
Chapter 7

Viscous Accretion Disks

The following four chapters focus on the physics and chemistry of protoplanetary disks. As outlined in the
introduction, the original idea of a protosolar nebula — the so-called ’Urnebel’ — dates back to Kant &
Laplace in the 18th century. The confirmation that such disks indeed exist and that they are a common
by-product of star formation dates back to the late 80’s and early 90’s, when the first mm images (Beckwith
et al. 1986, Sargent & Beckwith 1987, Rodriguez et al. 1992) and spectroscopy (e.g. Koerner et al. 1993) of
such disks were taken (Fig. 11.1). The mm dust emission revealed the extended structures around young stars
and the double peaked line profiles were proof of the regular Keplerian rotation pattern. The launch of the
Hubble Space Telescope in 1990 opened a new window for research on protoplanetary disks. The high spatial
resolution from space enabled the detailed imaging of the Orion nebula, a star forming region at a distance of
450 pc (ODell et al. 1992). These images were taken with the Wide Field Camera in several optical narrow
band lters such as Hα, [O iii], [O i] and [S ii]. This data shows not only that such protoplanetary disks are
ubiquitous around newly formed stars (50% of stars show disk detection), but reveals also the impact of disk
irradiation and erosion by nearby hot O and B stars.

Figure 7.1: In each panel, the full-width at half-maximum of the synthesized beam is shown at top left,
and offsets in arcseconds from the stellar position are indicated along the vertical and horizontal axes. (a)
Thermal continuum from dust grains, at wavelength λ = 1.3 mm. The flux density (F ) scale is shown at
the top of the panel. (b) CO(2-1) emission, integrated across the full velocity range (+2.4 to +7.6 km s−1)
in which emission is measured above the 3σ level. The scale at the top of the panel provides the integrated
inensities (Sdv). (c) Intensity-weighted mean gas velocities at each spatial point of the structure shown in
b. The stellar (systemic) velocity, Vlsr ≈ 5.1 km s−1, is represented by green. Blue-shifted (approaching)
and red-shifted (receding) velocity components are shown as blue and red, respectively. The star symbol
indicates the position of MWC480 (figure and caption from Mannings et al. 1997).
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In Sect. 5.5, we described already briefly the formation of an accretion disk that accompanies the proto-
stellar collapse. This chapter will focus on the formation of the disk, the radial and vertical structure of the
disk, the transport of angular momentum — a prerequisite for accretion of material onto the star — and
jets & outflows. Many of the basics of accretion disks are covered in the review article by Pringle (1981).
An extensive description is also given in chapter 3 of Armitage (2010).

7.1 Disk formation

Figure 7.2: Schematic view of disk formation during the
collapse of a rotating spherical cloud.

Sect. 4.2.4 describes how a flat disk forms during
the collapse of a rotating cloud. Since the sim-
ple collapse problem outlined there is spherically
symmetric and the rotation itself axisymmetric,
the trajectories of infalling material from the top
are mirrored at the equatorial plane. The infalling
fluid elements, which follow parabolic trajectories,
thus collide in the equatorial plane with matter
coming from the other side of the cloud. An accre-
tion shock forms where the material collides and
this accretion shock extends over the entire cen-
trifugal radius rc. If the excess heat energy from
the shock can be efficiently radiated away, a thin
disk structure forms in the equatorial plane (Fig. 8.2).

The disk is supported against gravity by its rotation, but also to a lesser extent by the gas pressure
gradient. To first order we can thus approximate the orbital velocity of the gas by the Keplerian orbital
speed

vΦ = ΩKr =
�

GM∗
r

. (7.1)

We call ΩK the Kepler frequency

ΩK =
�

GM∗
r3

. (7.2)

In the shock and subsequent cooling process, the vertical component of the infalling velocity is dissipated,
so that the material within the disk is left with the parallel component of its infalling velocity vr (see Fig. 8.2).
However, this remaining radial velocity is not necessarily equal to the Keplerian velocity at the point where
the material falls onto the disk. This causes some additional mixing and angular momentum transport within
the disk upon until its angular momentum and mass is redistributed in such a way that we end up with a
disk in nearly Keplerian rotation. The point at which the infalling material hits the disk depends entirely
on its initial angular momentum, so its position within the cloud.

7.2 Disk structure

For deriving the general equations of disk structure, we follow the motion of an annulus of the disk and use
the vertically integrated form in all equations, i.e. the surface density Σ instead of the physical density ρ.
Matter can flow into the annulus and out of it with a velocity vr.

We consider in the following an axisymmetric disk and assume that the surface density can be written
in the general form of Σ(r, t), which is an integral of the mass density ρ(r, z) over the disk height z

Σ(r, t) =
� ∞

−∞
ρ(r, z)dz . (7.3)
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Then the vertically integrated continuity equation reads as

r
∂Σ
∂t

+
∂

∂r
(rΣvr) = 0 (7.4)

and the vertically integrated conservation of orbital angular momentum becomes
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2ΩΣ
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∂
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2Ω · rΣvr

�
=

1
2π

∂G

∂r
. (7.5)

The two velocity components are vr and vΦ = rΩ. The angular momentum of a thin annulus of the disk is
2πr ∆r Σ r

2Ω, where ∆r is the width of the annulus. The term on the right hand side of Equation 8.5 arises
from the viscous torques in the disk.

We briefly revisit here the concept of a torque. A force that acts on the mass center of a body will cause
a straight motion. If the same force acts on a point off the mass center, the body will start to rotate as well.
The torque is then the product of the force F and the lever, i.e. the distance from the mass center r

G = rF sin θ (7.6)

where θ is the angle between the force vector and the lever vector. The accretion disk is not rotating as a
solid body and so we can apply the concept of torque on each annulus in the disk. The neighboring annulus
will exert a force on it proportional to the difference in orbital velocities, the orbital velocity gradient dΩ/dr.
The force is called the shear force or viscous force.

The rate of shearing due to the orbital velocity gradient can be written as

A = r
dΩ
dr

, (7.7)

which has the units of s−1. Without describing yet the details of the viscosity or angular momentum
transport, we note that

G = 2πr · νΣr
dΩ
dr

· r = 2πr
3
νΣ

dΩ
dr

. (7.8)

Here, ν is the kinematic viscosity and G is the torque exerted on an annulus in the disk. It is the product
of the circumference, the viscous force per unit length (νΣA = νΣr dΩ/dr) and the lever r.

Using the expression for the torque G, we can rewrite Eq.(8.5) as
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We can now use the continuity equation (Eq.8.4) to eliminate the time dependance and simplify this to
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. (7.10)

The derivatives of Ω can be worked out, if we assume that the orbital frequency equals the Kepler frequency
ΩK. Then, this equation yields an expression for the radial velocity in the disk

vr = − 3
Σ
√
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νΣ
√

r
�

. (7.11)

Alternatively, we can insert Eq.(8.10) into Eq.(8.4) to eliminate vr and obtain
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If we assume again that Ω = ΩK, we can simplify this to
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. (7.13)
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7.2.1 Steady state disk structure

In steady state, the disk structure follows from radial and angular momentum conservation and the assump-
tion that the vertical component of gravity from the star is balanced by the vertical gas pressure gradient
(vertical hydrostatic equilibrium). We study for this a disk annulus at a distance r from the star. Mate-
rial can flow into and out of the annulus with the velocity vr in radial direction. The radial momentum
conservation equation for a steady-state flow is

vr

∂vr

∂r
−

v
2
φ

r
+

1
ρgas

∂P

∂r
+

G M∗
r2

= 0 , (7.14)

where vr is the radial velocity of the gas, vφ is the circular velocity, and M∗ is the mass of the central star.
The gas sound speed is defined as c

2
s

= ∂P/∂ρgas, where P is the gas pressure and ρgas is the gas density.
For an ideal gas, cs =

�
k Tg/(µmp). Here, k is the Boltzmann constant, Tg is the gas temperature, µ is the

mean molecular weight of the gas, and mp is the proton mass. The four terms in the above equation arise
from radial mass flow, centrifugal force, gas pressure, and gravity. Since pressure typically decreases with
increasing radius, the third term is nearly always negative; effectively, gas pressure resists the gravitational
force, resulting in gas rotating at sub-Keplerian orbital velocities.

Following (Eq. 8.5) and using the expression for the the torque G, the angular momentum conservation
equation becomes
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2Ω
�

=
∂

∂r

�
ν Σ r

3 dΩ
dr

�
, (7.15)

where the left-hand side is the radial change in angular momentum and the right-hand side arises from the
viscous torques. Integrating this equation yields the following expression

νΣ
dΩ
dr

= ΣvrΩ +
C

2πr3
. (7.16)

Evaluating this equation at the point where the shear, r dΩ/dr, vanishes, yields an expression for the inte-
gration constant

C = −2πΣvrΩr
3 = − (2πrΣvr) r

2Ω = Ṁr
2Ω . (7.17)

Here, Ṁ = 2πrΣ(−vr), because in an accretion flow, the radial velocity is inward and thus negative. For
simplicity, we assume that the disk extends down to the star. Then, the shear vanishes close to the star for

C = Ṁ

�
GM∗R∗ (7.18)

The integration constant can thus be seen as the influx of angular momentum through the disk. With this
and Ω = ΩK =

�
GM∗/r3, the disk surface density becomes

Σ =
Ṁ

3 π ν

�
1−

�
R∗
r

�
, (7.19)

for radii much larger than the stellar radius.

7.2.2 Vertical disk structure

The vertical (z-direction) disk structure is found by solving the equation of hydrostatic equilibrium,

1
ρgas

∂P

∂z
=

∂

∂z

�
G M∗√
r2 + z2

�
. (7.20)

If the disk is vertically thin (z � r) and the gas temperature does not depend on z (i.e. a vertically isothermal
disk), Equation 8.20 can be integrated to give the vertical density structure,

ρgas(r, z) = ρc(r) e
−z

2
/(2 H

2
gas) , (7.21)
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where ρc(r) is the density at the disk midplane. The gas scale height is

Hgas =
�

kTc r3/(µmpG M∗) , (7.22)

where Tc is the midplane gas temperature. This equation shows that the gas scale height is the ratio of the
gas sound speed to the angular velocity (Hgas = cs/Ω).

7.2.3 Radial disk structure

Having found an expression for the scale height, we return to the radial disk structure and write Equation 8.19
using r � R∗ as

Σ =
µmp

√
G M�

3 π k

Ṁ

α Tc r3/2
. (7.23)

Here we used the relation ν = αcsh which will be introduced later in Sect. 8.4.2 after a detailed discussion
of the viscosity in disks. For a disk with a simple power-law midplane temperature profile, Tc ∝ r

−q, the
surface density is proportional to r

q−3/2, thus a simple power law of radius. Further, the midplane density
may be written as

ρc � Σ/Hgas = ρin (r/rin)�
, (7.24)

where ρin is the density at the inner disk radius and the exponent � equals 3
2q− 3. Assuming a simple power

law for the temperature profile is a first guess, but is there actually a way to determine the temperature
profile within an accretion disk?

7.2.4 Temperature profile of an accretion disk

In an accretion disk, the energy generation is predominantly through viscous torques, G. The net torque on
a disk annulus is equal to the difference between the torque on the outer and inner surface

G(r + ∆r)−G(r) =
∂G

∂r
∆r . (7.25)

The energy generated by this torque is then

Ω
∂G

∂r
∆r =

�
∂

∂r
(GΩ)−G

dΩ
dr

�
∆r (7.26)

The first term is simply GΩ|rout −GΩ|rin and thus given by the disk boundary conditions. The second term
describes the local energy dissipation and thus the heat generation in the disk. We assume that this energy
is radiated away and thus the rate of dissipation per disk surface area (2πr∆r; additional factor 2 due to
the two sides of the disk) is

Ė = −G dΩ/dr

4πr
(7.27)

= −1
2
νΣ

�
r
dΩ
dr

�2

=
9
8
νΣΩ2

For this, we assumed that the disk has a Keplerian rotation profile Ω =
�

GM/r3. Using the relation found
between the mass accretion rate and the viscosity, Ṁ = 3πνΣ for r � R∗, we can eliminate the viscosity
from this equation

Ė =
3
8π

ṀΩ2
. (7.28)
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If the disk emits as a black body, we can write Ė as σT
4
disk with σ being the Stefan-Boltmann constant. This

yields a temperature profile of

Tdisk =
�

3
8πσ

ṀΩ2

�1/4

, (7.29)

thus a r
−3/4 profile. We see that the disk temperature does not depend on the viscosity. The implicit

assumption here is that the viscosity of the disk corresponds to its accretion rate, an observable quantity.
Hence we do not need to know the details of the angular momentum transport to describe the disk structure.
Using a typical observed accretion rate for young T Tauri stars (M∗ = 1 M⊙) of 10−7 M⊙/yr, we obtain a
disk temperature of 150 K at a distance of 1 AU.

7.3 Disk evolution

Figure 7.3: The viscous evolution of a ring of matter of
mass m. The surface density Σ is shown as a function
of the dimensionless radius x = r/r0, where r0 is the
initial radius of the ring, and of dimensionless time τ =
12νt/r

2
0, where ν is the viscosity (caption and figure

from Pringle 1981).

Using Equation 8.4, we have eliminated vr in
Equation 8.5 and obtained from the latter an equa-
tion that describes the temporal evolution of the
surface density of the disk
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��

. (7.30)

We can see that this equation has the form of a
diffusion equation

∂f

∂t
= D

∂
2
f

∂x2
, (7.31)

with a diffusion coefficient D. Fig. 8.3 illustrates
the viscous evolution of the surface density of a
ring of matter in the disk. Initially at τ = 0, all
matter resides in a narrow ring of mass m at radius
r0 (radial distance from the star)

Σ(r, t = 0) =
m

2πr0
δ(r − r0) , (7.32)

with the Dirac delta function δ(r − r0). With time, the mass initially contained in a narrow ring, spreads
out to both sides of the initial ring. Most of the mass moves inward, while some smaller amount of mass
moves out to larger radii to take up the angular momentum.

If we parametrize the viscosity as a power law of radius

ν ∝ r
γ

, (7.33)

we can obtain the self-similar solution of a spreading disk also derived by Lynden-Bell & Pringle (1974).
We assume that the initial surface density profile is that of a steady-state disk with an exponential cutoff at
r = r1 (the scaling radius)

Σ(r̃, t = 0) =
C

3πν(r1)r̃γ
exp(−r̃

2−γ) , (7.34)

where r̃ ≡ r/r1. Without the details of derivation, the solution has then the form

Σ(r̃, t) =
C

3πν(r1)r̃γ
θ
−(5/2−γ)/(2−γ) exp

�
− r̃

2−γ

θ

�
. (7.35)
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Figure 7.4: The self-similar solution to the disk evolu-
tion equation is plotted for a viscosity ν ∝ r. The initial
surface density tracks the profile for a teady-state disk
(Σ ∝ r

−1, Eq. 8.23 for Tc ∝ r
−1/2) at small radii, before

cutting off exponetially beyond r = r1. The curves show
the surface density at the initial value of the scaled time
variable θ = 1 and at subsequent times θ = 2, θ = 4,
and θ = 8 (caption and figure from Armitage 2010).

Figure 7.5: Evolution of star mass M∗ and disk mass
Mdisk as a function of time with masses in solar units
(corresponding axis to the left) for a viscosity α = 0.01.
The accretion rate onto the central star is shown as a
dotted line (corresponding axis: rst to the right). The
evolution of the centrifugal radius rc (labelled for some
reason Rd in the plot) is shown as a dash-dotted line
(corresponding axis: far-right and units are AU not
UA). Gray curves and the hashed region indicate time
sequences when selected observational constraints are
veried (from Hueso & Guillot 2005).

Here, the scaled time variable θ is related to ts,
the viscous scaling time, through

θ =
t

ts
+ 1 (7.36)

ts =
1

3(2− γ)2
r
2
1

ν(r1)
.

The solution is plotted in Fig. 8.4 for three subse-
quent timesteps θ = 2, 4, and 8. As time evolves,
the mass of the disk decreases. A large fraction of
the mass is accreted onto the star, while a small
fraction moves outwards (viscous spreading of the
disk) taking along all the angular momentum.

A recent simulation of the disk formation and
viscous spreading phase has been done by Hueso
& Guillot (2005). Fig. 8.5 shows the viscous evolu-
tion of a star + accretion disk system with realis-
tic input parameters. The figure shows thick grey
lines superimposed on each plotted quantity. Each
one shows the range of time for which that quan-
tity agrees with the available observations. This
example shows how an 800 AU disk can be formed
by viscous diffusion of an initially much smaller
disk, with a centrifugal radius rc = 11 AU. At the
end of the simulation, the star has almost acquired
its final mass (here 0.5 M⊙ at 10 Myr). The disk
mass grows until a few times 105 yr. After that
the initial cloud has largely dispersed and now the
disk material slowly accretes onto the star.

7.4 Angular momentum
transport

The specific angular momentum, which is the an-
gular momentum per unit mass, stored in a 1 M⊙
disk with a size of 10 AU is 3 × 1053 cm2/s. On
the other hand, a 1 M⊙ star rotating at break-
up velocity has a specific angular momentum of
6 × 1051 cm2/s. Hence, the original angular mo-
mentum of the disk is 50 times higher than the
maximum allowed for a star. Since angular mo-
mentum is strictly conserved, there needs to be a
process that actually transports angular momen-
tum away to prevent it from accumulating on the
star. The main possibilities are a torque from the
external medium (e.g. magnetic fields), viscosity inside the disk transporting angular momentum to the outer
disk, disk winds taking angular momentum away. In the following, we discuss the basic principle of angular
momentum transport within the disk.

If we assume for a moment that the disk rotates with Keplerian speed and consider only two particles
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with masses m1 and m2, we can write their energy and angular momentum as

E = −GM∗
2

�
m1

r1
+

m2

r2

�
(7.37)

J = m1vΦ,1r1 + m2vΦ,2r2 (7.38)

=
�

GM∗ (m1
√

r1 + m2
√

r2) ,

where r1 and r2 are the corresponding distances of the two masses from the central star with mass M∗. From
the conservation of angular momentum of the total system, it follows that a small change in orbit for one of
the masses requires a corresponding change for the other one
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= −m1

1
2
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r1
(7.39)

∆J1 = −m1
∆r1

2
√
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∆r1√

r1
= −m2

∆r2√
r2

The same of course holds true if we consider two neighboring annuli in the disk.
This process requires a way of connecting the two particles (or rings of material) with each other. So,

what remains to be identified is the source of this coupling. We can consider for example the friction between
the two annuli to be caused by their difference in rotation speed (shear motion). However, since we deal
here with a gas, diffusion plays a role in transporting gas in both directions, inward and outward. We can
hence consider small turbulent random motions as a cause of radial mixing of material and thus as a cause
of coupling the various annuli with the disk.

7.4.1 Turbulent viscosity

We can derive a simple estimate of the molecular viscosity νm through

νm ≈ λcs , (7.40)

where λ is the mean free path of the molecules given by 1
(nσm) , the product of gas particle density n and

collisional cross section σm between the molecules. If we approximate the latter by the typical physical size
of molecules (2× 10−15 cm2), we obtain for a typical distance of 10 AU in the disk a molecular viscosity of

νm =
1

nσm

cs =
5× 104

1012 × 2× 10−15
cm2

/s = 2.5× 107 cm2
/s . (7.41)

If we estimate the corresponding viscous timescale at r = 10 AU

tν =
r
2

νm

≈ 3× 1013 yr (7.42)

we immediately see, that we can rule out molecular viscosity as the main source of turbulent motions in
these accretion disks. The typical disk evolutionary timescale is of the order of a few million years, so more
than ten million times shorter than this molecular viscosity timescale.

The Reynolds number is used in gas dynamics to describe the ratio of inertial forces (resistance to change
or motion) to viscous forces (glue) and thus also to define whether a fluid is laminar or turbulent. The
Reynolds number Re of a typical accretion disk can be estimated as

Re =
V L

νm

, (7.43)
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where V and L are characteristic velocity and length scales in the disk, i.e. U = cs = 0.5 km/s at 10 AU
and L = h = 0.05r = 0.5 AU, where h is the scale height of the gas in the disk (we get back to the vertical
disk structure later). Filling in these numbers, we obtain a Reynolds number of Re ≈ 1010. Hence, in the
presence of some instability, the disk is highly turbulent. The Reynolds number also indicates the ratio
between the largest and smallest scales of fluid motion (sometimes referred to as eddies). The largest scale
fluid motion is set by the geometry of the disk (e.g. its scale height), while the smallest scales are here a
factor ∼ 1010 smaller.

7.4.2 Shakura-Sunyaev viscosity

If molecular viscosity is not large enough to provide a source of turbulence that drives the angular momentum
transport in disks, what else can it be? We need to identify possible instabilities that can cause a turbulence
larger than that caused by the molecular viscosity. Before we go into that discussion, we present here a
very successful idea of parametrizing the viscosity without identifying its source. The idea goes back to
Shakura & Sunyaev (1973) who first proposed the so-called α parameter to measure the efficiency of angular
momentum transport.

Figure 7.6: Two masses in orbit connected by a weak
spring. The spring exerts tension force T resulting in a
transfer of angular momentum from the inner mass mi

to the outer mass mo . If the spring is weak, the transfer
results in an instability as mi loses angular momentum,
drops through more rapidly rotating inner orbits, and
moves further ahead. The outer mass mo gains angu-
lar momentum, moves through slower outer orbits, and
drops further behind. The spring tension increases and
the process runs away (figure and caption from Balbus
& Hawley 1998).

Since the largest turbulent scales will be set by
the geometry of the flow, we can use the vertical
scale height of the gas as a representative scale.
Along the same dimensional analysis scheme, we
can use the sound speed cs as the characteristic
velocity of the turbulent motions. Hence, we can
write the viscosity ν as

ν = αcsh . (7.44)

We can now express the viscosity in terms of the
disk parameters and hence estimate the efficiency
of angular momentum transport and thus mass ac-
cretion onto the central star. It is also very obvious
to estimate how large α should be to reproduce the
observed timescale of disk evolution. The viscous
timescale can be expressed as

τ =
r
2

ν
=

�
h

r

�−2 1
αΩ

. (7.45)

Here, we can fill in 1 Myr as the typical evolution-
ary timescale at 50 AU. In addition, we assume
that the disks are indeed very thin and h/r ∼ 0.05.
This yields an α of 0.02.

7.4.3 MRI

In the presence of magnetic fields, the field lines act like springs connecting different annuli within the disk.
Fig. 8.6 illustrates the basic principle. If a weak pull exists between two masses in adjacent annuli of the
disk, mi and mo, the inner mass element will loose angular momentum and hence drift even further inward,
while the outer mass element gains angular momentum and drifts further outward. The new orbital velocity
of the inner mass element is even higher than before (presuming that Ω decreases with r), while the new
orbital velocity of the outer element is even smaller. This effect thus enhances the velocity difference between
the two masses in adjacent annuli, giving rise to an instability. The instability is generally referred to as
magneto-rotational instability and has been described first by Balbus & Hawley (hence we often refer to it
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as Balbus-Hawley instability). A prerequisite for a magnetized disk to be linearly unstable is that the orbital
velocity decreases with radius

d

dr
(Ω) < 0 , (7.46)

a condition clearly satisfied in Keplerian disks. In addition, the disk needs to be ionized to a certain
degree since neutral gas does not couple efficiently to the magnetic field lines. The critical ionization degree
is ne/ntot ∼ 10−12 to sustain turbulence generation by the magneto-rotational instability (Sano & Stone
2002). We get back to the last point in the section on dead zones.

It is very difficult to assess the amount of viscosity generated by MRI. The only way of measuring α

would be through numerical magneto-hydrodynamical simulations. Disentangling physical and numerical
effects becomes then a challenge. However, from simulations it seems that α could be consistent with a value
of ∼ 10−2 as inferred from observations.

7.4.4 Gravitational instabilities

For massive disks, self-gravity can become important and introduce another sort of instability. In general,
self-gravity will tend to locally clump material together. This process will be counteracted by shear motions
and also local gas pressure. It can be shown that gravity wins this competition if the ”clumping” timescale
is short compared to the time scales on which sound waves cross a clump or shear can destroy it. The three
timescales can be written for a clump of size ∆r and mass m ∼ π(∆r)2Σ as

tff ∼
�

(∆r)3

Gm
∼

�
∆r

πGΣ
(7.47)
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(7.48)

tshear =
1
r
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dΩ
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�−1

∼ Ω−1 (7.49)

Comparing these timescales, the ”Toomre Q” parameter (Toomre 1964) indicating whether the disk is stable
can then be written as

Q =
csΩ
πGΣ

. (7.50)

The disk becomes instable against self-gravity at Q < 1.

7.4.5 Dead zones

Dead zones arise in disks as soon as the ionization degree drops below the critical one ne/ntot ∼ 10−12.
Sources of ionization are collisional ionization, thermal ionization (only in the inner disk rim exposed to
the stellar radiation), X-ray and cosmic ray ionization. The low level of ionization arising from cosmic rays
or X-rays deep inside the disk is sufficient to sustain turbulence through MRI. Cosmic rays can penetrate
column densities of 50 g/cm2 and thus reach the midplane except for the inner few AU in a very massive
disk with a steep surface density profile. X-rays penetrate column densities of ∼ 100 g/cm2. However, stellar
X-rays (coming from the corona) will penetrate the disk radially and quickly reach these column densities.
Only X-rays coming from high above the disk (e.g. from a stellar jet or from the accretion flow onto the star)
can be expected to reach the midplane also at larger radii.

The existence of a dead zone has consequences for the accretion flow through the disk. Since viscosity
drops within the dead zone, material streaming in from larger radii will accumulate in the dead zone. This
has consequences for the density and pressure profile in the disk, causing e.g. a local inversion in the pressure
gradient. Such a pressure gradient inversion can lead to the accumulation of small dust particles, increasing
locally the dust:gas mass ratio in the disk. We get back to this point in the chapters on planetesimal
formation.
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7.5 FU Orionis outbursts

These objects have been previously discussed in Sect. 5 and we briefly summarize some basic information.
FU Orionis stars are variable pre-main sequence stars that undergo optical outbursts of several magnitudes.
The outbursts show fast rises on timescales of 1 yr and slow decays with timescales of the order of 50-100 yr
(see Fig 5.11). These systems are thought to undergo episodic mass accretion from the inner disk with
accretion rates being as high as 10−4 M⊙/yr. How can we explain these episodic high accretion rates within
the just developed concept of accretion disks?

Figure 7.7: Schematic ’S curve’ for the disk thermal
instability (adapted from Hartmann 1998, Fig.7.11).

The basic idea is that the inner disk is ex-
tremely opaque and thus cannot efficiently radi-
ate energy away that has been inserted into the
gas through the viscous accretion process. The in-
ner disk could then be hotter than 104 K. This
also implies that the original assumption of a thin
disk (z � r) breaks down and the disk has a very
large scale height h/r ∼ 0.4. Under these circum-
stances, the inner 1 AU of the disk can have enough
mass to fuel an FU Orionis outburst event. The
event itself could be triggered by thermal instabil-
ities that are due to the temperature dependance
of the gas opacity. This can be illustrated using
a curve that describes the loci of thermal equilib-
rium in the T versus Σ plane of the disk. This
curve has the shape of an ’S’ with the kink at the
point where the opacity causes the thermal insta-
bility (Fig. 8.7. As more material piles up in the
disk, the locus starts shifting to the right on the
lower branch on the ’S curve’. The disk is stable,
because a small temperature perturbation can be
damped due to efficient colling. As material piles
up in the inner disk, the disk simply moves upward in that branch. As it reaches the inflection point A, a
small positive temperature perturbation leads to the disk being in an unstable regime and it has to jump
to the upper arm of the ’S curve’ (position B). There, the surface density and hence mass accretion rate is
much higher and eventually, the enhanced accretion onto the star will drain material away from the disk,
thereby moving it down the upper arm of the ’S curve’ to point C. At that stage, the only stable solution
becomes again the low accretion solution on the lower arm of the ’S curve’ (point D). The timescale of such
thermal instabilities tth is shorter than the viscous timescale tν

tth ∼
�

h

r

�2

tν , (7.51)

and thus much closer to the typical 1 yr rise seen in the FU Orionis outburst events.
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