provided much deeper observations, hence a larger sensitivity for the detection of young
stellar objects.

Figure 2.3: The spatial distribution of all Spitzer identied infrared excess sources from the combined IRAC
and 2MASS photometry of Orion A (left), Orion B (right) and Ophiuchus (bottom center). The contours
outline the Bell Labs 13CO maps for the Orion A and B clouds (Bally et al., 1987; Miesch and Bally, 1994),
and an AV map of Ophiuchus (Huard, 2006). The large grey dots are the sources with infrared excesses
(caption and figure from Allen et al. 2007).

2.1.3 High mass star forming clouds

Fig. 2.3 shows the distribution of infrared-excess (likely YSOs) sources in the Orion star forming cloud
(d ∼ 400 pc). This is a Giant Molecular Cloud (GMC), where high mass stars (O and B-type stars) haven
been forming within the last 106 yr. These hot stars emit strongly in the UV spectral range, thereby
heating and ionizing the surrounding gas. Over time, they created the Orion nebula (M42). The nebula has
recently also being surveyed by the Hubble Space Telescope to provide a legacy dataset for improving our
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understanding of star formation theory (Robberto et al. 2009). The small grey dots in Fig. 2.3 show all the
detections in the Spitzer 3.6 and 4.5 µm bands with magnitudes brighter than 15 and the large grey dots are
those that show an infrared excess. The black circles/triangles are sources that have been associated with a
cluster (the two symbols are alternated so that neighboring clusters can be differentiated).

2.1.4 Cores and clumps

Figure 2.4: Distribution of clump masses in the Rosette
Molecular Cloud (caption and figure from Stahler &
Palla 2004).

Figure 2.5: Frequency distribution of masses for 60
small-scale clumps extracted from the mosaic of Fig. 2.6
(solid line). The dotted and long-dashed lines show
power laws of the form ∆N/∆m ∝ m

−1.5 and
∆N/∆m ∝ m

−2.5, respectively. The error bars cor-
respond to

√
N counting statistics (figure and caption

from Motte et al. 1998).

As the previous sections documented, molecu-
lar clouds are highly fragmented and consists of
smaller entities, the clumps and cores. Clumps
are generally the larger substructures in molecular
clouds, having typical sizes of 1 pc. They are the
precursors of stellar clusters. Cores are about a
factor 10 smaller and have even higher densities.
They are assumed to be gravitationally bound and
will collapse to form individual stars or binaries.

The clumpy structure of molecular clouds is
shown to partially originate from supersonic mo-
tions in the ISM. In some cases, the clumps seem
to be rather confined by the pressure from the sur-
rounding medium and thus not in virial equilib-
rium. In that sense, not every clump will eventu-
ally form stars.

The clump masses within molecular clouds
have been studied via CO isotope observations.
Above a certain minimum mass, the clump mass
spectrum follows a power law

dN

dM
∝ M

−1.6...1.8 (2.1)

⇒ MdN

dM
∝ M

−0.6...0.8
.

This means that most of the mass is actually in
massive clumps. Fig. 2.4 shows such a clump mass
spectrum for the Rosette molecular cloud, where
a minimum mass of ∼ 30 M⊙ has been adapted.
Combining this with extinction measurements, it
can be shown that even though the clumps seem
to fill the plane of the molecular cloud on the sky,
they do not fill the volume of the cloud.

Most clumps however do not form stars.
Hence, the mass spectrum of cores is more relevant
in understanding the mass distribution of newly
forming stars. While the star formation efficiency
of an entire molecular cloud is only of the order
of a few %, cores have a much higher efficiency
of ∼ 30 − 40 %. Fig. 2.6 shows a deep 1.3 mm
continuum map of ρ Ophiuchi (d = 140 pc) with
a resolution of 0.01 pc (∼ 2000 AU). This large
survey produced a core mass spectrum that can
be splitted into two power law regimes, one for
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Figure 2.6: Millimeter continuum mosaic of the ρ Oph main cloud including the dense cores Oph-A, Oph-B1,
Oph-B2, Oph-C, Oph-D, Oph-E, and Oph-F. The data were smoothed to an effective angular resolution
of 15” (HPBW). Contour levels go from 5 to 40 MJy/sr with steps of 5 MJy/sr, from 50 to 80 MJy/sr by
10 MJy/sr, 100 MJy/sr and from 120 to 280 MJy/sr with steps of 40 MJy/sr (1 MJy/sr � 6 mJy/15”-beam).
The mean rms noise level is ∼ 1.2 MJy/sr. Note the remarkable linear chain of clumps and embedded YSOs
in the southern part of the C18O ridge (emphasized by a white straight line). Figure and caption from Motte
et al. (1998).

M < 0.5 M⊙ and one for M > 0.5 M⊙. They have power law indices of −1.6 and −2.1 . . .− 2.5, respectively
(see Fig. 2.5).

2.1.5 The Initial Mass Function

As part of our understanding of star formation, it is important to understand the mass distribution of entire
groups of newly forming stars. We already know that massive hot O and B stars are much rarer than
solar-type stars and that most stars in the Milky Way are in fact stars with a mass much lower than that
of our Sun. We can study this quantitatively by looking for example at stars in stellar clusters. The core
mass spectrum found in the previous section resembles largely the initial mass function found for newly born
stars.

2.2 Molecular Cloud Stability

We will now try to understand the basic stability energy content and stability of molecular clouds.
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2.2.1 The Jeans mass

Lets assume that a molecular cloud is a static and homogeneous medium that satisfies the equations of
continuity, Euler’s equation, and Poisson’s equation

∂ρ0

∂t
+ ρ0∇ · v0 = 0 (2.2)

∂ (ρ0v0)
∂t

+∇ · (ρ0v0v0 + P0) = 0 (2.3)

∇2Φ0 = 4πGρ0 (2.4)

We also assume that the ideal gas law holds: P0 = ρ0hT/(µmp) = ρ0c
2
s
. We assume that this medium is

initially at rest, i.e. v0 = 0, and that it is infinitely extended, i.e. Φ0 = 0. We consider a small perturbation
from the initial state

ρ = ρ0 + ρ1 v = v1 Φ = Φ1 (2.5)
We now insert the perturbed quantities into eqs (2.2)–(2.4) and make use of the fact that the unperturbed

quantities are solutions of the equations, and we neglect terms that we quadratic in the perturbations. After
some algebra we find

∂ρ1

∂t
+ ρ0∇ · v1 = 0 (2.6)

∂v1

∂t
= −∇Φ1 −

∇P1

ρ0
(2.7)

∇2Φ1 = 4πGρ1 (2.8)

We now take the time derivative of eq. (2.6), eliminate ∂v1/∂t usinf eq. (2.7). Then we insert eq.(2.8) and
eliminate the pressure using the ideal gas law. In this way we arrive at a wave equation for the density
perturbation

∂
2
ρ1

∂t2
− 4πGρ0ρ1 +

kT

µmp

∇2
ρ1 = 0 (2.9)

which we attempt to solve using a plane wave Ansatz ρ1 = exp
�
i
�

2πx

λ
− ωt

��
. Inserting this Ansatz into

eq.(2.9) we find the following dispersion relation:

ω
2 =

�
2π

λ

�2 �
kT

µmp

�
− 4πGρ0 (2.10)

This results indicates that perturbations on lengths scales larger than the Jeans Length

λJ =
�

πkT

µmpGρ0

�
(2.11)

will grow exponentially, while smaller perturbations will be damped. Since this instability occurs in all three
spatial coordinates, a sphere with diameter λJ defines the maximum stable mass, the Jeans mass

MJ =
π

6
ρ0

�
πkT

µmpGρ0

�3/2

(2.12)

2.2.2 The problem of star formation efficiency

The galaxy should be wildly gravitationally unstable, because all molecular clouds are above the Jeans mass
limit derived in the previous section. If we consider the free fall time scale (we will derive it later) tff =

�
3π

32Gρ

for the interstellar medium with an average density of 17 hydrogen atoms per cm3, then we find a free fall
time of 8 × 106 years. The entire molecular gas in the milkyway (about 2 × 1010

M⊙) should be converted
into stars in a free fall time scale. The expected star formation rate is therefore ∼ 250 M⊙/yr, while the
observed star formation rate is only 3 solar masses per year. Something is slowing dwn star formation!
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2.2.3 The Virial theorem for clouds

A general form of the Viral theorem can be derived from the momentum equation of magneto-hydrodynamics

ρ
Dv
Dt

= −∇P − ρ∇Φ +
1
c
j×B (2.13)

with Dv/Dt := (∂v/∂t)x +∇ · (vv). Using Maxwells equation ∇×B = 4πj/c, we get

ρ
Dv
Dt

= −∇P − ρ∇Φ +
1
4π

(B×∇)B− 1
8π
∇

��B2
�� (2.14)

This equation describes the local behavior of the fluid. Multiplying by r (scalar product) and integrating
over the entire volume, also using the continuity equation leads to

1
2

∂
2
I

∂t2
= 2T + 2U +W +M with (2.15)

I =
�

ρ
��r2

�� d
3
x moment of inertia (2.16)

T =
1
2

�
ρ

��v2
�� d

3
x kinetic energy (2.17)

U =
3
2

�
Pd

3
x thermal energy (2.18)

W =
1
2

�
ρΦd

3
x gravitational energy (2.19)

M =
1
8π

�
B

2
d
3
x magnetic energy (2.20)

Long term stability means that the overall mass distribution and size does not change, i.e. that the moment
of inertia does not change with time. As the LHS of eq. (2.15) vanished, we find 2T +2U +W +M = 0. We
can now use observed values for temperature T , kinetic (turbulent) motions V , cloud mass M and radius R,
and magnetic fields B, and compare the different energies:

U
|W| ≈

MRT

µmp

�
R

GM2

�
=0.003

�
M

105M⊙

�−1 �
R

25pc

� �
T

15K

�
(2.21)

M
|W| =

B
2
R

3

6π
=0.3

�
B

20µG

�2 �
R

25pc

�4 �
M

105M⊙

�−2

(2.22)

T
|W| ≈

1
2
M∆V

2 R

GM2
=0.5

�
∆V

4km/s

�2 �
M

105M⊙

�−1 �
R

25pc

�
(2.23)

So while thermal energies are much to low to counter gravity, both magnetic fields and kinetic (turbulent)
motions contain energies that are of the same order as the gravitational energy. We conclude that magnetic
fields and turbulence are keeping molecular clouds from collapsing in their entirety.

2.3 Line emission from molecules

The first molecules were detected in space in the late 1930’s through their absorption lines in the spectra
of background stars. Among the first were CH, CH+ and CN. As laboratory experiments provided more
accurate line frequencies, the field exploded leading to what we call now Astrochemistry. The chemical
viewpoint of how these molecules form in the first place will be covered in Sect. 2.5. Here we focus first on
understanding the spectra of molecules.

Figure 2.7 provides an overview table of some of the most relevant molecules in space. It shows the
wavelengths at which these molecules are observed, the type of transition and also the temperatures required
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Figure 2.7: Some astrophysically relevant molecules (taken from Stahler & Palla 2004).

for exciting those transitions. The last column indicates which type of information those transitions carry.
Column 7 gives the transition probability Aul (The Einstein A coefficient for spontaneous emission) for the
line and column 8 lists the critical density. The latter is defined as

ncrit =
Aul

γul

, (2.24)

Figure 2.8: Rotational levels of H2 for the first two vi-
brational states. Within the v = 0 state, the J = 2− 0
transition at 28.2 µm is displayed. Also shown is the
transition giving the 1 − 0 S(1) ro-vibrational line at
1.12 µm. Note that two different energy scales are used
(caption and figure from Stahler & Palla 2004).

which is the ratio between downward radiative
rates (Aul) and collisionally induced downward
transitions (γul, where u denotes the upper level
and l the lower level). This critical density in-
dicates the minimum density required to achieve
LTE level populations, i.e. energy levels populated
according to the Boltzmann equation at the lo-
cal ambient temperature. Hence, at densities n >

ncrit, the de-population of the upper level occurs
preferentially through collisions. In a two-level
system without radiative excitation, the equation
of statistical equilibrium would read as

ninxγlu = nxnuγul + nuAul . (2.25)

Here, ni is the density of the molecule we con-
sider and nx is the density of the collision part-
ner (e.g. electrons, neutral or molecular hydro-
gen). The two terms on the right hand side are
due to collisional de-exciation and radiative de-
excitation. The critical density is then defined as
the one where these two are equal.

Homonuclear molecules, i.e. molecules that
consist of two or more equal atoms (e.g. H2), do
not possess a permanent dipole moment. The
dipole moment is generated through the slight dif-
ference in electronegativity between the constituents of a molecule. This slight difference in electronegativity
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allows one of the atoms to pull the ’cloud of electrons’ closer than the other, hence inducing a slight shift in
charge.

A molecule has various degrees of freedom. It can rotate, vibrate or be electronically excited. Its total
energy is thus

Etot = Erot + Evib + Eelect . (2.26)

Generally, the rotational levels have the lowest energies, followed by the vibrational energy levels and then by
the electronic states. However, at some point the highly rotational excited levels of a particular vibrational
state can overlap with the lower rotational levels of a higher vibration state. Hence, the final term schema
can be rather complex (see Fig. 2.8).

Figure 2.9: Potential energy of H2 as a function of
internuclear separation. The three solid curves corre-
spond to the ground and first two excited electronic
states. The horizontal lines represent vibrational en-
ergy levels.Arrows depict photo-excitation into the Ly-
man band, followed by either fluoresecence or dissocia-
tion (caption and figure from Stahler & Palla 2004).

The energy distance between the electronic
states is typically of the order of 105 K. In the
case of H2, the ground electronic state contains 14
vibrational states (Fig. 2.9.

2.3.1 Rotational lines

For simplicity, we consider here first diatomic
molecules that we picture as rigid rotators. If
we think of a diatomic molecule as a dumbbell
oriented along the x-axis and fixed at its cen-
ter of mass, it can rotate in two different planes,
the (x,z)-plane and the (x,y)-plane. In classical
mechanics, a dumbbell rotating about his axis
through the center of mass has the possible energy
states

Erot =
J

2

2I
(2.27)

where I is the moment of inertia and J is the an-
gular momentum. In quantum mechanics (without
further derivation), this reads as

Erot =
h̄

2

2I
J(J + 1) = BJ(J + 1) (2.28)

where h̄ is the Planck constant h/2π and J is now
a dimensionless quantum number, called the rota-
tional quantum number. It can only take integer
values of 0, 1, 2, 3, . . .. We merge h/(8π

2
I) into the

rotational constant of a molecule B. It has the units of frequency or classically also cm−1. Table 2.2 shows
values of some representative molecules. I is the moment of inertia

I = µ�r2� , (2.29)

where r is the bond length and µ is the reduced mass of the molecule, here expressed for a diatomic molecule,

µ =
m1m2

m1 + m2
(2.30)

Let us first consider diatomic linear molecules such as CO. Their rotational spectra are easily understood.
A dipole radiative transition occurs for ∆J = 1

∆E = Bh [J(J + 1)− (J − 1)J ] = 2BhJ . (2.31)
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Table 2.2: Molecular constants: reduced mass µ, rotational constant B, force constant k, dissociation energy
Ediss.

Molecule B [GHz] µ B [cm−1] internuclear distance [Å] k [N/m] Ediss [eV]

H2 1824.2 0.504 60.85 0.741 5.2× 102 4.478
12C16O 57.636 6.856 1.931 1.128 11.092
13C16O 55.101 7.172 1.846 1.128
SiO 21.161 10.177 0.721 1.510 8.26

The transitions J → J + 1 are labelled as the R-branch, while the transitions J → J − 1 are labelled the
P-branch. The nomenclature here is R(0)= 0 → 1, R(1)= 1 → 2, etc. and the same holds for the P-branch
starting with P(1)= 1 → 0. From these formulae, it is clear that the energy spacing is linear with J and the
frequency separation is ∆ν = 2B. The lowest rotational transitions of CO are

J = 1− 0 λ = 2.6 mm ν = 116 GhZ (2.32)
J = 2− 1 λ = 1.3 mm ν = 232 GhZ
J = 3− 2 λ = 0.87 mm ν = 347 GhZ

Once we go to higher rotational levels, the approximation of the rigid rotator becomes less good and there
will occur deviations from centrifugal distortions.

The CO rotational lines are the brightest molecular rotational transitions from space. Thus they are
frequently used in ground based observations of dense molecular environments. On a side note, if we measure
the rotational spectrum very accurately, we can turn the exercise around and estimate the rotational constant
B and hence the bond length from the spacing of the rotational lines.

2.3.2 Vibrational lines

Figure 2.10: Vibrational modes in the linear CO2

molecule.

The vibrational levels of a molecule lie at higher
energies than the rotational levels. Fig. 2.10 illus-
trates the possible vibrational modes in the linear
CO2 molecule. We can consider the bonds between
the atoms in the molecules as springs between the
masses that allow them to move in one of the
three vibrational modes: the symmetric stretch-
ing mode, the asymmetric stretching mode, and
the bending mode. In the symmetric stretching
mode, the carbon atom remains fixed while the
two oxygen atoms move closer to and farther from
the carbon atom. In the bending mode the central
carbon atom moves up and down while the two
outer oxygen atoms move up an down in the op-
posite direction. Finally, in the asymmetric stretch
mode, all three atoms move left to right; one bond
contracts while the other expands.

If we solve the Schrödinger equation for a diatomic vibrating-spring model, we obtain the following
expression for the spacing of the vibrational energy levels

E(v) = hνe(v +
1
2
)− νexe(v +

1
2
)2 , (2.33)
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where v is the vibrational quantum number (values of 0, 1, 2, . . .) and νe is the fundamental frequency. Here,
the first term corresponds to the harmonic oscillator approximation and the second term describes the
anharmonic effect on the spring as it stretches. The fundamental difference to the rotational energy levels
is that the ground vibrational state has a non-zero energy, namely 1/2hνe. The fundamental frequency is
given by

νe =
1
2π

�
k

µ
, (2.34)

where k is the force constant for the chemical bond, typically 500 N/m, and µ is again the reduced mass of
the molecule. For vibrational transitions, selection rules are not as hard as for rotational transitions and so
we observe various bands belonging to ∆v = ±1,±2,±3, . . .. However, the transitions become weaker with
increasing change in vibrational quantum number.

To make things more complex, a vibrating molecule can rotate at the same time. Each vibrational level
contains a ladder of rotational levels that will be populated according to the excitation conditions in which
the molecule sits (often, but not necessarily local thermodynamic equilibrium). The spectrum is then a
ro-vibrational spectrum, where during a transition the vibrational as well as the rotational quantum number
can change.

Vibrational transitions of simple molecules such as CO, CO2 and H2O often lie in the infrared spectral
range. There are two prominent windows accessible from Earth, 1− 5 µm and 8− 20 µm.

2.3.3 Electronic transitions

The UV and visual spectroscopy of molecules corresponds to electronic transitions, that is electron rearrange-
ments in the molecules. These are least constraining as they also change the strength of molecular bonds
and can enable chemical reactions. An electronically excited molecule can become a reactive molecule.

Each electronic state has the full suite of vibrational states which is subsequently split up into the
rotational ladder.

2.3.4 Local thermodynamic equilibrium

The strength of these molecular transitions depends on their transition probability, the Einstein A coefficient,
and on the population of the involved levels. In general, allowed lines are stronger than forbidden lines,
reflected in their large difference of Einstein A coefficients. The levels are populated and de-populated by
collisions and line transitions.

In many environments, collisions dominate the population and de-population of levels and thus the level
populations follow from the Boltzmann equation

ni

nj

=
gi

gj

e
−∆E/kT (2.35)

where ni and nj are the two level population numbers, gi and gj their respective statistical weights and ∆E

the energy difference between them. Collisions are said to thermalize the level population numbers to the
corresponding local temperature T of the gas.

Rotational level population numbers are often in LTE, because the energy spacing between them is small
(∆E << few eV) and so even at low temperatures collision partners carry enough energy to excite them.
The statistical weight gi of a rotational level is given by (2J + 1). Since the energy spacing is linear, but the
statistical weight increases with J . For a each temperature, level population numbers peak around a fixed
rotational quantum number and this is reflected in the line strength of the associated P- and R-branches.

The critical density introduced above is a measure of the density at which the LTE approximation holds.
If the particle density is larger than ncrit, the level population numbers can be approximated using the
Boltzmann equation and the local gas temperature. If n < ncrit, the levels will be subthermally excited,
meaning that the temperature derived from the level excitation temperature, Texc — as derived from the
population numbers — will be lower than the actual gas temperature, the kinetic temperature Tkin.
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2.3.5 Statistical equilibrium

If LTE is no longer a valid approximation, we need to calculate the level population numbers from the
equations of statistical equilibrium, i.e. we consider all collisional and radiative processes that populate and
de-populate a level ni. Hence, we can study the temporal change of population for each level

dni

dt
=

�

j>i

nj (Aji + BjiP (νji)) +
�

j<i

njBijP (νij) + ni

�

j �=i

njCji (2.36)

−ni

�

j<i

(Aij + BijP (νij))− ni

�

j>i

BijP (νij)− ni

�

j �=i

njCij .

Here, the first three terms describe the population of level i through spontaneous and stimulated emission
from higher levels, absorption from lower levels and collisions from all levels. The stimulated emission is
described by the Einstein B coefficient, which is related through the expression

Bji =
c
2

2hν3
Aji (2.37)

to the Einstein A coefficient. The relation between the stimulated emission and the absorption coefficient
Bij is

giBij = gjBji (2.38)

The last three terms describe the de-population of level i via spontaneous and stimulated emission, absorption
and collisions. Solving these equations requires a large amount of atomic/molecular data including accurate
energy levels, transitions probabilities and collisional cross sections. Especially the latter are generally very
difficult to find and often only crudely approximated. The accuracy of radiative transfer and line formation
calculations depends largely on the level of accuracy of this atomic/molecular data.

2.3.6 Molecular line observations

We can use molecules as tracers of physical conditions, e.g. gas density and temperature. The amount of
flux emitted in a particular line can be written as

Fx(νji) = NjAjihνjiβ(τji)Ωsource , (2.39)

where Nj is the column density of the molecule x being in the excited upper state j of the line transition
with frequency νji. β is the escape probability of that line photon and the value of β depends obviously
on the optical depth of that particular line τji. Ωsource is the solid angle of the source (e.g. the molecular
cloud) on the sky. The difficulties in using molecular lines as physical tracers becomes immediately clear:
we need to know the level population of the upper energy level — which requires often accurate knowledge
of molecular collision cross sections — and we need to understand the optical depth effects, here simplified
in form of the escape probability β. The last uncertainty is the abundance of the molecular species itself.
However, in some cases, we can use simplifications that allow us to use certain molecular lines as density or
temperature indicators.

One such example is the CO molecule. It is a very robust molecule that is only photodissociated at the
skin of the cloud (Photon Dominated Regions - PDRs). Molecular chemistry (see later sections) locks at
high extinction all carbon in the form of CO. Hence, in the interior of molecular clouds, we can approximate
the CO abundance to be almost constant �(CO) = 10−4. The only exception occurs at low temperatures
T < 20 K, where CO can efficiently freeze out onto the cold dust grain surfaces. Since the molecule has very
low critical densities for the low rotational transitions, we can assume LTE for the level populations of the
rotational levels. To mitigate the problem of optical depth, we often use isotopes of CO which have up to a
factor 1500 lower abundances.
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Figure 2.11: Molecules as diagnostics as a function of
gas temperature and density.

Figure 2.12: Left: inversion transition of NH3. Right:
map of NH3 emission towards the Ophiuchus star form-
ing core, Oph F. Stars denote locations of Class i pro-
tostars, while triangles indicate the positions of NH3

clumps (Friesen et al. 2009).

Lines generally trace material in the density
regime close to the critical density. The latter
scales with ν

3, i.e. J3 for the rotational lines.
Hence, higher rotational lines trace warmer and
denser gas. If we choose the molecule (dipole mo-
ment) and the line transition (rotational quantum
number J) well, we can probe gas in the entire tem-
perature range between 10 and 1000 K and in the
density range between 102 and 1010 cm−3. In the
following, we give a few examples of specific lines
and their diagnostic power.

Fig. 2.11 illustrates the entire parameter space
of temperature and density and outlines the
molecule and transition best used in each regime.
The J=1-0, J=2-1 CO lines are good temperature
indicators for densities 102.5

< n(H2) < 104 cm−3.
By using a combination of rotational lines, ranging
from high to low optical depth, one can probe the
physical conditions in the cloud as a function of
depth. The highly optical thick lines of the main
isotope originate close to the cloud surface, while
the optically thin isotope lines probe down into the
core of the molecular cloud.

At higher densities, NH3 can be used instead of
CO. The oscillation of the nitrogen atom through
the hydrogen plane (Fig. 2.12) causes an inversion
transition at microwave frequencies. The main line
is at 1.27 cm. The right hand side of the fig-
ure shows NH3 emission of the Ophiuchus F core.
Stars denote locations of Class i protostars, while
triangles indicate the positions of NH3 clumps.
There is good correspondence between the two.

At very low densities, typical for diffuse clouds,
the hydroxyl radical, OH, can be used as a tracer.
Its ground state hyperfine transitions lie around
18 cm and are thus easily seen in absorption
against the background continuum emission. Its
rotational levels have very high excitation temper-
atures and critical densities and are thus often detected in shocks.

2.4 Temperature structure

Figure 2.13: Energy balance for a dust grain.

Molecular clouds consist of gas and dust with a
typical mass ratio of 100. If the density and ex-
tinction are high, gas and dust temperature are
well coupled through collisions and equal. Other-
wise, both phases settle to their own equilibrium
temperature.
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2.4.1 Dust temperature

In the case of dust, the temperature is set by radiative equilibrium, i.e. the radiation energy absorbed by
each dust grain Q+ is re-emitted according to its temperature Q− (Fig. 2.13). The timescale for reaching
this equilibrium is generally short compared to the collisional energy exchange with the dust particles. In
the optically thin case, we can write this balance as

Q+ = Q− (2.40)

πa
2

� ∞

0
Fν�νdν = 4πa

2

� ∞

0
πBν(Tdust)�νdν .

Here, a is the radius of the dust grain, �ν its frequency dependent absorption efficiency. We have assumed
here, that the grains radiate as black bodies and thus absorption and emission efficiencies are equal and
we can use the Planck function to characterize the emitted spectrum of the dust grain. Fν is the external
radiation field that the grain ’sees’. For certain grain size limits, we can solve this equation analytically. For
that, we assume that the external radiation field can be characterized through a black body of temperature
T∗. For large grains, the opacity is grey and we can write

Tdust =
�

R∗
2r

T∗ . (2.41)

This equation can for example be used in approximating the temperatures of planets in our Solar System.
In the limit of micron-sized dust grains, the opacity is high (� = 1) at short wavelength (compared to the
size of the grains) and follows a power law 1/λ at long wavelengths. Hence, we obtain

Tdust = 324
�

L∗
L⊙

�0.2 �
a

µm

�−0.2 �
r

AU

�−0.4
. (2.42)

We use here the unit AU for the distance to the radiation source, because this formula is most useful in the
context of debris disks. In molecular clouds, dust grains are typically much smaller than micron sized. And
there, we have to solve the dust radiative equilibrium numerically. In addition, we have to take into account
optical depth effects.

2.4.2 Gas temperature

Just as for the dust, the gas temperature can be found from the equilibrium between heating and cooling
processes �

i

Γi =
�

j

Λj , (2.43)

where the complication arises from the fact that there is not a single heating mechanisms or cooling mech-
anism, but a series of processes. Depending on the particular physical and chemical environment, we may
be lucky to identify the most important heating and the most important cooling process and thus solve the
formula analytically. But in most cases, we cannot identify a single process and even if, the process itself is
often intimately coupled to the chemical structure of the cloud through the abundances of certain molecules.

Heating processes

Heating of the cloud occurs through cosmic rays and radiation. Cosmic rays consist of relativistic protons
and a mixture of heavy elements such as iron and electrons. Cosmic rays span an enormous range in energies
between 10 and 1014 MeV. They originate in supernova explosions.

A cosmic ray that travels into a molecular cloud interacts with the nuclei and electrons of the elements
there. The excitation of the nuclei decays through emission of γ-rays that escape the cloud. The electronic
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excitation leads to dissociation, ionization, and emission of UV photons. The most likely process is ionization
of molecular hydrogen — which is often the most abundant species inside the molecular clouds —

p+ + H2 → H+
2 + e− + p+ (2.44)

The ejected electron carries a large amount of kinetic energy, typically 30 eV, and can cause secondary
ionization of molecular hydrogen as well as collisional excitation. The latter process is heating the gas. The
heating rate per unit volume can be written as

ΓCR(H2) = ζ(H2)nH2∆E(H2) . (2.45)

Here, ζ(H2) is the ionization rate of molecular hydrogen. The amount of heat released per ionization
is ∆E(H2) = 7.0 eV. The reason for ∆E being smaller than the typical 30 eV is in fact the secondary
ionization. We can write down a similar formula for neutral hydrogen using ζ(H I) and ∆E(H I) = 6.0 eV.

Figure 2.14: Photoelectric effect on interstellar and cir-
cumstellar dust grains.

The dominant heating process at the sur-
face of molecular clouds is photoelectric heating
(Fig. 2.14). UV radiation hitting a dust grain
ejects an electron which transmits its kinetic en-
ergy to the gas through subsequent collisions. The
typical work function of a neutral grain is W ∼
6 eV. The liberated photoelectron has a certain
probability to leave the grain and must also over-
come the charge potential of the grain (in case it is
not neutral). Typical electron energies are of the
order of 1 eV. The efficiency of ejecting a photo-
electron for each incoming photon is close to one
for very small grains. Only in grains that are larger
than the typical mean free path of the electron in-
side the grain, this efficiency drops significantly.
The reason for this is that the photoelectron has a higher probability to be re-absorbed inside the grain. We
can write the heating rate as

ΓPE = 4πndustσdust�PE

�
νW

0
Jνdν , (2.46)

where ndust and σdust are the dust grain number density and the grain surface area. �PE is the efficiency of
ejecting a photoelectron. The interstellar radiation field is integrated down to the frequency νW, which is
the threshold frequency corresponding to the work function W .

Cooling processes

Most of the cooling in molecular clouds is due to collisional ionization of atoms or molecules and subsequent
radiation of a photon that escapes the cloud. One of the most efficient molecules in the cooling of molecular
clouds is CO through its rotational lines. At the surface of clouds, where molecules are photodissociated,
most of the cooling is due to fine structure lines of neutral oxygen and ionized carbon, [O i] 63 and 145 µm
and [C ii] 157 µm.

Dust grains can also cool the gas if the dust temperature is lower than that of the gas. In that case,
collisions between gas particles and dust grains lead to an exchange of energy which does not affect the dust
radiative equilibrium (see note above on the timescale of dust radiative equilibrium)

Λgas−grain =
3
2
kB (Tgas − Tdust)

ndust

tcoll
. (2.47)

Here, kB is the Boltzmann constant and tcoll is the collision timescale. We see from this formula that the
rate turns into a heating rate if Tdust > Tgas.
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2.4.3 Cloud temperatures

We see from the above processes of heating and cooling that most heating rates scale linearly with density,
while cooling processes scale quadratic in density (at least under LTE conditions where collisions dominate
the level population). Hence, denser environments will be colder, i.e. the molecular clouds are cooler than
diffuse clouds.

At the surface of the molecular clouds, molecules are efficiently photodissociated and the ambient radia-
tion field can easily penetrate up to an extinction of AV ∼ 1. This surface is often called a photon dominated
region (PDR). The MC surface is mostly atomic consisting of atomic hydrogen, neutral oxygen and ionized
carbon. Most metals with a low ionization energy such as carbon, silicon, magnesium, iron etc. are efficiently
ionized by the interstellar radiation field. Hydrogen and oxygen have higher ionization potentials of 13.60
and 13.62 eV. Thus at the surface of the cloud, the most relevant heating process is photoelectric heating
while cooling proceeds through the [C ii] fine structure line at 157 µm. We can thus approximate the gas
temperature by equating those two processes

ΓPE = ΛC II , (2.48)

yielding an approximate expression for the gas temperature at the surface

Tgas =
40 K

2.0 + log (nH/103 cm−3)
. (2.49)

Figure 2.15: Temperature profiles in the lower density
region of a molecular cloud. The solid curve represents
the gas temperature, while the dashed line refers to dust
grains. The lower dotted curve results from balancing
cosmic-ray heating and CO cooling in the gas (figure
and caption from Stahler & Palla 2004.

Deep inside molecular clouds, cosmic ray heat-
ing is the only remaining heating process — pho-
tons cannot reach here due to the high extinction.
The cooling is predominantly by CO rotational
lines. We can thus find the gas temperature from

ΓCR = ΛCOrot . (2.50)

Typical gas temperatures are of the order of 10 K.
Fig. 2.15 illustrates the typical temperature profile
derived for a molecular cloud.

2.5 Chemistry

Just as level populations can be approximated
through LTE (local thermodynamic equilibrium)
or SE (statistical equilibrium), chemistry can as-
sume various equilibria.

The most constraining one is thermodynamic
equilibrium in which each reaction is counterbal-
anced by its own backreaction, leading to the con-
cept of equilibrium constants K describing these
as a function of temperature

K =
kforward

kbackward
. (2.51)

These constants depend only on temperature and
this type of equilibrium is typically found in very
dense environments such as stellar atmospheres,
planetary atmospheres and the densest inner re-
gions of protoplanetary disks.
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The alternative is stationary chemistry, which assumes that the density of each species reaches a stationary
value, i.e. does not change with time. For gas phase chemistry, this can be described with a rate equation
approach, where the time variation in the average density of a species is given by the sum of various production
and loss rates. A generic rate equation for species i is

dni

dt
= Pi − Li (2.52)

=
�

jl

kijl(Tg)njnl +
�

j

(Γij(r, z) + ζij(r, z))− ni




�

jl

kjil(Tg)nl +
�

j

(Γji(r, z) + ζji(r, z))



 ,

where ni is the average volume density of species i and Pi and Li are the chemical production and loss rates
for that species. The first and third sums are the production and loss terms for species i through chemical
reactions with species j and l, at rates kijl and kjil. The second and fourth sums are the production and loss
terms for species i through photoreactions involving species j (at rates Γij and Γji) and cosmic ray reactions
involving species j (at rates ζij and ζji).

On the other hand, grain surface chemistry is stochastic in nature and strongly depends on the surface
coverage of the species involved in the reaction at any instant. Hence, it is much better described using a
master equation approach instead of a rate equation,

d

dt
P (i1 . . . iN ) =

�
(accretion + evaporation + surface reactions) ,

where P is the probability that i particles of species 1 to N are on the grain surface. Caselli et al. (1998)
and Caselli et al. (2002) find that the rate equation approach can be modified for grain surface chemistry
by taking into account the accretion timescale for a species as well as its migration timescale on the grain
surface. This enables efficient simultaneous treatment of gas- and dust-phase chemistry.

Under some astrophysical conditions — low densities, low temperatures — , chemical equilibrium is
hardly reached on timescales of 105 − 106 yr. This is especially relevant for diffuse and molecular clouds. In
that case, we have to solve the time-dependent rate equations.

2.5.1 The formation of molecules

Under typical molecular cloud conditions (temperature and density), chemistry proceeds through two body
interaction. If we first consider the collision of two atoms. The formation of a molecule requires the excess
energy needs to be either transmitted to a third body or radiated away. A third collision partner is not an
option given the low density of interstellar space. An exception is the formation of molecular hydrogen on
grain surfaces, where the grain acts as the third body. Alternatively, a photon can carry away the excess
energy in a reaction type called radiative association. Here, the molecule is formed in an excited state
that decays radiatively to the ground state. However, the most important type of reaction in interstellar
chemistry is ion-molecule reactions

A+ + B → C+ + D . (2.53)

The rate coefficient for such reactions is of the order of k ∼ 10−9 cm3/s and depends only weakly on
temperature. The reason for the large rate coefficient is that the charged particle induces a dipole moment
in the neutral one, thereby enhancing the cross section of the reaction over the geometric one (Coulomb
interaction). The counterbalancing process is often dissociative recombination with free electrons

A+ + e− → B + C . (2.54)

The electron recombines with the positive molecule creating an excited unstable neutral molecule. In most
cases, the molecule autoionizes and returns the electron to the gas phase. However, if the constituents
separate before autoionization occurs, the molecule dissociates into two neutral species. The typical rate
coefficient is of the order of 10−7 cm3/s for temperatures around 100 K and increases slowly with decreasing
temperature.
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2.5.2 Chemical networks

In order to understand molecule formation, we need to take into account all possible reactions among all
possible species. Given the shear amount of atoms and molecules, this sounds like a hopeless endeavor.
However, there exist large molecular databases that contain collections of molecular reactions that can occur
under interstellar densities and temperatures. One of them is the UMIST database.

Selecting a number of atoms and molecules — based on abundance and experience — and using such a
database allows us to build a chemical reaction network that interconnects all those species through chemical
reactions. We can then solve for the abundances of all species using either a stationary approximation
dni/dt = 0 or the time-dependant approach.

In this way, we find for example that under the typical conditions of dense cores, all carbon is turned
into CO on timescales of 106 yr.

2.5.3 Chemical structure of molecular clouds

Figure 2.16: A schematic diagram of a photodissociation
region (PDR). The PDR is illuminated from the left and
extends from the predominantly atomic surface region
to the point where O2 is not appreciably photodisso-
ciated (AV ∼ 10 visual magnitude). Hence, the PDR
includes gas whose hydrogen is mainly H2 and whose
carbon is mostly CO. Large columns of warm O, C, C+,
and CO and vibrationally excited H2 are produced in
the PDR. The gas temperature Tgas generally exceeds
the dust temperature Tdust in the surface layer. Figure
and caption taken from Hollenbach & Tielens (1997).

The surface of a molecular cloud resembles a PDR
and shows the typical H/H2 and C+/C/CO tran-
sition with increasing AV (Fig. 2.16). The loca-
tion where hydrogen turns molecular can be simply
found from the equilibrium between H2 formation
on grain surfaces and H2 photodissociation by in-
terstellar UV photons

Rformn(H)nH = ζ(NH2)n(H2) . (2.55)

The photodissociation process of H2 proceeds via
discrete bands. Once these H2 bands become opti-
cally thick, photodissociation is largely suppressed
by self-shielding. Hence, the photodissociation
rate ζ depends to first order on the column density
of H2, NH2 . Assuming now that the total hydro-
gen number density is nH = n(H) + 2n(H2), we
can work out the molecular fraction as a function
of column density into the cloud

n(H2)
n(H)

=
RformnH

2RformnH + ζ(NH2)
. (2.56)

The ionization degree inside the molecular
cloud is low, because CR are the only remaining
ionization source via the following processes

H2 + CR → H+
2 + e− (2.57)

H2 + CR → H+ + H + e− (2.58)
He + CR → He+ + e− (2.59)

The secondary electrons are energetic and cause additional ionization and also excitation of molecular hydro-
gen. When H2 decays to the ground state, secondary UV photons are generated that can cause additional
ionization deep inside the cloud. Dust grains can act as a sink of electrons and become negatively charged.
Typical electron densities in the cloud interior are of the order of 10−7

nH.
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