Protostars and pre-main sequence evolution

- Timescales
 Early growth and collapse
 Dust envelope
 Stellar structure
- - I. Mass-radius relation
 II. Deuterium burning
 III. Lithium destruction
 IV. Hydrogen ignition
- 5. Magnetospheric accretion
 - I. Theory
 II. Observations
- 6. Evolution in the HR diagram

 - I. Birthline II. Hayashi tracks
- 7. PMS classification

 - I. T Tauri stars
 II. Weak line T Tauri stars
 III. FU Orionis stars
 IV. Herbig AeBe stars

Definitions

- A protostar is the object that forms in the center of a collapsing cloud, before it becomes (optically) visible.
- A pre-main sequence star is optically visible and has no central hydrogen burning
- As soon as hydrogen burning starts, the object is called a star (main sequence star).

1. Timescales

Timescales

Free-fall timescale:

$$t_{\rm ff} = \sqrt{\frac{3\pi}{32G\rho}} \approx \sqrt{\frac{1}{G\rho}}$$

Kelvin-Helmholtz timescale:
$$t_{\rm KH} = \frac{U_{\rm grav}}{L_*} = \frac{3}{5} \frac{GM_*^2}{R_*L_*}$$

Accretion timescale:

$$t_{\rm acc} = \frac{M_{\rm core}}{\dot{M}}$$

 $t_{f\!f} \ll t_{\rm KH}$ or $t_{\rm acc}$ the free-fall timescale is much shorter than the other two

1. Timescales

Timescales

We can distinguish two cases:

 $t_{\rm KH} \gg t_{\rm acc}$

Stellar interior does not adjust thermally as new matter get piled onto the top. Luminosity is generated at the surface by accretion shock. This is the 'protostellar phase'.

 $t_{\rm KH} \ll t_{\rm acc}$

Star evolves toward main sequence on a thermal timescale, the contraction is slow; luminosity is generated by contraction. This is the 'pre-main sequence phase'.

Using $\dot{M}\sim \frac{c_s^3}{G}\sim 1.6\times 10^{-6}~{
m M_\odot~yr^{-1}}$ (Shu inside-out collapse),

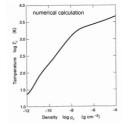
the timescale for forming a 1 M_{\odot} star from a 10 K cloud is 6.3 x $10^5 \ yr.$

2. Early growth and collapse

The protostar

Isothermal approximation no longer valid, because the central core becomes optically thick to its own radiation

- The central temperature rises steadily
- The internal pressure stabilizes the core
- + The core grows through accretion until it reaches R~5 AU and M~5x10^2 M_{\odot}


2. Early growth and collapse

The protostar

From the virial theorem, we can derive an estimate of the core temperature

$$\begin{array}{rcl} U_{\rm grav} & = & -\frac{3}{5}\frac{GM_{*}^{2}}{R_{*}} \\ \\ = -2U_{\rm therm} & = & -2\frac{3}{2}\frac{kTM_{*}}{\mu m_{\rm H}} \end{array}$$

$$T = \frac{m}{5k} \frac{GM_*}{R_*} \approx 520~K \left(\frac{M_*}{5 \times 10^{-2}~{\rm M_{\odot}}}\right) \left(\frac{R_*}{5~{\rm AU}}\right)^{-1}$$

2. Early growth and collapse

The H₂ thermostat

At temperatures >2000 K, collisions can dissociate H₂

$$\Delta E(H_2 \text{ diss}) = -4.48 \text{ eV}$$

 $E_{kin} = 0.74 \text{ eV}$

=> most of the gravitational contraction energy can be absorbed through the dissociation of a small fraction of the total H_2

Central zone of atomic H spreads outward until the adiabatic index γ is pushed below 4/3 $\,$ => unstable configuration, second collapse phase

2. Early growth and collapse

The second core

During the second collapse, as ρ reaches ~10^2 g/cm³ hydrogen can be ionized => γ again pushed above 4/3

=> second stable core which reaches 0.01 - 0.02 M_{\odot} in less than 100 yr

The protostar grows to its final mass during the 'protostellar phase', where $t_{\rm KH}$ " $t_{\rm acc}$

What is the protostars maximum size and luminosity?

2. Early growth and collapse

The protostar

Using the virial theorem $U_{
m therm} = -1/2\,U_{
m grav}$

energy conservation yields:
$$-\frac{1}{2}~\frac{3}{5}~\frac{GM_*^2}{R_*} + E_{\rm int} + L_{\rm rad}t = 0$$

 $L_{
m rad}$ - energy radiated away over a timescale t

 $E_{\rm int}$ - internal energy of the gas

 $E_{\rm int}$ at t =0 is zero (very large cold cloud), and later given by H₂ dissociation (4.48 eV) and H,He ionization (13.6, 75 eV)

$$\Delta E_{\rm int} = \frac{XM_*}{m_{\rm H}} \left[\frac{\Delta E_{\rm diss}({\rm H_2})}{2} + \Delta E_{\rm ion}({\rm H}) \right] + \frac{YM_*\Delta E_{\rm ion}({\rm He})}{4m_{\rm H}}$$

where \boldsymbol{X} is the mass fraction of hydrogen and \boldsymbol{Y} that of helium

2. Early growth and collapse

The protostar

Energy conservation yields:

$$-rac{1}{2} \; rac{3}{5} \; rac{GM_{*}^{2}}{R_{*}} + E_{
m int} + L_{
m fall} t = 0$$

and hence

$$R_{\rm max} = \frac{3}{10} \frac{GM_{*}^2}{\Delta E_{\rm int}} = 36~R_{\odot} \left(\frac{M_{*}}{\rm M_{\odot}}\right)$$

Observed radii of pre-main sequence stars (T Tauri stars) are ~1 order of magnitude smaller $\Rightarrow \Delta E_{\rm int} < -\frac{1}{2} \; \frac{3}{5} \; \frac{G M_*^2}{R_*} \; \cdot \quad \text{and we can neglect it}$

=>
$$\Delta E_{
m int} < -rac{1}{2} \; rac{3}{5} \; rac{G M_{*}^2}{R_{*}}$$
 and we can neglect it

Then we obtain an estimate for the luminosity $~L_{
m acc}~=~{1\over 10}{GM_*\over R_*}\dot{M}$

$$L_{\rm acc} \approx 18 L_{\odot} \left(\frac{\dot{M}}{10^{-5} {\rm M}_{\odot} {\rm yr}^{-1}} \right) \left(\frac{M_{*}}{{\rm M}_{\odot}} \right) \left(\frac{R_{*}}{5 {\rm R}_{\odot}} \right)^{-1}$$

2. Early growth and collapse

The protostar

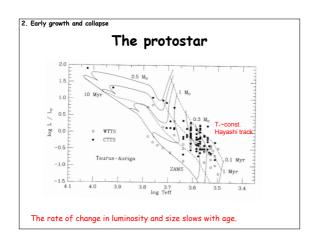
$$L_{\rm acc} ~\approx ~ 18~L_{\odot} \left(\frac{\dot{M}}{10^{-5}~{\rm M}_{\odot}~{\rm yr}^{-1}}\right) \left(\frac{M_*}{{\rm M}_{\odot}}\right) \left(\frac{R_*}{5{\rm R}_{\odot}}\right)^{-1}$$

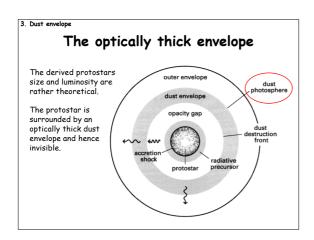
What do we learn from this?

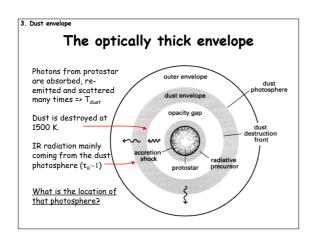
Radiative energy loss directly connected to contraction

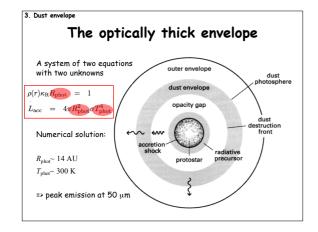
$$L_* = 4\pi R_*^2 \sigma T_*^4$$

$$L_{\star} = 4\pi R_{\star}^{2} \sigma T_{\star}^{4}$$
 $T_{\star} = \left(\frac{L_{\star}}{4\pi\sigma R_{\star}^{2}}\right)^{1/4} \approx {\rm constant}$ (assumption)
$$L_{\star} = L_{0} \frac{R_{\star}^{2}}{R_{0}^{2}}$$

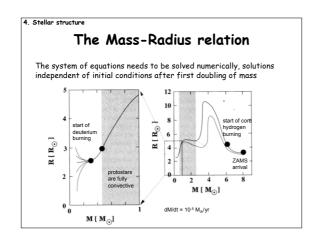

$$L_* = L_0 \frac{R_s^2}{R_s^2}$$

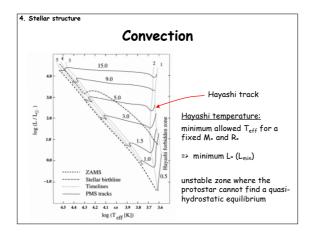

$$L_* \ = \ L_0 \left(\frac{7}{3} \frac{t L_0 R_0}{G M_*^2} \right)^{-2/3} = L_0 \left(\frac{7}{5} \frac{t}{t_{\rm KH}} \right)^{-2/3}$$


The rate of change in luminosity and size slows with age.


2. Early growth and collapse The protostar

The rate of change in luminosity and size slows with age.





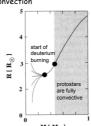
4. Stellar structure						
T. Stellar Structure	The basic equations					
$rac{\partial M_r}{\partial r}$		Mass continuity				
$\frac{\partial P}{\partial r}$	$=$ $-\frac{G\rho(r)M_r}{r^2}$	Hydrostatic equilibrium				
	$= \frac{\rho(r)}{\mu}RT$	Equation of state				
$\frac{\partial T_r}{\partial r}$	$= L_r \left[\frac{\kappa \rho(r)}{16\pi r^2 \sigma T_r^3} \right]$	Energy transport				
$rac{\partial L_{ m int}}{\partial r}$	$= 4\pi r^2 \rho \left(\underbrace{\epsilon(r)}_{\text{nuclear energy}} - \underbrace{T \frac{\partial s}{\partial t}}_{\text{contraction}} \right)$	Energy generation (heat equation)				
	generation of protost Entropy for a monoatomic gas	ar				

1. Stellar structure					
The basic equations					
Boundary conditions:	$\frac{\partial M_r}{\partial r} = 4\pi r^2 \rho(r)$				
at the center of the protostar $M(0) = 0$	$\begin{split} \frac{\partial M_r}{\partial r} &= 4\pi r^2 \rho(r) \\ \frac{\partial P}{\partial r} &= -\frac{G \rho(r) M_r}{r^2} \\ P(r) &= \frac{\rho(r)}{\mu} RT \\ \frac{\partial T_r}{\partial r} &= L_r \left[\frac{\kappa \rho(r)}{16\pi r^2 \sigma T_s^3} \right] \\ \frac{\partial L_{\rm int}}{\partial r} &= 4\pi r^2 \rho \left(\epsilon(r) - T \frac{\partial s}{\partial t} \right) \end{split}$				
$L_{\rm int}(0) = 0$	$\frac{\partial T_r}{\partial r} = L_r \left[\frac{\kappa \rho(r)}{16\pi r^2 \sigma T_r^3} \right]$				
at the surface of the protostar	$\frac{\partial S_{\rm int}}{\partial r} = 4\pi r^2 \rho \left(\epsilon(r) - T \frac{\partial S}{\partial t} \right)$				
$P = \rho v_{\rm ff}^2 = \frac{\dot{M} R_*^{-3/2}}{4\pi \sqrt{2GM_*}} \frac{2GM_*}{R_*} = \frac{\dot{M}}{4\pi} \ . \left(\frac{2GM_*}{R_*^5}\right)^{1/2}$					
pressure should approach ram pressure of infalling gas					
protostars luminosity $L_* = L_{ m acc} + L_{ m int}$					
sum of accretion and internal luminosity					

Convection He is the main opacity source in the photosphere of protostars He opacity highly temperature dependent (for T < 10⁴ K) => valve that regulate the stellar surface temperature ## Hayashi temperature: minimum allowed Teff for a fixed Me and Resident immediately imminimum Le (Lmin) (HR diagram) ## Continuation of the transported by radiation ## Land Continuation of the transported by radiation of the transported

4. Stellar structure

Deuterium burning


106 K: $^2D + ^1H \rightarrow ^3He + \gamma$

- Mass accretion provides steady supply of fuel
- Energy generation through D fusion drives convection
- Mixing of new fuel to the center
- keeps T of core very stable

=> D fusion regulates Mass-Radius relation

$$L_{\rm D} \sim 12~{\rm L_{\bigodot}}~(M_{\rm acc}/10^{\text{-}5}~{\rm M_{\bigodot}/yr})$$

However, often dM/dt not enough to keep up with consumption

4. Stellar structure

Lithium destruction

2.5 106 K: $^{7}\text{Li} + {}^{1}\text{H} \rightarrow {}^{4}\text{He} + {}^{4}\text{He}$

Stars smaller than 0.9 M_{\odot} are fully convective and quickly destroy entire ^{7}Li reservoir.

More massive stars cease to be fully convective before entire ${}^{7}\mathrm{Li}\:\text{is}$ destroyed.

=> Observations of Li in pre-main sequence stars are a powerful test of pre-main sequence stellar structure and evolution models.

4. Stellar structure

Hydrogen ignition

Once D fusion cease in the core, protostar collapses further until $\rm T_{\rm c}$ large enough to start hydrogen burning.

107 K:
$${}^{1}\text{H}(p,e^{+}\nu){}^{2}\text{D}(p,\gamma){}^{3}\text{He} < {}^{3}\text{He}({}^{3}\text{He},2p){}^{4}\text{He}$$
 ${}^{7}\text{Be}(e^{-},\nu\gamma){}^{7}\text{Li}(p,\alpha){}^{4}\text{He}$ ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ ${}^{7}\text{Be}(p,\gamma){}^{8}\text{Be}(e^{+}\nu){}^{8}\text{Be}(2\alpha)$

1.5 10^7 K: CNO cycle (C, N, O conversion into 14 N)

The star has reached the ZAMS.

5. Magnetospheric accretion

Theory

Accretion drives the protostellar structure and evolution !

How does accretion work?

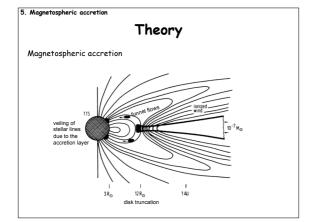
And how large is dM/dt?

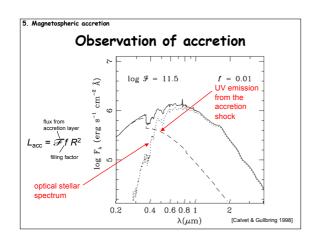
Initial phase: $\mbox{ accretion occurs through the envelope onto the core (very short phase)}$

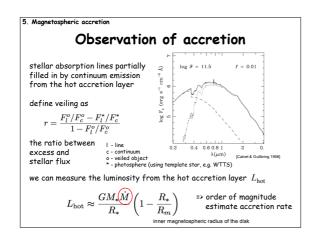
Later phase: accretion occurs through the disk onto the protostar

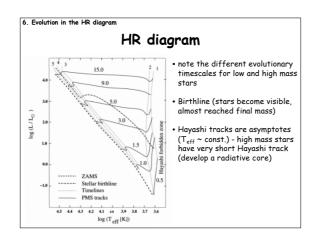
Let's briefly look at the disk accretion.

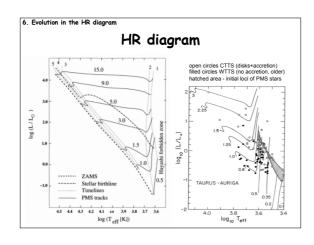
5. Magnetospheric accretion

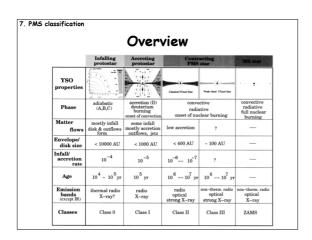

Theory


Disk accretion through angular momentum transport






- the angular velocity is decreasing outwards.
- in the presence of friction or communication between two neighboring annuli, resulting torques try to bring them into corotation.
- gas in the outer annulus accelerates, gas in the inner annulus decelerates.
- inner annulus looses angular momentum to the outer one

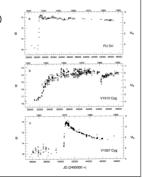


T Tauri stars • named after the protoype T Tau • strong Balmer emission, association with reflection nebula and molecular clouds • low mass stars with spectral type F-M (3000-7000 K) • classII sources (SED peaks between 1 and 10 µm) • large spread of disk masses: 0.0003 - 1 M_☉ (median 0.01 M_☉)

7. PMS classification

Weak line T Tauri stars

- + young low mass stars associated with star forming region, but without strong $H\alpha$ emission ($W_{H\alpha}$ 10 Å)
- Class II sources (SED shows no strong near IR excess)
- no clear accretion signatures (inner optically thick disk disappeared)

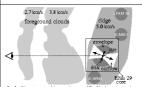

=> most likely the older counterparts of WTTS

7. PMS classification

FU Orionis stars

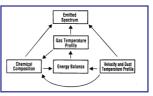
- spectral type F-G (6000-7000 K)
- periodic optical outbursts of several magnitudes
- rising timescale ~1 yr
- decline timescale ~50-100 yr

⇒ episodes of increased mass accretion (dM/dt ~ 10-4 M_☉/yr), possibly related to dynamical instabilities


7. PMS classification

Herbig AeBe stars

- intermediate mass stars with spectral type B0-early F with emission lines (e.g. strong $\mbox{H}\alpha)$
- SED shows strong IR excess
- more massive counterparts of T Tauri stars
- shorter evolutionary timescales than T Tauri stars


$\begin{tabular}{ll} GAS\ DIAGNOSTICS\ (1/2)\\ The gas\ associated\ with\ forming\ stars\ has\ densities\ and\ temperature\ covering\ a \\ \end{tabular}$ relatively large range: from 10 to few thousands Kelvins, and from 10^2 to 10^{11} cm⁻³, respectively. Different molecular lines can be used to probe the gas in different physical conditions namely in different regions H₂ - Mid J Rotat, Emissi of the protostar. The figure on the protostar in the figure on the pright shows the lines typically used to probe the different density and temperature 106 and temperature Molecular I 108 regimes. 30 100 300 1000 3000 Kinetic Temperature [K]

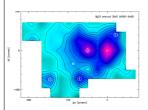
GAS DIAGNOSTICS

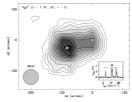
As discussed in Chapter 5, the emergent line flux depends on the chemical abundance of the species, the gas temperature and density, the dust continuum emission, and the gas velocity field. Using appropriate molecular lines one can, hence, reconstruct the structure of the emitting region. This is a very difficult but feasible task.

The usual situation is shown in the left figure: the protostar is embedded in the parental cloud, and perhaps other clouds lie between us and the protostar. In principle, the observed line is due to the emission from all the components in the line of sight: clouds + envelope + disk + outflow. The chemical differentiation and the different velocities associated with each component help to disentangle them.

CLASS 0 SOURCES (1/3): DEFINITION

The Class 0 sources were discovered at the beginning of 90s when the large ground based telescopes like IRAM or JCMT became available. They are defined as low luminosity sources, with a proved central object, centrally condensed envelope, and whose luminosity in sub-millimeter to millimeter wavelengths L_{submm} is an important fraction of the bolometric luminosity L_{bol} . $L_{\text{submm}}/L_{\text{bol}} > 0.5\%$.

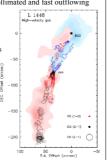

whose luminosity $L_{\rm boil}$. $L_{\rm submm}$ is an important fraction of the bolometric luminosity $L_{\rm boil}$. $L_{\rm submm}$ $L_{\rm boil} > 0.5\%$. This phenomenological classification is meant to correspond to a physical state: the mass of the inner hidden object is lower than the mass of the surrounding envelope. In the literature, other criteria have also been proposed and used, as, for example, the bolometric temperature.


Dolometric temperature.

The goal of all the proposed criteria has been to identify the proprieties of protostars in the so-called "main accretion phase", i.e. the phase where the future star acquires the bulk of the mass. At present, something less than 100 protostars have been censed, all of them in clouds closer than about 400pc from the Sun.

CLASS 0 SOURCES: APPEARENCE

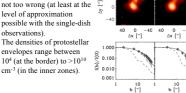
The prototype of the Class 0 sources is IRAS16293-2422, which lies in L1689N, a small molecular cloud in the ρ Ophiuchus complex (at ~120-160pc). The figure on the left shows a map of the H₂CO emission towards L1689N. The cloud harbors two protostars, marked by the stars in the figure: IRAS16293-2422 (at coordinates 0,0) and a colder protostars called 16293E, South-East. The figure in the right shows the same region in the N₂H⁺. Note that while IRAS16293 « shines » in H₂CO, the other source, colder (and likely younger) does not. The situation is totally reversed in the N_2H^+ line, for N_2H^+ is copiously formed in cold gas.

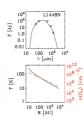


CLASS 0 SOURCES: OUTFLOWS

In addition to that in direction of IRAS16293-2422, there are other peaks of $\mathrm{H}_{2}\mathrm{CO}$ emission. They are associated with the shocks at the interface of the gas outflowing from IRAS16293 and the parental cloud gas. Highly collimated and fast outflowing

gas, giving rise to « bright » shocks, are indeed a distinct propriety of Class 0 sources. The shocks of the outflow are characterized by the emission from plenty of molecules, which are not detected in cold molecular clouds. SiO is one of the first, and most used molecules to probe the outflows. In fact, in molecular clouds Silicon is almost completely trapped in the dust grains, but the shocks can destroy the grain mantles, and if violent enough, also shatter the grain cores. When this occurs, Si is released into the gas, where it is readily oxidized to form SiO (following a formation route similar to that of CO). The figure on the right shows a map in the SiO 2-1 line around the Class 0 source L1448-mm. Note the outflow probed by the SiO emission: it is very collimated and possess the typical bipolar morphology

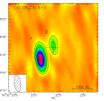



DENSITY PROFILE: Observations

OBSERVATIONS: continuum emission

Usually, the density profile of a protostar is derived by observations of the dust continuum emission: the Spectral Energy Distribution (SED) and the maps in the millimeter/sub-millimeter wavelength range. A typical example is shown in the figures below. By simultaneously fitting the maps at 450 and 850mm and the SED one derives the density structure of the lower right panel of the figure (dashed line), approximated by a power law. Typically, power law indexes of ~2 are found in low mass Class 0

protostars, suggesting that the "inside-out" picture is not too wrong (at least at the level of approximation possible with the single-dish observations). The densities of protostellar envelopes range between



INNER ENVELOPES AND HOT CORINOS

INNER ENVELOPES AND HOT CORINOS

In the inner envelopes, namely the zone of the protostellar envelopes where the dust reaches the mantle sublimation temperature (~90 K), the grain mantles sublimate injecting their components in the gas phase. It is now believed, but still far to be confirmed, that molecules like formaldehyde and methanol are synthesized on the grain surfaces, and that, when in the gas phase, these molecules start a "new" chemistry favored by the large temperature (>100 K), called hot gas chemistry. The result is the formation of several complex organic molecules not observed (or with a very low abundance) in cold molecular clouds: acid formic, methyl formate, cyanil vynile etc. These regions were discovered in 90s in massive star forming regions, and only more recently in low mass protostars. The have been named hot cores in the first case, and hot

have been named *hot cores* in the first case, and *hot corinos* in the second, to emphasize the different Estimated typical densities in the hot corinos range from 10⁷ to 10⁹ cm⁻³, and the radius are predicted to analy one hot corino with measured radius, though, that of IRAS16293-2422, obtained with interferometric observations (figure on the right).

