## Chapter 12 Particle growth II From Planetesimals to Planets

#### Main planet formation scenarios

- · Core accretion scenario
  - Coalescence of solid particles. Growth from dust to rocky planets.
  - 2. Big rocky planets (>= 10  $\mbox{M}_{\oplus})$  accrete gas and form gas planets

Preferred scenario nowadays

- · Gravitational instability in disk
  - 1. Direct formation of gas giant planets

#### Core accretion model

- Coagulation of dust: from sub-micron to few hundreds of meters
- 2. Run-away growth of largest bodies to ~100 km size planetesimals  $\underline{\dot{M} \propto M^{4/3}}$
- 3. Self-regulated 'oligarchic' growth  $\dot{M} \propto M^{2/3}$ 
  - Forming of a protoplanet
  - Clearing of neighborhood of protoplanet: no further accretion of planetesimals (isolation mass)
- 4. Formation of rocky core of about 10  $M_{\oplus}$
- 5. Rocky core accretes gas to form Gas Giant Planet

#### **Gravitational agglomeration**

Collision velocity of two bodies with  $r_1$ ,  $r_2$ , and  $m_1$ ,  $m_2$ ,

$$\mathbf{v_c} = (\Delta \mathbf{v}^2 + \mathbf{v}_e^2)^{1/2}$$
 
$$\mathbf{v_c} = \left(2G\frac{m_1 + m_2}{r_1 + r_2}\right)^{1/2}$$
 escape velocity

Rebound velocity:  $\epsilon v_c$  with  $\epsilon {\le} 1$ : coefficient of restitution.

$$\epsilon V_c \le V_e$$
 Two bodies remain gravitationally bound: accretion

$$\varepsilon V_c \ge V_a$$
 Disruption / fragmentation

#### **Geometrical cross-section**



$$\sigma_0 = \pi (r_1 + r_2)^2$$

#### **Enhanced cross sections**

- Attractive forces lead to larger cross sections
  - Magnetic forces (very small grains)Gravitational Forces (very large bodies)



$$\sigma = \sigma_0 \cdot \left(1 + \frac{v_e^2}{v^2}\right) = \sigma_0 \cdot (1 + 2\theta)$$

θ: Safronov number (0..5)

#### **Gravitational self-stirring of planetesimals**

- A random distribution of gravitating particles is never in lowest energy state.
- · Gravitational attractions start to stir random motions.
- Shear of the Keplerian motion helps to enhance this effect
- Random motions necessary to cause these particles to meet each other and, hopefully, coalesce.



#### Runaway growth

From: Wetherill & Stewart 1980

Energy equipartition: smaller velocities for larger bodies.

The gravitational cross-section is enhanced for low-velocity bodies.

Spontaneous formation of a seed within a local neighborhood: one body that absorbs the rest. This body has a low velocity (high cross-section) while the other bodies have a higher velocity (low cross-section).

Run-away accretion onto this one body.

Largest body has 0.01  $M_{\oplus}$  while rest has 0.0001  $M_{\oplus}.$ 

#### From run-away to oligarchic growth

<u>Modern view:</u> Once the protoplanet reaches a certain mass, then run-away stops and orderly 'oligarchic growth' phase starts:

$$2\Sigma_M M > \Sigma_m m$$
 (Ida & Makino 1993)

M = Mass of large (dominating) bodies

 $\Sigma_{\rm M}$  = Surface density of large (dominating) bodies

m = Mass of small planetesimals

 $\Sigma_{\rm m}$  = Surface density of small planetesimals

Typically this is reached at  $10^{-6}..10^{-5}~M_{\oplus}$ . From here on: gravitational influence of protoplanet determines random velocities, not the self-stirring of the planetesimals. 'Oligarchic growth'.

#### Dispersion or shear dominated regime

Hill radius ('Roche radius') = radius inward of which gravitational potential is dominated by planet instead of star.

$$r_H = \left(\frac{M}{3M_*}\right)^{1/3} r$$

Kepler velocity difference over r<sub>H</sub> distance:

 $\begin{array}{ll} \Delta {\rm v} > \Omega_K \, r_H & {\rm Dispersion \ dominated \ regime} \\ \\ \Delta {\rm v} < \Omega_K \, r_H & {\rm Keplerian \ shear \ dominated \ regime} \end{array}$ 

Mostly  $\Delta v$  large enough to be in dispersion dominated regime

#### Dynamical friction by planetesimals

For first 'half' of growth one has:

$$\Sigma_M < \Sigma_m$$

In that case planetesimal swarm dominates planet by mass. Dynamical friction between planet and the swarm:

Dynamical friction:



Stirs up planetesimals (= creates 'heat' like friction).

Dynamical friction circularizes orbit of planet

#### Simple analytic model of Earth formation

(Runaway growth)

Increase of planet mass per unit time:

Gravitational

$$\frac{\mathrm{dM}}{\mathrm{dt}} = \rho_{\mathrm{sw}} \Delta v \pi r^{2} \left[ 1 + \left( \frac{v_{\mathrm{e}}}{\Delta v} \right)^{2} \right] = \rho_{\mathrm{sw}} \Delta v \pi r^{2} (1 + 2\theta)$$

 $\begin{array}{ll} \rho_{sw} & = \text{mass density of swarm of planetesimals} \\ M & = \text{mass of growing protoplanet} \end{array}$ 

 $\Delta v$  = relative velocity planetesimals

r = radius protoplanet

 $\theta$  = Safronov number  $(1 \le \theta \le 5)$ 

$$\frac{dr}{dt} = \frac{\rho_{\rm sw} \Delta v}{4\rho_{\rm p}} (1 + 2\theta) \qquad \qquad dM = 4\pi r^2 \rho_{\rm p} dr$$

 $\rho_{\text{p}}^{}$  = density of interior of planet

#### Runaway growth

$$\frac{dr}{dt} = \frac{\rho_{\rm sw} \Delta v}{4\rho_{\rm p}} (1 + 2\theta)$$

 $\Delta v$  is constant while stirring is dominated by small particles, and much smaller than  $v_e/$  M¹¹². Remember:  $\theta=v_e^2/(2\Delta v^2).$ 

 $\rho_{sw}$  does not change while body is growing, because its mass is still much less than the swarms mass

$$\frac{dr}{dt} = \frac{2\rho_{\rm sw} v_{\rm e}^2}{4\rho_{\rm p} \Delta v} \propto M$$

$$\frac{dM}{dt} \propto M^{4/3}$$

#### **Runaway Growth of Planetesimals**



self-gravity of planetesimals dominates

$$v_{\mathrm{ran}} \neq f(M)$$

$$\frac{1}{M}\frac{dM}{dt} \propto M^{\frac{1}{3}}v_{\rm ran}^{-2} \propto M^{\frac{1}{3}}$$

runaway growth!

#### Simple analytic model of Earth formation

(Oligarchic growth)

Same basic equations:

$$\frac{\mathrm{d}M}{\mathrm{d}t} = \rho_{\mathrm{sw}} \, \Delta v \, \pi \, r^2 \left[ 1 + \left( \frac{\mathrm{v_e}}{\Delta \mathrm{v}} \right)^2 \right] = \rho_{\mathrm{sw}} \, \Delta v \, \pi \, r^2 (1 + 2\theta)$$

$$\frac{dr}{dt} = \frac{\rho_{\rm sw} \Delta v}{4\rho_{\rm p}} (1 + 2\theta)$$

#### Simple analytic model of Earth formation

(Oligarchic growth)

Estimate properties of planetesimal swarm:

$$\rho_{\rm sw} = \frac{M_p - M}{2\pi R \Delta R \ 2\Delta z}$$

Assuming that all planetesimals in feeding zone finally end up in planet

R = radius of orbit of planet

 $\Delta R$  = width of the feeding zone

 $\Delta z$  = height of the planetesimal swarm

Estimate height of swarm:

$$\Delta z = R \sin i = R \frac{\Delta \mathbf{v}}{\mathbf{v}_K}$$

$$\rho_{\rm sw} = \frac{(M_p - M) v_K}{4\pi R^2 \Delta R \Delta v}$$

#### Simple analytic model of Earth formation

(Oligarchic growth)

$$\rho_{\rm sw} = \frac{(M_p - M) v_K}{4\pi R^2 \Delta R \, \Delta v}$$

Remember:

$$\frac{dr}{dt} = \frac{\rho_{sw} \Delta v}{4\rho_p} (1 + 2\theta) \qquad \longrightarrow \qquad \frac{dr}{dt} = \frac{v_K (1 + 2\theta) (M_p - M)}{16\pi R^2 \Delta R \rho_p}$$

Note: independent of  $\Delta v!!$ 

$$\frac{dM}{dt} \propto M^{2/3} \left( 1 - \frac{M}{M_{\odot}} \right)$$

For M<<M $_{\rm p}$  one has linear growth of r

#### Simple analytic model of Earth formation

(Oligarchic growth)

$$\frac{dr}{dt} = \frac{\mathbf{v}_K (1 + 2\theta)(M_p - M)}{16\pi R^2 \Delta R \,\rho_{\mathrm{p}}}$$

Case of Earth:

$$v_k = 30 \text{ km/s}, \qquad \theta = 3, \qquad M_p = 6 \times 10^{27} \text{ gr}, \quad R = 1 \text{ AU}, \qquad \Delta R = 0.5 \text{ AU}, \qquad \rho_p = 5.5 \text{ gr/cm}^3$$

$$\frac{dr}{dt} = 15 \text{ cm/year} \longrightarrow t_{\text{growth}} = 40 \text{ Myr}$$

Earth takes 40 million years to form (more detailed models: 80 million years).

Much longer than observed disk clearing time scales. But debris disks can live longer than that.

#### Growth: fast or slow?

Large mass range: so let's look at growth in log(M):

Runaway growth:

$$\frac{dM}{dt} \propto M^{4/3} \qquad \longrightarrow \qquad \frac{d \log M}{dt} \propto M^{1/3}$$

Most of time spent in <u>smallest</u> logarithmic mass intervals

Oligarchic growth:

$$\frac{dM}{dt} \propto M^{2/3} \qquad \longrightarrow \qquad \frac{d \log M}{dt} \propto M^{-1/3}$$

Most of time spent in <u>largest</u> logarithmic mass intervals

#### **Oligarchic Growth of Protoplanets**



Slowdown of runaway

scattering of planetesimals by a protoplanet with  $M\gtrsim 100m$ 

$$v_{\rm ran} \propto r_{\rm H} \propto M^{1/3}$$

$$\frac{1}{M}\frac{dM}{dt} \propto M^{\frac{1}{3}}v_{\rm ran}^{-2} \propto M^{-\frac{1}{3}}$$

orderly growth!

Orbital repulsion

orbital separation:  $b \simeq 10 r_{
m H}$ 

(Kokubo & Ida 1998)

#### Gas damping of velocities

- · Gas can dampen random motions of planetesimals if they are 100 m - 1 km radius (at 1AU).
- If they are damped strongly, then: Shear-dominated regime ( $\Delta v < \Omega r_{Hill}$ ) Flat disk of planetesimals (h <<  $r_{Hill}$ )
- One obtains a 2-D problem (instead of 3-D) and higher capture chances.
- Can increase formation speed by a factor of 10 or more. Is even effective if only 1% of planetesimals is small enough for shear-dominated regime

#### **Isolation mass**

Once the planet has eaten up all of the mass within its reach, the growth stops.

$$M_{\rm iso} = \left(\frac{\Sigma_{\rm m}(t=0)}{B}\right)^{1/3} \qquad {\rm with} \qquad B = \frac{3^{1/3} \, M_*^{1/3}}{2\pi \, b R^2}$$

b = spacing between protoplanets in units of their Hill radii.  $b \approx 5...10$ .

Some planetesimals may still be scattered into feeding zone, continuing growth, but this depends on presence of scatterer (a Jupiter-like planet?)

#### **Growth front**

- · Growth time increases with distance from star.
- · Growth front moves outward.
- · Inner regions reach isolation mass.
- · This region also expands with time

i.e. Annulus of growth moving outward

8

### Planet formation: signatures in dust Kenyon & Bromley Final accretion phase · Runaway growth is self-limiting - Embryos at regular distance intervals, no damping anymore - Gravitational scattering builds up eccentricities - Close encounters, inelastic collisions · Random walk in semi-major axis - Mixing reduces differences between planets - So no systematic differences in chemical composition expected between the Earth-like planets. • Exceptions: Planets which are a single embryo (like Mars) can be **Heating and Differentiation** · Impacts heat the planet - Radioactivity plays a smaller role, but is important for small bodies. · Heat is lost by radiation into space • Differentiation is an important heat source itself.

· See excercises today

#### **Giant impacts**

- Very late in the formation, collisions between big protoplanets/embryos can occur:
  - Rotational axis of Uranus
    - Knocked over by impact?
  - The Earth-Moon system
    - Moon/Planet mass ratio much bigger than for other planets
    - Low density of Moon implies it formed out of the shattered Earth crust
    - Impact of Mars-sized body required
  - Chemical composition of Mercury
    - · High density, hardly any rocky mantle
    - · Giant impact took off the mantle?

#### **Formation of Jovian planets**

- Existence of Uranus and Neptune prove that solid cores can form even in the outer reaches of the solar system
  - or they must form elsewhere and be moved out
    - Some theoreticians say they formed between Jupiter and Saturn!
- These might accrete gas from the disk to form Jupiter/Saturn kind of planets.
- · Bottle necks:
  - Must be able to form a core quickly enough
  - Must accrete gas fast, before disk disperses









## Alternative model: gravitational instab.

#### Alternative model: gravitational instab.

- · 'Alan Boss model'
- · Nice:
  - Quite natural to form gravitationally unstable disks if there is no MRI-viscosity in the disk
  - Avoid problem of dust agglomeration & meter-size barrier
  - No time scale problem
- Problem:
  - Can disk get so very unstable? Gravitational spiral waves quickly lower surface density to marginal stability
  - Why do we have earth-like planets?

# Formation of Kuiper belt and Oort cloud 1 Protoplanetary disc 2 Planetesimals form 3 Planets form 4 Interplanet region cleared 5 Kuiper belt croded 6 Inner and outer Oort cloud form Brett Gladmann Science 2005

| 1 | 2 |
|---|---|

#### **Debris disks**

- After about 10 Myrs most gas-rich protoplanetary disks fade away. Gas is (apparently) removed from the disk on a time scale that is shorter than normal viscous evolution.
  - Has been removed by accretion onto protoplanet?
  - Has been removed by photo-evaporation?
- Dust grains are removed from the system by radiation pressure and drag (Poynting-Robertson)
- Yet, a tiny but measurable amount of dust is detected in disk-like configuration around such stars. Such stars are also called 'Vega-like stars'.

#### **Debris disks**

Beta-Pictoris Age: 100 Myr (some say 20 Myr)





Dust is continuously replenished by disuptive collisions between planetesimals. Disk is very optically thin (and SED has very weak infrared excess).

#### Are there planets in known debris disks? Map of the dust around Vega:

Simulation of disk with 3  $\rm M_{jup}$  planet in highly eccentric orbit, trapping dust in mean motion resonances.

1.3 mm map

Wilner, Holman, Kuchner & Ho (2002)