
Chapter 5

Protostars & pre-main-sequence
evolution

We have discussed the structure and collapse of cold cores in the previous chapters without putting much
emphasis on the protostellar core structure. We treated the central core as a sink of mass and only considered
its gravitational impact on the outer envelope. It is however clear that this inner core will at some point
start to irradiate the remaining envelope from the inside. Hence, in this chapter, we focus on the evolution
and detailed structure of the protostar all the way from its formation to the arrival on the main-sequence.

5.1 Timescales

There are three timescales relevant for the protostar: (1) the free-fall timescale of the collapsing core, (2)
the Kelvin-Helmholtz timescale, (3) the accretion timescale.

The free-fall timescale was derived in chapter 3
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and describes the time that a particle within a cloud of density ρ would take to fall a distance r (we
approximated here

�
3/2π = 0.7 to be of the order of 1 since these types of estimates are order of magnitude
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The second timescale has been introduced in chapter 1
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This describes the time that a star can radiate its luminosity L∗ with the sole energy source being its
gravitational energy Ugrav.

The accretion timescale can be expressed as

tacc =
Mcore

Ṁ
. (5.3)

The free-fall timescale is much shorter than the Kelvin-Helmholtz timescale and the accretion timescale.
Comparing the latter two, we can distinguish two cases, tKH > tacc and tKH < tacc. In the first case, the
stellar interior cannot thermally adjust to the accretion and the luminosity will be generated by accretion
shocks on the surface (dissipation of kinetic energy into heat). This is the ’protostellar phase’. In the latter
case, the accretion becomes inefficient and the star evolves towards the main-sequence on a thermal timescale
with the stellar luminosity being generated by contraction. We call this the ’pre-main sequence phase’.

52



If we consider the expression for the mass accretion rate that follows from the simple Shu inside-out
collapse model, we can estimate the value of accretion rates as well as the timescale for forming a 1 M⊙ star
from an isothermal 10 K envelope

Ṁ ∼ c
3
s

G
∼ 1.6× 10−6 M⊙ yr−1 (5.4)

tacc = 6.3× 105 yr . (5.5)

5.2 Early growth and collapse

Figure 5.1: Evolution of the central temperature in the
first core. The temperature is plotted as a function of
central density (from Stahler & Palla 2004).

The isothermal approximation that we used in the
previous section for the core collapse breaks down
when we consider the forming protostar itself. Ini-
tially, the temperature of the core is fairly low, a
few 100−1000 K, and thus most of the energy will
be radiated in the infrared. As material piles up on
the central core, the matter rapidly becomes op-
tically thick, thus preventing gravitational energy
from being efficiently radiated away. This leads to
an increase in central temperature and the grow-
ing gas pressure acts to stabilize the core (Fig. 5.1).
The core continues to grow until it reaches a mass
of ∼ 5 × 10−2 M⊙; it has then a size of roughly
5 AU.

From the simplest form of the virial theorem
(only thermal and gravitational energy, no mag-
netic and kinetic energy)

Ugrav = −3
5

GM
2
∗

R∗
(5.6)

= −2Utherm = −2
3
2

kTM∗
µmH

,

we can derive an estimate for the temperature
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Here, M∗ and R∗ denote the mass and radius of the protostellar core. We have assumed a mean molecular
weight µ = 2.4 appropriate for molecular gas.

In this first phase, molecular hydrogen acts as a thermostat. At temperatures above 2000 K, collisions
can dissociate H2, a process that absorbs 4.48 eV. At the same time, the thermal energy of an H2 molecule is
only 0.74 eV. Hence, during this phase, most of the gravitational contraction energy can be absorbed through
the dissociation of a small fraction of the total molecular hydrogen. As a consequence, the temperature rise
becomes more moderate as also shown in Fig. 5.1. The central region with atomic hydrogen starts to spread
outward and this eventually leads to an unstable configuration as the adiabatic index drops below the critical
value of 4/3.

As the density rises further ρ ∼ 10−2 g cm−3, hydrogen can eventually be ionized, thus pushing the
adiabatic index beyond 4/3. This leads to the formation of a second stable core which grows to 0.01−0.02 M⊙
in less than 100 yr.

The protostellar mass then grows to its final value during the main accretion phase, or ’protostellar phase’,
where tacc < tKH. We can estimate the maximum size that a protostar can have as well as its accretion
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luminosity again from simple consideration of the virial theorem Utherm = −1/2 Ugrav, we can write down
the energy conservation equation as
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+ Eint + Lradt = 0 , (5.8)

where Lrad is the average luminosity escaping over the timescale t and Eint is the internal energy of the
gas. Since the matter is initially in a cold sphere with large dimensions, the initial internal energy can be
considered to be zero. However, during the contraction, molecular hydrogen gets dissociated (dissociation
energy Ediss = 4.48 eV) and hydrogen and helium get ionized (ionization energies Eion(H) = 13.6 eV and
Eion(He) = 75 eV). We can consider this as internal energy ∆Eint which we can thus write as
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X and Y are here the mass fractions of hydrogen and helium respectively. If we ingnore Lrad, we can derive
an expression for the maximum possible radius of the protostar
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The observed sizes of e.g. T Tauri stars (solar mass protostars) are generally smaller by an order of magnitude.

Figure 5.2: HR diagram positions of young stars lying within the Taurus-Auriga molecular cloud complex.
For comparison, theoretical evolutionary tracks for pre-main-sequence stars of masses 2.5, 2.0, 1.5, 1.0, 0.5,
0.3, and 0.1 M⊙ are shown. The dashed lines are isochrones for ages of 105, 106, and 107 yr with the
hydrogen-fusion zero-age main sequence (ZAMS) shown as the lowest line running from upper left to lower
right. The open circles refer to weak-emission T Tauri stars (WTTS), while the filled circles denote the
position of the classical T Tauri stars (CTTS) (figure and caption from Hartmann 1998).

Since we know that the true stellar radius is much smaller than the derived estimate of Rmax, we know
that the second term in Eq.(5.8) must be much smaller than the first one (if R = Rmax, the two terms
would be equal). Hence, we can neglect the second term in Eq.(5.8), ∆Eint and derive an expression for the
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luminosity which we assume to be close to the accretion luminosity
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For this, we assumed that Ṁ = M∗/t. This equation tells us, that for a protostar with a fixed mass M∗,
the energy loss through radiation will directly be connected to a contraction. If we assume for a second that
the temperature of the star will stay constant (e.g. at a reference point in time, the star has the size R0 and
luminosity L0),
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As the star ages, it becomes thus smaller and fainter. The rate of change in luminosity and size slows with
age. This is illustrated in Fig. 5.2, where the pre-main-sequence evolutionary tracks are shown in an HR
diagram. The almost vertical part of the evolutionary track (T∗ ≈ constant) is frequently referred to as
’Hayashi track’. A protostar is often defined as an object that derives most of its luminosity from accretion,
hence L∗ ∼ Lacc.

Figure 5.3: Structure of a spherical protostar and its
infalling envelope. The relative dimensions of the outer
regions have been greatly reduced in this sketch. Note
the conversion from optical to infrared photons in the
dust envelope (figure and caption from Stahler & Palla
2004).

At this point, we make a small note concerning
some of the pre-factors in all these equations. De-
pending of which book one consults, these factors
can differ by factors of π, 2 or 4, or anything close
to it. Most of the time, these differences are irrel-
evant since the equations themselves contain as-
sumptions that are often only order of magnitude
assumptions. Hence, a factor 2 is never a problem.
However, if you ever encounter larger discrepan-
cies, please consult one of the authors (lecturers)
to resolve the issue. It could very well be a typo.
Within this syllabus, we try to be as consistent
as possible in the definitions of certain quantities
such as Kelvin-Helmholtz timescale, Jeans radius
etc..

5.3 Dust envelope

We have now derived expressions for the luminos-
ity and size of a protostar, but these are rather the-
oretical quantities as the surrounding envelope of
material often is optically thick at UV and optical
wavelength and starts to become more transparent
in the infrared (see dust opacity as a function of wavelength). This means the actual surface of emission
is not the protostar itself, but rather a sort of dust photosphere that we will now explore in somewhat
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more detail (Fig. 5.3). It also means that the UV/optical photons of the star are absorbed and scattered
many times in the envelope and heat the dust there to a temperature Tdust. The envelope dust then emits
according to its own temperature, mostly in the infrared. Hence, stellar photons are converted into infrared
photons emitted by the dust. The dust photosphere is then the layer where most of the emission is coming
from, hence the τR ∼ 1 layer (analogy to the solar photosphere at optical wavelength; τR is the Rosseland
mean optical depth).

We can find an estimate for the size of this dust photosphere by using the following two equations

ρ(r)κRRphot = 1 (5.17)
Lacc = 4πR

2
photσT

4
phot , (5.18)

where κR is the Rosseland mean opacity, ρ is the density profile found from the inside-out collapse for
the free-fall region, and Tphot, Rphot are the temperature and radius of the dust photosphere. Numerical
solution of this system of two equations with two unknowns yields values of Rphot = 2.1× 1014 cm (14 AU)
and Tphot = 300 K. So, according to Wien’s law, the peak emission lies indeed in the infrared spectral region
(around 50 µm). Of course, these mean opacities and simple approximations can only give a very crude
picture of what the dust photosphere is. Full frequency-dependent radiative transfer is needed to calculate
the dust temperature through an iterative (the local source function depends on the dust temperature and
vice versa) or Monte-Carlo procedure.

5.4 Stellar structure

After this short excursion into the outer envelope, we now return to the protostellar interior and study the
stellar structure equations that will tell us how mass and radius are related for these objects (similar to the
mass-radius relation for main-sequence stars). We then discuss deuterium burning and lithium destruction
in the stellar interior.

The basic equations of stellar structure are the equations of mass continuity, hydrostatic equilibrium,
state, energy transport and energy generation
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where R is the gas constant, µ the mean molecular weight, �(r) the rate of nuclear energy generation per
unit mass within a shell of size r and s the specific entropy (entropy per units mass). The second term in
the energy generation −T∂s/∂t stems from the contraction of the star.

We can solve these equations numerically by using opacities, mean molecular weights, energy generation
rate and entropy tabulated as functions of T and ρ. To close the systems of equations, we also need some
boundary conditions. For the center of the protostar, Mr and Lint vanish

M(0) = 0 (5.24)
Lint(0) = 0 . (5.25)

At the surface of the protostars r = R∗, the pressure should approach the ram pressure of the infalling gas
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ṀR
−3/2
∗

4π
√

2GM∗

2GM∗
R∗

=
Ṁ
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(5.26)
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The last boundary condition concerns the protostars luminosity, which should be the sum of the accretion
luminosity and internal luminosity (see last of Eq.(5.23))

L∗ = Lacc + Lint . (5.27)

5.4.1 Mass-radius relation

Figure 5.4: Evolution of stellar radius with mass us-
ing a constant accretion rate of 10−5 M⊙/yr. The left
figure illustrates low mass pre-MS stars, the right one
the entire mass range up to 8 M⊙. The grey area in-
dicates where the protostars are fully convective; black
dots mark the onset of deuterium burning, the point
where stars are fully convective, the ignition of hydro-
gen in the core, and the arrival at the ZAMS. The thin
line in the right panel illustrates the use of different
boundary conditions (figure from Schulz 2004).

To understand pre-main sequence stellar evolu-
tionary tracks, we like to follow the mass and ra-
dius of our protostar from the start. Initial condi-
tions for integrating Eqs.(5.23) vary widely and so
in the beginning, the solutions diverge. However,
after the first doubling of the mass, the solutions
are indistinguishable (see Fig. 5.4).

It is also important to note that low mass pro-
tostars (T Tauri stars) are fully convective (grey
area) while higher mass protostars do form a ra-
diative core. To understand this, we have to recall
that the main opacity source in the photosphere
of these protostars, H−, is highly dependent on
temperature (for T < 104 K). The temperature
dependance of the opacity is thus a sort of valve
that regulates the surface temperature of the star.
For a fixed mass and radius, there is a minimum
allowed Teff , called Hayashi temperature, implying
also a minimum stellar luminosity. On the other
hand, there is a maximum luminosity that can be
transported by radiation �Lcrit�. When the min-
imum stellar luminosity according to the Hayashi
temperature exceeds �Lcrit�, the protostar becomes quickly fully convective. This is the case for low mass
protostars. Higher mass protostars, 2 − 8 M⊙, have a luminosity that exceeds �Lcrit� and thus they can
sustain a radiative core.

5.4.2 Deuterium burning

Deuterium is one of the elements generated in the Big Bang with a primordial abundance of [D/H]= 3 −
5 × 10−5. It starts burning at temperatures above 106 K. In low mass stars, < 1 M⊙, mass accretion
provides a steady supply of new deuterium fuel and the fusion process itself drives the protostars convection,
thereby mixing the newly accreted fuel down into the core. The total amount of energy available from
deuterium burning equals the gravitational energy of the protostar. Thus, deuterium regulates in that stage
the mass-radius relation of the protostar (this depends on the mass accretion rate).

For higher mass stars, M> 2 M⊙, the deuterium fusion depletes the core. Since new material is still
accreting, the deuterium burning continues in a shell.

5.4.3 Lithium destruction

If the temperature in the core of the protostar reaches ∼ 2.5 106 K, Li-burning consumes 7Li (the dominant
isotope) through the reaction 7Li(p,α)4He. The interstellar medium Li abundance is [Li/H]∼ 2 10−9, which
is about an order of magnitude higher than the primordial value.

Low mass protostars never reach the central temperatures necessary for Li-burning, while more massive
ones quickly exhaust their Li in the core. If the star has a mass < 0.9 M⊙, it is fully convective during
this period and hence destroys his entire Li reservoir. More massive stars cease to be fully convective before
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all Li is consumed. Stars more massive than 1.2 M⊙ only have shallow convection zones and hence do not
deplete their Li significantly.

Measuring the Li abundance in young clusters can hence serve as a powerful test of pre-main-sequence
stellar structure and evolution theory.

5.4.4 Hydrogen ignition

When deuterium burning ceases in the core, the star once more contracts gravitationally til it reaches a core
temperature of 107 K. At those temperatures four protons can fuse into a 4He atom. During this process,
two of the four protons decay into neutrons. The process is known as the pp-chain

At temperatures larger than 1.5 107 K, the CNO cycle takes over converting most of the initial C, N, and
O into 14N.

5.5 Magnetospheric accretion

Magnetic fields and rotation largely determine the accretion flow as outlined in the previous chapter (Sects. 4.2.4
and 4.2.5) and lead to the formation of an accretion disk. In the initial short collapse phase, accretion is
dominated by envelope accretion onto the star. However, in later stages follows a much longer phase of
disk accretion. In the latter phase, the accretion flow is predominantly through the disk onto the central
protostar.

5.5.1 Theory

Figure 5.5: Schematic view of angular momentum trans-
port in a shearing disk.

Within the accretion disk, angular momentum is
transported — via some poorly understood viscos-
ity — from the inner disk outwards to a small frac-
tion of disk mass, so that the inner disk effectively
looses angular momentum, while the outer disk
gains some. This enables mass accretion from the
inner disk onto the protostar and leads at the same
time to a viscous spreading of the disk. Fig. 5.5
illustrates schematically how angular momentum
is transported in a shearing disk. The angular ve-
locity is decreasing outwards. If there is friction or
communication between two neighboring annuli, the resulting torques will try to bring them into corotation.
This accelerates gas in the outer annulus, while it decelerates gas in the inner annulus. Hence, the inner
annulus looses angular momentum to the outer one. The same happens in the presence of a magnetic field,
where we can illustrate the effect in form of an elastic spring connecting the two annuli. As the inner one
rotates slower, the spring will be streched out, thereby causing the inner annulus to break and loose angular
momentum.

In a two-dimensional gaseous disk, angular momentum will be transported by turbulent motions, that is
gas being mixed by turbulence among different annuli. This works as long as there is shearing orbital motion,
dΩ/dR �= 0. Possible sources of turbulent motions are magnetic fields and convection. An alternative process
for angular momentum transport are gravitational instabilities. We will get back to the details of angular
momentum transport, viscosity and disks in a later chapter.

58



5.5.2 Observations

Figure 5.6: A sketch of the basic concept of magne-
tospheric accretion in T Tauri stars (from Camenzind
1990).

Figure 5.7: Evolutionary path in the HR diagram. Thin
dashed lines indicate timelines labelled 1, 2, 3, 4, and 5.
Timeline 1 is the beginning of the Hayashi track, time-
lines 2-5 cover the radiative track of the HR-diagram.
The thick dahsed line is the zero-age main sequence;
the thick dash-dotted line the stellar birthline for an
accretion rate of 10−5 M⊙/yr (figure from Schulz 2004).

As material accretes from the disk onto the star,
it hits the stellar surface, thus forming an accre-
tion shock. Within the magnetospheric accretion
model, the material flows along so-called funnel
flows shaped by the connection of the stellar mag-
netic field with the disk (Fig. 5.6 and 5.10). The
disk is truncated at a distance of several stellar
radii. The accretion rates can be measured by
looking at the veiling of the stellar spectrum (spec-
tral lines) due to the accretion layer above (see also
Fig. 5.9).

The stellar absorption lines will be partially
filled in by the continuum emission from the hot
accretion layer. By measuring this effect in a spec-
tral line and the adjacent continuum, we can esti-
mate the veiling r defined as the ratio between the
excess F

E and stellar fluxes F
∗
c

as
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where l and c refer to the line and continuum of
the veiled object (o) or the stellar photosphere (∗)
(Gullbring 1998). In this way, we can estimate
the excess hot continuum emission and estimate its
total luminosity Lhot. This luminosity is related to
the accretion rate in the following way

Lhot ≈
GM∗Ṁ

R∗

�
1− R∗

Rm

�
(5.29)

where Rm is inner radius of the disk, the magneto-
spheric radius, i.e. the radius where the magnetic
field of the star truncates the disk. Thus by ob-
taining high resolution spectra of young stars, we
can estimate their accretion rates. Given the un-
certainties in the details of the accretion process,
these estimates should be considered as order of
magnitude estimates.

5.6 Evolution in the HR diagram

In the previous section, we described how we can
obtain the radius, mass and luminosity of the pro-
tostar (pre-main sequence star). Fig. 5.7 illus-
trates now the evolutionary track that pre-main
sequence stars of various masses take before they
reach the hydrogen burning stage, the zero-age
main sequence (ZAMS, thick dashed line). Low
mass stars of 0.5 M⊙ take 160 Myr to reach the ZAMS, solar mass stars 50 Myr, and higher mass stars
(3 M⊙) only 2.5 Myr.
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5.6.1 Birthline

When protostars begin their quasi-hydrostatic contraction towards the ZAMS, they become optically visible.
The location where this happens in the HR diagram is a well-defined line called the birthline. The star has
then more or less reached its final mass. In principle, this location should coincide with the location of the
youngest pre-main sequence stars observed in star forming regions. However, it depends on the assumed
mass accretion rate (in the figure, this is 10−5 M⊙/yr), with higher accretion rates shifting the line upward.

5.6.2 Hayashi tracks

We have encountered earlier the finding of Hayashi (1966) that a protostar of a certain radius and mass has a
minimum effective temperature, the Hayashi temperature. For temperatures lower than that, the protostar
is not stable and will tend to drift back to a stable configuration. The Hayashi tracks in the HR diagram
mark thus asymptotes to these instabilities. As noted earlier, low mass protostars have extended Hayashi
tracks, while higher mass protostars develop a radiative core and have thus very short or no Hayashi track.

5.7 PMS classification

Fig. 5.8 provides an overview of the various evolutionary phases of star and disk formation in the context of
object classification, physical and observational properties. In the following, we discuss briefly four classes
of pre-main sequence objects, three low mass object types, the classical T Tauri, weak line T Tauri, and FU
Orionis stars and the intermediate mass object type, the Herbig AeBe stars.

Figure 5.8: The IR classification in the context with evolutionary phases and matter flow parameters (figure
and caption from Schulz 2005).
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5.7.1 T Tauri stars

Figure 5.9: The the total spectral energy distribution
(solid line) of a K7-M0 photosphere (dotted line) plus
excess continuum (dashed line) for a value of log F =
11.5 = log

�
Lacc/(fR

2
∗)

�
and a filling factor f = 0.01

(adapted from Calvet & Gullbring 1998).

Classical T Tauri stars (CTTS) are named after
the prototype T Tau in the Taurus star form-
ing region. Characteristics are strong Balmer line
emission (Hα), and an association with reflection
nebulae and molecular clouds. These stars are
low-mass pre-main sequence stars with spectral
types between F and M and effective temperatures
ranging from 3000 to 7000 K. They are class ii
sources according to their SED and the IR excess
peaks between 1 and 10 µm. The median disk
mass is 0.01 M⊙ with a huge spread around it
(0.0003 − 1 M⊙). Typical disk radii are around
100 AU (see Fig 5.10 for a sketch of the star-
disk system). Accretion shocks and stellar activ-
ity (coronal heating) produce strong X-rays with
luminosities up to LX = 1031 erg s−1. Here, ac-
cretion shocks in the free-falling flow contribute
mostly to the soft X-rays, while accretion shocks
on the surface only produce excess far UV radia-
tion (see Fig. 5.9).

Figure 5.10: Schematic picture of accretion in T Tauri stars. The pre-main sequence star is surrounded
by accreting circumstellar disk which emits at infrared, sub-mm and mm wavelength. The inner disk is
disrupted by stellar magnetic field, which cause accreting material to be diverted out of the disk and fall
rapidly onto the star. This magnetospheric material emits broad emission lines as it falls along the accretion
columns, and produces a hot continuum when it crashed into the stellar surface at an accretion shock (figure
and caption from Hartmann 1998)
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