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11
Introduction

Let us go back a few short moments in time, to the moment you decided to pick up this
thesis to read it (or to just browse through, wondering if all those scribbles actually
mean something). What happened between the moment you thought of picking it up
and the moment your arm started to move? A small electric pulse travelled through
your musculocutaneous nerve to bring the signal from your head to your arm. From
our experience, we know that this always works in a healthy person, which is a small
miracle if one thinks about the challenges such a pulse meets on its way. It has to
hop from node of Ranvier to node of Ranvier, jumping over myelin sheaths, triggering
ion pumps all along the way to boost the signal. Our intuition tells us that the signal
propagation must be robust, as we know that the route from the brain to the muscle
is not a perfectly straight and smooth highway. Not every cell the pulse encounters on
the way is identical, there will be random external fluctuations in the potentials, or, in
other words, the route will be noisy. Despite these challenges, the pulse will make it to
the end.

Here we hit the core of the problems discussed in this thesis: How can a pulse, or
more generally a pattern, travel in a noisy environment. Hence the title ‘Noisy Patterns’.
Whenever I explain this story to non-mathematicians, the follow-up question is often ‘so
you work together with biologists?’ The question to that answer goes along the line ‘not
yet, but maybe, somewhere, once, in the future.’ The goal of this thesis is not to study
pulses in human nerve cells, our goal is much more basic, but not less challenging! Our
goal is the following: Can we develop the mathematical tools and machinery needed to
rigorously study travelling waves in stochastic reaction-diffusion equations, in the same
way we can study and understand their deterministic counterparts?

Over the past four years, we set several steps in this direction, resulting in multiple
papers that form the core of this thesis. These results are certainly not the first results
on stochastic reaction-diffusion equations, but what sets our results apart is the fact
that they are firmly rooted in dynamical systems theory, or to be more specific, rooted
in the language of travelling waves familiar to the nonlinear waves family that Leiden is
a part of. This thesis will not contain any new theorems on the existence of solutions nor
on the existence of invariant measures. No, the questions we will ask ourselves are the
same as our community has always asked: can we show the existence of travelling waves,
can we compute their shape and speed and can we study their stability? The answers



1

4 Chapter 1 – Introduction

to these questions are spread out over this thesis, but informally, we can formulate the
following theorem:

Theorem. Under certain technical assumptions, travelling waves or pulses in bistable
reaction-diffusion equations persist on exponentially long timescales when the equation is
forced by a small multiplicative noise term. The average wave speed and shape are close
to the deterministic values and can be expanded systematically around the deterministic
wave using Taylor series.

We now give two main examples of stochastic partial differential equations (SPDEs)
to which the theorem above applies. The first example is the stochastic Nagumo1

equation,

ut = ρuxx + u(1− u)(u− a) + σu(1− u) ξ(x, t), x ∈ R, t ∈ R+, (1.0.1)

and the second example is the two-component FitzHugh-Nagumo (FHN) equation

ut = ρ1uxx + u(1− u)(u− a)− v + σu ξ(x, t)
vt = ρ2vxx + ε(u− γv)

(1.0.2)

for positive ρ1, ρ2, ε, γ and a ∈ (0, 1). Here ξ is a Gaussian process with

E[ξ(x, t)] = 0,
E[ξ(x, t)ξ(x′, t′)] = δ(t− t′)q(x− x′).

(1.0.3)

The last line means that the noise is uncorrelated in time and correlated in space
with correlation function q, typically a Gaussian. The parameter σ indicates the noise
strength and will be assumed to be small. For both equations, the existence of a stable
travelling wave/pulse is known in the deterministic case [60, 113] and for the Nagumo
equation the profile and speed can be computed explicitly, see Chapter 2. Remark
that the noise term is multiplicative, i.e. the noise term ξ is multiplied by a function
depending on u. Furthermore, note that these functions are chosen in such a way that
the noise disappears in the background states of the wave (0 and 1 for the Nagumo
equation and 0 for the FHN-equation). This is an assumption we will make throughout
this thesis. There are two main advantages to this assumption, a technical and practical
one. From a technical point of view, this type of multiplicative noise ensures that
deviations from the travelling wave disappear at ±∞, hence making the deviations
integrable. From a more practical viewpoint, additive noise can cause the wave to
disappear or cause new waves to form [79]. This makes the study of a single travelling
wave significantly more difficult.

We illustrate the practical questions we will answer in this thesis by showing two
realizations of the equations above in Figure 1.1. For σ = 0, the waves are perfectly
frozen in the x − ct frame where c is the speed of the wave, but this is clearly not
the case for σ 6= 0. Our main goal is to understand these pictures, which leads to the
following natural questions:
1 Nagumo is just one of many names attached to this equation. It is also known as the Allen-Cahn or

Huxley equation [100], while in biology it is referred to as an extended Fisher-Kolmogorov equation
with strong Allee effect [13] and in chemistry the term Schlögl model is used. The Nagumo equation
is a specific example of a bistable reaction-diffusion equation.
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(a) (b)

Figure 1.1: Figure (a) shows a realization of equation (1.0.1) in the Stratonovich
interpretation for ρ = 1, a = 0.25 and σ = 0.5, in a frame that moves with the
deterministic speed. A clear drift to the right is visible. Figure (b) shows a realization
of equation (1.0.2) for ρ1 = 1, ρ2 = 0.01, a = 0.1, ε = 0.01, γ = 5 and σ = 0.1 again in
a frame that moves with the deterministic speed. This time a drift to the left is visible.

• Where is the pulse going? Is it drifting in a certain direction, and with which
speed?

• What is the average shape of the pulse?

• How long can the pulse survive before the noise destroys it?

In order to answer these questions rigorously, we first need tools to understand
equations such as (1.0.1) and (1.0.2). What is this object ξ? And how would we define
a solution to these equations? We will introduce the necessary concepts to understand
these equations in the next section. In the rest of this introduction, we will give a
short introduction to the classic deterministic theory on travelling waves, followed by
an overview of what is know for stochastic travelling waves. Then we will discuss the
main difficulties in understanding stochastic travelling waves, which will explain why
this thesis has become so heavy. We will end this introduction with a reading guide
and an outlook.

1.1 Infinite dimensional stochastic integration
In the mathematical literature, equations such as (1.0.1) are often written2 as

dU = [ρUxx + f(U)]dt+ σg(U)dWQ
t . (1.1.1)

This notation is a shorthand for

U(t) = U(0) +
∫ t

0
ρUxx(s) + f(U(s))ds+ σ

∫ t

0
g(U(s))dWQ

s . (1.1.2)

2 We will write deterministic equations and stochastic equations from the physics literature with small
letters, but equations in Itô or Stratonovich interpretation always with capitals.
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The question that arises immediately is ‘what is WQ
t and how is it related to ξ(x, t)?’

To answer this question we need the concept of a stochastic integral in an infinite dimen-
sional Hilbert space, but that is not an easy task. The fact that this subject is hard, even
if one understands ordinary Itô integrals, explains why Chapters 2 and 3 are written for
a single Brownian motion. We first had to study the travelling waves in a simpler frame-
work before we could lift it to the full infinite dimensional case. The integration theory
that we will outline below is not new, but readable introductions are scarce. A classic
work on the subject is the book3 by Da Prato and Zabchyk [92], and a more detailed
study of Gaussian processes, the construction of the stochastic integrals and applications
to SPDEs can be found in [77, 93]. A slightly lighter introduction to start with is [23].
An extensive survey of different approaches to stochastic integrals is given in [29] and a
description of the specific type of noise that will become important in Chapter 4 can be
found in [90]. It is also worthwhile to study Martin Hairer’s lecture notes on SPDEs [44].

1.1.1 One dimensional Itô integral
The subject of stochastic integration theory basically evolves around the following
question: Suppose I have a Brownian motion, or Wiener process, βt and some function
f : [0, T ]× Ω→ R. Under which conditions on f can we define

I(t) =
∫ t

0
f(s)dβs (1.1.3)

and what are the properties of I(t)? First we should notice is that β, f and I are all
functions from [0, T ] × Ω to R. This means that in principle we should write I(t, ω)
and f(s, ω), but we will suppress the ω-dependence to avoid the notation becoming
to cluttered as is common in the literature. There are multiple ways to define the
stochastic integral above, most notably the Itô integral and the Stratonovich integral.
Throughout this thesis we will use the Itô interpretation of the integral as it has better
properties from a mathematical viewpoint, but the Stratonovich interpretation is often
more physically relevant [110]. We will not construct the Itô integral, as there are many
decent books on this subject [88], but we will record the most important results here.

Theorem 1.1.1. Take a Brownian motion βt on [0, T ] together with its natural filtration
Ft. Then, for every f ∈ L2([0, T ]× Ω,R) that is adapted to Ft, the Itô integral

I(t) =
∫ t

0
f(s)dβs (1.1.4)

is well defined in L2([0, T ] × Ω,R). Furthermore, I(t) is a martingale with respect to
Ft, meaning that for all 0 ≤ s ≤ t ≤ T we have

E[I(t)|Fs] = I(s) (1.1.5)

3 Be sure to get the updated second edition.
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and I(t) satisfies the Itô isometry:

E

[(∫ t

0
f(s)dβs

)2]
= E

[∫ t

0
f(s)2ds

]
. (1.1.6)

The martingale property and the Itô isometry will later turn out to be essential tools
in studying the properties of stochastic travelling waves. The first because it ensures us
that the average of all the stochastic integrals we encounter in this thesis is always 0,
and the second because it will allow us to compute the average of the norm of solutions
to our SPDEs.

1.1.2 Infinite dimensional Wiener processes
When dealing with SPDEs, we must choose in which space the driving noise of the
equation lives and, to begin simple, we start with R, as in the previous paragraph. For
a function f : [0, T ]× Ω→ H for some separable Hilbert space H, we can easily define

I(t) =
∫ t

0
f(s)dβs (1.1.7)

by mixing the Itô integral with the Bochner integral. I(t) is still a martingale (in H)
and the Itô isometry now becomes

E

[
‖
∫ t

0
f(s)dβs‖2H

]
= E

[∫ t

0
‖f(s)‖2Hds

]
. (1.1.8)

We simply replaced the Euclidean norm in R with the norm on H. This is the type of
integral we use in Chapter 2 and 3. It allowed us to develop our methods without being
too distracted by complicated computations and more abstract integration theory.

The main problem is that in this framework we only deal with noise in time, not
in space, while this is often relevant in applications. In order to build a concept of a
stochastic integral where the noise depends on space and time, one needs an equivalent
of Brownian motion in a function space. The theory we explain here following [93]
works in general for separable Hilbert spaces, but we will for clarity stick with L2(R)
or L2(D) for D ⊂ R.

We now wish to define an equivalent of βt on L2(D). This process, which we will
call a Q-Wiener process WQ

t , should be completely decorrelated in time (i.e. white in
time) but can have correlation in space (i.e. coloured in space), where the operator
Q : L2(D) → L2(D) in the notation WQ

t describes the correlation. We call Q the
covariance operator. Mathematically speaking, this means that WQ

t should, for all
v, w ∈ L2(D), satisfy

E[〈WQ
t , v〉L2(D)〈WQ

s , w〉L2(D)] = s ∧ t〈Qv,w〉L2(D). (1.1.9)

The question is if we can find operators Q for which this process exists in L2(D). To
investigate this question, we make the strong assumption that Q on L2(D) is Hilbert-
Schmidt, linear, symmetric, and positive semi-definite4. Then we know that Q is
4 Note that linear, symmetric and positive semi-definite are essential for Q to make sense as a

covariance operator.
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compact and of trace class and there is an orthonormal basis (ek) in L2(D) such that
Qek = λkek and Tr(Q) =

∑
k λk <∞ [94, Ch. 6]. This allows us to define (i.e. we can

prove that it converges) the following process in L2(D):

WQ
t =

∞∑
k=0

√
λkekβk(t), (1.1.10)

where all the βk(t) are i.i.d. standard Brownian motions. On the other hand, we call a
process WQ

t a Gaussian process in L2(D) with mean 0 and covariance Q when for all
w, v ∈ L2(D) we have

E[〈WQ
t , v〉L2(D)〈WQ

s , w〉L2(D)] = s ∧ t〈Qv,w〉L2(D). (1.1.11)

We can check that WQ
t as defined in (1.1.10) is a Gaussian process by simply plugging the

basis expansion into the equation above and using the fact that E[βm(t)βn(s)] = t∧s δmn.
The converse is also true. By [93, Prop. 2.1.10] we know that for every Q of trace class,
the process defined by (1.1.11) can be represented by a direct sum as in (1.1.10). Hence,
all Gaussian processes on L2(D) are characterized by a covariance operator with finite
trace and we have an explicit representation. Therefore, the definition of the integral
of f over a Q-Wiener process is now straightforward:

I(t) =
∫ t

0
f(s)dWQ

s =
∞∑
k=0

√
λk

∫ t

0
f(s)ekdβk(s). (1.1.12)

The stochastic integral can hence be constructed as an infinite sum of well understood
1D stochastic integrals. Following [93], we can again show that I(t) is a martingale and
satisfies the following version of the Itô isometry:

E

[
‖
∫ t

0
f(s)dWQ

s ‖2L2(D)

]
= E

∑
k

λk

[∫ t

0
‖f(s)ek‖2L2(D)ds

]
. (1.1.13)

This shows us that the integral is defined for a wide range of functions, for example
the integral is well defined for f = 1, even though this is not an L2(D) function when
D = R. We can define the class of allowed integrands more precisely by rewriting the
Itô isometry in the following way:

E

[
‖
∫ t

0
f(s)dWQ

s ‖2L2(D)

]
= E

[∑
k

∫ t

0
‖f(s)

√
Qek‖2L2(D)ds

]

:= E

∫ t

0
‖f(s)

√
Q‖2HS(L2(D))ds.

(1.1.14)

Here ‖·‖HS(L2(D)) is the Hilbert-Schmidt operator norm on L2(D). In other words,
the integral is well defined when f(s)

√
Q is a Hilbert-Schmidt operator on L2(D) and

‖f(·)
√
Q‖HS(L2(D)) is square integrable.
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Characterizing Q Now suppose Q has an integration kernel q(x, y), i.e. for v ∈ L2(D)
we have

Qv(x) =
∫
D

q(x, y)v(y)dy. (1.1.15)

Then it must hold that q ∈ L2(D ×D) [94, Ch. 6]. When we (formally) replace v and
w by δ(· − x) and δ(· − y) in the definition (1.1.11) of a Gaussian process, we find that

E[〈WQ
t , δ(· − x)〉L2(D)〈WQ

s , δ(· − y)〉L2(D)] = s ∧ tq(x, y). (1.1.16)

In applications, this definition of the covariance is often written as

〈dWQ(x, t)dWQ(y, s)〉 = δ(t− s)q(x, y). (1.1.17)

Therefore, we need to make a distinction between the covariance Q (the covariance
operator) and the covariance q (the kernel of the covariance operator). There is a clear
reason why the applied literature chooses to work with the definition above instead of
going for the more abstract definition via Gaussian processes on Hilbert spaces. The
function q describes the correlation between two points in space and therefore has a
clear interpretation and could in principle be measured. However, equation (1.1.17)
will never be found in this form in the applied literature, as q is always chosen to be
translation invariant, i.e. q(x, y) = q(x− y). Hence, in applications it is assumed that
the correlation depends only on the distance between two points.

A translation invariant kernel can only be an element of L2(D × D) when D is
finite. Therefore: A Gaussian process in L2(R) has a covariance operator Q with a
kernel that is not translation invariant. The conclusion is that in order to model
translation invariant noise on R, and hence model physically relevant problems such as
our two main examples (1.0.1) and (1.0.2), we need to study a bigger class of stochastic
processes. More precisely, we need to study processes with a covariance operator that
is not necessarily of trace class. These type of processes are known as a cylindrical
Gaussian process. This implies that we need to study processes in larger spaces then
L2(R), i.e. in distribution spaces or any type of abstract completion of L2(R).

1.1.3 Cylindrical Wiener processes and cylindrical integrals
In the previous section, we first defined Q to be an operator of trace class, constructed
a Wiener process WQ

t and then constructed the stochastic integral. The integrability
condition, f

√
Q ∈ L2([0, T ];HS(L2(R))), is then in general easy to check because Q

itself is already of trace class. But what if we drop the assumption that Q is of trace
class? The Itô isometry still makes sense under the same integrability condition, as long
as we write

√
Qek for

√
λkek because an orthonormal basis for Q does not necessarily

exist anymore. However, the construction of WQ
t does not make sense without the basis

representation for Q, nor does the stochastic integral.
A rather straightforward way to solve this problem would be the following procedure:

Choose an explicit distribution space that contains L2(R) such that you can show that
the sum (1.1.10) does converge, repeat the process of constructing and classifying the
Gaussian process, constructing the integral, and then project the integral back into
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L2(R). Such an approach can be found in [90], allowing for the explicit construction of
a class of translation invariant processes on L2(R). However, we do not have to follow
this procedure, as it turns out that the stochastic integral does not depend on the choice
of completion of L2(R) we take, and hence we do not need to specify this abstract space.
To make this precise, pick a non-negative symmetric operator Q ∈ L(L2(R), L2(R)),
possibly not of trace class. We then write5

L2
Q(R) = Q1/2(L2(R)), (1.1.18)

which is again a separable Hilbert space with inner product

〈v, w〉L2
Q

(R) = 〈Q−1/2v,Q−1/2v〉L2(R). (1.1.19)

Furthermore, when (ek) is an orthonormal basis of L2(R), (
√
Qek) is a basis for

L2
Q(R). Next, we define a Hilbert space L2

ext(R) ⊃ L2(R) such that the embedding
L2
Q(R) ⊂ L2

ext(R) a Hilbert-Schmidt operator from L2
Q(R) to L2

ext(R). Such a larger
Hilbert space always exists [93, §2.5], but is not necessarily unique. This extension
space is the key ingredient that allows our noise process to be rigorously constructed.
Following [66, eq. (2)], we introduce the sum below in L2

Q(R):

WQ
t,n =

n∑
k=0

√
Qekβk(t). (1.1.20)

This sum converges for n→∞ in L2
ext(R) for every t ≥ 0. We will refer to this limiting

process WQ
t as a cylindrical Q-Wiener process in L2(R), but it is a regular Wiener

process in L2
ext(R). Note that we call the process WQ

t a cylindrical process in L2(R),
even though it does not attain values in L2(R).

The stochastic integral over this cylindrical process can now be defined as the
standard Itô integral over the Wiener process in L2

ext(R), and then be pulled back
into L2(R). The important fact here is that the resulting integral in L2(R) does not
depend on the choice of L2

ext(R)! The take-home message in this section is therefore
as follows: Even though WQ

t and the integral over this process need to be defined in
abstract spaces, in daily practice we can ignore this and treat the cylindrical integral
as an ordinary integral, as long as we realise that we cannot simplify Qek to λkek. A
more detailed explanation of this subject can be found in §4.5.1

Some remarks on conventions Now suppose we have the Itô integral∫ t

0
f(s)dWQ

s . (1.1.21)

In the previous paragraph, we learned that the integral is well defined when
‖f
√
Q‖HS(L2(R)) is finite. In the literature, this is often written as

‖f‖L0
2(L2(R)) <∞, which is defined as

L0
2(L2(R)) = L2(L2

0(R), L2(R)) := HS(L2
Q(R), L2(R)). (1.1.22)

5 In the literature, the pair (L2
Q(R), L2(R)) is often denoted as (U0, U), but in our setting this might

be confusing with the solution U(t).
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The space L2(L2(R), L2(R)) is the standard space of Hilbert-Schmidt operators, so the
superscript 0 indicates the weighting of the norm with

√
Q.

There are many more ways in the literature to write down the condition ‖f‖2L0
2
<∞.

Often, integral (1.1.21) is understood as∫ t

0
f(s)dWQ

s =
∫ t

0
f̃(s)dWs, (1.1.23)

where Wt is the standard cylindrical Wiener process (Q = I) and f̃ = f
√
Q has to be

an element of L2(L2(R), L2(R)), which is the same requirement f being an element of
L0

2(L2(R)). Note that in the literature, stochastic terms are often introduced as BdWt,
i.e. a HS-operator B multiplied by spacetime white noise. The integral

∫ t
0 BdWs is

a B2-Wiener process, so BdWt can be understood as dWB2

t , but B is still called the
covariance [70]. Analogous, sometimes (see e.g. [72]) q is chosen to be the kernel of√
Q. If we denote the kernel of

√
Q by p(x, y) we can relate q and p by

q(x, y) =
∫
R
p(x, z)p(z, y)dz, (1.1.24)

or, in the case of translational invariant kernels, simply as

q = p ∗ p. (1.1.25)

1.1.4 Stochastic PDEs
With the theory of the previous section, we can finally understand equations such
as (1.0.1) and (1.0.2) in a rigorous framework. For example, the stochastic Nagumo
equation (1.0.1)

ut = ρuxx + f(u) + σg(u)ξ(x, t), (1.1.26)

can now be understood to be the following equation in Itô interpretation

dU = [ρUxx + f(U)]dt+ σg(U)dWQ
t , (1.1.27)

or, formulated in Stratonovich interpretation, to be

dU = [ρUxx + f(U)]dt+ σg(U) ◦ dWQ
t . (1.1.28)

The Stratonovich equation can again be written in Itô formulation [108]:

dU = [ρUxx + f(U) + σ2

2 q(0)g′(U)g(U)]dt+ σg(U)dWQ
t . (1.1.29)

Note that WQ
t is now a cylindrical Q-Wiener process in L2(R) with translation invariant

kernel q(x− y):

Qv(x) =
∫
R
q(x− y)v(y)dy. (1.1.30)
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Hence, whenever one comes across an equation such as (1.1.26), it is important to
realise that it is actually a pre-equation in the sense that we first must agree what
we mean by the notation. If the equation is interpreted in Stratonovich sense, we can
generally agree that equation (1.1.26) means (1.1.29), but note that in applications it
is often not mentioned which interpretation is used, see e.g. [3].

Another way to give meaning to equation (1.1.26) is to replace ξ by a smooth
approximation, solve the equation, and then take the limit back to the nowhere dif-
ferentiable ξ. It can then be shown that the limiting solution is a solution of (1.1.29),
and these kind of results are known as Wong-Zakai theorems [45]. Unfortunately, this
also implies that it is not obvious how equation (1.1.26) should be interpreted in the
case of space-time white noise (i.e. q(x) = δ(x)), and indeed, interpreting space-time
white noise in Stratonovich sense needs the significantly more abstract theory of Martin
Hairer’s regularity structures [45].

For equations in Itô interpretation such as (1.1.27), existence results are well estab-
lished by now. For the existence results in §2.4, we apply theorems from [77, 93]. The
specific shape of the assumptions for these theorems explains the technical setup in §2.2.
However, using the techniques for the stability proofs, we can in the future also directly
prove existence results without resorting to the variational framework from [77, 93].

1.2 Reaction-Diffusion equations and travelling waves
The basic equation this thesis evolves around is given by the following reaction-diffusion
equation (RDE):

ut = ρuxx + f(u). (1.2.1)

We call a wave profile Φ0 and a speed c0 a travelling wave6 solution when Φ0(x− c0t) is
a solution to the RDE above. This is equivalent to demanding that Φ0 is a stationary
solution of the RDE written in the travelling wave coordinate ξ = x− c0t:

ut = ρuξξ + c0uξ + f(u). (1.2.2)

Hence, the pair (Φ0, c0) is a travelling wave solution when

ρΦ′′0 + c0Φ′0 + f(Φ0) = 0, Φ0(−∞) = u−, Φ0(∞) = u+, (1.2.3)

where u+ and u− are zeros of f . We now need to ask the following question: Does
this equation have a solution, and if yes, is it unique? Of course, this question depends
heavily on the function f . For the deterministic version of equations (1.0.1) and (1.0.2),
the solution exists and is unique [60, 113], while for another important equation, the
Fisher-KPP equation, there are infinitely many pairs (Φ, c). Over the past decades,
many more nonlinearities have been studied, see for an overview e.g. [65, 99].

In order to investigate whether or not the travelling wave, if it exists, is stable, we
follow the classic approach. We assume that the solution u in the ξ frame can be split
6 Throughout this thesis we shall always write a subscript 0 for the deterministic wave.
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Imλ

Simple isolated eigenvalue
Reλ

Figure 1.2: Sketch of the spectrum of the linear operator (1.2.5).

as u(t) = Φ0 + v(t), which results in the following equation for v(t):

vt = ρΦ′′0 + c0Φ′0 + f(Φ0)︸ ︷︷ ︸
=0

+Ltwv +N(v), (1.2.4)

where the linear operator Ltw : H2(R)→ L2(R) is given by

Ltwv = ρ∂ξξv + c0∂ξv + f ′(Φ0)v (1.2.5)

and the nonlinearity N by

N(v) = f(Φ0 + v)− f(Φ0)− f ′(Φ0)v. (1.2.6)

In other words, we can say that (Φ0, c0) is chosen such that v(t) = 0 is a solution of
equation (1.2.4). Furthermore, the travelling wave is a stable solution of the RDE when
v(t) = 0 is a stable solution of (1.2.4).

We will now give a short overview of the main techniques we use to prove stability
that will be extended to the stochastic equations in the rest of this thesis. These tech-
niques, which we will refer to as phase tracking throughout this thesis, were developed
by Zumbrun and Howard in the 90s [118], mainly for the purpose of studying a much
harder problem, shock waves. Therefore, a full proof of the stability of travelling waves
in bistable RDEs using their techniques is not readily available in the literature. We
will write down the main Ansatz and do the calculations to describe the outline of the
proof, but the technical details are omitted.

Spectral Properties The structure of the linear operator Ltw as introduced in equa-
tion (1.2.5) is essential to understand the dynamics of the travelling wave. Especially,
the shape of the spectrum is important to us. We always assume that the linear operator
has a spectrum as depicted by Figure 1.2. This means that we always have an isolated
eigenvalue in 0, corresponding to the translation invariance of the system. Indeed, a
direct calculation shows that LtwΦ′0 = 0 so Φ′0 is the eigenfunction corresponding to
the zero eigenvalue. We assume that the rest of the spectrum is in the left half plane,
bounded away from the imaginary axis. This leads to a so called ‘spectral gap’ between
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the zero eigenvalue and the rest of the spectrum. The last important property of the
spectrum is the fact that Ltw is a sectorial operator. Using the techniques in [65], we
can compute that the linearizations for equations (1.0.1) and (1.0.2) indeed have this
structure.

From these properties we draw two important conclusions. First, the linear operator
generates an analytic semigroup S(t) [80], but more importantly, the semigroup can be
split in two parts. The contour integral around the spectrum that defines S(t) can be
deformed into a contour integral around 0 and a contour integral around the rest of the
spectrum. The integral around 0 results in the operator P , a projection operator onto
Φ′0 given by P (v) = 〈v, ψtw〉L2(R)Φ′0 for any v ∈ L2(R) with ψtw the normalized adjoint
eigenfunction of Φ′0. This means that ψtw is such that L∗twψtw = 0, 〈Φ′0, ψtw〉L2(R) = 1,
where the formal adjoint L∗tw is defined as

L∗twv = ρ∂ξξv − c0∂ξv + f ′(Φ0)v. (1.2.7)

This has the following important consequence. Whenever a function v ∈ L2(R) is
orthogonal to ψtw we find the following bound for the semigroup:

‖S(t)v‖L2(R) = ‖S(t)(I − P )v‖L2(R) ≤Me−βt‖v‖L2(R) (1.2.8)

for some M ≥ 1 and a β > 0 such that −β lies in the spectral gap. All these
computations can be made rigorous using [80].

Phase tracking Phase tracking is the key ingredient of this thesis. Essentially, we
must be able to define a position for the travelling wave. There are many ways to define
the location of the travelling wave, but it can be shown that they all result in the same
qualitative behaviour [117]. The phase we choose is the one most practical for technical
reasons, but also has an intuitive interpretation. We begin by introducing an Ansatz of
the form

u
(
·+γ(t), t

)
= Φ0(·) + v(·, t), (1.2.9)

in which γ(t) is the phase of u. We now demand that the evolution of the phase is
governed by the ODE

γ(t) = γ0 + c0t+
∫ t

0
a
(
v(s)

)
ds (1.2.10)

for some (nonlinear) functional a : L2(R) → R that we are still free to choose. The
resulting equation for v is then given by

vt(t) = Ltwv(t) +N
(
v(t)

)
+ a
(
v(t)

)
∂ξ
[
Φ0 + v(t)

]
, (1.2.11)

which is an extended version of equation (1.2.4). This can be recast into the mild form

v(t) = S(t)v0 +
∫ t

0
S(t− s)

[
N
(
v(s)

)
+ a
(
v(s)

)
∂ξ
[
Φ0 + v(s)

]]
ds, (1.2.12)
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where S(t) is the semigroup generated by Ltw, as discussed in the previous paragraph.
To apply exponential bounds such as (1.2.8) to the semigroup S, we must avoid the
neutral non-decaying part of the semigroup. In order to force the integrand to be
orthogonal to the zero eigenspace, we recall that the integrand must be orthogonal to
ψtw and choose

a(v) = −
〈N
(
v
)
, ψtw〉L2(R)

〈∂ξ(Φ0 + v), ψtw〉L2(R)
. (1.2.13)

This choice, together with an aptly chosen γ0, defines the phase γ(t) and ensures that
v(t) is orthogonal to ψtw for all time. By a standard bootstrapping procedure one
can now establish the limits ‖v(t)‖L2(R) → 0 and t−1γ(t) → c0 for t → ∞, provided
that the initial condition v0 is sufficiently small. This allows us to conclude that the
travelling wave is orbitally stable. By orbitally stable we mean that we have shown
that perturbations around the wave die out, but they can induce a phase shift, so the
solution converges to a shifted version of the wave we perturbed around.

At this point the definition for γ(t) is rather technical. There is also a more intuitive
interpretation to this definition. We need to control the growth in the direction of Φ′0.
Another way to do this is by just fixing the position of u. We can define the position
of u(·, t) by the number a(v(t)) such that 〈u(· + c0t + a(v(t)), t) − Φ0, h〉L2(R) = 0 for
some reference function h. In other words, 〈v(t), h〉L2(R) = 0. This implies

0 = ∂

∂t
〈v, h〉L2(R)

= 〈Ltwv + a(v)∂ξ(v + Φ0) +N(v), h〉L2(R)

= 〈v,L∗twh〉L2(R) + a(v)〈∂ξ(v + Φ0), h〉L2(R) + 〈N(v), h〉L2(R).

(1.2.14)

Now to make sure that a is quadratic in v we have to choose h = ψtw and we find

a(v) = −
〈N(v), ψtw〉L2(R)

1− 〈v, ψ′tw〉L2(R)
. (1.2.15)

and this is exactly the same as we found before. Therefore, one can think of γ(t) not just
as a way to fix the position, but especially as the position that conveniently removes
deviations, both constant and linear in v, from c0t.

Remark 1. Suppose for the moment that we do use ψtw to define the position, but we
do not know yet what (Φ0, c0) is. The equation for a(v) would then become

a(v) = −
〈ρΦ′′0 + c0Φ′0 + f(Φ0), ψtw〉L2(R) + 〈v,L∗twψtw〉L2(R) + 〈N(v), ψtw〉L2(R)

1− 〈v, ψ′tw〉L2(R)
.

(1.2.16)

Hence, we could define (Φ0, c0) as the pair that ensures a(0) = 0. In the deterministic
case this seems a rather cumbersome way to define (Φ0, c0), but in the stochastic case we
a priori fix the position (be orthogonal to ψtw) and only after we did the computations
decide what (Φσ, cσ) must be, and then this definition becomes useful, see equation
(2.2.46).
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1.3 Stochastic travelling waves
Although there are not many results to be found in the mathematical literature on
waves in stochastic bistable RDEs, the subject has a longer history in the physics and
chemistry literature. Results for stochastic waves propagating into an unstable state
(i.e. Fisher-KPP type dynamics) go back to 1989 [84] and results for bistable equations
can already be found in 1991 [102]. In both cases, the driving motivation for studying
stochastic waves was the desire to include thermal fluctuations into the system. In
the second half of the 90s the subject of stochastic waves picked up speed and was
centred around the group of Garćıa-Ojalvo in Barcelona, Schimansky-Geier in Berlin
and Van Saarloos in Leiden. This resulted in a book called ‘Noise in spatially extended
systems’ [39], which was published in 1999. In this book, basic techniques to study
SPDEs are explained, and a range of specific examples is shown such as the Belousov-
Zhabotinsky system, Ginzburg-Landau, Swift-Hohenberg and the bistable RDE. From a
physics perspective, one could conclude that the subject has reached a certain maturity.
However, mathematicians will agree with the authors that “many aspects need to be
established in a more rigorous way.” In this thesis we will develop techniques to study
a large class of equations, including the equation studied [39, §6.1] for a limited set
of parameters. The rest of the book is still open for every mathematician to explore,
either by extending our techniques or by developing new ones.

1.3.1 Stochastic waves in the physics literature
The stochastic Nagumo equation as studied in [39] has the following form:

ut = ρuxx + f(u) + σg(u)ξ(x, t), (1.3.1)

in which ξ is a Gaussian process that is white in time and coloured in space, i.e. it has
the following properties:

E[ξ(x, t)] = 0,
E[ξ(x, t)ξ(x′, t′)] = δ(t− t′)q(x− x′).

(1.3.2)

Here, q is a symmetric function describing the correlation in space. Typically, one can
think of a spiked Gaussian. In this form, the equation is often referred to as a Langevin
equation. In §1.1 we extensively discussed how this equation can be interpreted as an
SPDE. In order to understand the observed wandering of the wavefront as in Figure 1.1,
the following Ansatz is made. A phase z(t) is introduced together with an unknown
stochastic process ∆(t) and an average speed c̄ such that

z(t) = z0 + c̄t−∆(t), (1.3.3)

and then u(t) is studied in the x − z(t) frame. The equation is interpreted in the
Stratonovich sense, so the classic chain rule still applies and the same computations as
for the deterministic wave can be used. However, the Stratonovich integral over σg(u)ξ
has an effective drift term of σ2/2q(0)g′(u)g(u) at lowest order, so the travelling wave
equation at O(σ2) becomes

ρΦ′′ + c̄Φ′ + f(Φ) + σ2

2 q(0)g′(Φ)g(Φ) = 0, (1.3.4)
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which is an O(σ2) perturbation of the deterministic equation (1.2.3). Now the key
assumption under this approximation is that influence of the effective drift term on the
front shape and the influence of the stochastic term ∆(t) on the front position can be
separated at O(σ2). In other words, the authors postulate that the ∆(t) dependence
in g(u(· − c̄t + ∆(t), t))ξ does not influence the effective drift term at O(σ2). Now
this is not true as we will find out later in this thesis, but this does not take away
the fact that equation (1.3.4) is a good approximation to the stochastic wave and this
equation describes the numerical results quite accurately. See §4.3 for a more in depth
comparison of equation (1.3.4) with our results.

Next, we would like to derive an equation for ∆(t). This can, at lowest order, be
achieved by finding the O(σ) level of the equation for u(x− z(t), t) by assuming that
∆(t) is of O(σ) and then tune ∆(t) such that the equation becomes solvable. This
results in the following equation for ∆(t):

∆̇(t) = σ
〈g(Φ0)ξ, ψtw〉L2(R)

〈Φ′0, ψtw〉L2(R)
. (1.3.5)

To characterize the wandering of the waves, a diffusion coefficient D is introduced:

D = E[∆(t)2]
2t . (1.3.6)

This coefficient can be computed using the equation for ∆̇(t). As we will see in §4.2.4,
this diffusion coefficient indeed describes the wandering of the wave at lowest order in
σ. The diffusion coefficient is an important observable of the wave as it describes how,
at lowest order, a single realization of the wave will wander about the deterministic
speed. In recent work on understanding gene drift in populations, this coefficient again
played an important role [13]. Also in the field of stochastic neural field equations this
coefficient has been studied. See also §4.2.4 for a more detailed comparison of the drift
coefficient with other results in the literature.

1.3.2 Stochastic waves in the mathematical literature
We now give a short overlook of the results in the mathematical literature. In the case
of the monostable stochastic F-KPP equation, many of the main issues such as wave
speed and existence of an invariant measure have been worked out by the group around
Mueller. Especially, computing the equivalent of equation (1.3.6) and proving rigorously
that the expansion in σ turned out to be a hard problem [85].

The first results on the bistable equation come from 2012 and are mainly numerical
[79]. This result set the stage for further research, as it describes for equation (1.3.1) how
the average wave speed and shape depend on the interpretation (Itô versus Stratonovich),
on additive versus multiplicative noise, on the shape q of the correlation and on the
intensity σ of the noise. Any successful attempt to study waves in the Nagumo equation
must be able to reproduce their findings.

In the following years, Stannat and coworkers developed techniques to study travel-
ling waves in bistable RDEs and neural field equations [72–74, 104, 105]. Building on
this results Inglis and MacLaurin [57] developed techniques to study travelling waves
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in neural field equations. These works indeed present stability results for stochastic
travelling waves, and certainly helped us gain insight into the important techniques
needed for the subject. However, there are some technical and practical limitations.
First, one needs an immediate contractivity condition, meaning that M = 1 in (1.2.8).
With some effort, this can be shown for the Nagumo equation [105], but this is unknown
for the FitzHugh-Nagumo equation.

Another major technical issue is that the covariance of the driving noise is assumed
to be of trace class. In §1.1, we explained that this assumption destroys the translation
invariance of the equation, and the physically relevant equation (1.3.1) is not included
in these works. From a more practical viewpoint, we note that these approaches do not
give an answer to some of our main questions, such as ‘what is the average wave speed
and profile’ and ‘how does the dynamics evolve over long timescales.’ See also §2.1 for
a more technical discussion of their methods.

A more recent formal approach came from Cartwright and Gottwald [19]. Using a
collective coordinate approach, they came to the same stochastic wave as we will find
in §2.2.4 for the Nagumo equation forced by a one dimensional Brownian motion. A
major advantage of this approach is that it gives a quite direct way to compute the
stochastic travelling wave, without any rigorous setup needed. However, up to now,
their approach depends on the exact structure of the Nagumo equation, so it would be
interesting to see if their approaches can be generalized to other equations. See for a
more extensive discussion on stochastic travelling waves also the review by Kuehn [69].

1.3.3 Stochastic phase tracking
Our approach to studying stochastic travelling waves will be to extend the phase
tracking approach from §1.2. Upon adding a stochastic term to the equation for v(t),
we directly see that we cannot choose a(v) in such a way that the whole equation
becomes orthogonal to ψtw. What we need is an extra degree of freedom to ensure that
also the stochastic part of the equation can be chosen orthogonal to ψtw. Hence, we
propose to replace the splitting

u(·+ γ(t), t) = v(t) + Φ0 (1.3.7)

where γ(t) satisfies the ODE

γ(t) = γ0 + c0t+
∫ t

0
a(v(s))ds, (1.3.8)

by the splitting

U(·+ Γ(t), t) = V (t) + Φσ (1.3.9)

where Γ(t) satisfies the SDE

Γ(t) = Γ0 + cσ +
∫ t

0
a(V (s))ds+ σ

∫ t

0
b(V (s))dWQ

s . (1.3.10)

Here we introduced a yet unknown stochastic travelling wave (Φσ, cσ) and a function b
that maps to a Hilbert-Schmidt operator from L2

Q(R) to R. This will be made precise
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later, but for now, it is important to realise that, when we compute the equation for
V (t) using Itô calculus, the stochastic term for V (t) will depend on b giving us the
freedom to choose V (t) orthogonal to ψtw. The advantage of splitting U(t) this way
is that we now, just as in the deterministic case, fully describe the dynamics of the
solution along the family of travelling waves. Therefore, Γ(t) gives us a meaningful way
of defining the average speed of the wave. See §4.2.2 for an extensive discussion on
choosing a, b, the wave (Φσ, cσ) and what it means for the dynamics of the travelling
wave.

1.4 Main difficulties
The first main difficulty is the following: If I define

V (t) = U(·+ Γ(t), t)− Φσ (1.4.1)

as we proposed in the previous section, what equation does V (t) solve? Itô calculus
is not suitable to directly calculate the time derivative of U(· + Γ(t), t). In §2.5 (for
a single Brownian motion) and §4.5.3 (for a cylindrical Q-Wiener process) we explain
how to derive an equation for V (t). Especially computing the Itô correction term that
describes the interaction between the stochastic terms from U(t) and Γ(t) is very subtle.

Unfortunately, the Itô calculus causes several delicate technical complications that
are not observed in the deterministic setting. The first major issue comes from the
Itô Isometry. In the deterministic setting, a semigroup can be used to lift a function
from L2(R) to H1(R) at the cost of an integrable singularity: ‖S(t)‖L(L2,H1) ∼ t−1/2.
However, for stochastic integrals we run into the following problem when we apply the
Itô Isometry:

E‖
∫ t

0
S(t− s)B(s)dWQ

s ‖2H1 = E

∫ t

0
‖S(t− s)B(s)‖2HS(L2

Q
,H1)ds. (1.4.2)

If we wish to estimate B on the right hand side in L2(R), we have to square the (t−
s)−1/2-singularity, which is unintegrable. This precludes us from estimating E‖V (s)‖H1

directly, but we are forced to study the integrated H1(R)-norm. This extra integral
gives us the possibility to get rid of the singularity, which is still anything but easy; see
the sections on nonlinear stability §2.9, §3.5 and §5.5.

A second major complication is that stochastic phase-shifts lead to extra nonlinear
diffusive terms. By contrast, deterministic phase-shifts such as (1.2.10) lead to extra
convective terms, which are of lower order and hence less dangerous. As a consequence,
we encounter quasi-linear equations in our analysis that do not immediately fit into a
semigroup framework. Luckily, this extra nonlinear term is a scalar so we solve this
problem by using a suitable stochastic time-transform to scale out this extra term.

However, scaling only works when the term in front of ∂xx is a scalar, which is
clearly not the case for equations with different diffusion coefficients such as (1.0.2).
This causes the main divide between Chapter 2 and 3. In Chapter 2 we have to enforce
that all diffusion coefficients are equal, excluding the FitzHugh-Nagumo equation. We
solve this issue in Chapter 3 by scaling each component of the SPDE for V separately
and carefully studying the off-diagonal elements of the semigroup.
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A third major difficulty is proving results on long timescales. In the deterministic
case, stability is a binary question: given an initial perturbation from the wave, you
either converge back to (a translate of) the wave or not. In the stochastic case this is
not true. At every moment in time the wave is pushed by the noise term, hence the
probability of making a large excursion from the wave, i.e. becoming unstable, grows
in time. The major question is if we can understand how fast this probability grows.
Numerically it is straightforward to show that the supremum of deviations from the
travelling wave grows logarithmically in time, but proving this cost us many grey hairs.
A proof of the logarithmic growth bound can be found in Chapter 5.

1.5 Reading guide
One hardly ever reads a math paper from beginning to end in a linear fashion. Especially
a thesis comprised of N papers (N > 1) should also not be attacked head on. The
papers are presented here in a chronological way (of writing that is, not of publication)
which makes sense because each new paper builds on the previous one. However, in
the time that past between the first and the fourth paper, our capability to give a
bird’s-eye view on the subject grew, as well as our capability to write cleaner proofs.
Therefore, Chapter 4 is a good place to start, as it directly describes the physically
relevant equations such as (1.3.1) and gives an overview of our procedures and results.
If you have just an hour to spare on this thesis, start with §4.1-§4.4.

After (or before?) Chapter 4 the nitty-gritty details start. Chapter 2 is the most
detailed of all. This chapter is the starting point for all the other chapters. We deal with
questions such as existence of solutions to the SPDE, existence of solutions to the SDE
that describes the phase, existence and uniqueness of the stochastic travelling wave, we
show how to compute the stochastic phase shift and how to compute the stochastic
time transform needed for the stability analysis. After these preparatory computations,
we prove the stability results.

There are two main restrictions on the results in Chapter 2. First, we needed that
the diffusion coefficients were the same in all components. Lifting this strong restriction
in order to study FitzHugh-Nagumo equations such as (1.0.2) is the main purpose of
Chapter 3. Many of the details from the first chapter are not repeated and we focus
on the techniques necessary to prove the results. The second restriction in Chapter
2 (which also applies to Chapter 3) is the fact that the equations are forced by a
one-dimensional Brownian motion, and therefore these chapters can not directly deal
with equations such as (1.0.1) and (1.0.2). As mentioned before, this was a deliberate
choice because we had not yet developed the intuition needed to work with cylindrical
Q-Wiener processes.

In Chapter 4 we develop the necessary tools to work with translation invariant pro-
cesses, but also extensively discuss perturbation methods to approximate the stochastic
wave and make comparisons with numerical approximations. These numerical results
however also indicate that our results remain valid on exponentially long timescales
which is a significantly stronger claim than what we prove in Chapters 2-4. Improving
our results to include the exponentially long bounds is the subject of Chapter 5. It can
be read directly after Chapter 4, but understanding the stability analysis in §2.9 will
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serve as a good basis to appreciate the delicacies in the proofs in Chapter 5. Studying
the stability analysis for the FitzHugh-Nagumo equation in §3.5 also explains why we
chose to set up the proof in Chapter 5 only for equations of Nagumo type.

Notation It is important to note that the four chapters to follow do not have a
uniform notation and spelling. This introduction and Chapters 4 and 5 are written in
British English while the other chapters are written in American English, although this
separation is not always very strict. In Chapter 2, we write A∗ for the operator ρ∂xx to
highlight the fact that we treat the operator as an operator from H1(R)→ H−1(R), in
stead of H2(R)→ L2(R). Also note that in Chapters 2 and 3, Q is not the covariance
operator, but defined as Q = I − P where P is the projection onto the 0-eigenspace as
defined in §1.2. As Chapters 2 and 3 are written for a single Brownian motion, there is
within the chapters no chance of confusion.

1.6 Outlook
In this thesis we develop techniques for quite a broad class of RDEs, but our structural
assumptions rule out two major classes of equations. In the first place, our techniques
heavily depend on the spectral gap in the spectrum of the linear operator (see Figure
1.2). While this holds true for bistable equations, the essential spectrum typically
touches the imaginary axis for waves in monostable equations such as the stochastic
Fischer-KPP equation [85]:

du = [uxx + u(1− u)]dt+ σ
√
u(1− u)dWQ

t (1.6.1)

For the deterministic equation many waves exist, but compact initial conditions always
converge to the wave with speed 2 [100]. Note that the multiplicative term

√
u(1− u)

is not Lipschitz in 0 and 1, which makes analysis much harder. In the stochastic setting,
it was shown in [85], using a completely different class of techniques than ours, that the
speed 2 is perturbed into

2− π2| log(σ2)|−2 +O(log | log(ε)| log(ε)|−3). (1.6.2)

This odd looking result, known as the Brunet-Derrida conjecture [17], deviates sig-
nificantly from the perturbation results we will encounter in this thesis. It would be
interesting to see if we could derive the same results. We could, for example, pose
this equation in a weighted space to open up the spectral gap again. However, this
would exclude perturbations with a heavy tail which might essentially contribute to the
result above. Another option would be to split the semigroup not in an exponentially
decaying and a nondecaying part (which is now impossible) but, inspired by [117], split
the semigroup in an exponentially decaying part, a polynomially decaying part and a
nondecaying part. This would probably require an extensive extension of our phase
tracking Ansatz (1.3.10).

Another obstruction in our techniques is the fact that our methods rely on the
smoothening properties of the semigroup. For example, we cannot yet directly deal
with the classical FHN-equation (equation (1.0.2) with ρ2 = 0) or with neural field
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equations. We expect for the FHN-equation that our perturbation results still hold for
ρ2 → 0, but all our bounds will blow up.

Of course, there are many more RDEs that are well studied in the deterministic
case but their stochastic counterparts not so much. Korteweg-de Vries, Gray Scott,
Klausmeier, Burgers, to just name a few. This list shows that in the coming years many
more exciting results can be expected!
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2
Reaction-Diffusion Equations

with Scalar Noise

We consider reaction-diffusion equations that are stochastically forced by a small
multiplicative noise term. We show that spectrally stable traveling wave solutions
to the deterministic system retain their orbital stability if the amplitude of the
noise is sufficiently small. By applying a stochastic phase-shift together with
a time-transform, we obtain a semilinear SPDE that describes the fluctuations
from the primary wave. We subsequently develop a semigroup approach to
handle the nonlinear stability question in a fashion that is closely related to
modern deterministic methods.

2.1 Introduction
In this chapter1 we consider stochastically perturbed versions of a class of reaction-
diffusion equations that includes the bistable Nagumo equation

ut = uxx + fcub(u) (2.1.1)

and the FitzHugh-Nagumo equation

ut = uxx + fcub(u)− v

vt = vxx + %[u− γv].
(2.1.2)

Here we take % > 0, γ > 0 and consider the standard bistable nonlinearity

fcub(u) = u(1− u)(u− a). (2.1.3)

It is well-known [34, 100] that (2.1.1) admits spectrally stable traveling front solutions

u(x, t) = 1
2
[
1 + tanh(1

4
√

2(x− ct)
)]

(2.1.4)

1 The content of this chapter has been published as C.H.S. Hamster, H.J. Hupkes; Stability of
Traveling Waves for Reaction-Diffusion Equations with Multiplicative Noise in SIADS, see [48].
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that travel with speed

c =
√

2
(
a− 1

2

)
. (2.1.5)

In addition, the existence of traveling pulse solutions to (2.1.2) with 0 < % � 1 was
established recently [22] using variational methods. Using the Maslov index, a proof
for the spectral stability of these waves has recently been obtained in [24, 25].

Our main results show that these spectrally stable wave solutions survive in a
suitable sense upon adding a small pointwise multiplicative noise term to the underlying
PDE. This noise term is assumed to be globally Lipschitz and must vanish for the
asymptotic values of the waves. For example, our results cover the scalar Stochastic
Partial Differential Equation (SPDE)

dU =
[
Uxx + fcub(U)]dt+ σχ(U)U(1− U)dβt (2.1.6)

together with the two-component SPDE

dU =
[
Uxx + fcub(U)− V ]dt+ σχ(U)U(1− U)dβt,

dV =
[
Vxx + %

(
U − γV

)]
dt+ σ(U − γV )dβt,

(2.1.7)

both for small |σ|, in which (βt) is a Brownian motion and χ(U) is a cut-off function
with χ(U) = 1 for |U | ≤ 2. The presence of this cut-off is required to enforce the global
Lipschitz-smoothness of the noise term. In this regime, one can think of (2.1.6) and
(2.1.7) as versions of the PDEs (2.1.1)-(2.1.2) where the parameters a and % are replaced
by a+ σβ̇t respectively %+ σβ̇t.

Many additional multi-component reaction-diffusion PDEs such as the Gray-Scott
[76], Rinzel-Keller [97], Tonnelier-Gerstner [107] and Lotka-Volterra systems [56] are
also known to admit spectrally stable traveling waves in the equal-diffusion setting
[40, 46, 115]. This allows our results to be applied to these waves after appropriately
truncating the deterministic nonlinearities (in regimes that are far away from the
interesting dynamics).

Such cut-offs are not necessary when considering equal-diffusion three-component
FitzHugh-Nagumo-type systems such as those studied in [89, 109]. Such equations were
first used by Purwins to study the formation of patterns during gas discharges [101].
However, in the equal-diffusion setting there is at present only numerical evidence to
suggest that spectrally stable waves exist for the underlying deterministic equation. An-
alytical approaches to prove such facts typically use methods from singular perturbation
theory, but these often require the diffusive length scales to be strictly separated.

Noisy patterns Stochastic forcing of PDEs has become an important tool for model-
ers in a large number of fields, ranging from medical applications such as neuroscience
[15, 16] and cardiology [116] to finance [30] and meteorology [35]. While a rather gen-
eral existence theory for solutions to SPDEs has been developed over the past decades
[23, 42, 92, 93], the study of patterns such as stripes, spots and waves in such systems
is less well-developed.

Preliminary results for specific equations such as Ginzburg-Landau [14, 37] and Swift-
Hohenberg [71] are available. Kühn and Gowda [43] analyzed both these equations in
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the linear regime before the onset of the Turing bifurcation. They obtained scaling laws
for the natural covariance operators that can be used as early-warning signs to predict
the appearance of patterns.

In addition, several numerical studies have been initiated to study the impact of
noise on patterns, see e.g. [79, 103, 112]. The results in [79] relating to (2.1.6) are
particularly interesting from our perspective. Indeed, they clearly show that traveling
wave solutions persist under the stochastic forcing, but the speed decreases linearly in
σ2 and the wave becomes steeper.

Rigorous results concerning the impact of stochastic forcing on deterministic waves
are still relatively scarce. However, some important contributions have already been
made, focusing on two important issues that need to be addressed. The first of these
is that one needs to identify appropriate mechanisms to identify the phase, speed and
shape of a stochastic wave. The second issue is that one needs to control the influence
of the nonlinear terms by using the decay properties of the linear terms.

Phase tracking An appealing intuitive idea is to define the phase ϑ(u) of a solution
profile u relative to the deterministic traveling wave Φ by writing

ϑ(u) = argminϑ∈R‖u− Φ(·+ ϑ)‖L2 , (2.1.8)

which picks the closest translate of Φ. Inspired by this idea, Stannat [104, 105] obtained
orbital stability results for a class of systems including (2.1.6) by appending an ODE to
track the position of the wave. This is done via a gradient-descent technique, whereby
the phase is updated continuously in the direction that lowers the norm in (2.1.8). A
slight drawback of this method is that the phase is always lagging in a certain sense.
In particular, it is not immediately clear how to define a stochastic speed and relate it
with its deterministic counterpart.

This gradient-descent approach has been extended to neural field equations with
additive noise [72, 74]. In order to clarify the dynamic effects caused by the noise,
the authors employed a perturbative approach and expanded the phase of the wave
and the shape of the perturbations in powers of the noise strength σ. By taking the
infinite update-speed limit, the authors were able to eliminate the phase lag mentioned
above. At lowest order they roughly recovered the diffusive wandering of the phase
that was predicted by Bressloff and Webber [16]. This perturbative expansion can be
maintained on finite time intervals, which increase in length to infinity as the noise size
σ is decreased. However, one needs separate control on the deviations of the phase and
the shape from the deterministic wave, which are both required to stay small.

Inglis and MacLaurin take a directer approach in [57] by using a stochastic differential
equation for the phase that forces (2.1.8) to hold. For equations with additive noise,
they obtain results that allow waves to be tracked over finite time intervals. As above,
this tracking time increases to infinity as σ ↓ 0. The main issue here is that global
minima do not necessarily behave in a continuous fashion. This means that (2.1.8) can
become multi-valued at times, leading to sudden jumps of the phase. However, under
a (restrictive) technical condition the extension of the tracking time can be performed
uniformly in σ.
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Nonlinear effects In order to control the nonlinear terms over long time intervals
one needs the linear flow to admit suitable decay properties. We write S(t) for the
semigroup generated by the linear operator Ltw associated to the linearization of the
PDEs above around their traveling wave Φ. A direct consequence of the translational
invariance is that LtwΦ′ = 0 and hence S(t)Φ′ = Φ′ for all t > 0. In order to isolate
this neutral mode, we write P for the spectral projection onto Φ′, together with its
complement Q = I − P . Assuming a standard spectral gap condition on the remainder
of the spectrum of Ltw, one can subsequently obtain the estimate

‖S(t)Q‖L2→L2 ≤Me−βt (2.1.9)

for some constants β > 0 and M ≥ 1; see, for example, [113, Lem. 5.1.2].
The common feature in all the approaches described above is that they require the

identity M = 1 to hold. In this special case the linear flow is immediately contractive
in the direction orthogonal to the translational eigenfunction. This identity certainly
holds if one can obtain an estimate of the form

〈Ltwv, v〉 ≤ −β‖v‖2H1 + κ‖Pv‖2 (2.1.10)

for some κ > 0, since one can then use the commutation property PS(t) = S(t)P to
compute

d

dt
‖S(t)Qv‖2L2 = 2〈LtwS(t)Qv, S(t)Qv〉L2 ≤ −2β‖S(t)Qv‖2H1 ≤ −2β‖S(t)Qv‖2L2 .

(2.1.11)
In the deterministic case, coercive estimates of this type can be used to obtain simi-
lar differential inequalities for the L2-norm of perturbations from the phase-adjusted
traveling wave. Using the Itô formula this can be generalized to the stochastic case
[72, 74, 104, 105], allowing stability estimates to be obtained that do not need any con-
trol over the H1-norm of these perturbations. The approach developed in [57] proceeds
directly from (2.1.9) using a renormalisation method. Similar L2-stability results can
be obtained in this fashion, again crucially using the fact that M = 1; see [57, (6.15)].

In light of the discussion above, a considerable effort is underway to identify systems
for which the immediate contractivity condition M = 1 indeed holds. This has been
explicitly verified for the Nagumo PDE (2.1.6) and several classes of one-component
systems [74, 104, 105]. However, these computations are very delicate and typically
proceed on an ad-hoc basis. For example, it is unclear (and doubtful) whether such
a condition holds for the FitzHugh-Nagumo PDE (2.1.7). We refer to [111, §1] for an
informative discussion on this issue.

In the case M > 1 the semigroup is still eventually contractive on the range of Q,
but it can cause transient dynamics that grow on short timescales. Such dynamics
play an important role and need to be tracked over temporal intervals of intermediate
length. In this case the nonlinearities cannot be immediately dominated by the linear
terms as above. To control these terms it is hence crucial to understand the H1-norm of
perturbations, which poses some challenging regularity issues in the stochastic setting.

Semigroup approach In this chapter we take a step towards harnessing the power of
modern deterministic nonlinear stability techniques for use in the stochastic setting. In
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particular, inspired by the informative expository paper [117], we abandon any attempt
to describe the phase of the wave via a priori geometric conditions. Instead, we initiate
a semigroup approach based on the stochastic variation of constants formula. This leads
to a stochastic evolution equation for the phase that follows naturally from technical
considerations. More specifically, we use the phase to neutralize the dangerous non-
decaying terms in our evolution equation. Our tracking mechanism is robust and allows
us to focus solely on the behavior of the perturbation from the phase-shifted wave. This
allows us to track solutions up to the point where this perturbation becomes too large
as a result of the stochastic forcing, which resembles an Ornstein-Uhlenbeck process
and hence is unbounded almost certainly. In particular, we do not need to impose
restrictions on the size of the phaseshift as in [68, 72].

The first main advantage of our approach is that it provides orbital stability results
without requiring the immediate contractivity condition described above. Indeed, we
are able to track the H1-norm of perturbations and not merely the L2-norm, which
allows us to have M > 1 in (2.1.9). This significantly broadens the class of systems
that can be understood and aligns the relevant spectral assumptions with those that
are traditionally used in deterministic settings.

The second main advantage is that we are (in some sense) able to isolate the drift-like
contributions to the shape and speed of the wave that are caused by the noise term.
This becomes fully visible in our analysis of (2.1.6), where the noise term is specially
tailored to the deterministic wave Φ in the sense that it is proportional to the neutral
mode Φ′. In this case we are able to obtain an exponential stability result for a modified
waveprofile Φσ that propagates with a modified speed cσ and exists for all positive time.
This allows us to rigorously understand the changes to the waveprofile and speed that
were numerically observed for (2.1.6) in [79]. In general, if the Rn-orbit of the traveling
wave of an n-component reaction-diffusion equation contains no self-intersections, our
results allow special forcing terms to be constructed for which the modified waves remain
exponentially stable.

However, the need to use stochastic calculus causes several delicate technical compli-
cations that are not observed in the deterministic setting. For example, the Itô Isometry
is based on L2-norms. At times, this forces us to square the natural semigroup decay
rates, which leads to short-term regularity issues. Indeed, the heat semigroup S(t) be-
haves as ‖S(t)‖L(L2;H1) ∼ t−1/2, which is in L1(0, 1) but not in L2(0, 1). This precludes
us from obtaining supremum control on the H1-norm of our solutions. Instead, we
obtain bounds on square integrals of the H1-norm. For this reason, we need to carefully
track how the cubic behavior of fcub(u) propagates through our arguments.

A second major complication is that stochastic phase-shifts lead to extra nonlinear
diffusive terms. By contrast, deterministic phase-shifts lead to extra convective terms,
which are of lower order and hence less dangerous. As a consequence, we encounter
quasi-linear equations in our analysis that do not immediately fit into a semigroup
framework. We solve this problem by using a suitable stochastic time-transform to scale
out the extra diffusive terms. The fact that we need the diffusion coefficients in (2.1.2)
to be identical is a direct consequence of this procedure.

Outlook Let us emphasize that we view the present chapter merely as a proof-of-
concept result for a pure semigroup-based approach. For example, in the following
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chapter we show how the severe restriction on the diffusion coefficients of (2.1.2) can
be removed by exploiting the block-structure of the semigroup.

In addition, our results here use the variational framework developed by Liu and
Röckner [77] in order to ensure that our SPDE has a well-defined global weak solution.
In future work, we intend to replace this procedure by constructing local mild solutions
directly based on fixed-point arguments.

Finally, we are interested in more delicate spectral stability scenarios, which allow
one or more branches of essential spectrum to touch the imaginary axis in a quadratic
tangency. Situations of this type are encountered when analyzing the two-dimensional
stability of traveling planar waves [8, 53, 54, 64] or when studying viscous shocks in the
context of conservation laws [6, 7, 82].

Organization This chapter is organized as follows. We formulate our phase-tracking
mechanism and state our main results in §2.2. In §2.3 we obtain preliminary estimates
on our nonlinearities, which are used in §2.4 to fit our coupled SPDE into the theory
outlined in [77, 93]. This guarantees that our SPDE has well-defined solutions, to which
we apply a stochastic phase-shift in §2.5 followed by a stochastic time-transform in §2.6.
These steps lead to a stochastic variation of constants formula.

In §2.7 we develop two fixed-point arguments that capture the modifications to
the waveprofile and speed that arise from the stochastic forcing. These modifications
allow us to obtain suitable estimates on the nonlinearities in the variation of constants
formula in §2.8, which allow us to pursue a nonlinear-stability argument in §2.9.

Acknowledgments. Both authors wish to thank O. van Gaans and C. da Costa for
helpful discussions during the conception and writing of this chapter. In addition, some
of our results were inspired by the valuable comments made by two anonymous referees.

2.2 Main results

In this chapter we are interested in the stability of traveling wave solutions to SPDEs
of the form

dU =
[
A∗U + f(U)

]
dt+ σg(U)dβt. (2.2.1)

Here we take U = U(x, t) ∈ Rn with x ∈ R and t ≥ 0.
In §2.2.1 we formulate several conditions on the nonlinearity f and the diffusion

operator A∗, which imply that in the deterministic case σ = 0 the system (2.2.1) has a
variational structure and admits a spectrally stable traveling wave solution. In §2.2.2 we
impose several standard conditions on the noise term in (2.2.1), which guarantee that
(2.2.1) is covered by the variational framework developed in [77]. In addition, we couple
an extra SDE to our SPDE that will serve as a phase-tracking mechanism. Finally, in
§2.2.3 and §2.2.4 we formulate and discuss our main results concerning the impact of
the noise term on the deterministic traveling wave solutions.



2

§2.2 – Main results 29

2.2.1 Deterministic setup
We start here by stating our conditions on the form of A∗ and f . These conditions
require A∗ to be a diffusion operator with identical diffusion coefficients and restrict
the growth-rate of f to be at most cubic.

(HA) For any u ∈ C2(R;Rn) we have A∗u = ρInuxx, in which ρ > 0 and In is the
n× n-identity matrix.

(Hf) We have f ∈ C3(Rn;Rn) and there exist u± ∈ Rn for which f(u−) = f(u+) = 0.
In addition, there exists a constant Kf > 0 so that the bound∣∣D3f(u)

∣∣ ≤ Kf (2.2.2)

holds for all u ∈ Rn.

We now demand that the deterministic part of (2.2.1) has a traveling wave solution
that connects the two equilibria u± (which are allowed to be equal). This traveling
wave should approach these equilibria at an exponential rate.

(HTw) There exists a waveprofile Φ0 ∈ C2(R;Rn) and a wavespeed c0 ∈ R so that the
function

u(x, t) = Φ0(x− c0t) (2.2.3)

satisfies the deterministic PDE

ut = A∗u+ f(u) (2.2.4)

for all (x, t) ∈ R × R. In addition, there is a constant K > 0 together with
exponents ν± > 0 so that the bound

|Φ0(ξ)− u−|+ |Φ′0(ξ)| ≤ Ke−ν−|ξ| (2.2.5)

holds for all ξ ≤ 0, while the bound

|Φ0(ξ)− u+|+ |Φ′0(ξ)| ≤ Ke−ν+|ξ| (2.2.6)

holds for all ξ ≥ 0.

Throughout this chapter, we will use the shorthands

L2 = L2(R;Rn), H1 = H1(R;Rn), H2 = H2(R;Rn). (2.2.7)

Linearizing the deterministic PDE (2.2.4) around the traveling wave (Φ0, c0), we obtain
the linear operator

Ltw : H2 → L2 (2.2.8)

that acts as
[Ltwv](ξ) = [A∗v](ξ) + c0v

′(ξ) +Df
(
Φ0(ξ)

)
v(ξ). (2.2.9)

The formal adjoint
Ladj

tw : H2 → L2 (2.2.10)
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of this operator acts as

[Ladj
tw w](ξ) = [A∗w](ξ)− c0w′(ξ) +Df

(
Φ0(ξ)

)T
w(ξ). (2.2.11)

Indeed, one easily verifies that

〈Ltwv, w〉L2 = 〈v,Ladj
tw w〉L2 (2.2.12)

whenever (v, w) ∈ H2 ×H2. Here 〈·, ·〉L2 denotes the standard inner-product on L2.
We now impose a standard spectral stability condition on the wave. In particular,

we require that the standard translational eigenvalue at zero is a simple eigenvalue. In
addition, the remainder of the spectrum of Ltw must be strictly bounded to the left of
the imaginary axis.

(HS) There exists β > 0 so that the operator Ltw−λ is invertible for all λ ∈ C\{0} that
have <λ ≥ −2β, while Ltw is a Fredholm operator with index zero. In addition,
we have the identities

Ker(Ltw) = span{Φ′0}, Ker(Ladj
tw ) = span{ψtw} (2.2.13)

for some ψtw ∈ H2 that has

〈Φ′0, ψtw〉L2 = 1. (2.2.14)

We conclude by imposing a standard monotonicity condition on f , which ensures
that the SPDE (2.2.1) fits into the variational framework of [77]. We remark here
that we view this condition purely as a technical convenience, since it guarantees that
solutions to (2.2.1) do not blow up. However, it does not a play a key role in the heart
of our computations, where we restrict our attention to solutions that remain small in
some sense.

(HVar) There exists Kvar > 0 so that the one-sided inequality

〈f(uA)− f(uB), uA − uB〉Rn ≤ Kvar |uA − uB |2 (2.2.15)

holds for all pairs (uA, uB) ∈ Rn × Rn.

2.2.2 Stochastic setup
Our first condition here states that the noise term in (2.2.1) is driven by a standard
Brownian motion. Let us emphasize that we made this choice purely to enhance the
readability of our arguments. Indeed, our results can easily2 be generalized to the
situation where the noise is driven by cylindrical Q-Wiener processes.

(Hβ) The process (βt)t≥0 is a Brownian motion with respect to the complete filtered
probability space (

Ω,F , (Ft)t≥0,P
)
. (2.2.16)

2 The authors of Chapter 4 do not agree with this statement.
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We require the function Dg to be globally Lipschitz and uniformly bounded. While the
former condition is essential in our analysis to ensure that our cut-offs only depend on
L2-norms, the latter condition is only used to fit (2.2.1) into the framework of [77].

(Hg) We have g ∈ C2(Rn;Rn) with g(u−) = g(u+) = 0. In addition, there is Kg > 0
so that

|Dg(u)| ≤ Kg (2.2.17)

holds for all u ∈ Rn, while

|g(uA)− g(uB)|+ |Dg(uA)−Dg(uB)| ≤ Kg |uA − uB | (2.2.18)

holds for all pairs (uA, uB) ∈ Rn × Rn.

We remark here that it is advantageous to view SPDEs as evolutions on Hilbert
spaces, since powerful tools are available in this setting. However, in the case where
u− 6= u+, the waveprofile Φ0 does not lie in the natural statespace L2. In order to
circumvent this problem, we use Φ0 as a reference function that connects u− to u+,
allowing us to measure deviations from this function in the Hilbert spaces H1 and L2.

In order to highlight this dual role and prevent any confusion, we introduce the
duplicate notation

Φref = Φ0 (2.2.19)

and emphasize the fact that Φref remains fixed in the original frame, unlike the wave-
solution (2.2.3). We also introduce the sets

UL2 = Φref + L2, UH1 = Φref +H1, UH2 = Φref +H2, (2.2.20)

which we will use as the relevant state-spaces to capture the solutions U to (2.2.1).
We now set out to append a phase-tracking SDE to (2.2.1). In the deterministic

case, we would couple the PDE to a phase-shift γ that solves an ODE of the form

γ̇(t) = c0 +O
(
U(t)− Φ0

(
· −γ(t)

))
. (2.2.21)

By tuning the forcing function it is possible to remove the non-decaying terms in the
original PDE, which act in the direction of Φ′0

(
·−γ(t)

)
. This allows a nonlinear stability

argument to be closed; see e.g. [117].
In this chapter we extend this procedure by introducing a phase-shift Γ that experi-

ences the stochastic forcing

dΓ =
[
cσ +O

(
U(t)− Φσ

(
· −Γ(t)

))]
dt+O(σ)dβt. (2.2.22)

By choosing the function Φσ, the scalar cσ and the two forcing functions in an appro-
priate fashion, the dangerous neutral terms can be eliminated from the original SPDE.
These are hence purely technical considerations, but in §2.2.4 we discuss how these
choices can be related to quantities that are interesting from an applied point of view.

In order to define our forcing functions in a fashion that is globally Lipschitz con-
tinuous, we introduce the constant

Kip =
[
‖g(Φ0)‖L2 + 2Kg

]
‖ψtw‖L2 . (2.2.23)
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In addition, we pick two C∞-smooth non-decreasing cut-off functions

χlow : R→ [ 14 ,∞), χhigh : R→ [−Kip − 1,Kip + 1] (2.2.24)

that satisfy the identities

χlow(ϑ) = 1
4 for ϑ ≤ 1

4 , χlow(ϑ) = ϑ for ϑ ≥ 1
2 , (2.2.25)

together with

χhigh(ϑ) = ϑ for |ϑ| ≤ Kip, χhigh(ϑ) = sign(ϑ)
[
Kip + 1] for |ϑ| ≥ Kip + 1. (2.2.26)

For any u ∈ UH1 and ψ ∈ H1, this allows us to introduce the functions

b(u, ψ) = −
[
χlow

(
〈∂ξu, ψ〉L2

)]−1
χhigh

(
〈g(u), ψ〉L2

)
,

κσ(u, ψ) = 1 + 1
2ρσ

2b(u, ψ)2.
(2.2.27)

In addition, for any u ∈ UH1 , c ∈ R and ψ ∈ H1 we define the expression

Jσ(u, c, ψ) = κσ(u, ψ)−1
[
f(u) + cu′ + σ2b(u, ψ)∂ξ[g(u)]

]
, (2.2.28)

while for any u ∈ UH1 , c ∈ R and ψ ∈ H2 we write

aσ(u, c, ψ) = −κσ(u, ψ)
[
χlow

(
〈∂ξu, ψ〉L2

)]−1[
〈u,A∗ψ〉L2 + 〈Jσ(u, c, ψ), ψ〉L2

]
.

(2.2.29)
Finally, we introduce the right-shift operators

[Tγu](ξ) = u(ξ − γ) (2.2.30)

that act on any function u : R→ Rn.
With these ingredients in hand, we are ready to introduce the main SPDE that we

analyze in this chapter. We formally write this SPDE as the skew-coupled system3

dU =
[
A∗U + f(U)

]
dt+ σg(U)dβt,

dΓ =
[
c+ aσ

(
U, c, TΓψtw

)]
dt+ σb

(
U, TΓψtw

)
dβt,

(2.2.31)

noting that we seek solutions with
(
U(t),Γ(t)

)
∈ UH1 × R. Observe that the first

equation is the same as (2.2.1).
In order to make this precise, we introduce the spaces

N 2([0, T ]; (Ft);H
)

= {X ∈ L2([0, T ]× Ω; dt⊗ P;H
)

:

X has a (Ft)-progressively measurable version},
(2.2.32)

3 Note here that formally b(U, TΓψtw) is a multiplication operator from R→ R, hence a number. If
we generalize βt to a cylindrical Q−Wiener process on a space H then the term involving b becomes
a functional from H to R, see Chapter 4.
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where we allow H ∈ {R, L2, H1}. We note that we follow the convention of [93, 95]
here by requiring progressive measurability instead of the usual stronger notion of
predictability. Since we are exclusively dealing with Brownian motions, this choice
suffices to construct stochastic integrals.

Our first result clarifies what we mean by a solution to (2.2.31). We note that (i) and
(ii) in Proposition 2.2.1 imply that (X,Γ) is an L2 ×R-valued continuous (Ft)-adapted
process. We remark that in the integral equation (2.2.42) we interpret the diffusion
operator A∗ as an element of L(H1;H−1), where H−1 is the dual of H1 under the
standard embeddings

H1 ↪→ L2 ∼=
[
L2]∗ ↪→ H−1 =

[
H1]∗. (2.2.33)

We note that the set (H1, L2, H−1) is commonly referred to as a Gelfand triple; see e.g.
[32, §5.9] for a more detailed explanation. For (v, w) ∈ H−1×H1 we write 〈v, w〉H−1;H1

to refer to the duality pairing between H1 and H−1. If in fact v ∈ L2, then we have

〈v, w〉H−1;H1 = 〈v, w〉L2 . (2.2.34)

Proposition 2.2.1 (see §2.4). Suppose that (HA), (Hf), (HV ar), (HTw), (HS),
(Hg) and (Hβ) are all satisfied and fix T > 0, c ∈ R and 0 ≤ σ ≤ 1. In addition, pick
an initial condition

(X0,Γ0) ∈ L2 × R. (2.2.35)
Then there are maps

X : [0, T ]× Ω→ L2, Γ : [0, T ]× Ω→ R (2.2.36)

that satisfy the following properties.

(i) For almost all ω ∈ Ω, the map

t 7→
(
X(t, ω),Γ(t, ω)

)
(2.2.37)

is of class C([0, T ];L2 × R).

(ii) For all t ∈ [0, T ], the map

ω 7→
(
X(t, ω),Γ(t, ω)

)
∈ L2 × R (2.2.38)

is (Ft)-measurable.

(iii) We have the inclusion

X ∈ L6(Ω,P;C([0, T ];L2)
)
, (2.2.39)

together with
X ∈ N 2([0, T ]; (Ft);H1),
Γ ∈ N 2([0, T ]; (Ft);R

) (2.2.40)

and
g(X + Φref) ∈ N 2([0, T ]; (Ft);L2),
b
(
X + Φref , TΓψtw

)
∈ N 2([0, T ]; (Ft);R

)
.

(2.2.41)
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(iv) For almost all ω ∈ Ω, the identities

X(t) = X0 +
∫ t

0
A∗[X(s) + Φref ] ds+

∫ t

0
f
(
X(s) + Φref

)
ds

+σ
∫ t

0
g
(
X(s) + Φref

)
dβs

(2.2.42)

and

Γ(t) = Γ0 +
∫ t

0

[
c+ aσ

(
X(s) + Φref , c, TΓ(s)ψtw

)]
ds

+σ
∫ t

0
b
(
X(s) + Φref , TΓ(s)ψtw

)
dβs

(2.2.43)

hold4 for all 0 ≤ t ≤ T .

(v) Suppose that the pair (X̃, Γ̃) : [0, T ]×Ω→ L2×R also satisfies (i)-(iv). Then for
almost all ω ∈ Ω, we have

(X̃, Γ̃)(t) = (X,Γ)(t) for all 0 ≤ t ≤ T. (2.2.44)

2.2.3 Wave stability
By inserting the traveling wave Ansatz (2.2.3) into the deterministic PDE (2.2.4), we
observe that

A∗Φ0 + J0(Φ0, c0, ψtw) = 0, (2.2.45)

which means that a0(Φ0, c0, ψtw) = 0. Our first result here shows that this can be
extended into a branch of profiles and speeds for which

aσ(Φσ, cσ, ψtw) = 0. (2.2.46)

Roughly speaking, this means that the adjusted phase Γ(t)− ct will (instantaneously)
feel only stochastic forcing if one takes c = cσ and U(t) = TΓ(t)Φσ in (2.2.31).

Proposition 2.2.2 (see §2.7). Suppose that (HA), (Hf), (HTw), (HS) and (Hg) are
all satisfied and pick a sufficiently large constant K > 0. Then there exists δσ > 0 so
that for every 0 ≤ σ ≤ δσ, there is a unique pair

(Φσ, cσ) ∈ UH2 × R (2.2.47)

that satisfies the system

A∗Φσ + Jσ
(
Φσ, cσ, ψtw

)
= 0 (2.2.48)

and admits the bound
‖Φσ − Φ0‖H2 + |cσ − c0| ≤ Kσ2. (2.2.49)

4 Note that this equation initially only holds as an identity in H−1. Inclusion (2.2.39) makes that we
can interpret the integrals in L2. We have X ∈ N 2

(
[0, T ]; (Ft);H1

)
but this does not mean that

X(t) ∈ H1 pointwise.
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We are interested in solutions to (2.2.31) with an initial condition for U that is close
to Φσ. We will use the remaining degree of freedom to pick the initial phase Γ in such
a way that the orthogonality condition described in the following result is enforced.

Proposition 2.2.3 (see §2.7). Suppose that (HA), (Hf), (HTw), (HS) and (Hg) are
all satisfied. Then there exist constants δ0 > 0, δσ > 0 and K > 0 so that the following
holds true. For every 0 ≤ σ ≤ δσ and any u0 ∈ UL2 that has

‖u0 − Φσ‖L2 < δ0, (2.2.50)

there exists γ0 ∈ R for which the function

vγ0 = T−γ0 [u0]− Φσ (2.2.51)

satisfies the identity
〈vγ0 , ψtw〉L2 = 0 (2.2.52)

together with the bound

|γ0|+ ‖vγ0‖L2 ≤ K‖u0 − Φσ‖L2 . (2.2.53)

If in fact u0 ∈ UH1 , then we also have the estimate

|γ0|+ ‖vγ0‖H1 ≤ K‖u0 − Φσ‖H1 . (2.2.54)

Let us now pick any u0 ∈ UH1 for which (2.2.50) holds. We write (Xu0 ,Γu0) for the
process described in Proposition 2.2.1 with the initial condition

(X0,Γ0) =
(
u0 − Φref , γ0

)
, (2.2.55)

in which γ0 is the initial phase defined in Proposition 2.2.3. We then define the process

Vu0(t) = T−Γu0 (t)
[
Xu0(t) + Φref

]
− Φσ, (2.2.56)

which can be thought of as the deviation of the solution U of (2.2.31) from the stochastic
wave Φσ shifted to the position Γu0(t).

In order to measure the size of the perturbation, we pick ε > 0 and introduce the
scalar function

Nε;u0(t) = ‖Vu0(t)‖2L2 +
∫ t

0
e−ε(t−s)‖Vu0(s)‖2H1 ds. (2.2.57)

For each T > 0 we now define a probability

pε(T, η, u0) = P
(

sup
0≤t≤T

Nε;u0(t) > η
)
. (2.2.58)

Our first main result shows that the probability that Nε;u0 remains small on timescales
of order σ−2 can be pushed arbitrarily close to one by restricting the strength of the
noise and the size of the initial perturbation.
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Theorem 2.2.4 (see §2.9). Suppose that (HA), (Hf), (HV ar), (HTw), (HS), (Hg)
and (Hβ) are all satisfied and pick sufficiently small constants ε > 0, δ0 > 0, δη > 0
and δσ > 0. Then there exists a constant K > 0 so that for every T > 1, any
0 ≤ σ ≤ δσT

−1/2, any u0 ∈ UH1 that satisfies (2.2.50) and any 0 < η ≤ δη, we have
the inequality

pε(T, η, u0) ≤ η−1K
[
‖u0 − Φσ‖2H1 + σ2T

]
. (2.2.59)

Our second main result concerns the special case where the noise pushes the stochas-
tic wave Φσ in a rigid fashion. This is the case when

g(Φ0) = ϑ0Φ′0 (2.2.60)

for some proportionality constant ϑ0 ∈ R. It is easy to verify that (2.2.60) with
ϑ0 = −

√
2 holds for (2.1.6).

In this setting we expect the perturbation V to decay exponentially on timescales
of order σ−2 with large probability. In order to formalize this, we pick small constants
ε > 0 and α > 0 and introduce the scalar function

Nε,α;u0(t) = eαt‖Vu0(t)‖2L2 +
∫ t

0
e−ε(t−s)eαs‖Vu0(s)‖2H1 ds, (2.2.61)

together with the associated probabilities

pε,α(T, η, u0) = P
(

sup
0≤t≤T

Nε,α;u0(t) > η
)
. (2.2.62)

Theorem 2.2.5 (see §2.9). Suppose that (HA), (Hf), (HV ar), (HTw), (HS), (Hg)
and (Hβ) are all satisfied . Suppose furthermore that (2.2.60) holds and pick sufficiently
small constants ε > 0, δ0 > 0, α > 0, δη > 0 and δσ > 0. Then there exists a constant
K > 0 so that for any T > 1, every 0 ≤ σ ≤ δσT

−1/2, any u0 ∈ UH1 that satisfies
(2.2.50) and any 0 < η ≤ δη, we have the inequality

pε,α(T, η, u0) ≤ η−1K‖u0 − Φσ‖2H1 . (2.2.63)

2.2.4 Interpretation
In §2.5 we show that the pair (V,Γ) = (Vu0 ,Γu0) defined in §2.2.3 satisfies the SPDE

dV = Rσ(V ) dt+ σSσ(V ) dβt,

dΓ =
[
cσ + aσ

(
Φσ + V, cσ, ψtw

)]
dt+ σb

(
Φσ + V, ψtw

)
dβt,

(2.2.64)

in which the nonlinearities satisfy the identities

aσ
(
Φσ, cσ, ψtw

)
= 0, Rσ(0) = 0, Sσ(0) = g(Φσ) + b(Φσ)Φ′σ, (2.2.65)

together with the asymptotics

D1aσ
(
Φσ, cσ, ψtw

)
= O(σ2), DRσ(0) = O(σ2). (2.2.66)

For our discussion here we take V (0) = 0 and Γ(0) = 0, which corresponds with the
initial condition condition U(0) = Φσ for the original system (2.2.1).

The identities (2.2.65) imply that V (t) and Γ(t)− cσt experience no deterministic
forcing at t = 0. We now briefly discuss the consequences of this observation on the
behaviour of (2.2.64) in the two regimes covered by Theorems 2.2.4 and 2.2.5.
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Exponential stability Our results are easiest to interpret in the special case

g(Φ0) = ϑ0Φ′0, (2.2.67)

where Theorem 2.2.5 applies. Remarkably, the modified profiles and speeds (Φσ, cσ)
can be computed explicitly in this setting.5

Proposition 2.2.6 (see §2.7). Consider the setting of Proposition 2.2.2 and suppose
that (2.2.60) holds. Then for all sufficiently small 0 ≤ σ ≤ δσ we have the identities

Φσ(ξ) = Φ0

([
1 + 1

2ρσ
2ϑ2

0
]1/2

ξ
)
,

cσ =
[
1 + 1

2ρσ
2ϑ2

0
]−1/2

c0,
(2.2.68)

together with

g(Φσ) =
[
1 + 1

2ρσ
2ϑ2

0
]−1/2

ϑ0Φ′σ = −b
(
Φσ, ψtw

)
Φ′σ. (2.2.69)

A direct consequence of (2.2.69) is that the identity

Sσ(0) = 0 (2.2.70)

can be added to the list (2.2.65). In particular, we obtain the explicit solution

(V,Γ) =
(

0, cσt+ σb(Φσ, ψtw
)
βt

)
=

(
0, cσt− σ

[
1 + 1

2ρσ
2ϑ2

0]−1/2ϑ0βt

) (2.2.71)

for the system (2.2.64). This corresponds to the solution

U(t) = Φσ(·+ Γ(t)) (2.2.72)

for (2.2.31), which exists for all t ≥ 0.
We hence see that the shape Φσ of the stochastic profile remains fixed, while the

phase Γ(t) of the wave performs a scaled Brownian motion around the position cσt.
Since the identities (2.2.68) imply that the waveprofile is steepened while the speed is
slowed down, our results indeed confirm the numerical observations from [79] that were
discussed in §2.1.

Any small perturbation in the V component will decay exponentially fast with high
probability on account of Theorem 2.2.5. Intuitively, the leading order behavior for V
resembles a geometric Brownian motion, as the noise term is proportional to V while
the deterministic forcing leads to exponential decay. In particular, we expect that our
approach can keep track of the wave for timescales that are far longer than the O(σ−2)
bounds stated in our results.
5 Similar formula can be obtained by following the formal approach in [19], which appeared during

the revision phase of this paper.
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Orbital stability In general we have Sσ(0) 6= 0, which prevents us from solving
(2.2.64) explicitly. Indeed, Theorem 2.2.4 states that V (t) will remain small with high
probability, but the stochastic forcing will preclude it from converging to zero. However,
our construction does guarantee that 〈V (t), ψtw〉L2 = 0 as long as V stays small. Since
〈Φ′0, ψtw〉L2 = 1, this still allows us to interpret Γ(t) as the position of the wave. In
particular, if the expression t−1Γ(t) converges in a suitable sense as t → ∞ then it is
natural to use this limit as a proxy for the notion of a wavespeed.

In order to explore this, we introduce the formal expansion

V (t) = σV (1)
σ (t) +O(σ2) (2.2.73)

and use the mild formulation developed in §2.6 to obtain

V (1)
σ (t) =

∫ t

0
S(t− s)Sσ(0) dβs. (2.2.74)

Here S denotes the semigroup generated by Ltw, which by construction decays expo-
nentially when applied to Sσ(0). In particular, for any bilinear map B : H1 ×H1 → R
we can use the Itô isometry to obtain

EB
[
V (1)
σ (t), V (1)

σ (t)
]

=
∫ t

0
B
[
S(t− s)Sσ(0), S(t− s)Sσ(0)

]
ds

=
∫ t

0
B
[
S(s)Sσ(0), S(s)Sσ(0)

]
ds,

(2.2.75)

which converges in the limit t→∞.
Introducing the formal expansion

Γ(t) = cσt+ σΓ(1)
σ (t) + σ2Γ(2)

σ (t) +O(σ3), (2.2.76)

the first bound in (2.2.66) implies that

Γ(1)
σ (t) = b(Φσ, ψtw)βt (2.2.77)

together with

Γ(2)
σ (t) = 1

2

∫ t

0
D2

1aσ
(
Φσ, cσ, ψtw

)[
V (1)
σ (s), V (1)

σ (s)
]
ds

+D1b
(
Φσ, ψtw

) [∫ t

0
V (1)
σ (s) dβs

]
.

(2.2.78)

Since EV (1)
σ (t) = 0 we obtain

EΓ(1)
σ (t) = 0 (2.2.79)

together with

EΓ(2)
σ (t) = 1

2

∫ t

0

∫ s

0
D2

1aσ
(
Φσ, cσ, ψtw

)[
S(s′)Sσ(0), S(s′)Sσ(0)

]
ds′ ds

= 1
2

∫ t

0
(t− s)D2

1aσ
(
Φσ, cσ, ψtw

)[
S(s)Sσ(0), S(s)Sσ(0)

]
ds.

(2.2.80)
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Upon writing

c(2)
∞ = cσ + σ2

2

∫ ∞
0

D2
1aσ
(
Φσ, cσ, ψtw

)[
S(s)Sσ(0), S(s)Sσ(0)

]
ds, (2.2.81)

we hence conjecture that the expected limiting value of the wavespeed behaves as
c(2)
∞ +O(σ3). Since cσ = c0 +O(σ2) this would mean that the stochastic contributions

to the wavespeed are second order in σ.
We remark that computations of this kind resemble the multi-scale approach initiated

by Lang in [72] and Stannat and Krüger in [68]. However, our approach does allow us to
consider limiting expressions such as (2.2.81), for which one needs the exponential decay
of the semigroup. Indeed, (2.2.74) resembles a mean-reverting Ornstein-Uhlenbeck
process, which has a variation that can be globally bounded in time, despite the fact
that the individual paths are unbounded.

As above, we expect to be able to track the wave for timescales that are longer
than the O(σ−2) bounds stated in our results. The key issue is that the mild version of
the Burkholder-Davis-Gundy inequality that we use is not able to fully incorporate the
mean-reverting effects of the semigroup. We emphasize that even the standard scalar
Ornstein-Uhlenbeck process requires sophisticated probabilistic machinery to uncover
statistics concerning the behavior of the running supremum [2, 96]. We explore these
issues in more detail in the following chapters. For the moment however, we note that
our initial numerical experiments seem to confirm that the expression (2.2.81) indeed
captures the leading order stochastic correction to the wavespeed.

2.3 Preliminary estimates
In this section we derive several preliminary estimates for the functions f , g, J0, b and
κσ. We will write the arguments (u, c) ∈ UH1 × R as

u = Φ + v, c = c+ d, (2.3.1)

in which we take (Φ, c) ∈ UH1 ×R and (v, d) ∈ H1 ×R. We do not restrict ourselves to
the case where (Φ, c) = (Φ0, c0), but impose the following condition.

(hPar) The conditions (HTw) and (HS) hold and the pair (Φ, c) ∈ UH1 × R satisfies the
bounds

‖Φ− Φ0‖H1 ≤ min{1, [4‖ψtw‖L2 ]−1}, |c− c0| ≤ 1. (2.3.2)

In §2.3.1 we obtain global and Lipschitz bounds for the functions f and g. These
bounds are subsequently used in §2.3.2 to analyze the auxiliary functions J0, b and κσ.
Throughout this chapter we use the convention that all numbered constants appearing
in proofs are strictly positive and have the same dependencies as the constants appearing
in the statement of the result.

2.3.1 Bounds on f and g

The conditions (Hf) and (Hg) allow us to obtain standard cubic bounds on f and
globally Lipschitz bounds on g. We also consider expressions of the form ∂ξg(u), which
give rise to quadratic bounds.
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Lemma 2.3.1. Suppose that (Hf) and (hPar) are satisfied. Then there exists a constant
K > 0, which does not depend on the pair (Φ, c), so that the following holds true. For
any v ∈ H1 and ψ ∈ H1 we have the bounds

‖f(Φ + v)‖L2 ≤ K
[
1 + ‖v‖2H1‖v‖L2

]
,

|〈f(Φ + v), ψ〉L2 | ≤ K
[
1 + ‖v‖H1‖v‖2L2

]
‖ψ‖H1 ,

(2.3.3)

while for any set of pairs (vA, vB) ∈ H1×H1 and (ψA, ψB) ∈ H1×H1, the expressions

∆ABf = f(Φ + vA)− f(Φ + vB),

∆AB〈f, ·〉L2 = 〈f(Φ + vA), ψA〉L2 − 〈f(Φ + vB), ψB〉L2
(2.3.4)

satisfy the estimates

‖∆ABf‖L2 ≤ K‖vA − vB‖L2

+K
(
‖vA‖H1‖vA‖L2 + ‖vB‖H1‖vB‖L2

)
‖vA − vB‖H1 ,

|∆AB〈f, ·〉L2 | ≤ K‖vA − vB‖L2‖ψA‖H1

+K‖vA − vB‖H1
(
‖vA‖2L2 + ‖vB‖2L2

)
‖ψA‖H1

+K
[
1 + ‖vB‖H1‖vB‖2L2

]
‖ψA − ψB‖H1 .

(2.3.5)

Proof. Exploiting (Hf) we obtain∣∣D2f(u)
∣∣ ≤ C1[1 + |u|], (2.3.6)

together with
|Df(u)| ≤ C1[1 + |u|2] (2.3.7)

for all u ∈ Rn. In particular, (hPar) yields the pointwise Lipschitz bound

|f(Φ + vA)− f(Φ + vB)| ≤ C2[1 + |vA|2 + |vB |2] |vA − vB | . (2.3.8)

Using the Sobolev embedding ‖·‖∞ ≤ C3‖·‖H1 this immediately implies the first es-
timate in (2.3.5). Applying this estimate with vA = 0 and vB = Φ0 − Φ we find

‖f(Φ)‖L2 ≤ ‖f(Φ0)‖L2 + ‖f(Φ)− f(Φ0)‖L2

≤ C4.
(2.3.9)

Exploiting
‖f(Φ + v)‖L2 ≤ ‖f(Φ)‖L2 + ‖f(Φ + v)− f(Φ)‖L2 , (2.3.10)

we hence obtain

‖f(Φ + v)‖L2 ≤ C5
[
1 + ‖v‖L2 + ‖v‖2H1‖v‖L2

]
. (2.3.11)

The first estimate in (2.3.3) now follows by noting that ‖v‖L2 ≤ ‖v‖2H1‖v‖L2 for ‖v‖L2 ≥
1.
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Turning to the inner products, (2.3.8) allows us to compute

|〈f(Φ + vA)− f(Φ + vB), ψA〉L2 | ≤C2‖vA − vB‖L2‖ψA‖L2

+ C2
[
‖vA‖2L2 + ‖vB‖2L2

]
‖vA − vB‖H1‖ψA‖H1 .

(2.3.12)

Exploiting (2.3.9), the second estimate in (2.3.3) hence follows from the bound

|〈f(Φ + v), ψ〉L2 | ≤ |〈f(Φ), ψ〉L2 |+ |〈f(Φ + v)− f(Φ), ψ〉L2 | , (2.3.13)

using a similar observation as above to eliminate the ‖v‖L2‖ψ‖L2 term. Finally, the
second estimate in (2.3.5) can be obtained by applying (2.3.12) and (2.3.3) to the
splitting

|〈f(Φ + vA), ψA〉L2 − 〈f(Φ + vB), ψB〉L2 | ≤ |〈f(Φ + vA)− f(Φ + vB), ψA〉L2 |

+ |〈f(Φ + vB), ψA − ψB〉L2 | .

(2.3.14)

Lemma 2.3.2. Suppose that (Hg) and (hPar) are satisfied. Then there exists a constant
K > 0, which does not depend on the pair (Φ, c), so that the following holds true. For
any v ∈ H1 we have the bounds

‖g(Φ + v)‖L2 ≤ ‖g(Φ0)‖L2 +Kg(1 + ‖v‖L2)

≤ K[1 + ‖v‖L2 ],

‖∂ξg(Φ + v)‖L2 ≤ K[1 + ‖v‖H1 ],

(2.3.15)

while for any pair (vA, vB) ∈ H1 ×H1 we have the estimates

‖g(Φ + vA)− g(Φ + vB)‖L2 ≤ K‖vA − vB‖L2 ,

‖∂ξ[g(Φ + vA)− g(Φ + vB)]‖L2 ≤ K
[
1 + ‖vA‖H1

]
‖vA − vB‖H1 .

(2.3.16)

Proof. The Lipschitz estimate on g implies that

‖g(Φ + vA)− g(Φ + vB)‖L2 ≤ Kg‖vA − vB‖L2 . (2.3.17)

Applying this inequality with vA = v and vB = Φ0 − Φ we obtain

‖g(Φ + v)‖L2 ≤ ‖g(Φ0)‖L2 +Kg

[
‖Φ− Φ0‖L2 + ‖v‖L2

]
, (2.3.18)

which in view of (hPar) yields the first line of (2.3.15).
The uniform bound

|Dg(Φ + v)| ≤ Kg (2.3.19)

together with the identity

∂ξg(Φ + v) = Dg(Φ + v)
(
Φ′ + v′

)
(2.3.20)
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immediately imply the second estimate in (2.3.15). Finally, using

|Dg(Φ + v)−Dg(Φ + w)| ≤ Kg |v − w| (2.3.21)

and the identity

∂ξ
[
g(Φ + vA)− g(Φ + vB)

]
=

[
Dg(Φ + vA)−Dg(Φ + vB)

](
Φ′ + v′A

)
+Dg(Φ + vB)

(
v′A − v′B

)
,

(2.3.22)

we obtain
‖∂ξ
[
g(Φ + vA)− g(Φ + vB)

]
‖L2 ≤ Kg‖vA − vB‖∞

[
‖Φ′‖L2 + ‖v′A‖L2

]
+Kg‖v′A − v′B‖L2 .

(2.3.23)

The second estimate in (2.3.16) now follows easily.

Lemma 2.3.3. Suppose that (Hg) and (hPar) are satisfied. Then there exists a constant
K > 0, which does not depend on the pair (Φ, c), so that the following holds true. For
any v ∈ H1 and ψ ∈ H1 we have the bounds

|〈g(Φ + v), ψ〉L2 | ≤ K[1 + ‖v‖L2 ]‖ψ‖L2 ,

|〈∂ξg(Φ + v), ψ〉L2 | ≤ K[1 + ‖v‖L2 ]‖ψ‖H1 ,
(2.3.24)

while for any set of pairs (vA, vB) ∈ H1 × H1 and (ψA, ψB) ∈ H1 × H1 we have the
estimates

|〈g(Φ + vA), ψA〉L2 − 〈g(Φ + vB), ψB〉L2 | ≤K‖vA − vB‖L2‖ψA‖L2

+K[1 + ‖vB‖L2 ]‖ψA − ψB‖L2 ,

|〈∂ξ[g(Φ + vA)], ψA〉L2 − 〈∂ξ[g(Φ + vB)], ψB〉L2 | ≤K‖vA − vB‖L2‖ψA‖H1

+K[1 + ‖vB‖L2 ]‖ψA − ψB‖H1 .

(2.3.25)

Proof. The estimates (2.3.24) follow immediately from the bound ‖g(Φ + v)‖L2 ≤
K
[
1 + ‖v‖L2

]
. The first bound in (2.3.25) can be obtained from Lemma 2.3.2 by noting

that
|〈g(Φ + vA), ψA〉L2 − 〈g(Φ + vB), ψB〉L2 | ≤ |〈g(Φ + vA)− g(Φ + vB), ψA〉L2 |

+ |〈g(Φ + vB), ψA − ψB〉L2 | .
(2.3.26)

The final bound can be obtained by transferring the derivative to the functions ψA and
ψB .

2.3.2 Bounds on J0, b and κσ

We are now ready to obtain global and Lipschitz bounds on the functions J0, b and
κσ. In addition, we show that it suffices to impose an a priori bound on ‖v‖L2 in order
to avoid hitting the cut-offs in the definition of b. This is crucial for the estimates in
§2.9, where we have uniform control on ‖v‖L2 , but only an integrated form of control
on ‖v‖H1 .
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Lemma 2.3.4. Suppose that (Hf) and (hPar) are satisfied. Then there exists a constant
K > 0, which does not depend on the pair (Φ, c), so that the following holds true. For
any (v, d) ∈ H1 × R and ψ ∈ H1 we have the bounds6

‖J0(Φ + v, c+ d)‖L2 ≤ K(1 + |d|)
[
1 + ‖v‖H1 + ‖v‖2H1‖v‖L2

]
,

|〈J0(Φ + v, c+ d), ψ〉L2 | ≤ K(1 + |d|)
[
1 + ‖v‖H1‖v‖2L2

]
‖ψ‖H1 .

(2.3.27)

In addition, for any set of pairs (vA, vB) ∈ H1 ×H1, (dA, dB) ∈ R×R and (ψA, ψB) ∈
H1 ×H1, the expressions

∆ABJ0 = J0(Φ + vA, c+ dA)− J0(Φ + vB , c+ dB),

∆AB〈J0, ·〉L2 = 〈J0(Φ + vA, c+ dA), ψA〉L2 − 〈J0(Φ + vB , c+ dB), ψB〉L2

(2.3.28)
satisfy the estimates

‖∆ABJ0‖L2 ≤ K[‖vA‖H1‖vA‖L2 + ‖vB‖H1‖vB‖L2 ]‖vA − vB‖H1

+[1 + ‖vA‖H1 ] |dA − dB |

+K(1 + |dB |)‖vA − vB‖H1 ,

|∆AB〈J0, ·〉L2 | ≤ K[‖vA‖2L2 + ‖vB‖2L2 ]‖vA − vB‖H1‖ψA‖H1

+[1 + ‖vA‖L2 ] |dA − dB | ‖ψA‖H1

+K(1 + |dB |)‖vA − vB‖L2‖ψA‖H1

+K(1 + |dB |)
[
1 + ‖vB‖H1‖vB‖2L2

]
‖ψA − ψB‖H1 .

(2.3.29)

Proof. We first note that the terms in (2.3.3)-(2.3.5) can be absorbed in (2.3.27)-(2.3.29),
so it suffices to study the function

J0;II(u, c) = cu′. (2.3.30)

Recalling that (hPar) implies

|c|+ ‖Φ′‖L2 ≤ C1, (2.3.31)

we find
‖J0;II(Φ + v, c+ d)‖L2 ≤ C2(1 + |d|)(1 + ‖v‖H1), (2.3.32)

together with

|〈J0;II(Φ + v, c+ d), ψ〉L2 | ≤ C2(1 + |d|)(1 + ‖v‖L2)‖ψ‖H1 , (2.3.33)

which can be absorbed in (2.3.27).
In addition, writing

∆ABJ0;II = J0;II(Φ + vA, c+ dA)− J0;II(Φ + vB , c+ dB),

∆AB〈J0;II , ·〉L2 = 〈J0;II(Φ + vA, c+ dA), ψA〉L2

−〈J0;II(Φ + vB , c+ dB), ψB〉L2 ,

(2.3.34)

6 We are dropping the third argument of J0 here since it is irrelevant when σ = 0.
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we compute

∆ABJ0;II = (dA − dB)(Φ′ + v′A) + (c+ dB)(v′A − v′B). (2.3.35)

This yields

‖∆ABJ0;II‖L2 ≤ C3 |dA − dB | (1 + ‖vA‖H1) + C3(1 + |dB |)‖vA − vB‖H1 , (2.3.36)

which establishes the first estimate in (2.3.29).
In a similar fashion, we obtain

|〈∆ABJ0;II , ψ〉L2 | ≤ C3 |dA − dB | (1+‖vA‖L2)‖ψ‖H1 +C3(1+ |dB |)‖vA−vB‖L2‖ψ‖H1 .
(2.3.37)

The remaining estimate now follows from the inequality

|∆AB〈J0;II , ·〉L2 | ≤ |〈∆ABJ0;II , ψA〉L2 |

+ |〈J0;II(Φ + vB , c+ dB), ψA − ψB〉L2 | .
(2.3.38)

Lemma 2.3.5. Assume that (hPar) is satisfied. Then there exists a constant K > 0,
which does not depend on the pair (Φ, c), so that the following holds true. For any
v ∈ H1 and ψ ∈ H1 we have the bound

|〈∂ξ(Φ + v), ψ〉L2 | ≤ K
[
1 + ‖v‖L2

]
‖ψ‖H1 , (2.3.39)

while for any set of pairs (vA, vB) ∈ H1 × H1 and (ψA, ψB) ∈ H1 × H1 we have the
estimate

|〈∂ξ[Φ + vA], ψA〉L2 − 〈∂ξ[Φ + vB ], ψB〉L2 | ≤ K‖vA − vB‖L2‖ψA‖H1

+K
[
1 + ‖vB‖L2

]
‖ψA − ψB‖H1 .

(2.3.40)

Proof. The desired bounds follow from the identity

|〈∂ξ(Φ + v), ψ〉L2 | = |〈Φ + v, ∂ξψ〉L2 | , (2.3.41)

together with the estimate

|〈∂ξ[Φ + vA], ψA〉L2 − 〈∂ξ[Φ + vB ], ψB〉L2 | ≤ |〈vA − vB , ∂ξψA〉L2 |

+ |〈∂ξΦ, ψA − ψB〉L2 |

+ |〈vB , ∂ξ[ψA − ψB ]〉L2 | .
(2.3.42)

Lemma 2.3.6. Suppose that (Hg) and (hPar) are satisfied. Then there exist constants
Kb > 0 and K > 0, which do not depend on the pair (Φ, c), so that the following holds
true. For any v ∈ H1 and ψ ∈ H1 we have the bound

|b(Φ + v, ψ)| ≤ Kb, (2.3.43)
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while for any set of pairs (vA, vB) ∈ H1 × H1 and (ψA, ψB) ∈ H1 × H1 we have the
estimate

|b(Φ + vA, ψA)− b(Φ + vB , ψB)| ≤ K‖vA − vB‖L2‖ψA‖H1

+K
[
1 + ‖vB‖L2

]
‖ψA − ψB‖H1 .

(2.3.44)

Proof. The uniform bound (2.3.43) follows directly from the properties of the cut-off
functions. Upon introducing the function

b̃(x, y) = −χlow(x)−1χhigh(y), (2.3.45)

the global Lipschitz smoothness of the cut-off functions implies that∣∣b̃(xA, yA)− b̃(xB , yB)
∣∣ ≤ C1

[
|xB − xA|+ |yB − yA|

]
. (2.3.46)

Using the identity
b(u, ψ) = b̃

(
〈∂ξu, ψ〉L2 , 〈g(u), ψ〉L2

)
, (2.3.47)

the desired bound (2.3.44) follows from Lemmas 2.3.3 and 2.3.5.

Lemma 2.3.7. Assume that (Hg) and (hPar) are satisfied. Then for any v ∈ H1 that
has

‖v‖L2 ≤ min{1, [4‖ψtw‖H1 ]−1}, (2.3.48)

we have the identity

b(Φ + v, ψtw) = −
[
〈∂ξ[Φ + v], ψtw〉L2

]−1〈g(Φ + v), ψtw〉L2 . (2.3.49)

Proof. Using (2.3.15) and recalling the definition (2.2.23), we find that

|〈g(Φ + v), ψtw〉L2 | ≤
[
‖g(Φ0)‖L2 + 2Kg

]
‖ψtw‖L2 = Kip. (2.3.50)

In addition, we note that (hPar) and the normalisation (2.2.14) imply that

〈∂ξΦ, ψtw〉L2 = 〈∂ξΦ0, ψtw〉L2 + 〈∂ξ[Φ− Φ0], ψtw〉L2 ≥ 1− 1
4 = 3

4 . (2.3.51)

This allows us to estimate

〈∂ξ(Φ + v), ψtw〉L2 ≥ 3
4 − 〈v, ∂ξψtw〉L2 ≥ 3

4 −
1
4 = 1

2 , (2.3.52)

which shows that the cut-off functions do not modify their arguments.

Lemma 2.3.8. Suppose that (Hg) and (hPar) are satisfied. Then there exists a
constant Kκ > 0, which does not depend on the pair (Φ, c), so that for any 0 ≤ σ ≤ 1,
any v ∈ H1 and any ψ ∈ H1, we have the bound

|κσ(Φ + v, ψ)|+
∣∣κσ(Φ + v, ψ)−1∣∣+

∣∣∣κσ(Φ + v, ψ)−1/2
∣∣∣ ≤ Kκ. (2.3.53)
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Proof. This follows directly from the bound

1 ≤ κσ(Φ + v, ψ) ≤ 1 + 1
2ρσ

2K2
b . (2.3.54)

In order to state our final result, we introduce the functions

ν(1)
σ (u, ψ) = κσ(u, ψ)− 1,

ν(−1)
σ (u, ψ) = κσ(u, ψ)−1 − 1,

ν(−1/2)
σ (u, ψ) = κσ(u, ψ)−1/2 − 1,

(2.3.55)

which isolate the σ-dependence in κσ.

Lemma 2.3.9. Suppose that (Hg) and (hPar) are satisfied and pick ϑ ∈ {−1,−1
2 , 1}.

Then there exist constants Kν > 0 and K > 0, which do not depend on the pair (Φ, c),
so that the following holds true. For any 0 ≤ σ ≤ 1, any v ∈ H1 and any ψ ∈ H1 we
have the bound ∣∣∣ν(ϑ)

σ (Φ + v, ψ)
∣∣∣ ≤ σ2Kν , (2.3.56)

while for any 0 ≤ σ ≤ 1 and any set of pairs (vA, vB) ∈ H1 × H1 and (ψA, ψB) ∈
H1 ×H1, we have the estimate∣∣∣ν(ϑ)

σ (Φ + vA, ψA)− ν(ϑ)
σ (Φ + vB , ψB)

∣∣∣ ≤ Kσ2‖vA − vB‖L2‖ψA‖H1

+Kσ2[1 + ‖vB‖L2
]
‖ψA − ψB‖H1 .

(2.3.57)
Proof. As a preparation, we observe that for any x ≥ 0 and y ≥ 0 we have the inequality∣∣∣∣ 1

1 + x
− 1

1 + y

∣∣∣∣ = |y − x|
(1 + x)(1 + y) ≤ |y − x| , (2.3.58)

together with∣∣∣∣ 1√
1 + x

− 1√
1 + y

∣∣∣∣ = |y − x|√
(1 + x)(1 + y)(

√
1 + x+

√
1 + y)

≤ 1
2 |y − x| . (2.3.59)

Applying these bounds with y = 0, we obtain∣∣∣ν(ϑ)
σ (Φ + v, ψ)

∣∣∣ ≤ 1
2ρσ

2 |b(Φ + v, ψ)|2 ≤ 1
2ρσ

2K2
b , (2.3.60)

which yields (2.3.56). In addition, we may compute∣∣∣ν(ϑ)
σ (Φ + vA, ψA)− ν(ϑ)

σ (Φ + vB , ψB)
∣∣∣ ≤ σ2

2ρ
∣∣b(Φ + vA, ψA)2 − b(Φ + vB , ψB)2∣∣

= σ2

2ρ |b(Φ + vA, ψA) + b(Φ + vB , ψB)|

× |b(Φ + vA, ψA)− b(Φ + vB , ψB)| .

(2.3.61)
In particular, the bounds (2.3.57) follow from Lemma 2.3.6.
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2.4 Variational solution
In this section we set out to establish Proposition 2.2.1. Our strategy is to fit the first
component of (2.2.31) into the framework of [77]. Indeed, the conditions (H1)-(H4)
in [77] are explicitly verified in Lemma 2.4.1 below. The second line of (2.2.31) can
subsequently be treated as an SDE for Γ with random coefficients. In Lemma 2.4.3
below we show that this SDE fits into the framework that was developed in [93, Chapter
3] to handle such equations.

Lemma 2.4.1. Suppose that (HA), (Hf), (HTw), (HS), (HVar) and (Hg) are all
satisfied. Then there exist constants K > 0 and ϑ > 0 so that the following properties
hold true.

(i) For any triplet (vA, vB , v) ∈ H1 ×H1 ×H1, the map

s 7→ 〈A∗[vA + svB ], v〉H−1;H1 + 〈f(Φref + vA + svB), v〉L2 (2.4.1)

is continuous.

(ii) For every pair (vA, vB) ∈ H1 ×H1, we have the inequality

K‖vA − vB‖2L2 ≥ 2〈A∗(vA − vB), vA − vB〉H−1;H1

+2〈f(Φref + vA)− f(Φref + vB), vA − vB〉L2

+‖g(Φref + vA)− g(Φref + vB)‖2L2 .

(2.4.2)

(iii) For any v ∈ H1 we have the inequality

2〈A∗v, v〉H−1;H1 +2〈f(Φref +v), v〉L2 +‖g(Φref +v)‖2L2 +ϑ‖v‖2H1 ≤ K
[
1+‖v‖2L2

]
.

(2.4.3)

(iv) For any v ∈ H1 we have the bound

‖A∗v‖2H−1 + ‖f(Φref + v)‖2H−1 ≤ K
[
1 + ‖v‖2H1

][
1 + ‖v‖4L2

]
. (2.4.4)

Proof. Item (i) follows from the linearity of A∗ and the Lipschitz bound (2.3.5). In
addition, writing

I = 〈f(Φref + vA)− f(Φref + vB), vA − vB〉L2 , (2.4.5)

(HVar) implies the one-sided inequality

I = 〈f(Φref + vA)− f(Φref + vB),Φref + vA − (Φref + vB)〉L2

≤ C1‖vA − vB‖2L2 .
(2.4.6)

Item (ii) hence follows from the Lipschitz bound (2.3.16) together with the bound

〈A∗v, v〉H−1,H1 ≤ −ρ‖v‖2H1 . (2.4.7)
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A second consequence of (HVar) is that

〈f(Φref + v), v〉L2 = 〈f(Φref + v)− f(Φref), (Φref + v)− Φref〉L2

+〈f(Φref), v〉L2

≤ C1‖v‖2L2 + ‖f(Φref)‖L2‖v‖L2

≤ C2
[
1 + ‖v‖2L2

]
.

(2.4.8)

In particular, we may obtain (iii) by combining (2.4.7) with (2.3.15).
Finally, for any v ∈ H1 and ψ ∈ H1 we may use (2.3.3) to compute

〈f(Φref + v), ψ〉H−1;H1 = 〈f(Φref + v), ψ〉L2

≤ C3

[
1 + ‖v‖H1‖v‖2L2

]
‖ψ‖H1 .

(2.4.9)

In other words, we see that

‖f(Φref + v)‖H−1 ≤ C3
[
1 + ‖v‖H1‖v‖2L2

]
≤ C3(1 + ‖v‖H1)(1 + ‖v‖2L2), (2.4.10)

which yields (iv).

Lemma 2.4.2. Suppose that (HA), (Hf), (Hg) and (hPar) are all satisfied. Then there
exists a constant K > 0, which does not depend on the pair (Φ, c), so that the following
properties hold true for any 0 ≤ σ ≤ 1.

(i) For any v ∈ H1 and any ψ ∈ H2 with ‖ψ‖H2 ≤ 2‖ψtw‖H2 , we have the bound

|aσ(Φ + v, c, ψ)| ≤ K
[
1 + ‖v‖H1‖v‖2L2

]
. (2.4.11)

(ii) For any v ∈ H1 and any pair (ψA, ψB) ∈ H2×H2 for which ‖ψA‖H2 ≤ 2‖ψtw‖H2

and ‖ψB‖H2 ≤ 2‖ψtw‖H2 , the difference

∆ABaσ = aσ(Φ + v, c, ψA)− aσ(Φ + v, c, ψB) (2.4.12)

satisfies the bound

|∆ABaσ| ≤ K
[
1 + ‖v‖H1(1 + ‖v‖3L2)

]
‖ψA − ψB‖H1 . (2.4.13)

Proof. We first compute

κσ(u, ψ)〈Jσ(u, c, ψ), ψ〉L2 = 〈f(u) + cu′ + σ2b(u, ψ)∂ξ[g(u)], ψ〉L2

= 〈J0(u, c), ψ〉L2 + σ2b(u, ψ)〈∂ξ[g(u)], ψ〉L2 .
(2.4.14)

Upon defining
EI(u, c, ψ) = 〈J0(u, c), ψ〉L2 ,

EII(u, ψ) = σ2b(u, ψ)〈∂ξg(u), ψ〉L2 ,

EIII(u, ψ) = κσ(u, ψ)〈u,A∗ψ〉L2 ,

(2.4.15)
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we hence see that

aσ(u, c, ψ) = −
[
χlow

(
〈∂ξu, ψ〉L2

)]−1[
EI(u, c, ψ) + EII(u, ψ) + EIII(u, ψ)

]
. (2.4.16)

For # ∈ {I, II, III}, we define

∆ABE# = E#(Φ + v, c, ψA)− E#(Φ + v, c, ψB). (2.4.17)

We note that Lemmas 2.3.3, 2.3.4 and 2.3.6 yield the bounds

|EI(Φ + v, c, ψ)| ≤ C1
[
1 + ‖v‖H1‖v‖2L2

]
,

|EII(Φ + v, ψ)| ≤ C1
[
1 + ‖v‖L2

]
,

(2.4.18)

together with

|∆ABEI | ≤ C1
[
1 + ‖v‖H1‖v‖2L2

]
‖ψA − ψB‖H1 ,

|∆ABEII | ≤ C1[1 + ‖v‖L2 ]2‖ψA − ψB‖H1

+C1[1 + ‖v‖L2 ]‖ψA − ψB‖H1 .

(2.4.19)

A direct estimate using the a-priori bound on ‖ψ‖H2 and (2.3.53) yields

|EIII(Φ + v, ψ)| ≤ Kκ

[
|〈Φ, A∗ψ〉L2 |+ |〈v,A∗ψ〉L2 |

]
≤ C2

[
1 + ‖v‖L2

]
.

(2.4.20)

By transferring one of the derivatives in A∗, we also obtain using Lemma 2.3.9 the
bound

|∆EIII | ≤ |κσ(Φ + v, ψA)− κσ(Φ + v, ψB)| |〈Φ + v,A∗ψA〉L2 |

+ |κσ(Φ + v, ψB)| |〈Φ + v,A∗[ψA − ψB ]〉L2 |

≤ C3(1 + ‖v‖L2)2‖ψA − ψB‖H1

+C3
[
1 + ‖v‖H1

]
‖ψA − ψB‖H1 .

(2.4.21)

Upon writing

E(u, c, ψ) = EI(u, c, ψ) + EII(u, ψ) + EII(u, ψ),

∆ABE = ∆ABEI + ∆ABEII + ∆ABEIII ,
(2.4.22)

we hence conclude that

|E(Φ + v, c, ψ)| ≤ C4
[
1 + ‖v‖H1‖v‖2L2

]
,

|∆ABE| ≤ C4
[
1 + ‖v‖H1

][
1 + ‖v‖2L2

]
‖ψA − ψB‖H1 .

(2.4.23)
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Item (i) follows immediately from the first bound, since χlow(·)−1 is globally bounded.
To obtain (ii), we compute

|∆ABaσ| ≤ C5 |〈∂ξ(Φ + v), ψA〉L2 − 〈∂ξ(Φ + v), ψB〉L2 | |E(Φ + v, ψA)|

+C5 |∆ABE|

≤ C6[1 + ‖v‖L2 ]
[
1 + ‖v‖H1‖v‖2L2

]
‖ψA − ψB‖H1

+C6
[
1 + ‖v‖H1

][
1 + ‖v‖2L2

]
‖ψA − ψB‖H1

≤ C7

[
1 + ‖v‖H1(1 + ‖v‖3L2)

]
‖ψA − ψB‖H1 ,

(2.4.24)

in which we used several estimates of the form

‖v‖L2 ≤ C8
[
1 + ‖v‖4L2

]
≤ C8

[
1 + ‖v‖H1‖v‖3L2

]
. (2.4.25)

Upon introducing the shorthands

p(v, γ) = c+ aσ(Φref + v, c, Tγψtw),

q(v, γ) = b(Φref + v, Tγψtw), (2.4.26)

the second line of (2.2.31) can be written as

dΓ = p
(
X(t),Γ(t)

)
dt+ σq

(
X(t),Γ(t)

)
dβt. (2.4.27)

Taking the view-point that X(t) = X(t, ω) is known upon picking ω ∈ Ω, (2.4.27) can
be viewed as an SDE with random coefficients. Our next result relates directly to the
conditions of [93, Thm. 3.1.1], which is specially tailored for equations of this type.

Lemma 2.4.3. Suppose that (HA), (Hf), (HTw), (HS) and (Hg) are all satisfied and
fix c ∈ R together with 0 ≤ σ ≤ 1. Then there exists K > 0 so that the following
properties are satisfied.

(i) For any v ∈ H1 and any pair (γA, γB) ∈ R2, we have the inequality

K
[
1 + ‖v‖H1(1 + ‖v‖3L2)

]
|γA − γB |2 ≥ 2

[
γA − γB

][
p(v, γA)− p(v, γB)

]
+ |q(v, γA)− q(v, γB)|2 .

(2.4.28)

(ii) For any v ∈ H1 and γ ∈ R, we have the inequality

2γp(v, γ) + |q(v, γ)|2 ≤ K
[
1 + ‖v‖H1‖v‖2L2

][
1 + γ2]. (2.4.29)

(iii) For any v ∈ H1 and γ ∈ R, we have the bound

|p(v, γ)|+ |q(v, γ)|2 ≤ K
[
1 + ‖v‖H1‖v‖2L2

]
. (2.4.30)
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Proof. The exponential decay of ψ′tw and ψ′′tw implies that

‖TγAψtw − TγBψtw‖H1 ≤ C1 |γA − γB | . (2.4.31)

Using Lemmas 2.3.6 and 2.4.2, we hence find the bounds

|p(v, γ)| ≤ C2
[
1 + ‖v‖H1‖v‖2L2

]
,

|q(v, γ)| ≤ Kb,
(2.4.32)

together with

|p(v, γA)− p(v, γB)| ≤ C3
[
1 + ‖v‖H1(1 + ‖v‖3L2)

]
|γA − γB | ,

|q(v, γA)− q(v, γB)| ≤ C3[1 + ‖v‖L2 ] |γA − γB | .
(2.4.33)

Items (i), (ii) and (iii) can now be verified directly.

Proof of Prop. 2.2.1. The existence of the dt⊗P version of X that is (Ft)-progressively
measurable as a map into H1, follows from [93, Ex. 4.2.3].

We remark that the conditions (H1) through (H4) appearing in [77] correspond
directly with items (i)-(iv) of Lemma 2.4.1. In particular, we may apply the main result
from this paper with α = 2 and β = 4 to verify the remaining statements concerning
X.

Finally, we note that items (i)-(iii) of Lemma 2.4.3 allow us to apply [93, Thm.
3.1.1], provided that the function

t 7→
[
1 + ‖X(t)‖H1(1 + ‖X(t)‖3L2)

]
(2.4.34)

is integrable on [0, T ] for almost all ω ∈ Ω. This however follows directly from the
inclusions

X ∈ L6(Ω,P;C([0, T ];L2)
)
∩N 2([0, T ]; (Ft);H1), (2.4.35)

allowing us to verify the statements concerning Γ. The remaining inclusions (2.2.41)
follow directly from the bounds in Lemmas 2.3.2 and 2.3.6.

2.5 The stochastic phase-shift
In this section we consider the process (X,Γ) described in Proposition 2.2.1 and define
the new process

V (t) = T−Γ(t)[X(t) + Φref ]− Φ (2.5.1)
for some Φ ∈ UH1 . In addition, we introduce the nonlinearity

Rσ;Φ,c(v) = κσ(Φ + v, ψtw)A∗[Φ + v]

+f(Φ + v) + σ2b(Φ + v, ψtw)∂ξ[g(Φ + v)]

+
[
c+ aσ

(
Φ + v, c, ψtw

)]
[Φ′ + v′]

= κσ(Φ + v, ψtw)
[
A∗[Φ + v] + Jσ(Φ + v, c, ψtw)

]
+aσ

(
Φ + v, c, ψtw

)
[Φ′ + v′],

(2.5.2)
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together with
SΦ(v) = g(Φ + v) + b(Φ + v, ψtw)[Φ′ + v′]. (2.5.3)

Our main result states that the shifted process V can be interpreted as a weak solution
to the SPDE

dV = Rσ;Φ,c(V ) dt+ σSΦ(V )dβt. (2.5.4)

Proposition 2.5.1. Consider the setting of Proposition 2.2.1 and suppose that (hPar)
is satisfied. Then the map

V : [0, T ]× Ω→ L2 (2.5.5)

defined by (2.5.1) satisfies the following properties.

(i) For almost all ω ∈ Ω, the map t 7→ V (t, ω) is of class C([0, T ];L2).

(ii) For all t ∈ [0, T ], the map ω 7→ V (t, ω) ∈ L2 is (Ft)-measurable.

(iii) We have the inclusion

V ∈ N 2([0, T ]; (Ft);H1) (2.5.6)

together with
SΦ(V ) ∈ N 2([0, T ]; (Ft);L2). (2.5.7)

(iv) For almost all ω ∈ Ω, we have the inclusion

Rσ;Φ,c
(
V (·, ω)

)
∈ L1([0, T ];H−1). (2.5.8)

(v) For almost all ω ∈ Ω, the identity

V (t) = V (0) +
∫ t

0
Rσ;Φ,c

(
V (s)

)
ds+ σ

∫ t

0
SΦ
(
V (s)

)
dβs (2.5.9)

holds for all 0 ≤ t ≤ T .

Taking derivatives of translation operators typically requires extra regularity of the
underlying function, which prevents us from applying an Itô formula directly to (2.5.1).
In order to circumvent this technical issue, we pick a test function ζ ∈ C∞c (R;Rn) and
consider the two maps

φ1;ζ : H−1 × R→ R, φ2;ζ : R→ R (2.5.10)

that act as
φ1;ζ

(
x, γ

)
= 〈x, Tγζ〉H−1;H1 ,

φ2;ζ
(
γ
)

= 〈T−γΦref − Φ, ζ〉H−1;H1

= 〈T−γΦref − Φ, ζ〉L2 .

(2.5.11)

These two maps do have sufficient smoothness for our purposes here.



2

§2.5 – The stochastic phase-shift 53

Lemma 2.5.2. Consider the setting of Proposition 2.2.1. Then for almost all ω ∈ Ω
the identity

φ1;ζ
(
X(t),Γ(t)

)
=
φ1;ζ

(
X(0),Γ(0)

)
+
∫ t

0
〈A∗[X(s) + Φref ] + f(X(s) + Φref), TΓ(s)ζ〉H−1;H1 ds

−
∫ t

0

[
c+ aσ

(
X(s) + Φref , c, TΓ(s)ψtw

)]
〈X(s), TΓ(s)ζ

′〉L2 ds

− 1
2σ

2
∫ t

0
2b
(
X(s) + Φref , TΓ(s)ψtw

)
〈g(X(s) + Φref), TΓ(s)ζ

′〉L2 ds

+ 1
2σ

2
∫ t

0
b
(
X(s) + Φref , TΓ(s)ψtw

)2〈X(s), TΓ(s)ζ
′′〉L2 ds

+ σ

∫ t

0
〈g(X(s) + Φref), TΓ(s)ζ〉L2 dβs

− σ
∫ t

0
b
(
X(s) + Φref , TΓ(s)ψtw

)
〈X(s), TΓ(s)ζ

′〉L2 dβs

(2.5.12)

holds for all 0 ≤ t ≤ T .

Proof. We note that φ1;ζ is C2-smooth, with derivatives given by

Dφ1;ζ(x, γ)[y, β] = 〈y, Tγζ〉H−1;H1 − β〈x, Tγζ ′〉H−1;H1 , (2.5.13)

together with

D2φ1;ζ(x, γ)[y, β][y, β] = −2β〈y, Tγζ ′〉H−1;H1 + β2〈x, Tγζ ′′〉H−1;H1 . (2.5.14)

Applying a standard Itô formula such as [27, Thm. 1] with S = I, the result readily
follows.

Lemma 2.5.3. Consider the setting of Proposition 2.2.1. Then for almost all ω ∈ Ω
the identity

φ2;ζ
(
Γ(t)

)
= φ2;ζ(Γ(0)

)
−
∫ t

0

[
c+ aσ

(
X(s) + Φref , c, TΓ(s)ψtw

)]
〈Φref , TΓ(s)ζ

′〉L2 ds

+1
2σ

2
∫ t

0
b
(
X(s) + Φref , TΓ(s)ψtw

)2〈Φref , TΓ(s)ζ
′′〉L2 ds

−σ
∫ t

0
b
(
X(s) + Φref , TΓ(s)ψtw

)
〈Φref , TΓ(s)ζ

′〉L2 dβs

(2.5.15)
holds for all 0 ≤ t ≤ T .
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Proof. We note that φ2;ζ is C2-smooth, with derivatives given by

Dφ2;ζ(γ)[β] = −β〈Φref , Tγζ
′〉L2 , (2.5.16)

together with
D2φ2;ζ(γ)[β][β] = β2〈Φref , Tγζ

′′〉L2 . (2.5.17)

The result again follows from the Itô formula.

Corollary 2.5.4. Consider the setting of Proposition 2.2.1, suppose that (hPar) is
satisfied and pick a test-function ζ ∈ C∞c (R;Rn). Then for almost all ω ∈ Ω, the map
V defined by (2.5.1) satisfies the identity

〈V (t), ζ〉L2 = 〈V (0), ζ〉L2 +
∫ t

0
〈Rσ;Φ,c

(
V (s)

)
, ζ〉H−1;H1ds+ σ

∫ t

0
〈SΦ

(
V (s)

)
, ζ〉L2dβs

(2.5.18)
for all 0 ≤ t ≤ T .

Proof. For any γ ∈ R, we have the identities

aσ(u, c, Tγψ) = aσ(T−γu, c, ψ), b(u, Tγψ) = b(T−γu, ψ), (2.5.19)

together with the commutation relations

Tγf(u) = f(Tγu), Tγg(u) = g(Tγu), TγA∗u = A∗Tγu. (2.5.20)

By construction, we also have

〈V (t), ζ〉L2 = φ1;ζ
(
X(t),Γ(t)

)
+ φ2;ζ

(
Γ(t)

)
, (2.5.21)

together with
T−Γ(s)[X(s) + Φref ] = Φ + V (s). (2.5.22)

The derivatives in (2.5.12) and (2.5.15) can now be transferred from ζ to yield (2.5.18).
We emphasize that the identity

1
2σ

2b(Φ + V (s), ψtw)2[X ′′ + Φ′′ref ] = 1
2ρσ

2b(Φ + V (s), ψtw)2A∗[X(s) + Φref ] (2.5.23)

is a crucial ingredient in this computation. This is where we use the requirement in
(HA) that all the diffusion coefficients in A∗ are equal.

Proof of Proposition 2.5.1. Items (i) and (ii) follow immediately from items (i) and (ii)
of Proposition 2.2.1. Turning to (iii), notice first that we have the isometry

‖Tγx‖H1 = ‖x‖H1 . (2.5.24)

Observe in addition that

‖TγΦref − Φ‖H1 ≤ ‖TγΦref − Φref‖H1 + ‖Φref − Φ‖H1 ≤ C1
[
1 + |γ|

]
, (2.5.25)
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since Φ′ref and Φ′′ref decay exponentially. In particular, the inclusion (2.5.6) follows from
the corresponding inclusions (2.2.40) for the pair (X,Γ). The second inclusion (2.5.7)
now follows immediately from the bounds in Lemmas 2.3.2 and 2.3.6.

Using Lemmas 2.3.1, 2.3.2, 2.3.6 and 2.4.2, we obtain the bound

‖Rσ;Φ,c(v)‖H−1 ≤ C2Kκ

[
1 + ‖v‖H1

]
+C2

[
1 + ‖v‖2H1‖v‖L2

]
+C2σ

2Kb

[
1 + ‖v‖H1

]
+
[
1 + ‖v‖H1‖v‖2L2

][
1 + ‖v‖H1

]
.

(2.5.26)

Since items (i) and (iii) imply that

sup
0≤t≤T

‖V (t, ω)‖L2 +
∫ T

0
‖V (t, ω)‖2H1 dt <∞ (2.5.27)

for almost all ω ∈ Ω, item (iv) follows from the standard bound∫ T

0
‖V (t, ω)‖H1 dt ≤

√
T
[ ∫ T

0
‖V (t, ω)‖2H1 dt

]1/2
. (2.5.28)

Finally, we note that items (iii) and (iv) imply that the integrals in (2.5.9) are well-
defined. In view of Corollary 2.5.4, we can apply a standard diagonalisation argument
involving the separability of L2 and the density of test-functions to conclude that (v)
holds.

2.6 The stochastic time transform
We note that (2.5.9) can be interpreted as a quasi-linear equation due to the presence
of the κσA∗ term. In this section we transform our problem to a semilinear form by
rescaling time, using the fact that κσ is a scalar. In addition, we investigate the impact
of this transformation on the probabilities (2.2.62).

Recalling the map V defined in Proposition 2.5.1, we write

τΦ(t, ω) =
∫ t

0
κσ
(
Φ + V (s, ω), ψtw

)
ds. (2.6.1)

Using Lemma 2.3.8 we see that t 7→ τΦ(t) is a continuous strictly increasing (Ft)-adapted
process that satisfies

t ≤ τΦ(t) ≤ Kκt (2.6.2)

for 0 ≤ t ≤ T . In particular, we can define a map

tΦ : [0, T ]× Ω→ [0, T ] (2.6.3)

for which
τΦ(tΦ(τ, ω), ω) = τ. (2.6.4)



2

56 Chapter 2 – Reaction-Diffusion Equations with Scalar Noise

We now introduce the time-transformed map

V : [0, T ]× Ω→ L2 (2.6.5)

that acts as
V (τ, ω) = V

(
tΦ(τ, ω), ω

)
. (2.6.6)

Before stating our main results, we first investigate the effects of this transformation
on the terms appearing in (2.5.9).

Lemma 2.6.1. Consider the setting of Proposition 2.2.1 and suppose that (hPar) is
satisfied. Then the map tΦ defined in (2.6.3) satisfies the following properties.

(i) For every 0 ≤ τ ≤ T , the random variable ω 7→ tΦ(τ, ω) is an (Ft)-stopping time.

(ii) The map τ 7→ tΦ(τ, ω) is continuous and strictly increasing for all ω ∈ Ω.

(iii) For any 0 ≤ τ ≤ T and ω ∈ Ω we have the bounds

K−1
κ τ ≤ tΦ(τ, ω) ≤ τ. (2.6.7)

(iv) For every 0 ≤ t ≤ T , the identity

tΦ(τΦ(t, ω), ω) = t (2.6.8)

holds on the set {ω : τΦ(t, ω) ≤ T}.

Proof. On account of the identity

{ω : tΦ(τ, ω) ≤ t} = {ω : τΦ(t, ω) ≥ τ} (2.6.9)

and the fact that the latter set is in Ft, we may conclude that tΦ(τ) is an (Ft)-stopping
time. The remaining properties follow directly from (2.6.2)-(2.6.4).

Lemma 2.6.2. Consider the setting of Proposition 2.2.1, recall the maps (tΦ, V ) de-
fined by (2.6.3) and (2.6.6) and suppose that (hPar) is satisfied. Then there exists
a filtration (Fτ )τ≥0 together with a (Fτ )-Brownian motion (βτ )τ≥0 so that for any
H ∈ N 2([0, T ]; (Ft);L2), the process

H(τ, ω) = H
(
tΦ(τ, ω), ω

)
(2.6.10)

satisfies the following properties.

(i) We have the inclusion
H ∈ N 2([0, T ]; (Fτ );L2), (2.6.11)

together with the bound

E

∫ T

0
‖H(τ)‖2L2 dτ ≤ KκE

∫ T

0
‖H(t)‖2L2 dt. (2.6.12)
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(ii) For almost all ω ∈ Ω, the identity∫ tΦ(τ)

0
H(s) dβs =

∫ τ

0
H(τ ′)κσ(Φ + V (τ ′), ψtw)−1/2 dβτ ′ (2.6.13)

holds for all 0 ≤ τ ≤ T .

Proof. Following [59, §1.2.3], we write

Fτ = {A ∈ ∪t≥0Ft : A ∩ {tΦ(τ) ≤ t} ∈ Ft for all t ≥ 0}. (2.6.14)

The fact that H is (Fτ )-progressively measurable can be established following the proof
of [58, Lem. 10.8(c)]. In addition, we note that for almost all ω ∈ Ω the path

t 7→ ‖V (t, ω)‖2L2 (2.6.15)

is in L1([0, T ]), which allows us to apply the deterministic substitution rule to obtain∫ tΦ(τ)

0
‖V (s)‖2L2 ds =

∫ τ

0
‖V
(
tΦ(τ ′)

)
‖2L2∂τ ′tΦ(τ ′) dτ ′. (2.6.16)

We now note that

∂τ tΦ(τ) =
[
∂tτΦ

(
tΦ(τ)

)]−1

= κσ
(
Φ + V

(
tΦ(τ)

)
, ψtw

)−1

= κσ
(
Φ + V (τ), ψtw

)−1
.

(2.6.17)

In particular, we see that
|∂τ tΦ(τ)| ≥ K−1

κ (2.6.18)
and hence ∫ τ

0
‖V
(
tΦ(τ ′)

)
‖2L2 dτ ′ ≤ Kκ

∫ tΦ(τ)

0
‖V (s)‖2L2 ds. (2.6.19)

The bound (2.6.12) now follows from tΦ(T, ω) ≤ T .
To obtain (ii), we introduce the Brownian-motion (βτ )τ≥0 that is given by

βτ =
∫ τ

0

1√
∂τ ′tΦ(τ ′)

dβtΦ(τ ′). (2.6.20)

For any test-function ζ ∈ C∞c (R;Rn) and 0 ≤ t ≤ T , the proof of [59, Lem. 5.1.3.5]
implies that for almost all ω ∈ Ω the identity∫ tΦ(τ)

0
〈H(s), ζ〉L2dβs =

∫ τ

0
〈H
(
tΦ(τ ′)

)
, ζ〉L2

√
∂τ ′tΦ(τ ′) dβτ ′

=
∫ τ

0
〈H(τ ′), ζ〉L2κσ

(
Φ + V (τ ′), ψtw

)−1/2
dβτ ′

(2.6.21)

holds for all 0 ≤ τ ≤ T . Since (i) and (ii) together imply that the right-hand side of
(2.6.13) is well-defined as a stochastic-integral, a standard diagonalisation argument
involving the separability of L2 shows that both sides must be equal for almost all
ω ∈ Ω.
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In order to formulate the time-transformed SPDE, we introduce the nonlinearity

Rσ;Φ,c(v) = κσ(Φ + v, ψtw)−1Rσ;Φ,c(v)− Ltwv

= A∗[Φ + v] + Jσ(Φ + v, c, ψtw)

+κσ(Φ + v, ψtw)−1a(Φ + v, c, ψtw)[Φ′ + v′]− Ltwv,

(2.6.22)

together with

Sσ;Φ(v) = κσ(Φ + v, ψtw)−1/2SΦ(v)

= κσ(Φ + v, ψtw)−1/2
[
g(Φ + v) + b(Φ + v, ψtw)[Φ′ + v′]

]
.

(2.6.23)

Proposition 2.6.3. Consider the setting of Proposition 2.2.1 and suppose that (hPar)
is satisfied. Then the map

V : [0, T ]× Ω→ L2 (2.6.24)
defined by the transformations (2.5.1) and (2.6.6) satisfies the following properties.

(i) For almost all ω ∈ Ω, the map τ 7→ V (τ ;ω) is of class C
(
[0, T ];L2).

(ii) For all τ ∈ [0, T ], the map ω 7→ V (τ, ω) is (Fτ )-measurable.

(iii) We have the inclusion

V ∈ N 2([0, T ]; (F)τ ;H1), (2.6.25)

together with
Sσ;Φ(V ) ∈ N 2([0, T ]; (F)τ ;L2). (2.6.26)

(iv) For almost all ω ∈ Ω, we have the inclusion

Rσ;Φ,c
(
V (·, ω)

)
∈ L1([0, T ];L2). (2.6.27)

(v) For almost all ω ∈ Ω, the identity

V (τ) = V (0) +
∫ τ

0

[
LtwV (τ ′) +Rσ;Φ,c

(
V (τ ′)

)]
dτ ′

+σ
∫ τ

0
Sσ;Φ

(
V (τ ′)

)
dβτ ′

(2.6.28)

holds for all 0 ≤ t ≤ T .

(vi) For almost all ω ∈ Ω, the identity

V (τ) = S(τ)V (0) +
∫ τ

0
S(τ − τ ′)Rσ;Φ,c

(
V (τ ′)

)
dτ ′

+σ
∫ τ

0
S(τ − τ ′)Sσ;Φ

(
V (τ ′)

)
dβτ ′

(2.6.29)

holds for all τ ∈ [0, T ], in which

S : [0,∞)→ L(L2;L2) (2.6.30)

denotes the analytic semigroup generated by Ltw.
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Proof. Items (i)-(iii) follow by applying (i) of Lemma 2.6.2 to the maps V , ∂ξV and
using the definition (2.6.23). Item (iv) can be obtained from the computation (2.5.26),
noting that the A∗v contribution is no longer present.

Item (v) can be obtained by applying the stochastic time-transform (2.6.13) and the
deterministic time-transform∫ tΦ(τ)

0
Rσ;Φ,c

(
V (s)

)
ds =

∫ τ

0
Rσ;Φ,c

(
V (τ ′)

)[
κσ
(
Φ + V (τ ′), ψtw

)]−1
dτ ′

(2.6.31)
to the integral equation (2.5.9).

Turning to (vi), we note that A∗ generates a standard diagonal heat-semigroup,
which is obviously analytic. Noting that

Ltw −A∗ ∈ L(H1;L2) (2.6.32)

and recalling the interpolation estimate

‖v‖H1 ≤ C1‖v‖1/2H2 ‖v‖1/2L2 , (2.6.33)

we may apply [80, Prop. 3.2.2(iii)] to conclude that also Ltw generates an analytic
semigroup. We may now apply [92, Prop. 6.3] and the computation in the proof of [80,
Prop. 4.1.4] to conclude the integral identity (2.6.29).

We now introduce the scalar functions

Nε,α(t) = eαt‖V (t)‖2L2 +
∫ t

0
e−ε(t−s)eαs‖V (s)‖2H1 ds,

Nε,α(τ) = eατ‖V (τ)‖2L2 +
∫ τ

0
e−ε(τ−τ

′)eατ
′
‖V (τ ′)‖2H1 dτ ′,

(2.6.34)

together with the associated probabilities

pε,α(T, η) = P
(

sup
0≤t≤T

Nε,α(t) > η
)
,

pε,α(T, η) = P
(

sup
0≤τ≤T

Nε,α(τ) > η
)
.

(2.6.35)

Our second main result shows that these two sets of probabilities can be effectively
compared with each other.

Proposition 2.6.4. Consider the setting of Proposition 2.2.1 and recall the maps V
and V defined by (2.5.1) and (2.6.6). Then we have the bound

pε,α(T, η) ≤ pK−1
κ ε,α

(
KκT,K

−1
κ η

)
. (2.6.36)

Proof. We note that

eαt‖V (t)‖L2 = eαt‖V
(
τΦ(t)

)
‖L2 ≤ eατΦ(t)‖V

(
τΦ(t)

)
‖L2 , (2.6.37)

which implies that

sup
0≤t≤T

eαt‖V (t)‖2L2 ≤ sup
0≤τ≤KκT

eατ‖V (τ)‖2L2 . (2.6.38)
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In addition, we compute∫ t

0
e−ε(t−s)eαs‖V (s)‖2H1 ds

=
∫ τΦ(t)

0
e−ε(t−tΦ(τ ′))eαtΦ(τ ′)‖V (τ ′)‖2H1κσ

(
Φ + V (τ ′), ψtw

)−1
dτ ′.

(2.6.39)

Using (2.6.18) we obtain the estimate

t− tΦ(τ ′) = tΦ
(
τΦ(t)

)
− tΦ(τ ′) =

∫ τΦ(t)

τ ′
∂τ ′′tΦ(τ ′′) dτ ′′ ≥ K−1

κ |τΦ(t)− τ ′| , (2.6.40)

which yields∫ t

0
e−ε(t−s)eαs‖V (s)‖2H1 ds ≤ Kκ

∫ τΦ(t)

0
e−K

−1
κ ε(τΦ(t)−τ ′)eατ

′
‖V (τ ′)‖2H1 dτ ′. (2.6.41)

In particular, we conclude that

sup
0≤t≤T

∫ t

0
e−ε(t−s)eαs‖V (s)‖2H1 ds ≤ sup

0≤τ≤KκT
Kκ

∫ τ

0
e−K

−1
κ ε(τ−τ ′)eατ

′
‖V (τ ′)‖2H1 dτ ′.

(2.6.42)
This yields the implication

sup
0≤τ≤KκT

NK−1
κ ε,α(τ) ≤ K−1

κ η ⇒ sup
0≤t≤T

Nε,α(t) ≤ η, (2.6.43)

from which the desired inequality immediately follows.

2.7 The stochastic wave
In this section we set out to construct the branch of modified waves (Φσ, cσ) and analyze
the phase condition

〈T−γ0 [u0]− Φσ, ψtw〉L2 = 0 (2.7.1)

for u0 ≈ Φσ. In particular, we establish Propositions 2.2.2, 2.2.3 and 2.2.6.
A key role in our analysis is reserved for the function

Mσ;Φ,c(v, d) = Jσ(Φ + v, c+ d, ψtw)− J0(Φ, c)

−dΦ′0 + [A∗ − Ltw]v, (2.7.2)

defined for (Φ, c) ∈ UH1 × R and (v, d) ∈ H1 × R. Indeed, we will construct a solution
to

A∗Φσ + Jσ(Φσ, cσ, ψtw) = 0 (2.7.3)

by writing
Φσ = Φ0 + v, cσ = c0 + d. (2.7.4)
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Using the fact that the pair (Φ0, c0) is a solution to (2.7.3) for σ = 0, one readily verifies
that the pair (v, d) ∈ H2 × R must satisfy the system

dΦ′0 + Ltwv = −Mσ;Φ0,c0(v, d). (2.7.5)

In addition, the function Mσ;Φσ,cσ will be used in §2.8 to obtain bounds on the nonlin-
earity Rσ;Φσ,cσ .

In §2.7.1 we obtain global and Lipschitz bounds on Mσ;Φ,c. These bounds are
subsequently used in §2.7.2 to setup two fixed-point constructions that provide solutions
to (2.7.1) and (2.7.3).

2.7.1 Bounds for Mσ

In order to streamline our estimates, it is convenient to decompose the function Jσ as

Jσ(u, c, ψtw) = κσ(u, ψtw)−1
[
f(u) + cu′ + σ2b(u, ψtw)∂ξ[g(u)]

]
= J0(u, c) + Eσ;I(u, c) + Eσ;II(u).

(2.7.6)

Here we have introduced the function

Eσ;I(u, c) = ν(−1)
σ (u, ψtw)[f(u) + cu′]

= ν(−1)
σ (u, ψtw)J0(u, c),

(2.7.7)

together with
Eσ;II(u) = σ2κσ(u, ψtw)−1b(u, ψtw)∂ξ[g(u)] (2.7.8)

where ν−1
σ is as defined in (2.3.55).

This decomposition allows us to rewrite (2.7.2) in the intermediate form

Mσ;Φ,c(v, d) = M0;Φ,c(v, d) + Eσ;I(Φ + v, c+ d) + Eσ;II(Φ + v). (2.7.9)

We now make a final splitting

M0;Φ,c(v, d) = J0(Φ + v, c+ d)− J0(Φ, c)−Df(Φ0)v − c0v′ − dΦ′0
= NI;f,Φ(v) +NII;Φ,c(v, d),

(2.7.10)

in which we have introduced the function

NI;f,Φ(v) = f(Φ + v)− f(Φ)−Df(Φ)v, (2.7.11)

together with

NII;Φ,c(v, d) = dv′ +
[
Df(Φ)−Df(Φ0)

]
v + (c− c0)v′ + d[Φ′ − Φ′0]. (2.7.12)

We hence arrive at the convenient final expression

Mσ;Φ,c(v, d) = NI;f,Φ(v) +NII;Φ,c(v, d) + Eσ;I(Φ + v, c+ d) + Eσ;II(Φ + v)
(2.7.13)

and set out to analyze each of these terms separately.
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Lemma 2.7.1. Suppose that (Hf) and (hPar) are satisfied. Then there exists K > 0
so that for any v ∈ H1 we have the bound

‖NI;f,Φ(v)‖L2 ≤ K
[
1 + ‖v‖H1

]
‖v‖H1‖v‖L2 , (2.7.14)

while for any pair (vA, vB) ∈ H1 ×H1 we have the estimates

‖NI;f,Φ(vA)−NI;f,Φ(vB)‖L2 ≤ K
[
1 + ‖vA‖H1 + ‖vB‖H1

][
‖vA‖H1 + ‖vB‖H1

]
×‖vA − vB‖L2 ,

|〈NI;f,Φ(vA)−NI;f,Φ(vB), ψtw〉L2 | ≤ K
[
1 + ‖vA‖H1 + ‖vB‖H1

][
‖vA‖L2 + ‖vB‖L2

]
×‖vA − vB‖L2 .

(2.7.15)
Proof. Using (2.3.6) and (hPar) we obtain the pointwise bound

|NI;f,Φ(v)| ≤ C1[1 + |v|] |v|2 , (2.7.16)

from which (2.7.14) easily follows. In addition, we may compute

NI;f,Φ(vA)−NI;f,Φ(vB) = f(Φ + vA)− f(Φ + vB)−Df(Φ + vB)(vA − vB)

+
(
Df(Φ + vB)−Df(Φ)

)
(vA − vB)

= NI;f,Φ+vB (vA − vB) +
(
Df(Φ + vB)−Df(Φ)

)
(vA − vB).

(2.7.17)

Applying (2.3.6) and (hPar) a second time, we obtain the pointwise bound

|NI;f,Φ(vA)−NI;f,Φ(vB)| ≤ C2[1 + |vA|+ |vB |
]
|vA − vB |2

+C2[1 + |vB |] |vB | |vA − vB |

≤ C3[1 + |vA|+ |vB |
][
|vA|+ |vB |

]
|vA − vB | ,

(2.7.18)
from which the estimates in (2.7.15) can be readily obtained.

Lemma 2.7.2. Suppose that (Hf) and (hPar) are satisfied. Then there exists K > 0
so that for any (v, d) ∈ H1 × R we have the bound

‖NII;Φ,c(v, d)‖L2 ≤ K
[
|c− c0|+ ‖Φ− Φ0‖H1 + |d|

][
‖v‖H1 + |d|

]
, (2.7.19)

while for any set of pairs (vA, vB) ∈ H1 ×H1 and (dA, dB) ∈ R2 the expression

∆ABNII;Φ,c = NII;Φ,c(vA, dA)−NII;Φ,c(vB , dB) (2.7.20)

satisfies the estimates

‖∆ABNII;Φ,c‖L2 ≤ K
[
‖vA‖H1 + |dB |+ ‖Φ− Φ0‖H1 + |c− c0|

]
×
[
‖vA − vB‖H1 + |dA − dB |

]
,

|〈∆ABNII;Φ,c, ψtw〉L2 | ≤ K
[
‖vA‖L2 + |dB |+ ‖Φ− Φ0‖L2 + |c− c0|

]
×
[
‖vA − vB‖L2 + |dA − dB |

]
.

(2.7.21)
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Proof. In view of (hPar), we obtain the pointwise bound

|NII;Φ,c(v, d)| ≤
[
|d|+ |c− c0|

]
|v′|+ C1 |Φ− Φ0| |v|+ |Φ′ − Φ′0| |d| , (2.7.22)

from which (2.7.19) follows. In addition, we obtain the pointwise bound

|∆ABNII;Φ,c| ≤ |dA − dB | |v′A|+
[
|dB |+ |c− c0|

]
|v′A − v′B |

+K |Φ− Φ0|
[
|vA − vB |

]
+ |Φ′ − Φ′0| |dA − dB |

(2.7.23)

from which (2.7.21) follows.

Lemma 2.7.3. Suppose that (Hf), (Hg) and (hPar) are satisfied. Then there exists
K > 0 so that for any 0 ≤ σ ≤ 1 and (v, d) ∈ H1 × R, we have the bound

‖Eσ;I(Φ + v, c+ d)‖L2 ≤ Kσ2(1 + |d|)
[
1 + ‖v‖H1 + ‖v‖2H1‖v‖L2

]
, (2.7.24)

while for any 0 ≤ σ ≤ 1 and any set of pairs (vA, vB) ∈ H1 ×H1 and (dA, dB) ∈ R2,
the expression

∆ABEσ;I = Eσ;I(Φ + vA, c+ dA)− Eσ;I(Φ + vB , c+ dB) (2.7.25)

satisfies the estimates

‖∆ABEσ;I‖L2 ≤ Kσ2(1 + |dA|)
[
1 + ‖vA‖H1 + ‖vA‖2H1‖vA‖L2

]
‖vA − vB‖L2

+Kσ2[1 + |dB |+ ‖vA‖H1‖vA‖L2 + ‖vB‖H1‖vB‖L2
]
‖vA − vB‖H1

+Kσ2[1 + ‖vA‖H1
]
|dA − dB | ,

(2.7.26)

|〈∆ABEσ;I , ψtw〉L2 | ≤ Kσ2(1 + |dA|+ |dB |)
[
1 + ‖vA‖H1‖vA‖2L2

]
‖vA − vB‖L2

+Kσ2[‖vA‖2L2 + ‖vB‖2L2

]
‖vA − vB‖H1

+Kσ2[1 + ‖vA‖L2 ] |dA − dB | .
(2.7.27)

Proof. The bound (2.7.24) follows directly from Lemmas 2.3.4 and 2.3.9. In addition,
these results allow us to compute

‖∆ABEσ;I‖L2 ≤
∣∣∣ν(−1)
σ (Φ + vA, ψtw)− ν(−1)

σ (Φ + vB , ψtw)
∣∣∣ ‖J0(Φ + vA, c+ dA)‖L2

+
∣∣∣ν(−1)
σ (Φ + vB , ψtw)

∣∣∣ ‖J0(Φ + vA, c+ dA)− J0(Φ + vB , c+ dB)‖L2

≤C1σ
2‖vA − vB‖L2(1 + |dA|)

[
1 + ‖vA‖H1 + ‖vA‖2H1‖vA‖L2

]
+ C1σ

2[‖vA‖H1‖vA‖L2 + ‖vB‖H1‖vB‖L2
]
‖vA − vB‖H1

+ C1σ
2[1 + ‖vA‖H1 ] |dA − dB |

+ C1σ
2(1 + |dB |)‖vA − vB‖H1 ,

(2.7.28)
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together with

|〈∆ABEσ;I ,ψtw〉L2 | ≤∣∣∣ν(−1)
σ (Φ + vA, ψtw)− ν(−1)

σ (Φ + vB , ψtw)
∣∣∣ |〈J0(Φ + vA, c+ dA), ψtw〉L2 |

+
∣∣∣ν(−1)
σ (Φ + vB , ψtw)

∣∣∣ |〈J0(Φ + vA, c+ dA)− J0(Φ + vB , c+ dB), ψtw〉L2 |

+ C2σ
2‖vA − vB‖L2(1 + |dA|)

[
1 + ‖vA‖H1‖vA‖2L2

]
+ C2σ

2[‖vA‖2L2 + ‖vB‖2L2 ]‖vA − vB‖H1

+ C2σ
2[1 + ‖vA‖L2 ] |dA − dB |

+ C2σ
2(1 + |dB |)‖vA − vB‖L2 .

(2.7.29)

These terms can all be absorbed by the expressions in (2.7.26) and (2.7.27).

Lemma 2.7.4. Suppose that (Hg) and (hPar) are satisfied. Then there exists K > 0
so that for any 0 ≤ σ ≤ 1 and v ∈ H1 we have the bound

‖Eσ;II(Φ + v)‖L2 ≤ Kσ2[1 + ‖v‖H1
]
, (2.7.30)

while for any 0 ≤ σ ≤ 1 and any pair (vA, vB) ∈ H1 ×H1 the expression

∆ABEσ;II = Eσ;II(Φ + vA)− Eσ;II(Φ + vB) (2.7.31)

satisfies the estimates

‖∆ABEσ;II‖L2 ≤ Kσ2[1 + ‖vA‖H1
]
‖vA − vB‖H1 ,

|〈∆ABEσ;II , ψtw〉L2 | ≤ Kσ2[1 + ‖vA‖L2
]
‖vA − vB‖L2 .

(2.7.32)

Proof. The bound (2.7.30) follows directly from Lemmas 2.3.2, 2.3.6 and 2.3.8. In
addition, we may compute

‖∆ABEσ;II‖L2 ≤σ2
∣∣∣ν(−1)
σ (Φ + vA, ψtw)− ν(−1)

σ (Φ + vB , ψtw)
∣∣∣Kb‖∂ξ[g(Φ + vA)]‖L2

+ σ2Kν |b(Φ + vA, ψtw)− b(Φ + vB , ψtw)| ‖∂ξ[g(Φ + vA)]‖L2

+ σ2KκKb‖∂ξ[g(Φ + vA)− g(Φ + vB)]‖L2

≤C1σ
2‖vA − vB‖L2

[
1 + ‖vA‖H1

]
+ C1σ

2‖vA − vB‖L2
[
1 + ‖vA‖H1

]
+ C1σ

2[1 + ‖vA‖H1
]
‖vA − vB‖H1 ,

(2.7.33)



2

§2.7 – The stochastic wave 65

together with

|〈∆ABEσ;II ,ψtw〉L2 |

≤σ2
∣∣∣ν(−1)
σ (Φ + vA, ψtw)− ν(−1)

σ (Φ + vB , ψtw)
∣∣∣Kb |〈∂ξ[g(Φ + vA)], ψtw〉L2 |

+ σ2Kν |b(Φ + vA, ψtw)− b(Φ + vB , ψtw)| |〈∂ξ[g(Φ + vA)], ψtw〉L2 |

+ σ2KνKb |〈∂ξ[g(Φ + vA)− g(Φ + vB)], ψtw〉L2 |

≤C2σ
2‖vA − vB‖L2

[
1 + ‖vA‖L2

]
+ C2σ

2‖vA − vB‖L2
[
1 + ‖vA‖L2

]
+ C2σ

2‖vA − vB‖L2 .

(2.7.34)

These expressions can be absorbed into the bounds (2.7.32).

Corollary 2.7.5. Suppose that (Hf), (Hg) and (hPar) are satisfied. Then there exists
K > 0 so that the following holds true. For any 0 ≤ σ ≤ 1 and any (v, d) ∈ H1 × R
that has |d| ≤ 1, we have the estimate

‖Mσ;Φ,c(v, d)‖L2 ≤ K
[
1 + ‖v‖H1

]
‖v‖H1‖v‖L2

+K
[
|c− c0|+ ‖Φ− Φ0‖H1 + |d|

][
‖v‖H1 + |d|

]
+Kσ2[1 + ‖v‖H1

]
.

(2.7.35)

In addition, for any 0 ≤ σ ≤ 1 and any set of pairs (vA, vB) ∈ H1×H1 and (dA, dB) ∈
R2 for which |dA| ≤ 1 and |dB | ≤ 1, the expression

∆ABMσ;Φ,c =Mσ;Φ,c(vA, dA)−Mσ;Φ,c(vB , dB) (2.7.36)

satisfies the estimates

‖∆ABMσ;Φ,c‖L2 ≤ K
[
1 + ‖vA‖H1 + ‖vB‖H1

][
‖vA‖H1 + ‖vB‖H1

]
‖vA − vB‖L2

+K
[
σ2 + ‖vA‖H1 + |dB |+ ‖Φ− Φ0‖H1 + |c− c0|

]
×
[
‖vA − vB‖H1 + |dA − dB |

]
+Kσ2‖vA‖2H1‖vA‖L2‖vA − vB‖L2

+Kσ2
[
‖vA‖H1‖vA‖L2 + ‖vB‖H1‖vB‖L2

]
‖vA − vB‖H1 ,

(2.7.37)
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|〈∆ABMσ;Φ,c, ψtw〉L2 | ≤ K
[
1 + ‖vA‖H1 + ‖vB‖H1

][
‖vA‖L2 + ‖vB‖L2

]
‖vA − vB‖L2

+K
[
σ2 + ‖vA‖L2 + |dB |+ ‖Φ− Φ0‖L2 + |c− c0|

]
×
[
‖vA − vB‖L2 + |dA − dB |

]
+Kσ2‖vA‖H1‖vA‖2L2‖vA − vB‖L2

+Kσ2
[
‖vA‖2L2 + ‖vB‖2L2

]
‖vA − vB‖H1 .

(2.7.38)

Proof. In view of the identity (2.7.13) it suffices to note that the terms (2.7.14), (2.7.19),
(2.7.24) and (2.7.30) can be absorbed in (2.7.35), while the expressions (2.7.15), (2.7.21),
(2.7.26), (2.7.27) and (2.7.32) can be absorbed in (2.7.37) and (2.7.38).

Corollary 2.7.6. Suppose that (Hf) and (Hg) are satisfied. Then there exists K > 0
so that the following holds true. For any 0 ≤ σ ≤ 1 and any (v, d) ∈ H1 × R that has
‖v‖H1 ≤ 1 together with |d| ≤ 1, we have the estimate

‖Mσ;Φ0,c0(v, d)‖L2 ≤ K
[
‖v‖L2 + |d|

][
‖v‖H1 + |d|

]
+Kσ2. (2.7.39)

In addition, for any 0 ≤ σ ≤ 1 and any set of pairs (vA, vB) ∈ H1×H1 and (dA, dB) ∈
R2 for which the bounds

‖vA‖H1 ≤ 1, |dA| ≤ 1, ‖vB‖H1 ≤ 1, |dB | ≤ 1 (2.7.40)

hold, the expression

∆ABMσ;Φ0,c0 =Mσ;Φ0,c0(vA, dA)−Mσ;Φ0,c0(vB , dB) (2.7.41)

satisfies the estimate

‖∆ABMσ;Φ0,c0‖L2 ≤ K
[
σ2 + ‖vA‖H1 + ‖vB‖H1 + |dB |

][
‖vA − vB‖H1 + |dA − dB |

]
.

(2.7.42)

Proof. These bounds can easily be obtained by simplifying the corresponding expressions
from Corollary 2.7.5.

2.7.2 Fixed-point constructions
As a final preparation before setting up our fixed-point problems, we need to control
the higher order effects that arise when translating the adjoint eigenfunction ψtw. In
particular, for any γ ∈ R we introduce the function

Ntw(γ) = Tγψtw − ψtw + γψ′tw (2.7.43)

and obtain the following bounds.
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Lemma 2.7.7. Suppose that (HTw) and (HS) hold. Then there exists K > 0 so that
for any γ ∈ R we have the bound

‖Ntw(γ)‖L2 ≤ Kγ2, (2.7.44)

while for any pair (γA, γB) ∈ R2 we have the estimate

‖Ntw(γA)−Ntw(γB)‖L2 ≤ K
[
|γA|+ |γB |

]
|γA − γB | . (2.7.45)

Proof. In view of (2.4.31), we have the a priori bound

‖Ntw(γ)‖L2 ≤ C1
[
1 + |γ|

]
, (2.7.46)

together with
‖Ntw(γA)−Ntw(γB)‖L2 ≤ C1 |γA − γB | . (2.7.47)

In particular, we can restrict our attention to the situation where |γ| ≤ 1 and |γA| +
|γB | ≤ 1. In this case we obtain the pointwise bounds

|Ntw(γ)(ξ)| ≤ 1
2γ

2 sup
ξ−1≤ξ′≤ξ+1

|ψ′′tw(ξ′)| (2.7.48)

together with

|Ntw(γA)(ξ)−Ntw(γB)(ξ)| ≤
[

sup
ξ−1≤ξ′≤ξ+1

|ψ′′tw(ξ′)|
][1

2(γA − γB)2 + |γB | |γA − γB |
]
.

(2.7.49)
The desired bounds now follow from the exponential decay of ψ′′tw.

Proof of Proposition 2.2.2. As a consequence of (HS), there exists a bounded linear
map

Linv : L2 → H2 × R (2.7.50)
so that for any h ∈ L2, the pair (v, d) = Linvh is the unique solution in H2 × R to the
problem

Ltwv = h− Φ′0d. (2.7.51)
Indeed, we take d = 〈h, ψtw〉L2 , which in view of the normalization (2.2.14) ensures that
the right-hand side of (2.7.51) is in the range of Ltw.

It now suffices to find a solution to the fixed-point problem

(v, d) = −LinvMσ;Φ0,c0(v, d). (2.7.52)

Upon introducing the set

ZΘ =
{

(v, d) ∈ H2 × R : ‖v‖H2 + |d| ≤ min{1,Θσ2}
}
⊂ H2 × R (2.7.53)

and applying Corollary 2.7.6, we see that for any (v, d) ∈ ZΘ we have

‖Mσ;Φ0,c0(v, d)‖L2 ≤ K
(
Θ4σ4 + σ2) = Kσ2(Θ2σ2 + 1

)
, (2.7.54)

while for any two pairs (vA, dA) ∈ ZΘ and (vB , dB) ∈ ZΘ we have

‖Mσ;Φ0,c0(vA, dA)−Mσ;Φ0,c0(vB , dB)‖L2 ≤ Kσ2[1 + 2Θ
][
‖vA − vB‖H1 + |dA − dB |

]
.

(2.7.55)
In particular, choosing Θ to be sufficiently large and δσ > 0 to be sufficiently small, we
see that the map −LinvMσ;Φ0,c0 is a contraction on ZΘ for all 0 ≤ σ ≤ δσ.
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Proof of Proposition 2.2.3. We first recall that

〈Φref , ψ
′
tw〉L2 = −〈Φ′ref , ψtw〉L2 = −〈Φ′0, ψtw〉L2 = −1. (2.7.56)

Writing u0 = x0 + Φref , this allows us to compute

〈vγ , ψtw〉L2 = 〈x0 + Φref , Tγψtw〉L2 − 〈Φσ, ψtw〉L2

= 〈x0 + Φref , ψtw − γψ′tw +Ntw(γ)〉L2 − 〈Φσ, ψtw〉L2

= γ + 〈x0 + Φref − Φσ, ψtw〉L2 + Eσ(x0, γ),

(2.7.57)

in which we have introduced the expression

Eσ(x0, γ) = −γ〈x0, ψ
′
tw〉L2 + 〈x0 + Φref ,Ntw(γ)〉L2 . (2.7.58)

Using Lemma 2.7.7, we obtain the estimate

|Eσ(x0, γ)| ≤ C1‖x0‖L2 |γ|+ C1
[
1 + ‖x0‖L2

]
γ2, (2.7.59)

together with the Lipschitz bound

‖Eσ(x0, γA)− Eσ(x0, γB)‖L2 ≤ C2‖x0‖L2 |γA − γB |

+C2
[
1 + ‖x0‖L2

][
|γA|+ |γB |

]
|γA − γB | .

(2.7.60)
In particular, upon choosing δfix > 0 to be sufficiently small and imposing the restriction

‖x0‖L2 + ‖x0 + Φref − Φσ‖L2 < δfix, (2.7.61)

we can define γ0 as the unique solution to the fixed-point problem

−γ = 〈x0 + Φref − Φσ, ψtw〉L2 + Eσ(x0, γ) (2.7.62)

on the set
Σx0 = {γ : |γ| ≤ 2‖x0 + Φref − Φσ‖L2‖ψtw‖L2}. (2.7.63)

By choosing δσ > 0 and δ0 > 0 to be sufficiently small, the bound (2.2.49) allows us to
conclude that (2.7.61) is satisfied whenever (2.2.50) holds.

For any γ ∈ R we can compute

‖T−γΦσ − Φσ‖2L2 =
∫ (

Φσ(ξ + γ)− Φσ(ξ)
)2
dξ

=
∫ [ ∫ γ

0
Φ′σ(ξ + s) ds

]2
dξ

≤
∫
|γ|
∫ γ

0
Φ′σ(ξ + s)2 ds dξ

= |γ|2
∫

Φ′σ(ξ)2 dξ

= |γ|2 ‖Φ′σ‖2L2 .

(2.7.64)
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In particular, we obtain the bound

‖vγ0‖L2 = ‖x0 + Φref − Tγ0Φσ‖L2

≤ ‖x0 + Φref − Φσ‖L2 + ‖Tγ0Φσ − Φσ‖L2

≤ ‖x0 + Φref − Φσ‖L2 + C3 |γ0| .

(2.7.65)

The desired estimate (2.2.53) hence follows from γ0 ∈ Σx0 . The final estimate (2.2.54)
follows in a similar fashion, exploiting Φ′′σ ∈ L2.

Proof of Proposition 2.2.6. For convenience, we introduce the notation

ασ =
[
1 + 1

2ρσ
2ϑ2

0
]1/2

. (2.7.66)

Using the definitions (2.2.68) one easily verifies the identities

Φ′σ(ξ) = ασΦ′0(ασξ), Φ′′σ(ξ) = α2
σΦ′′0(ασξ), (2.7.67)

which yields

g
(
Φσ(ξ)

)
= g
(
Φ0(ασξ)

)
= ϑ0Φ′0

(
ασξ

)
= ϑ0α

−1
σ Φ′σ(ξ), (2.7.68)

together with
f(Φσ) + cσΦ′σ = −α−2

σ A∗Φσ. (2.7.69)

Since the cut-off functions in the definition of b act as the identity for small σ ≥ 0, we
obtain

b(Φσ, ψtw) = −ϑ0α
−1
σ ,

κσ(Φσ, ψtw) = 1 + 1
2ρϑ

2
0α
−2
σ ,

(2.7.70)

which implies

Jσ(Φσ, cσ, ψtw) = [1 + 1
2ρσ

2ϑ2
0α
−2
σ ]−1[f(Φσ) + cσΦ′σ − σ2ϑ2

0α
−2
σ Φ′′σ

]
= −[1 + 1

2ρσ
2ϑ2

0α
−2
σ ]−1[α−2

σ A∗Φσ + σ2

ρ
ϑ2

0α
−2
σ A∗Φσ

]
= −[α2

σ + 1
2ρσ

2ϑ2
0]−1[1 + σ2

ρ
ϑ2

0
]
A∗Φσ

= −A∗Φσ.

(2.7.71)

The claims now follow from the uniqueness statement in Proposition 2.2.2.

2.8 Bounds on mild nonlinearities
In this section we set out to obtain bounds on the nonlinearities Rσ;Φσ,cσ and Sσ;Φσ
defined in (2.6.22)-(2.6.23). In addition, we show that our choices (2.2.27) and (2.2.29)
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for aσ and b prevent these nonlinearities from having a component in the subspace of
L2 on which the semigroup S(t) does not decay, provided the cut-offs are not hit.

Our main result below shows that the construction of Φσ has eliminated all O(1)-
terms from the deterministic nonlinearity R, leaving only a small linear contribution
together with the expected higher order terms. It is important to note here that these
higher order terms depend at most quadratically on ‖v‖H1 , besides powers of ‖v‖L2 .

In general, the stochastic nonlinearity Sσ;Φσ will have an O(1)-term, but we have an
explicit expression for this contribution so we also discuss the case when this contribution
disappears. In both cases, the higher order terms depend at most linearly on ‖v‖H1 .

Proposition 2.8.1. Consider the setting of Proposition 2.2.2 and recall the definitions
(2.6.22) and (2.6.23). Then there exists K > 0 so that for any 0 ≤ σ ≤ δσ and any
v ∈ H1, the following properties hold true.

(i) We have the bound

‖Rσ;Φσ,cσ (v)‖L2 ≤ Kσ2‖v‖H1 +K‖v‖2H1

[
1 + ‖v‖2L2 + σ2‖v‖3L2

]
. (2.8.1)

(ii) We have the estimate

‖Sσ;Φσ (v)‖L2 ≤ K
[
1 + ‖v‖H1

]
. (2.8.2)

(iii) If the inequality
‖v‖L2 ≤ min{1, [4‖ψtw‖H1 ]−1} (2.8.3)

holds, then we have the identities

〈Rσ;Φσ,cσ (v), ψtw〉L2 = 〈Sσ;Φσ (v), ψtw〉L2 = 0. (2.8.4)

(iv) If the identity
g(Φσ) = −b(Φσ, ψtw)Φ′σ (2.8.5)

holds, then we have the bound

‖Sσ;Φσ (v)‖L2 ≤ K‖v‖H1 . (2.8.6)

In order to derive a compact expression for Rσ;Φσ,cσ , it is convenient to recall the
definition (2.7.2) and introduce the function

Rσ;I(v) =Mσ;Φσ,cσ (v, 0)−Mσ;Φσ,cσ (0, 0). (2.8.7)

We note that the bounds in Corollary 2.7.5 are directly applicable to this function.

Lemma 2.8.2. Consider the setting of Proposition 2.2.2. Then for any 0 ≤ σ ≤ δσ
and v ∈ H1, we have the identity

Rσ;Φσ,cσ (v) = Rσ;I(v)−
[
χlow

(
〈∂ξ[Φσ + v], ψtw〉L2

)]−1
〈Rσ;I(v), ψtw〉L2 [Φ′σ + v′].

(2.8.8)
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Proof. Inspecting (2.7.2) and using the defining property (2.2.48) for (Φσ, cσ), we see
that

−Mσ;Φσ,cσ (0, 0) = A∗Φσ + J0(Φσ, cσ). (2.8.9)
Applying (2.7.2) once more, we hence find

Jσ(Φσ + v, cσ, ψtw) = J0(Φσ, cσ) + [Ltw −A∗]v +Mσ;Φσ,cσ (v, 0)

= [Ltw −A∗]v −A∗Φσ +Mσ;Φσ,cσ (v, 0)−Mσ;Φσ,cσ (0, 0)

= [Ltw −A∗]v −A∗Φσ +Rσ;I(v).
(2.8.10)

Writing

Iσ(v) = 〈Φσ + v,A∗ψtw〉L2 + 〈Jσ(Φσ + v, cσ, ψtw), ψtw〉L2 (2.8.11)

and using Ladj
tw ψtw = 0, we may compute

Iσ(v) = 〈Φσ, A∗ψtw〉L2 + 〈v, [A∗ − Ladj
tw ]ψtw〉L2

+〈Jσ(Φσ + v, cσ, ψtw), ψtw〉L2

= 〈A∗Φσ, ψtw〉L2 + 〈[A∗ − Ltw]v, ψtw〉L2

+〈Jσ(Φσ + v, cσ, ψtw), ψtw〉L2

= 〈Rσ;I(v), ψtw〉L2 .

(2.8.12)

In view of the definition (2.2.29) for aσ, we now obtain

aσ
(
Φσ + v, cσ, ψtw

)
κσ(Φσ + v, ψtw) = −

[
χlow

(
〈∂ξ[Φσ + v], ψtw〉L2

)]−1
Iσ(v)

= −
[
χlow

(
〈∂ξ[Φσ + v], ψtw〉L2

)]−1
〈Rσ;I(v), ψtw〉L2 .

(2.8.13)
In particular, the desired identity (2.8.8) follows directly from the definition (2.6.22).

Lemma 2.8.3. Consider the setting of Proposition 2.2.2. Then there exists K > 0 so
that for any v ∈ H1 and 0 ≤ σ ≤ δσ we have the bound

‖Rσ;I(v)‖L2 ≤ Kσ2‖v‖H1 +K‖v‖2H1

[
1 + ‖v‖L2 + σ2‖v‖2L2

]
, (2.8.14)

together with∣∣〈Rσ;I(v), ψtw〉L2
∣∣ ≤ K‖v‖L2

[
σ2 + ‖v‖L2

]
+K‖v‖H1

[
‖v‖2L2 + σ2‖v‖3L2

]
.

(2.8.15)

Proof. Applying Corollary 2.7.5, we find

‖Rσ;I(v)‖L2 ≤ C1
[
1 + ‖v‖H1

]
‖v‖H1‖v‖L2

+C1
[
σ2 + ‖v‖H1

]
‖v‖H1

+C1σ
2‖v‖2H1‖v‖L2‖v‖L2

+C1σ
2‖v‖H1‖v‖L2‖v‖H1 ,

(2.8.16)
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together with ∣∣〈Rσ;I(v), ψtw〉L2
∣∣ ≤ C2

[
1 + ‖v‖H1

]
‖v‖L2‖v‖L2

+C2
[
σ2 + ‖v‖L2

]
‖v‖L2

+C2σ
2‖v‖H1‖v‖2L2‖v‖L2

+C2σ
2‖v‖2L2‖v‖H1 .

(2.8.17)

These expressions can be absorbed into (2.8.14) and (2.8.15).

Lemma 2.8.4. Consider the setting of Proposition 2.2.2. Then there exists K > 0 so
that for any 0 ≤ σ ≤ δσ and any v ∈ H1 we have the bound

‖Sσ;Φσ (v)− Sσ;Φσ (0)‖L2 ≤ K‖v‖H1 . (2.8.18)

Proof. Writing

I = Sσ;Φσ (v)− Sσ;Φσ (0)

= κσ(Φσ + v, ψtw)−1/2
[
g(Φσ + v) + b(Φσ + v, ψtw)∂ξ[Φσ + v]

]
−κσ(Φσ, ψtw)−1/2

[
g(Φσ) + b(Φσ, ψtw)∂ξ[Φσ]

] (2.8.19)

and using Lemmas 2.3.2, 2.3.6, 2.3.8 and 2.3.9, we compute

‖I‖L2 ≤
∣∣∣ν(−1/2)
σ (Φσ + v, ψtw)− ν(−1/2)

σ (Φσ, ψtw)
∣∣∣ [‖g(Φσ)‖L2 +Kb‖Φ′σ‖L2

]
+Kκ‖g(Φσ + v)− g(Φσ)‖L2

+Kκ |b(Φσ + v, ψtw)− b(Φσ, ψtw)| ‖Φ′σ‖L2

+KκKb‖v′‖L2 .
(2.8.20)

Applying these results once more, we find

‖I‖L2 ≤ C1σ
2‖v‖L2 + C1‖v‖L2 + C1‖v‖L2 + C1‖v‖H1

≤ C2‖v‖H1 ,
(2.8.21)

as desired.

Proof of Proposition 2.8.1. To obtain (i), we use (2.8.8) together with Lemma 2.8.3 to
compute

‖Rσ;Φσ,cσ (v)‖L2 ≤ ‖Rσ;I(v)‖L2 + C1
∣∣〈Rσ;I(v), ψtw〉L2

∣∣ [1 + ‖v‖H1
]

≤ C2σ
2‖v‖H1 + C2‖v‖2H1

[
1 + ‖v‖L2 + σ2‖v‖2L2

]
+C2‖v‖L2

[
σ2 + ‖v‖L2

][
1 + ‖v‖H1

]
+C2‖v‖H1

[
‖v‖2L2 + σ2‖v‖3L2

][
1 + ‖v‖H1

]
.

(2.8.22)
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These terms can all be absorbed into (2.8.1).
The bound (ii) follows directly from Lemma 2.8.4, using the estimate

‖Sσ;Φσ (v)‖L2 ≤ ‖Sσ;Φσ (0)‖L2 + ‖Sσ;Φσ (v)− Sσ;Φσ (0)‖L2 (2.8.23)

and the a-priori bound
‖Sσ;Φσ (0)‖L2 ≤ C3. (2.8.24)

The bound (iv) follows in the same fashion, since the condition (2.8.5) implies that

Sσ;Φσ (0) = 0. (2.8.25)

Finally, (iii) follows from the identities (2.8.8) and (2.3.49), using the proof of Lemma
2.3.7 to show that the cut-off function χlow in (2.8.8) acts as the identity.

2.9 Nonlinear stability of mild solutions
In this section we prove Theorems 2.2.4 and 2.2.5, providing an orbital and an ex-
ponential stability result for the stochastic waves (Φσ, cσ) on timescales of order σ−2.
Recalling the function (2.6.34), our key statement is that E suptNε,α(t) can be bounded
in terms of itself, the noise-strength σ and the initial condition ‖V (0)‖2H1 . This requires
a number of technical regularity estimates, which we obtain in §2.9.2-2.9.3.

In order to prevent cumbersome notation and to highlight the broad applicability of
our techniques here, we do not refer to the specific functions V and the specific nonlin-
earities Rσ;Φσ,cσ here. Instead, we assume the following general condition concerning
the form of our nonlinearities.

(hFB) We have ‖Bcn‖L2 = KB;cn <∞ and the maps

Flin : H1 → L2, Fnl : H1 → L2, Blin : H1 → L2 (2.9.1)

satisfy the bounds

‖Flin(v)‖L2 ≤ KF ;lin‖v‖H1 ,

‖Fnl(v)‖L2 ≤ KF ;nl‖v‖2H1(1 + ‖v‖mL2),

‖Blin(v)‖L2 ≤ KB;lin‖v‖H1

(2.9.2)

for some m > 0. In addition, there exists η0 > 0 so that

〈σ2Flin(v) + Fnl(v), ψtw〉L2 = 0, 〈Bcn +Blin(v), ψtw〉L2 = 0 (2.9.3)

whenever ‖v‖L2 ≤ η0.

Using the nonlinearities above, we can discuss the mild formulation of the SPDE
that we are interested in. At present, we simply assume that a solution is a priori
available, but one can also set out to construct such a solution directly.
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(hSol) For any T > 0, there exists a continuous (Ft)-adapted process V : Ω× [0, T ]→ L2

for which we have the inclusions

V ∈ N 2([0, T ]; (Ft);H1), Blin(V ) ∈ N 2([0, T ]; (Ft);L2). (2.9.4)

In addition, for almost all ω ∈ Ω we have the inclusions

Flin
(
V (·, ω)

)
∈ L1([0, T ];L2), Fnl

(
V (·, ω)

)
∈ L1([0, T ];L2) (2.9.5)

together with the identity

V (t) = S(t)V (0) + σ2
∫ t

0
S(t− s)Flin

(
V (s)

)
ds+

∫ t

0
S(t− s)Fnl

(
V (s)

)
ds

+σ
∫ t

0
S(t− s)Bcn dβs + σ

∫ t

0
S(t− s)Blin

(
V (s)

)
dβs,

(2.9.6)
which holds for all t ∈ [0, T ]. Finally, we have 〈V (0), ψtw〉L2 = 0.

For any ε > 0 and α ≥ 0, we recall the notation

Nε,α(t) = eαt‖V (t)‖2L2 +
∫ t

0
e−ε(t−s)eαs‖V (s)‖2H1ds. (2.9.7)

For any T > 0 and η > 0, we introduce the (Ft)-stopping time

τε,α(T, η) = inf
{

0 ≤ t < T : Nε,α(t) > η
}
, (2.9.8)

writing τε,α(T, η) = T if the set is empty. Our two main results here, which we establish
in §2.9.3 provide bounds on the expectation of sup

0≤t≤τε,α(T,η)
Nε,α(t).

Proposition 2.9.1. Assume that (HA), (HTw), (HS), (Hβ), (hSol) and (hFB) are
satisfied. Pick a constant 0 < ε < β, together with two sufficiently small constants
δη > 0 and δσ > 0. Then there exists a constant K > 0 so that for any T > 1, any
0 < η ≤ δη and any 0 ≤ σ ≤ δσT−1/2 we have the bound

E sup
0≤t≤τε,0(T,η)

Nε,0(t) ≤ K
[
‖V (0)‖2H1 + σ2T

]
. (2.9.9)

Proposition 2.9.2. Assume that (HA), (HTw), (HS), (Hβ), (hSol) and (hFB) are
satisfied and that Bcn = 0. Pick two constants ε > 0, α ≥ 0 for which ε + α

2 < β,
together with two sufficiently small constants δη > 0 and δσ > 0. Then there exists a
constant K > 0 so that for any T > 1, any 0 < η ≤ δη and any 0 ≤ σ ≤ δσT

−1/2 we
have the bound

E sup
0≤t≤τε,α(T,η)

Nε,α
(
t
)
≤ K‖V (0)‖2H1 . (2.9.10)

Exploiting the technique used in Stannat [105], these bounds can be turned into
estimates concerning the probabilities

pε,α(T, η) = P
(

sup
0≤t≤T

[
Nε,α(t)

]
> η

)
. (2.9.11)

This allows our main stability theorems to be established.
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Corollary 2.9.3. Consider the setting of Proposition 2.9.1. Then there exists a con-
stant K > 0 so that for any T > 1, any 0 < η ≤ δη and any 0 ≤ σ ≤ δσT−1/2, we have
the bound

pε,0(T, η) ≤ η−1K
[
‖V (0)‖2H1 + σ2T

]
. (2.9.12)

Proof. Upon computing

ηpε,0(T, η) = ηP
(
τε,0(T, η) < T

)
= E

[
1τε,0(T,η)<TNε,0

(
τε,0(T, η)

)]
≤ ENε,0

(
τε,0(T, η)

)
≤ E sup

0≤t≤τε,0(T,η)
Nε,0(t),

(2.9.13)

the result follows from (2.9.9).

Corollary 2.9.4. Consider the setting of Proposition 2.9.2. Then there exists a con-
stant K > 0 so that for any T > 1, any 0 < η ≤ δη and any 0 ≤ σ ≤ δσT−1/2 we have
the bound

pε,α(T, η) ≤ η−1K‖V (0)‖2H1 . (2.9.14)

Proof. Upon computing

ηpε,α(T, η) = ηP
(
τε,α(T, η) < T

)
= E

[
1τε,α(T,η)<TNε,α

(
τε,α(T, η)

)]
≤ ENε,α

(
τε,α(T, η)

)
≤ E sup

0≤t≤τε,α(T,η)
Nε,α(t),

(2.9.15)

the result follows from (2.9.10).

Proof of Theorems 2.2.4 and 2.2.5. On account of Propositions 2.2.3 and 2.6.3, the map
V defined in (2.6.6) satisfies the conditions of (hSol) with

(
βτ ,Fτ

)
τ≥0 as the relevant

Brownian motion. In addition, Proposition 2.8.1 guarantees that (hFB) is satisfied.
The desired estimates now follow from Corollaries 2.9.3 and 2.9.4, using Proposition
2.6.4 to reverse the time-transform.

2.9.1 Setup
In order to establish Propositions 2.9.1-2.9.2 we need to estimate each of the terms
featuring in the identity (2.9.6). The regularity structure of the semigroup S(t) is crucial
for our purposes here, so we discuss this in some detail using the terminology used in
[55, §10].

In particular, for any 0 < ϕ < π we introduce the sector

Σϕ = {z ∈ C \ {0} : |arg(z)| < ϕ}, (2.9.16)
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in which we take arg(z) ∈ (−π, π). We recall that a linear operator L : D(L) ⊂ X → X
on a Banach space X is called sectorial if the spectrum of L is contained in Σω for some
0 < ω(L) < π

2 , while the resolvent operators R(z,L) = (z − L)−1 satisfy the bound

sup
z∈C\Σω(L)

‖zR(z,L)‖L(X,X) <∞. (2.9.17)

Our spectral assumptions (HS) combined with the fact that Ltw is a lower-order
perturbation to the diffusion operator A∗ guarantee that −Ltw is sectorial. This means
that Ltw generates an analytic semigroup. In order to isolate the behavior caused by
the neutral eigenmode, we introduce the map Q : L2 → L2 that acts as

Qv = v − 〈v, ψtw〉L2Φ′0. (2.9.18)

This projection allows us to formulate several important estimates.

Lemma 2.9.5 (see [80]). Assume that (HTw) and (HS) hold and consider the analytic
semigroup S(t) generated by Ltw. Then there is a constant M ≥ 1 for which we have
the bounds

‖S(t)Q‖L(L2,L2) ≤ Me−βt, 0 < t <∞,

‖S(t)Q‖L(L2,H1) ≤ Mt−
1
2 , 0 < t ≤ 2,

‖S(t)Q‖L(L2,H1) ≤ Me−βt, t ≥ 1,

‖[Ltw −A∗]S(t)Q‖L(L2,L2) ≤ Mt−
1
2 , 0 < t ≤ 2,

‖[Ladj
tw −A∗]S(t)Q‖L(L2,L2) ≤ Mt−

1
2 , 0 < t ≤ 2.

(2.9.19)

In order to understand the combination S(t)Q as an independent semigroup, we
introduce the spaces

L2
Q = {v ∈ L2 : (I −Q)v = 0}, H2

Q = {v ∈ H2 : (I −Q)v = 0} (2.9.20)

and consider the operator LQtw : H2
Q → L2

Q that arises upon restricting Ltw to act on
H2
Q. Note that this is well-defined since Range

(
Ltw

)
= L2

Q. For any θ ∈ R, we now
introduce the linear operators

Bθ = −
[
Ltw + θ

]
, BQθ = −

[
LQtw + θ

]
. (2.9.21)

Lemma 2.9.6. Assume that (HTw) and (HS) hold and pick any 0 ≤ θ ≤ β. Then the
operator BQθ is sectorial on L2

Q and the semigroup generated by −BQθ corresponds with
the restriction of eθtS(t) to L2

Q.

Proof. Note first that LQtw is bijective since we have projected out the one-dimensional
kernel. For any v ∈ L2

Q and λ in the resolvent set of Ltw, we may compute

0 = (I −Q)LtwR(λ,Ltw)v

= (I −Q)
[
− v + λR(λ,Ltw)v

]
= λ(I −Q)R(λ,Ltw)v.

(2.9.22)
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which implies that R(λ,Ltw)v ∈ L2
Q. In particular, the resolvent set of Ltw is contained

in the resolvent set of LQtw. The stated properties now follow in a standard fashion; see,
for example, [80, Prop. 3.1.5].

In order to define our final regularity concept, we need to introduce the Hardy spaces

H1(Σϕ) = {f : Σϕ → C holomorphic for which

‖f‖H1(Σϕ) := sup
|ν|<ϕ

∫ ∞
0

t−1f(eiνt) dt <∞},

H∞(Σϕ) = {f : Σϕ → C holomorphic for which

‖f‖H∞(Σϕ) := sup
z∈Σϕ

|f(z)| <∞}.

(2.9.23)

If L is sectorial on a Banach space X, then for any ω(L) < ϕ < π and any h ∈ H1(Σϕ)
one can define

h(L) = 1
2πi

∫
∂Σν

R(z,L)h(z) dz ∈ L(X,X) (2.9.24)

by picking an arbitrary ν ∈ (ω(L), ϕ) and traversing the boundary in a downward
fashion, keeping the spectrum of L on the left. It is however unclear if this integral
converges if we take h ∈ H∞(Σϕ). The following result states that this is indeed the
case for the sectorial operators discussed in Lemma 2.9.6. Indeed, one can use a density
argument to extend the conclusion to the whole space H∞(Σϕ). Operators with this
property are said to admit a bounded H∞-calculus, which is crucial for our stochastic
regularity estimates.

Lemma 2.9.7. Assume that (HTw) and (HS) hold and pick any 0 ≤ θ ≤ β. There exists
ϕ ∈ (ω(BQθ ), π2 ) together with a constant K > 0 so that for any h ∈ H1(Σϕ)∩H∞(Σϕ)
we have

‖h(BQθ )‖ ≤ K‖h‖H∞ϕ . (2.9.25)

Proof. Since Ltw −A∗ is a first order differential operator with continuous coefficients,
the perturbation theory described in [114, §8] can be applied to our setting. In particular,
we can find constants Θ0 � 1 and C1 > 0 together with an angle ϕ0 ∈ (ω(B−Θ0), π2 )
for which

‖h(B−Θ0)‖L(L2,L2) ≤ C1‖h‖H∞ϕ0
(2.9.26)

holds for all h ∈ H1(Σϕ0) ∩H∞(Σϕ0). By restriction, we hence also have

‖h(BQ−Θ0
)‖L(L2

Q
,L2
Q

) ≤ ‖h(B−Θ0)‖L(L2,L2)C1‖h‖H∞ϕ0
(2.9.27)

for all such h. Fix two constants

max{ω(BQθ ), ϕ0} < ν < ϕ <
π

2 (2.9.28)
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and pick h ∈ H1(Σϕ) ∩H∞(Σϕ). Using the resolvent identity, we may compute

h(BQθ )− h(BQ−Θ0
) = 1

2πi

∫
∂Σν

h(z)
[
R(z,BQθ )−R(z,BQ−Θ0

)
]
dz

= 1
2πi

∫
∂Σν

h(z)
[
R(z,BQθ )−R(z − θ −Θ0, B

Q
θ )
]
dz

= (θ + Θ0) 1
2πi

∫
∂Σν

h(z)R(z,BQθ )R(z − θ −Θ0, B
Q
θ ) dz.

(2.9.29)
Since zero is contained in the resolvent set of BQθ , there exists C2 > 0 for which the
estimate

‖R(z,BQθ )R(z − θ −Θ0, B
Q
θ )‖L(L2

Q
,L2
Q

) ≤
C2

1 + |z|2
(2.9.30)

holds for all z ∈ ∂Σν . This decays sufficently fast to ensure that

‖h(BQθ )− h(BQ−Θ0
)‖L(L2

Q
,L2
Q

) ≤ C3‖h‖H∞ϕ (2.9.31)

for some C3 > 0 that does not depend on the choice of h. The desired bound now
follows from the inequality

‖h‖H∞ϕ0
≤ ‖h‖H∞ϕ . (2.9.32)

Now that the formal framework has been set up, we are ready to return to the
quantity Nε,α(t) defined in (2.9.7), which is the main object of our interest. For
convenience, we use the shorthand notation τ = τε,α(T, η) ubiquitously throughout the
remainder of this section. Writing ν = α+ ε, we introduce the splitting

Nε,α;I(t) = eαt‖V (t)‖2L2 ,

Nε,α;II(t) =
∫ t

0
e−ε(t−s)eαs‖V (s)‖2H1 ds

= e−εt
∫ t

0
eνs‖V (s)‖2H1 ds.

(2.9.33)

In order to understand Nε,α;I , we introduce the expression

E0(t) = S(t)QV (0), (2.9.34)

together with the long-term integrals

E lt
F ;lin(t) =

∫ t−1

0
S(t− s)QFlin

(
V (s)

)
1s<τ ds,

E lt
F ;nl(t) =

∫ t−1

0
S(t− s)QFnl

(
V (s)

)
1s<τ ds,

E lt
B;lin(t) =

∫ t−1

0
S(t− s)QBlin

(
V (s)

)
1s<τ dβs,

E lt
B;cn(t) =

∫ t−1

0
S(t− s)QBcn1s<τ dβs

(2.9.35)
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and their short-term counterparts

Esh
F ;lin(t) =

∫ t

t−1
S(t− s)QFlin

(
V (s)

)
1s<τ ds,

Esh
F ;nl(t) =

∫ t

t−1
S(t− s)QFnl

(
V (s)

)
1s<τ ds,

Esh
B;lin(t) =

∫ t

t−1
S(t− s)QBlin

(
V (s)

)
1s<τ dβs,

Esh
B;cn(t) =

∫ t

t−1
S(t− s)QBcn1s<τ dβs.

(2.9.36)

Here we use the convention that integrands are set to zero for s < 0. For convenience,
we also write

EF ;#(t) = E lt
F ;#(t) + Esh

F ;#(t) (2.9.37)

for # ∈ {lin,nl} and
EB;#(t) = E lt

B;#(t) + Esh
B;#(t) (2.9.38)

for # ∈ {lin, cn}.
Turning to the terms in (2.9.6) that are relevant for evaluating Nε,α;II , we introduce

the expression

Iν,δ;0(t) =
∫ t

0
eνs‖S(δ)E0(s)‖2H1 ds, (2.9.39)

together with

I#
ν,δ;F ;lin(t) =

∫ t

0
eνs‖S(δ)E#

F ;lin(s)‖2H1 ds,

I#
ν,δ;F ;nl(t) =

∫ t

0
eνs‖S(δ)E#

F ;nl(s)‖
2
H1 ds,

I#
ν,δ;B;lin(t) =

∫ t

0
eνs‖S(δ)E#

B;lin(s)‖2H1 ds,

I#
ν,δ;B;cn(t) =

∫ t

0
eνs‖S(δ)E#

B;cn(s)‖2H1 ds

(2.9.40)

for # ∈ {lt, sh}. The extra S(δ) factor will be used to ensure that all the integrals
we encounter are well-defined. We emphasize that all our estimates are uniform in
0 < δ < 1, allowing us to take δ ↓ 0. The estimates concerning Ish

ν,δ;F ;nl and Ish
ν,δ;B;lin in

Lemmas 2.9.12 and 2.9.18 are particularly delicate in this respect, as a direct application
of the bounds in Lemma 2.9.5 would result in expressions that diverge as δ ↓ 0.

2.9.2 Deterministic regularity estimates
In this part we set out to analyze the deterministic integrals in (2.9.6). The main
complication is that we only have integrated control over the squared H1-norm of V .
This is particularly delicate for Ish

ν,δ;F ;nl, where the nonlinearity itself is quadratic in V .
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Lemma 2.9.8. Fix T > 0 and assume that (HA), (HTw), (HS), (Hβ), (hSol) and
(hFB) all hold. Pick two constants ε > 0, α ≥ 0 for which ε+α

2 < β and write ν = α+ε.
Then for any 0 ≤ δ < 1 and any 0 ≤ t ≤ T , we have the bound

eαt‖E0(t)‖2L2 ≤ M2e−εt‖V (0)‖2L2 , (2.9.41)

together with

e−εtIν,δ;0(t) ≤ M2

2β − ν e
−εt‖V (0)‖2H1 , (2.9.42)

Proof. We compute

eαt‖E0(t)‖2L2 ≤ M2eαte−2βt‖V (0)‖2L2

≤ M2e−εt‖V (0)‖2L2 ,
(2.9.43)

together with

e−εtIν,δ;0(t) ≤ M2e−εt
∫ t

0
eνse−2β(s+δ)‖V (0)‖2H1 ds

≤ M2

2β − ν e
−εt‖V (0)‖2H1 .

(2.9.44)

Lemma 2.9.9. Fix T > 0 and assume that (HA), (HTw), (HS), (Hβ), (hSol) and
(hFB) all hold. Pick two constants ε > 0, α ≥ 0 for which ε+α

2 < β and write ν = α+ε.
Then for any 0 ≤ δ < 1 and any 0 ≤ t ≤ τ , we have the bound

eαt‖EF ;lin(t)‖2L2 ≤ K2
F ;lin

M2

2β − νNε,α;II(t), (2.9.45)

together with

e−εtI lt
ν,δ;F ;lin(t) ≤ K2

F ;lin
M2

2(β + α
2 − ν)εNε,α;II(t). (2.9.46)

Proof. We first observe that

‖EF ;lin(t)‖2L2 ≤ K2
F ;linM

2
(∫ t

0
e−β(t−s)‖V (s)‖H1 ds

)2

,

‖S(δ)E lt
F ;lin(t)‖2H1 ≤ K2

F ;linM
2
(∫ t

0
e−β(t−s)‖V (s)‖H1 ds

)2

.

(2.9.47)

This allows us to compute

eαt‖EF ;lin(t)‖2L2 ≤ K2
F ;linM

2eαt
(∫ t

0
e−(β− ν2 )(t−s)e−

ν
2 (t−s)‖V (s)‖H1 ds

)2

≤ K2
F ;lin

M2

2β − ν e
αt

∫ t

0
e−ν(t−s)‖V (s)‖2H1 ds

= K2
F ;lin

M2

2β − νNε,α;II(t).

(2.9.48)
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Exploiting the inequality 2β − ν > ε, we write

γ2 = ε+ ν

2β < 1 (2.9.49)

and observe that

2γ2β − ν = ε. (2.9.50)

Upon fixing γ1 = 1− γ2, we readily see that

2γ1β = 2β − ε− ν = 2
(
β + α

2 − ν
)
. (2.9.51)

This allows us to compute

e−εtI lt
ν,δ;F ;lin(t) ≤ K2

F ;linM
2e−εt

∫ t

0
eνs
(∫ s

0
e−β(s−s′)‖V (s′)‖H1 ds′

)2
ds

≤ K2
F ;linM

2e−εt
∫ t

0
eνs
(∫ s

0
e−2γ1β(s−s′) ds′

)
×(∫ s

0
e−2γ2β(s−s′)‖V (s′)‖2H1 ds′

)
ds

≤ K2
F ;lin

M2

2γ1β
e−εt

∫ t

0
eνs
∫ s

0
e−2γ2β(s−s′)‖V (s′)‖2H1 ds′ ds

= K2
F ;lin

M2

2γ1β
e−εt

∫ t

0

∫ t

s′
eνse−2γ2β(s−s′)‖V (s′)‖2H1 ds ds′

= K2
F ;lin

M2

2γ1β
e−εt

∫ t

0

[ ∫ t

s′
e−(2γ2β−ν)s ds

]
e2γ2βs

′
‖V (s′)‖2H1 ds′

= K2
F ;lin

M2

(2γ1β)(2γ2β − ν)e
−εt
∫ t

0
e−(2γ2β−ν)s′e2γ2βs

′
‖V (s′)‖2H1ds′

= K2
F ;lin

M2

(2γ1β)(2γ2β − ν)e
−εt
∫ t

0
eνs
′
‖V (s′)‖2H1 ds′

= K2
F ;lin

M2

2(β + α
2 − ν)εNε,α;II(t).

(2.9.52)

Lemma 2.9.10. Fix T > 0 and assume that (HA), (HTw), (HS), (Hβ), (hSol) and
(hFB) all hold. Pick two constants ε > 0, α ≥ 0 and write ν = α + ε. Then for any
0 ≤ δ < 1 and any 0 ≤ t ≤ τ , we have the bound

e−εtIsh
ν,δ;F ;lin(t) ≤ 4eνM2K2

F ;linNε,α;II(t). (2.9.53)
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Proof. Using Cauchy-Schwarz, we compute

e−εtIsh
ν,δ;F ;lin(t) ≤ M2K2

F ;line
−εt
∫ t

0
eνs
(∫ s

s−1

1√
s+ δ − s′

‖V (s′)‖H1ds′
)2

ds

≤ M2K2
F ;line

−εt
∫ t

0
eνs
(∫ s

s−1

1√
s+ δ − s′

ds′
)

(∫ s

s−1

1√
s+ δ − s′

‖V (s′)‖2H1ds′
)
ds

≤ 2M2K2
F ;line

−εt
∫ t

0
eνs
(∫ s

s−1

1√
s+ δ − s′

‖V (s′)‖2H1ds′
)
ds

= 2M2K2
F ;line

−εt
∫ t

0

[ ∫ min{t,s′+1}

s′

eνs√
s+ δ − s′

ds
]
‖V (s′)‖2H1 ds′

≤ 4eνM2K2
F ;line

−εt
∫ t

0
eνs
′
‖V (s′)‖2H1 ds′

= 4eνM2K2
F ;linNε,α;II(t).

(2.9.54)

Lemma 2.9.11. Fix T > 0 and assume that (HA), (HTw), (HS), (Hβ), (hSol) and
(hFB) all hold. Pick two constants ε > 0, α ≥ 0 for which ε+α

2 < β and write ν = α+ε.
Then for any η > 0, any 0 ≤ δ < 1 and any 0 ≤ t ≤ τ , we have the bound

eαt‖EF ;nl(t)‖2L2 ≤ ηK2
F ;nlM

2(1 + ηm)2Nε,α;II(t), (2.9.55)

together with

e−εtI lt
ν,δ;F ;nl(t) ≤ ηK2

F ;nl(1 + ηm)2 M2

β + α
2 − ν

Nε,α;II(t). (2.9.56)

Proof. We first notice that

‖EF ;nl(t)‖2L2 ≤ K2
F ;nl(1 + ηm)2M2

(∫ t

0
e−β(t−s)‖V (s)‖2H1 ds

)2

,

‖S(δ)E lt
F ;nl(t)‖2H1 ≤ K2

F ;nl(1 + ηm)2M2
(∫ t

0
e−β(t−s)‖V (s)‖2H1 ds

)2

.

(2.9.57)

Using β > ν − 1
2α = 1

2α+ ε, we compute

∫ t

0
e−β(t−s)‖V (s)‖2H1 ds = e

α
2 t

∫ t

0
e−β(t−s)e−

α
2 t‖V (s)‖2H1 ds

≤ e
α
2 t

∫ t

0
e−β(t−s)e−

α
2 (t−s)‖V (s)‖2H1 ds

≤ e
α
2 t

∫ t

0
e−ν(t−s)‖V (s)‖2H1 ds.

(2.9.58)
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This yields the desired bound

eαt‖EF ;nl(t)‖2L2 ≤ K2
F ;nl(1 + ηm)2M2eαt

(∫ t

0
e−β(t−s)‖V (s)‖2H1 ds

)2

≤ K2
F ;nl(1 + ηm)2M2e2αt

(∫ t

0
e−ν(t−s)‖V (s)‖2H1 ds

)2

≤ K2
F ;nl(1 + ηm)2M2ηNε,α;II(t).

(2.9.59)

In a similar spirit, we compute

e−εtI lt
ν,δ;F ;nl(t) ≤ K2

F ;nl(1 + ηm)2M2e−εt
∫ t

0
eνs
(∫ s

0
e−β(s−s′)‖V (s′)‖2H1 ds′

)2
ds

≤ K2
F ;nl(1 + ηm)2M2e−εt

∫ t

0
eνse

α
2 s

(∫ s

0
e−ν(s−s′)‖V (s′)‖2H1ds′

)
×
(∫ s

0
e−β(s−s′)‖V (s′)‖2H1 ds′

)
ds

≤ ηK2
F ;nl(1 + ηm)2M2e−εt

∫ t

0
e(ν−α2 )s

∫ s

0
e−β(s−s′)‖V (s′)‖2H1 ds′ds

= ηK2
F ;nl(1 + ηm)2M2e−εt

∫ t

0

[ ∫ t

s′
e−(α2−ν+β)sds

]
eβs
′
‖V (s′)‖2H1ds′

≤ ηK2
F ;nl(1 + ηm)2 M2

β + α
2 − ν

e−εt
∫ t

0
e−(α2−ν+β)s′eβs

′
‖V (s′)‖2H1ds′

= ηK2
F ;nl(1 + ηm)2 M2

β + α
2 − ν

e−εt
∫ t

0
eνs
′
e−

α
2 s
′
‖V (s′)‖2H1ds′

≤ ηK2
F ;nl(1 + ηm)2 M2

β + α
2 − ν

Nε,α;II(t).

(2.9.60)

Lemma 2.9.12. Fix T > 0 and assume that (HA), (HTw), (HS), (Hβ), (hSol) and
(hFB) all hold. Pick two constants ε > 0, α ≥ 0 and write ν = α + ε. Then for any
η > 0, any 0 ≤ δ < 1 and any 0 ≤ t ≤ τ , we have the bound

e−εtIsh
ν,δ;F,nl(t) ≤ ηM2K2

F ;nl(1 + ηm)2(1 + ρ−1)e3ν(4 + ν)Nε,α;II(t). (2.9.61)

Proof. We start by observing that

‖v‖2H1 = ‖v‖2L2 + ρ−1‖A1/2
∗ v‖2L2 . (2.9.62)
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In addition, for any w ∈ L2, ϑ > 0, ϑA ≥ −ϑ and ϑB ≥ −ϑ we have

d

dϑ
〈S(ϑ+ ϑA)w, S(ϑ+ ϑB)w〉L2 = 〈LtwS(ϑ+ ϑA)w, S(ϑ+ ϑB)w〉L2

+〈S(ϑ+ ϑA)w,LtwS(ϑ+ ϑB)w〉L2

= 〈S(ϑ+ ϑA)w,Ladj
tw S(ϑ+ ϑB)w〉L2

+〈S(ϑ+ ϑA)w,LtwS(ϑ+ ϑB)w〉L2

= 〈S(ϑ+ ϑA)w,
[
Ladj

tw −A∗
]
S(ϑ+ ϑB)w〉L2

+〈S(ϑ+ ϑA)w,
[
Ltw −A∗

]
S(ϑ+ ϑB)w〉L2

−2〈A1/2
∗ S(ϑ+ ϑA)w,A1/2

∗ S(ϑ+ ϑB)w〉L2 .
(2.9.63)

Assume for the moment that δ > 0. For convenience, we introduce the expression

Es,s′,s′′;H = 〈S(s+ δ − s′)QFnl
(
V (s′)

)
, S(s+ δ − s′′)QFnl

(
V (s′′)

)
〉H, (2.9.64)

where we allow H ∈ {L2, H1}. Exploiting (2.9.63) and the fact that δ > 0, we obtain
the bound

Es,s′,s′′;H1 ≤ M2K2
F ;nl(1 + ηm)2‖V (s′)‖2H1‖V (s′′)‖2H1

+M2K2
F ;nl(1 + ηm)2ρ−1 1√

s+ δ − s′′
‖V (s′)‖2H1‖V (s′′)‖2H1

−ρ−1 1
2
d

ds
Es,s′,s′′;L2

(2.9.65)
for the values of (s, s′, s′′) that are relevant below. Upon introducing the integrals

II = e−εt
∫ t

0
eνs
∫ s

s−1

∫ s

s−1

[
1 + 1√

s+ δ − s′′
]‖V (s′)‖2H1‖V (s′′)‖2H1 ds′′ ds′ ds,

III = e−εt
∫ t

0
eνs
∫ s

s−1

∫ s

s−1

d

ds
Es,s′,s′′;L2ds′′ ds′ ds,

(2.9.66)
we hence readily obtain the estimate

e−εtIsh
ν,δ;F ;nl(t) ≤ (1 + ρ−1)M2K2

F ;nl(1 + ηm)2II −
1
2ρ
−1III . (2.9.67)
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Changing the order of the integrals, we find

II = e−εt
∫ t

0

∫ min{t,s′+1}

s′−1[ ∫ min{t,s′+1,s′′+1}

max{s′,s′′}
eνs
[
1 + 1√

s+ δ − s′′
]
ds
]
‖V (s′)‖2H1‖V (s′′)‖2H1 ds′′ds′

≤ 3e−εt
∫ t

0
eνs
′
eν‖V (s′)‖2H1

∫ min{t,s′+1}

s′−1
‖V (s′′)‖2H1 ds′′ds′

≤ 3e−εt
∫ t

0
eνs
′
e3ν‖V (s′)‖2H1

∫ min{t,s′+1}

s′−1
e−ν(min{t,s′+1}−s′′)‖V (s′′)‖2H1 ds′′ds′

≤ 3ηe3νe−εt
∫ t

0
eνs
′
‖V (s′)‖2H1e−αmin{t,s′+1} ds′

≤ 3ηe3νNε,α;II(t).
(2.9.68)

In a similar fashion, we may use an integration by parts to write

III = e−εt
∫ t

0

∫ min{t,s′+1}

s′−1

[ ∫ min{t,s′+1,s′′+1}

max{s′,s′′}
eνs

d

ds
Es,s′,s′′;L2 ds

]
ds′′ ds′

= III;A + III;B + III;C ,
(2.9.69)

in which we have introduced

III;A = e−εt
∫ t

0

∫ min{t,s′+1}

s′−1
eνmin{t,s′+1,s′′+1}Emin{t,s′+1,s′′+1},s′,s′′;L2 ds′′ ds′,

III;B = −e−εt
∫ t

0

∫ min{t,s′+1}

s′−1
eνmax{s′,s′′}Emax{s′,s′′},s′,s′′;L2 ds′′ ds′,

III;C = −e−εt
∫ t

0

∫ min{t,s′+1}

s′−1

[ ∫ min{t,s′+1,s′′+1}

max{s′,s′′}
νeνsEs,s′,s′′;L2 ds

]
ds′′ ds′.

(2.9.70)
Note here that III;B is well defined because δ > 0. A direct inspection of these terms
yields the bound

|III | ≤ eν(2 + ν)M2K2
F ;nl(1 + ηm)2e−εt×∫ t

0
eνs
′
‖V (s′)‖2H1

∫ min{t,s′+1}

s′−1
‖V (s′′)‖2H1 ds′′ ds′

≤ eν(2 + ν)M2K2
F ;nl(1 + ηm)2e−εt×∫ t

0
eνs
′
‖V (s′)‖2H1e2ν

∫ min{t,s′+1}

s′−1
e−ν(min{t,s′+1}−s′′)‖V (s′′)‖2H1 ds′′ ds′

≤ ηe3ν(2 + ν)M2K2
F ;nl(1 + ηm)2e−εt

∫ t

0
eνs
′
‖V (s′)‖2H1e−αmin{t,s′+1} ds′

≤ ηe3ν(2 + ν)M2K2
F ;nl(1 + ηm)2Nε,α;II(t).

(2.9.71)
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It hence remains to consider the case δ = 0. We may apply Fatou’s lemma to conclude

Ish
ν,0;F ;nl(t) =

∫ t

0
eνs(lim

δ→0
‖S(δ)Esh

B;lin(s)‖H1)21s<τ ds

≤ lim inf
δ→0

Ish
ν,δ;F ;nl(t).

(2.9.72)

The result now follows from the fact that the bounds obtained above do not depend on
δ.

2.9.3 Stochastic regularity estimates

We are now ready to discuss the stochastic integrals in (2.9.6). These require special
care because they cannot be bounded in a pathwise fashion, unlike the deterministic
integrals above. Expectations of suprema are particularly delicate in this respect.
Indeed, the powerful Burkholder-Davis-Gundy inequalities cannot be directly applied
to the stochastic convolutions that arise in our mild formulation. However, the H∞-
calculus obtained in Lemma 2.9.7 allows us to use the following mild version, which is
the source of the extra T factors that appear in our estimates.

Lemma 2.9.13. Fix T > 0 and assume that (HA), (HTw), (HS) and (Hβ) all hold.
There exists a constant Kcnv > 0 so that for any W ∈ N 2([0, T ]; (F)t;L2) and any
0 ≤ α ≤ 2β we have

E sup
0≤t≤T

eαt‖
∫ t

0
S(t− s)QW (s) dβs‖2L2 ≤ KcnvE

∫ T

0
eαs‖W (s)‖2L2 ds. (2.9.73)

Proof. Lemma 2.9.7 implies that the generator BQα = Ltw + 1
2α of the semigroup

e
1
2αtS(t) on L2

Q satisfies assumption (H) in [111]. On account of the identity

eαt‖
∫ t

0
S(t− s)QW (s) dβs‖2L2 = ‖

∫ t

0
e

1
2α(t−s)S(t− s)Qe 1

2αsW (s) dβs‖2L2 , (2.9.74)

the desired estimate is now an immediate consequence of [111, Thm. 1.1].

Lemma 2.9.14. Fix T > 0 and assume that (HA), (HTw), (HS), (Hβ), (hSol) and
(hFB) all hold. Then for any pair of constants ε > 0 and 0 ≤ α ≤ 2β we have the bound

E sup
0≤t≤τ

eαt‖EB;lin(t)‖2L2 ≤ (T + 1)KcnvK
2
B;line

εE sup
0≤t≤τ

Nε,α;II(t). (2.9.75)
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Proof. Using Lemma 2.9.13 we compute

E sup
0≤t≤τ

eαt‖EB;lin(t)‖2L2 ≤ E sup
0≤t≤T

eαt‖EB;lin(t)‖2L2

= E sup
0≤t≤T

eαt‖
∫ t

0
S(t− s)QBlin

(
V (s)

)
1s<τ dβs‖2L2

≤ KcnvE

∫ T

0
eαs‖Blin

(
V (s)

)
1s<τ‖2L2 ds

≤ KcnvK
2
B;linE

∫ τ

0
eαs‖V (s)‖2H1 ds.

(2.9.76)
By dividing up the integral, we obtain∫ τ

0
eαs‖V (s)‖2H1 ds ≤ eε

∫ 1

0
e−ε(1−s)eαs‖V (s)‖2H11s<τ ds

+eε
∫ 2

1
e−ε(2−s)eαs‖V (s)‖2H11s<τ ds

+ · · ·+ eε
∫ bTc+1

bTc
e−ε(bTc+1−s)eαs‖V (s)‖2H11s<τ ds

≤ (T + 1)eε sup
0≤t≤T+1

∫ t

0
e−ε(t−s)eαs‖V (s)‖2H11s<τ ds

≤ (T + 1)eε sup
0≤t≤τ

∫ t

0
e−ε(t−s)eαs‖V (s)‖2H1 ds

= (T + 1)eε sup
0≤t≤τ

Nε,α;II(t),

(2.9.77)
which yields the desired bound upon taking expectations.

Lemma 2.9.15. Fix T > 0 and assume that (HA), (HTw), (HS), (Hβ), (hSol) and
(hFB) all hold. Then we have the bound

E sup
0≤t≤τ

‖EB;cn(t)‖2L2 ≤ TKcnvK
2
B;cn. (2.9.78)

Proof. This bound follows directly from (2.9.76) by picking α = 0 and making the
substitutions

KB;lin 7→ KB;cn, ‖V (s)‖2H1 7→ 1. (2.9.79)

We now set out to bound the expectation of the supremum of the remaining double
integrals I#

ν,δ;B;lin(t) and I#
ν,δ;B;cn(t) with # ∈ {lt, sh}. This is performed in Lem-

mas 2.9.20 and 2.9.21, but we first compute several time independent bounds for the
expectation of the integrals themselves.

Lemma 2.9.16. Fix T > 0 and assume that (HA), (HTw), (HS), (Hβ), (hSol) and
(hFB) all hold. Pick constants ε > 0, α ≥ 0 and write ν = α + ε. Then for any
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0 ≤ δ < 1 and 0 ≤ t ≤ T , we have the identities

EI lt
ν,δ;B;lin(t) = E

∫ t

0
eνs
∫ s−1

0
‖S(s+ δ − s′)QBlin

(
V (s′)

)
‖2H11s′<τ ds′ ds,

EI lt
ν,δ;B;cn(t) = E

∫ t

0
eνs
∫ s−1

0
‖S(s+ δ − s′)QBcn‖2H11s′<τ ds′ ds,

(2.9.80)
together with their short-time counterparts

EIsh
ν,δ;B;lin(t) = E

∫ t

0
eνs
∫ s

s−1
‖S(s+ δ − s′)QBlin

(
V (s′)

)
‖2H11s′<τ ds′ ds,

EIsh
ν,δ;B;cn(t) = E

∫ t

0
eνs
∫ s

s−1
‖S(s+ δ − s′)QBcn‖2H11s′<τ ds′ ds.

(2.9.81)

Proof. The linearity of the expectation operator, the Itô Isometry (see e.g. [93, §2.3])
and the integrability of the integrands imply that

EI lt
B;lin(t) = E

∫ t

0
eνs‖

∫ s−1

0
S(s+ δ − s′)QBlin

(
V (s′)

)
1s′<τdβs′‖2H1 ds

= E

∫ t

0
eνs
∫ s−1

0
‖S(s+ δ − s′)QBlin

(
V (s′)

)
‖2H11s′<τ ds′ ds.

(2.9.82)

The remaining expressions follow in a similar fashion.

Lemma 2.9.17. Fix T > 0 and assume that (HA), (HTw), (HS), (Hβ), (hSol) and
(hFB) all hold. Pick constants ε > 0, α ≥ 0 for which ε+ α < 2β and write ν = α+ ε.
Then for any 0 ≤ δ < 1 and any 0 ≤ t ≤ T , we have the bound

Ee−εtI lt
ν,δ;B;lin(t) ≤ M2

2β − νK
2
B;linENε;α;II(t ∧ τ). (2.9.83)

Proof. Using (2.9.80) and switching the integration order, we obtain

Ee−εtI lt
ν,δ;B;lin(t) ≤ M2K2

B;linEe
−εt
∫ t

0
eνs
∫ s∧τ

0
e−2β(s−s′)‖V (s′)‖2H1 ds′ ds

= M2K2
B;linEe

−εt
∫ t∧τ

0

[ ∫ t

s′
e−(2β−ν)s ds

]
e2βs′‖V (s′)‖2H1 ds′

≤ M2

2β − νK
2
B;linEe

−εt
∫ t∧τ

0
e−(2β−ν)s′e2βs′‖V (s′)‖2H1 ds′

= M2

2β − νK
2
B;linEe

−εt
∫ t∧τ

0
eνs
′
‖V (s′)‖2H1 ds′

≤ M2

2β − νK
2
B;linEe

−εt∧τ
∫ t∧τ

0
eνs
′
‖V (s′)‖2H1 ds′

= M2

2β − νK
2
B;linENε,α;II(t ∧ τ).

(2.9.84)
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Lemma 2.9.18. Fix T > 0 and assume that (HA), (HTw), (HS), (Hβ), (hSol) and
(hFB) all hold. Pick two constants ε > 0, α ≥ 0 and write ν = α + ε. Then for any
0 ≤ δ < 1 and any 0 ≤ t ≤ T , we have the bound

Ee−εtIsh
ν,δ;B;lin(t) ≤ K2

B;linM
2(1 + ρ−1)eν(4 + ν)ENε,α;II(t ∧ τ). (2.9.85)

Proof. We only consider the case δ > 0 here, noting that the limit δ ↓ 0 can be handled
as in the proof of Lemma 2.9.12. Applying the identity (2.9.63) with ϑA = ϑB, we
obtain the bound

‖S(s+ δ − s′)QBlin
(
V (s′)

)
‖2H1 ≤ M2K2

B;lin‖V (s′)‖2H1

+M2K2
B;linρ

−1 1√
s+ δ − s′

‖V (s′)‖2H1

−ρ−1 1
2
d

ds
‖S(s+ δ − s′)QBlin

(
V (s′)

)
‖2L2

(2.9.86)
for the values of (s, s′) that are relevant below. Upon writing

II = Ee−εt
∫ t

0
eνs
∫ s

s−1

[
1 + 1√

s+ δ − s′
]‖V (s′)‖2H11s′<τ ds′ ds,

III = Ee−εt
∫ t

0
eνs
∫ s

s−1

d

ds
‖S(s+ δ − s′)QBlin

(
V (s′)

)
‖2L21s′<τds′ ds,

(2.9.87)

we obtain the estimate

Ee−εtIsh
ν,δ;B;lin(t) ≤ (1 + ρ−1)M2K2

B;linII −
1
2ρ
−1III . (2.9.88)

Changing the integration order, we obtain

II = Ee−εt
∫ t

0

[ ∫ min{t,s′+1}

s′
eνs
[
1 + 1√

s+ δ − s′
]
ds
]
‖V (s′)‖2H11s′<τ ds′

≤ 3eνEe−εt
∫ t

0
eνs
′
‖V (s′)‖2H11s′<τ ds′

≤ 3eνEe−εt∧τ
∫ t∧τ

0
eνs
′
‖V (s′)‖2H1 ds′

= 3eνENε,α;II(t ∧ τ).

(2.9.89)
Integrating by parts, we arrive at the identity

III = Ee−εt
∫ t

0

[ ∫ min{t,s′+1}

s′
eνs

d

ds
‖S(s+ δ − s′)QBlin

(
V (s′)

)
‖2L2 ds

]
1s′<τ ds′

= III;A + III;B + III;C ,
(2.9.90)
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in which we have introduced the expressions

III;A = Ee−εt
∫ t

0
eνmin{t,s′+1}‖S(min{t, s′ + 1}+ δ − s′)QBlin

(
V (s′)

)
‖2L21s′<τ ds′,

III;B = −Ee−εt
∫ t

0
eνs
′
‖S(δ)QBlin

(
V (s′)

)
‖2L21s′<τ ds′,

III;C = −Ee−εt
∫ t

0

[ ∫ min{t,s′+1}

s′
νeνs‖S(s+ δ − s′)QBlin

(
V (s′)

)
‖2L2 ds

]
1s′<τ ds′.

(2.9.91)
Inspecting these expressions, we readily obtain the bound

|III | ≤ eν(2 + ν)M2K2
B;linEe

−εt
∫ t

0
eνs
′
‖V (s′)‖2H11s′<τ ds′

≤ eν(2 + ν)M2K2
B;linENε,α;II(t ∧ τ).

(2.9.92)

Lemma 2.9.19. Fix T > 0 and assume that (HA), (HTw), (HS), (Hβ), (hSol) and
(hFB) all hold. Pick a constant 0 < ε < 2β. Then for any 0 ≤ δ < 1, and any 0 ≤ t ≤ T ,
we have the bounds

Ee−εtI lt
ε,δ;B;cn(t) ≤ M2

(2β − ε)εK
2
B;cn,

Ee−εtIsh
ε,δ;B;cn(t) ≤ K2

B;cn
M2

ε
(1 + ρ−1)eε(4 + ε).

(2.9.93)

Proof. Using the fact that

e−εt
∫ t

0
eεs ds ≤ 1

ε
, (2.9.94)

these bounds can be obtained from Lemmas 2.9.17 and 2.9.18 by picking α = 0 and
making the substitutions

KB;lin 7→ KB;cn, ENε,0;II(t ∧ τ) 7→ 1
ε
. (2.9.95)

Lemma 2.9.20. Fix T > 0 and assume that (HA), (HTw), (HS), (Hβ), (hSol) and
(hFB) all hold. Pick two constants ε > 0, α ≥ 0 for which ε + α < 2β and write
ν = α+ ε. Then we have the bounds

E sup
0≤t≤τ

e−εtI lt
ν,0;B;lin(t) ≤ eε(T + 1) M2

2β − νK
2
B;linE sup

0≤t≤τ
Nε;α;II(t),

E sup
0≤t≤τ

e−εtIsh
ν,0;B;lin(t) ≤ eε(T + 1)K2

B;linM
2(1 + ρ−1)eν(4 + ν)E sup

0≤t≤τ
Nε;α;II(t).

(2.9.96)
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Proof. By splitting the integration interval we obtain

sup
0≤t≤τ

e−εtI lt
ν,0;B;lin(t) ≤ sup

0≤t≤T
e−εtI lt

ν,0;B;lin(t)

= sup
0≤t≤T

e−εt
∫ t

0
eνs‖E lt

B;lin(s)‖2H1 ds

≤ eεe−ε
∫ 1

0
eνs‖E lt

B;lin(s)‖2H1 ds

+eεe−2ε
∫ 2

1
eνs‖E lt

B;lin(s)‖2H1 ds

+eεe−(bTc+1)ε
∫ bTc+1

bTc
eνs‖E lt

B;lin(s)‖2H1 ds

= eε
[
e−εI lt

ν,0;B;lin(1) + e−2εI lt
ν,0;B;lin(2)

+ . . .+ e−ε(bTc+1)I lt
ν,0;B;lin(bT c+ 1)

]
.

(2.9.97)

Applying Lemma 2.9.17, we hence see

E sup
0≤t≤τ

e−εtI lt
ν,0;B;lin(t)

≤ eε M2

2β − νK
2
B;linE

[
Nε;α;II(1 ∧ τ) + . . .+Nε;α;II((bT c+ 1) ∧ τ)

]
≤ (T + 1)eε M2

2β − νK
2
B;lin sup

0≤t≤τ
Nε;α;II(t).

(2.9.98)

The same procedure works for the second estimate.

Lemma 2.9.21. Fix T > 0 and assume that (HA), (HTw), (HS), (Hβ), (hSol) and
(hFB) all hold. Pick a constant ε > 0, α ≥ 0 for which ε < 2β. Then we have the
bounds

E sup
0≤t≤τ

e−εtI lt
ν,0;B;cn(t) ≤ eε(T + 1) M2

(2β − ε)εK
2
B;cn,

E sup
0≤t≤τ

e−εtIsh
ν,0;B;cn(t) ≤ eε(T + 1)K2

B;cn
M2

ε
(1 + ρ−1)eε(4 + ε).

(2.9.99)

Proof. Following the procedure in the proof of Lemma 2.9.20, these bounds can be
obtained from the estimates in Lemma 2.9.19 .

Proof of Proposition 2.9.1. Pick T > 0 and 0 < η < η0 and write τ = τε,α(T, η). Since
the identities (2.9.3) with v = V (t ∧ τ) hold for all 0 ≤ t ≤ T , we may compute

E sup
0≤t≤τ

Nε,0;I(t) ≤ 5E sup
0≤t≤τ

[
‖E0(t)‖2L2 + σ4‖EF ;lin(t)‖2L2 + ‖EF ;nl(t)‖2L2

+σ2‖EB;lin(t)‖2L2 + σ2‖EB;cn(t)‖2L2

]
(2.9.100)
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by applying Young’s inequality. The inequalities in Lemmas 2.9.8-2.9.21 now imply
that

E sup
0≤t≤τ

Nε,0;I(t) ≤ C1
[
‖V (0)‖2H1 + σ2T +

(
η + σ2T + σ4

)
E sup

0≤t≤τ
Nε,0;II(t)

]
.

(2.9.101)
In addition, we note that

E sup
0≤t≤τ

Nε,0;II(t) ≤ 9E sup
0≤t≤τ

e−εt
[
Iν,0;0(t) + σ4I lt

ν,0;F ;lin(t) + σ4Ish
ν,0;F ;lin(t)

+I lt
ν,0;F ;nl(t) + Ish

ν,0;F ;nl(t)

+σ2I lt
ν,0;B;lin(t) + σ2Ish

ν,0;B;lin(t)

+σ2I lt
ν,0;B;cn(t) + σ2Ish

ν,0;B;cn(t)
]
.

(2.9.102)
The inequalities in Lemmas 2.9.8-2.9.21 now imply that

E sup
0≤t≤τ

Nε,0;II(t) ≤ C2
[
‖V (0)‖2H1 + σ2T +

(
η + σ2T + σ4

)
sup

0≤t≤τ
Nε,0;II(t)

]
.

(2.9.103)
In particular, we see that

E sup
0≤t≤τ

Nε,0(t) ≤ C3
[
‖V (0)‖2H1 + σ2T + (η + σ2T + σ4)E sup

0≤t≤τ
Nε,0(t)

]
. (2.9.104)

The desired bound hence follows by appropriately restricting the size of η+σ2T+σ4.

Proof of Proposition 2.9.2. Ignoring the contributions arising from Bcn, we can follow
the proof of Proposition 2.9.1 to obtain the bound

E sup
0≤t≤τ

Nε,α(t) ≤ C4
[
‖V (0)‖2H1 + (η + σ2T + σ4)E sup

0≤t≤τ
Nε,α(t)

]
. (2.9.105)

The desired estimate hence follows by appropriately restricting the size of η + σ2T +
σ4.
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3
Systems of Reaction-Diffusion

Equations with Scalar Noise

We consider reaction-diffusion equations that are stochastically forced by a small
multiplicative noise term. We show that spectrally stable traveling wave solu-
tions to the deterministic system retain their orbital stability if the amplitude
of the noise is sufficiently small. By applying a stochastic phase-shift together
with a time-transform, we obtain a quasi-linear SPDE that describes the fluctu-
ations from the primary wave. We subsequently follow the semigroup approach
developed in Chapter 2 to handle the nonlinear stability question. The main
novel feature is that we no longer require the diffusion coefficients to be equal.

3.1 Introduction
In this chapter,1 we consider stochastically perturbed versions of a class of reaction-
diffusion equations that includes the FitzHugh-Nagumo equation

ut = uxx + fcub(u)− w

wt = %wxx + ε[u− γw].
(3.1.1)

Here we take ε, %, γ > 0 and consider the standard bistable nonlinearity

fcub(u) = u(1− u)(u− a). (3.1.2)

It has been known for quite some time that this system admits spectrally (and non-
linearly) stable traveling pulse solutions when (%, γ, ε) are all small [1]. Recently, such
results have also become available for the equal-diffusion setting % = 1 by using varia-
tional techniques together with the Maslov index [22, 24, 25].

Our goal here is to show that these spectrally stable wave solutions survive in a
suitable sense upon adding a small pointwise multiplicative noise term to the underlying
1 The content of this chapter has been published as C.H.S. Hamster, H.J. Hupkes; Stability of

Traveling Waves for Systems of Reaction-Diffusion Equations with Multiplicative Noise in SIMA,
see [47]
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PDE. In particular, we generalize previous results in Chapter 2 where we were only able
to consider the special case % = 1. For example, we are now able to cover the Stochastic
Partial Differential Equation (SPDE)

dU =
[
Uxx + fcub(U)−W ]dt+ σχ(U)U(1− U)dβt

dW =
[
%Wxx + ε(U − γW )]dt

(3.1.3)

for small |σ|, in which (βt) is a Brownian motion and χ(U) is a cut-off function with
χ(U) = 1 for |U | ≤ 2. The presence of this cut-off is required to enforce the global
Lipschitz-smoothness of the noise term. In this regime, one can think of (3.1.3) as a
version of the FitzHugh-Nagumo PDE (3.1.1) where the parameter a is replaced by
a+ σβ̇t. Notice that the noise vanishes at the asymptotic state U = 0 of the pulse.

Phase tracking Although the ability to include noise in models is becoming an
essential tool in many disciplines [15, 16, 30, 35, 116], our understanding of the impact
that such distortions have on basic patterns such as stripes, spots and waves is still in a
preliminary stage [12, 14, 37, 43, 71, 79, 103, 112]. As explained in detail in §2.1, several
approaches are being developed [57, 72, 104, 105] to analyze stochastically forced waves
that each require a different set of conditions on the noise and structure of the system.
The first main issue that often limits the application range of the results is that the
underlying linear flow is required to be immediately contractive, which is (probably)
not true for multi-component systems such as (3.1.1). The second main issue is that an
appropriate phase needs to be defined for the wave. Various ad hoc choices have been
made for this purpose, which typically rely on geometric intuition of some kind.

Inspired by the agnostic viewpoint described in the expository paper [117], we
initiated a program in Chapter 2 that aims to define the phase, shape and speed of
a stochastic wave purely by the technical considerations that arise when mimicking
a deterministic nonlinear stability argument. In particular, the phase is constantly
updated in such a way that the neutral part of the linearized flow is not felt by the
nonlinear terms. The shape and speed of the stochastic wave are defined by the
requirement that the resulting ‘frozen wave’ feels only (instantaneous) stochastic forcing.
This allows us to obtain stability results, but also provides expressions for the leading
order limiting behavior of the average speed experienced by the full stochastic system.
We remark that the formal approach recently developed in [19] also touches upon several
of the ideas underlying our approach.

Obstructions Applying the procedure sketched above to the FitzHugh-Nagumo
SPDE (3.1.3), one can show that the deviation (Ũ , W̃ ) from the phase-shifted stochastic
wave satisfies a SPDE of the general form

dŨ =
[(

1 + 1
2σ

2b(Ũ , W̃ )2)Ũxx +RU (Ũ , W̃ , Ũx, W̃x)
]
dt+ SU (Ũ , W̃ , Ũx, W̃x) dβt,

dW̃ =
[(
%+ 1

2σ
2b(Ũ , W̃ )2)W̃xx +RW (Ũ , W̃ , Ũx, W̃x)

]
dt+ SW (Ũ , W̃ , Ũx, W̃x) dβt

(3.1.4)
in which b is a bounded scalar function. For σ 6= 0 this is a quasi-linear system, but
the coefficients in front of the second order derivatives are constant with respect to the
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spatial variable x. These extra second order terms are a direct consequence of Itô’s
formula, which shows that second derivatives need to be included when applying the
chain rule in a stochastic setting. In particular, deterministic phase-shifts lead to extra
convective terms, while stochastic phase-shifts lead to extra diffusive terms.

These extra nonlinear diffusive terms cause short-term regularity issues that prevent
a direct analysis of (3.1.4) in a semigroup framework. However, in the special case % = 1
they can be transformed away by introducing a new time variable τ that satisfies

τ ′(t) = 1 + 1
2σ

2b(Ũ , W̃ )2. (3.1.5)

This approach was taken in Chapter 2, where we studied reaction-diffusion systems
with equal diffusion strengths.

In this chapter, we concentrate on the case % 6= 1 and develop a more subtle version
of this argument. In fact, we use a similar procedure to scale out the first of the
two nonlinear diffusion terms. The remaining nonlinear second order term is only
present in the equation for W̃ , which allows us to measure its effect on Ũ via the off-
diagonal elements of the associated semigroup. The key point is that these off-diagonal
elements have better regularity properties than their on-diagonal counterparts, which
allows us to side-step the regularity issues outlined above. Indeed, by commuting ∂x
with the semigroup, one can obtain an integral expression for Ũ that only involves
(Ũ , W̃ , ∂xŨ , ∂xW̃ ) and that converges in L2(R). A second time-transform can be used
to obtain similar results for W̃ .

A second major complication in our stochastic setting is that (∂xŨ , ∂xW̃ ) cannot be
directly estimated in L2(R). Indeed, in order to handle the stochastic integrals we need
tools such as the Itô Isometry, which requires square integrability in time. However,
squaring the natural O(t−1/2) short-term behavior of the semigroup as measured in
L(L2;H1) leads to integrals involving t−1 which diverge.

This difficulty was addressed in Chapter 2 by controlling temporal integrals of the
H1-norm. By performing a delicate integration-by-parts procedure one can explicitly
isolate the troublesome terms and show that the divergence is in fact ‘integrated out’.
A similar approach works for our setting here, but the interaction between the separate
time-transforms used for Ũ and W̃ requires a careful analysis with some non-trivial
modifications.

Outlook Although this chapter relaxes the severe equal-diffusion requirement in Chap-
ter 2, we wish to emphasize that our technical phase-tracking approach is still in a
proof-of-concept state. For example, we rely heavily on the diffusive smoothening of
the deterministic flow to handle the extra diffusive effects introduced by the stochastic
phase shifts. Taking % = 0 removes the former but keeps the latter, which makes it
unclear at present how to handle such a situation. This is particularly relevant for many
neural field models where the diffusion is modeled by convolution kernels rather than
the standard Laplacian.

It is also unclear at present if our framework can be generalized to deal with branches
of essential spectrum that touch the imaginary axis. This occurs when analyzing planar
waves in two or more dimensions [8, 53, 54, 64] or when studying viscous shocks in the
context of conservation laws [6, 7, 82]. In the deterministic case these settings require
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the use of pointwise estimates on Green’s functions, which give more refined control on
the linear flow than standard semigroup bounds.

We are more confident about the possibility of including more general types of noise
in our framework. For instance, we believe that there is no fundamental obstruction to
including noise that is colored in space2, which arises frequently in many applications
[27, 72]. In addition, it should also be possible to remove our dependence on the
variational framework developed by Liu and Röckner [77]. Indeed, our estimates on the
mild solutions appear to be strong enough to allow short-term existence results to be
obtained for the original SPDE in the vicinity of the wave.

Organization This chapter is reasonably self-contained and the main narrative can
be read independently of Chapter 2. However, we do borrow some results from Chapter
2 that do not depend on the structure of the diffusion matrix. This allows us to focus
our attention on the parts that are essentially different.

We formulate our phase-tracking mechanism and state our main results in §3.2.
In addition, we illustrate these results in the same section by numerically analyzing
an example system of FitzHugh-Nagumo type. In §3.3 we decompose the semigroup
associated to the linearization of the deterministic wave into its diagonal and off-diagonal
parts. We focus especially on the short-time behavior of the off-diagonal elements and
show that the commutator of ∂x and the semigroup extends to a bounded operator on
L2. In §3.4 we describe the stochastic phase-shifts and time-shifts that are required to
eliminate the problematic terms from our equations. We apply the results from §3.3 to
recast the resulting SPDE into a mild formulation and establish bounds for the final
nonlinearities. This allows us to close a nonlinear stability argument in §3.5 by carefully
estimating each of the mild integrals.

3.2 Main results
In this chapter, we are interested in the stability of traveling wave solutions to SPDEs
of the form

dU =
[
ρ∂xxU + f(U)

]
dt+ σg(U)dβt. (3.2.1)

Here we take U = U(x, t) ∈ Rn with x ∈ R and t ≥ 0.
We start by formulating two structural conditions on the deterministic and stochastic

parts of (3.2.1). Together these imply that our system has a variational structure with a
nonlinearity f that grows at most cubically. In particular, it is covered by the variational
framework developed in [77] with α = 2. The crucial difference between assumption
(HDt) below and assumption (HA) in Chapter 2 is that the diagonal elements of ρ no
longer have to be equal.

(HDt) The matrix ρ ∈ Rn×n is a diagonal matrix with strictly positive diagonal elements
{ρi}ni=1. In addition, we have f ∈ C3(Rn;Rn) and there exist u± ∈ Rn for which
f(u−) = f(u+) = 0. Finally, D3f is bounded and there exists a constant Kvar > 0
so that the one-sided inequality

〈f(uA)− f(uB), uA − uB〉Rn ≤ Kvar |uA − uB |2 (3.2.2)
2 See Chapter 4 for results in this direction.
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holds for all pairs (uA, uB) ∈ Rn × Rn.

(HSt) The function g ∈ C2(Rn;Rn) is globally Lipschitz with g(u−) = g(u+) = 0. In
addition, Dg is bounded and globally Lipschitz. Finally, the process (βt)t≥0 is a
Brownian motion with respect to the complete filtered probability space(

Ω,F , (Ft)t≥0,P
)
. (3.2.3)

We write ρmin = min{ρi} > 0, together with ρmax = max{ρi}. In addition, we
introduce the shorthands

L2 = L2(R;Rn), H1 = H1(R;Rn), H2 = H2(R;Rn). (3.2.4)

Our final assumption states that the deterministic part of (3.2.1) has a spectrally stable
traveling wave solution that connects the two equilibria u± (which are allowed to be
equal). This traveling wave should approach these equilibria at an exponential rate.

(HTw) There exists a wavespeed c0 ∈ R and a waveprofile Φ0 ∈ C2(R;Rn) that satisfies
the traveling wave ODE

ρΦ′′0 + c0Φ′0 + f(Φ0) = 0 (3.2.5)

and approaches its limiting values Φ0(±∞) = u± at an exponential rate. In
addition, the associated linear operator Ltw : H2 → L2 that acts as

[Ltwv](ξ) = ρv′′(ξ) + c0v
′(ξ) +Df

(
Φ0(ξ)

)
v(ξ), (3.2.6)

has a simple eigenvalue at λ = 0 and has no other spectrum in the half-plane
{<λ ≥ −2β} ⊂ C for some β > 0.

The formal adjoint
L∗tw : H2 → L2 (3.2.7)

of the operator (3.2.6) acts as

[L∗tww](ξ) = ρw′′(ξ)− c0w′(ξ) + (Df
(
Φ0(ξ)

)
)∗w(ξ). (3.2.8)

Indeed, one easily verifies that

〈Ltwv, w〉L2 = 〈v,L∗tww〉L2 (3.2.9)

whenever (v, w) ∈ H2 × H2. Here 〈·, ·〉L2 denotes the standard inner product on L2.
The assumption that zero is a simple eigenvalue for Ltw implies that L∗twψtw = 0 for
some ψtw ∈ H2 that we normalize to get

〈Φ′0, ψtw〉L2 = 1. (3.2.10)

We remark here that it is advantageous to view SPDEs as evolutions on Hilbert
spaces, since powerful tools are available in this setting. However, in the case where
u− 6= u+, the waveprofile Φ0 does not lie in the natural statespace L2. In order to
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circumvent this problem, we use Φ0 as a reference function that connects u− to u+,
allowing us to measure deviations from this function in the Hilbert spaces H1 and
L2. In order to highlight this dual role and prevent any confusion, we introduce the
duplicate notation

Φref = Φ0. (3.2.11)

This allows us to introduce the sets

UL2 = Φref + L2, UH1 = Φref +H1, UH2 = Φref +H2, (3.2.12)

which we will use as the relevant state-spaces to capture the solutions U to (3.2.1).
We now set out to couple an extra phase-tracking3 SDE to our SPDE (3.2.1). As

a preparation, we pick a sufficiently large constant Khigh > 0 together with two C∞-
smooth non-decreasing cut-off functions

χlow : R→ [ 14 ,∞), χhigh : R→ [−Khigh − 1,Khigh + 1] (3.2.13)

that satisfy the identities

χlow(ϑ) = 1
4 for ϑ ≤ 1

4 , χlow(ϑ) = ϑ for ϑ ≥ 1
2 , (3.2.14)

together with

χhigh(ϑ) = ϑ for |ϑ| ≤ Khigh, χhigh(ϑ) = sign(ϑ)
[
Khigh + 1] for |ϑ| ≥ Khigh + 1.

(3.2.15)
For any u ∈ UH1 and ψ ∈ H1, this allows us to introduce the function

b(u, ψ) = −
[
χlow

(
〈∂ξu, ψ〉L2

)]−1
χhigh

(
〈g(u), ψ〉L2

)
, (3.2.16)

together with the diagonal n× n-matrix

κσ(u, ψ) = diag{κσ;i(u, ψ)}ni=1 := diag{1 + 1
2ρi

σ2b(u, ψ)2}ni=1. (3.2.17)

In addition, for any u ∈ UH1 , c ∈ R and ψ ∈ H2 we write

aσ(u, c, ψ) = −
[
χlow

(
〈∂ξu, ψ〉L2

)]−1
〈κσ(u, ψ)u, ρ∂ξξψ〉L2

−
[
χlow

(
〈∂ξu, ψ〉L2

)]−1
〈f(u) + c∂ξu+ σ2b(u, ψ)∂ξ[g(u)], ψ〉L2 .

(3.2.18)
The essential difference with the definitions of κσ and aσ in Chapter 2 is that κσ is
now a matrix instead of a constant. However, this does not affect the ideas and results
in §3-4 and §7 of Chapter 2, which can be transferred to the current setting almost
verbatim. Indeed, one simply replaces ρ by ρmin or ρmax as necessary.
3 See §2.4 for a more intuitive explanation of this phase.
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The traveling wave ODE (3.2.5) implies that a0(Φ0, c0, ψtw) = 0. Following Propo-
sition 2.2.2, one can show that there exists a branch of profiles and speeds (Φσ, cσ) in
UH2 × R that is O(σ2) close to (Φ0, c0), for which

aσ(Φσ, cσ, ψtw) = 0. (3.2.19)

Upon introducing the right-shift operators

[Tγu](ξ) = u(ξ − γ) (3.2.20)

we can now formally introduce the coupled SPDE
dU =

[
ρ∂xxU + f(U)

]
dt+ σg(U)dβt,

dΓ =
[
cσ + aσ

(
U, cσ, TΓψtw

)]
dt+ σb

(
U, TΓψtw

)
dβt,

(3.2.21)

which is the main focus in this chapter. Following the procedure used to establish
Proposition 2.2.1, one can show that this SPDE coupled with an initial condition

(U,Γ)(0) = (u0, γ0) ∈ UH1 × R (3.2.22)

has solutions4 (U(t),Γ(t)
)
∈ UH1 × R that can be defined for all t ≥ 0 and are almost

surely continuous as maps into UL2 × R.
For any initial condition u0 ∈ UH1 that is sufficiently close to Φσ, Proposition 2.2.3

shows that it is possible to pick γ0 in such a way that

〈T−γ0u0 − Φσ, ψtw〉L2 = 0. (3.2.23)

This allows us to define the process

Vu0(t) = T−Γ(t)
[
U(t)

]
− Φσ, (3.2.24)

which can be thought of as the deviation of the solution U(t) of (3.2.21)-(3.2.22) from
the stochastic wave Φσ shifted to the position Γ(t).

In order to measure the size of this deviation we pick ε > 0 and introduce the scalar
function

Nε;u0(t) = ‖Vu0(t)‖2L2 +
∫ t

0
e−ε(t−s)‖Vu0(s)‖2H1 ds. (3.2.25)

For each T > 0 and η > 0 we now define the probability

pε(T, η, u0) = P
(

sup
0≤t≤T

Nε;u0(t) > η
)
. (3.2.26)

Our main result shows that the probability that Nε;u0 remains small on timescales of
order σ−2 can be pushed arbitrarily close to one by restricting the strength of the noise
and the size of the initial perturbation. This extends Theorem 2.2.4 to the current
setting where the diffusion matrix ρ need not be proportional to the identity.
Theorem 3.2.1 (see §3.5). Suppose that (HDt), (HSt) and (HTw) are all satisfied
and pick sufficiently small constants ε > 0, δ0 > 0, δη > 0 and δσ > 0. Then there
exists a constant K > 0 so that for every 0 ≤ σ ≤ δσT−1/2, any u0 ∈ UH1 that satisfies
‖u0 − Φσ‖L2 < δ0, any 0 < η ≤ δη and any T > 0, we have the inequality

pε(T, η, u0) ≤ η−1K
[
‖u0 − Φσ‖2H1 + σ2T

]
. (3.2.27)

4 We refer to Proposition 2.2.1 for the precise notion of a solution.
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3.2.1 Orbital drift
On account of the theory developed in [75, §12] to describe the suprema of finite-
dimensional Gaussian processes, we suspect that the σ2T term appearing in the bound
(3.2.27) can be replaced by σ2 ln(T ). This would allow us to consider timescales of order
exp[δσ/σ2], which are exponential in the noise-strength instead of merely polynomial.
The key limitation is that the theory of stochastic convolutions in Hilbert spaces is still
in the early stages of development.

In order to track the evolution of the phase over such long timescales, we follow
Chapter 2 and introduce the formal Ansatz

Γ(t) = cσt+ σΓσ;1(t) + σ2Γσ;2(t) +O(σ3). (3.2.28)

The first-order term is the scaled Brownian motion

Γσ;1(t) = b(Φσ, ψtw)βt, (3.2.29)

which naturally has zero mean and hence does not contribute to any deviation of the
average observed wavespeed.

In order to understand the second order term, we introduce the orbital drift coeffi-
cient

cod
σ;2 = 1

2

∫ ∞
0

D2
1aσ
(
Φσ, cσ, ψtw

)[
S(s)

(
g(Φσ) + b(Φσ, ψtw)Φ′σ

)]2
ds, (3.2.30)

in which {S(s)}s≥0 denotes the semigroup generated by Ltw. In §2.4 we gave an explicit
expression for Γσ;2 and showed that

lim
t→∞

t−1EΓσ;2(t) = cod
σ;2. (3.2.31)

Note that we are keeping the σ-dependence in these definitions for notational conve-
nience, but in §3.2.2 we show how the leading order contribution can be determined.

The discussion above suggests that it is natural to introduce the expression

c
(2)
σ;lim = cσ + σ2cod

σ;2, (3.2.32)

which satisfies c(2)
σ;lim − c0 = O(σ2). Our conjecture is that the expected value of the

wavespeed for large times behaves as c(2)
σ;lim + O(σ3). In order to interpret this, we

note that the profile Φσ travels at an instantaneous velocity cσ, but also experiences
stochastic forcing. As a consequence of this forcing, which is mean reverting toward
Φσ, the profile fluctuates in the orbital vicinity of Φσ. At leading order, the underlying
mechanism behind this behavior resembles an Ornstein-Uhlenbeck process, which means
that the amplitude of these fluctuations can be expected to stabilize for large times.
This leads to an extra contribution to the observed wavespeed, which we refer to as an
orbital drift. The second term in (3.2.32) describes the leading order contribution to
this orbital drift.
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3.2.2 Example
In order to illustrate our results, let us consider the FitzHugh-Nagumo system

dU =
[
Uxx + fcub(U)−W ]dt+ σg(u)(U)dβt,

dW =
[
%Wxx + ε(U − γW )]dt

(3.2.33)

in a parameter regime where (HDt), (HSt) and (HTw) all hold. We write Φ0 =
(Φ(u)

0 ,Φ(w)
0 ) for the deterministic wave defined in (HTw) and recall the associated linear

operator Ltw : H2(R;R2)→ L2(R;R2) that acts as

Ltw =

 ∂ξξ + c0∂ξ + f ′cub(Φ(u)
0 ) −1

ε %∂ξξ + c0∂ξ − εγ

 . (3.2.34)

The adjoint operator acts as

L∗tw =

 ∂ξξ − c0∂ξ + f ′cub(Φ(u)
0 ) ε

−1 %∂ξξ − c0∂ξ − εγ

 (3.2.35)

and admits the eigenfunction ψtw = (ψ(u)
tw , ψ

(w)
tw ) that can be normalized in such a way

that
〈∂ξΦ0, ψtw〉L2(R;R2) = 1. (3.2.36)

To summarize, we have

Ltw∂ξ(Φ(u)
0 ,Φ(w)

0 )T = 0, L∗tw(ψ(u)
tw , ψ

(w)
tw )T = 0. (3.2.37)

Upon writing Φσ = (Φ(u)
σ ,Φ(w)

σ ), the stochastic wave equation aσ(Φσ, cσ, ψtw) = 0
can be written as

−cσ∂ξΦ(u)
σ =

(
1 + σ2

2 b̃(Φσ)2
)
∂ξξΦ(u)

σ + fcub(Φ(u)
σ )− Φ(w)

σ + σ2b̃(Φσ)∂ξ[g(u)(Φ(u)
σ )],

−cσ∂ξΦ(w)
σ =

(
%+ σ2

2 b̃(Φσ)2
)
∂ξξΦ(w)

σ + ε(Φ(u)
σ − γΦ(w)

σ ),

(3.2.38)

where b̃ is given by

b̃(Φσ) = −
〈g(u)(Φ(u)

σ ), ψ(u)
tw 〉L2(R;R)

〈∂ξΦσ, ψtw〉L2(R;R2)
. (3.2.39)

We now introduce the expansions

Φσ = Φ0 + σ2Φ0;2 +O(σ4), cσ = c0 + σ2c0;2 +O(σ4) (3.2.40)
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(a) (b)

Figure 3.1: Numerical results for the solution (Φσ, cσ) to equation (3.2.38). Figure
(a) shows the numerical approximation of cσ − c0 and the first order approximation
of this difference. We chose g(u)(u) = u with parameters a = 0.1, % = 0.01, ε = 0.01,
γ = 5. Using (3.2.43) we numerically computed c0;2 = −3.66. Figure (b) shows the
two components of Φσ for σ = 0.15 for the same parameter values. On the scale of this
figure they are almost identical to Φ0.

with Φ0;2 =
(
Φ(u)

0;2 ,Φ
(w)
0;2
)
. Substituting these expressions into (3.2.38) and balancing

the second order terms, we find

−c0;2∂ξΦ(u)
0 − c0∂ξΦ(u)

0;2 = ∂ξξΦ(u)
0;2 + 1

2 b̃(Φ0)2∂ξξΦ(u)
0 + f ′cub(Φ(u)

0 )Φ(u)
0;2 − Φ(w)

0;2

+b̃(Φ0)∂ξg(u)(Φ(u)
0 ),

−c0;2∂ξΦ(w)
0 − c0∂ξΦ(w)

0;2 = %∂ξξΦ(w)
0;2 + 1

2 b̃(Φ0)2∂ξξΦ(w)
0 + ε(Φ(u)

0;2 − γΦ(w)
0;2 ),

(3.2.41)
which can be rephrased as

LtwΦ0;2 = −c0;2∂ξΦ0 −
1
2 b̃(Φ0)2∂ξξΦ0 − b̃(Φ0)

(
∂ξg

(u)(Φ(u)
0 ), 0

)T
. (3.2.42)

Using the normalization (3.2.36) together with the fact that 〈LtwΦ0;2, ψtw〉L2(R;R2) = 0,
we find the explicit expression

c0;2 = −1
2 b̃(Φ0)2〈∂ξξΦ0, ψtw〉L2(R;R2) − b̃(Φ0)〈∂ξg(u)(Φ(u)

0 ), ψ(u)
tw 〉L2(R;R) (3.2.43)

for the coefficient that governs the leading order behavior of cσ − c0. In Figure 3.1 we
show numerically that c0;2σ

2 indeed corresponds well with cσ − c0 for small values of
σ2.

In Figure 3.2 we illustrate the behavior of a representative sample solution to
(3.2.33) by plotting it in three different moving frames. Figure 3.2a clearly shows that
the deterministic speed c0 overestimates the actual speed as the wave moves to the
left. The situation is improved in Figure 3.2b, where we use a frame that travels with
the stochastic speed cσ. However, the position of the wave now fluctuates around a
position that still moves slowly to the left as a consequence of the orbital drift. This is
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(a) U(· + c0t, t) (b) U(· + cσt, t) (c) U(· + Γ(t), t)

Figure 3.2: A single realization of the U -component of (3.2.33) with initial condition Φσ
in 3 different reference frames. We chose g(u)(u) = u with parameters a = 0.1, σ = 0.03,
% = 0.01, ε = 0.01, γ = 5.

remedied in Figure 3.2c where we use the full stochastic phase Γ(t). Indeed, the wave
now appears to be at a fixed position, but naturally still experiences fluctuations in its
shape. This shows that Γ(t) is indeed a powerful tool to characterize the position of
the wave.

In order to study the orbital drift mentioned above, we split the semigroup S(t)
generated by Ltw into its components

S(t) =
(

S(uu)(t) S(uw)(t)

S(wu)(t) S(ww)(t)

)
(3.2.44)

and introduce the expression

I(s) = S(uu)(s)g(u)(Φ0) + b̃(Φ0)S(uu)∂ξΦ(u)
0 + b̃(Φ0)S(uw)∂ξΦ(w)

0 , (3.2.45)

together with

cod
0;2 = −1

2

∫ ∞
0
〈f ′′cub(Φ(u)

0 )I(s)2, ψ
(u)
tw 〉L2(R) ds. (3.2.46)

This last quantity is in fact the leading order term in the Taylor expansion of (3.2.30),
which means that

cod
σ;2 = cod

0;2 +O(σ2). (3.2.47)

In particular, we see that

c
(2)
σ;lim = c0 + σ2[c0;2 + cod

0;2
]

+O(σ3), (3.2.48)

which means that we have explicitly identified the leading order correction to the full
limiting wavespeed.

To validate our prediction for the size of the orbital drift, we first approximated
E[Γ(t)− cσt] numerically by performing an average over a set of numerical simulations.
In fact, to speed up the convergence rate, we first subtracted the term Γσ;1(t) defined
in (3.2.29) from each simulation, using the same realization of the Brownian motion
that was used to generate the path for (U,W ). The results can be found in Figure 3.3a.
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(a) (b)

Figure 3.3: In (a) we computed the average E[Γ(t) − cσt] over 1000 simulations of
(3.2.33), using the procedure described in the main text for several values of σ. Notice
that a clear trend is visible. In (b) we computed the corresponding orbital drift by
evaluating the average (3.2.49) for the data in (a). Observe that there is a reasonable
match with the predicted values cod

0;2σ
2. We chose g(u)(u) = u with parameters a = 0.1,

% = 0.01, ε = 0.01, γ = 5. We used the value cod
0;2 = −0.18, which was found by

evaluating (3.2.46) numerically.

In order to eliminate any transients from the data, we subsequently numerically
computed the quantity

cod
obs = 2

T

∫ T

T
2

1
t
E[Γ(t)− cσt]dt. (3.2.49)

This corresponds with the average slope of the data in Figure 3.3a on the interval
[T/2, T ], which is a useful proxy for the observed orbital drift. Figure 3.3b shows that
these quantities are well-approximated by our leading order expression σ2cod

0;2.

3.3 Structure of the semigroup
In this section we analyze the analytic semigroup S(t) generated by the linear operator
Ltw, focusing specially on its off-diagonal elements. Assumption (HTw) implies that
Ltw has a spectral gap, which is essential for our computations. In order to exploit this,
we introduce the maps P : L2 → L2 and Q : L2 → L2 that act as

Pv = 〈v, ψtw〉L2Φ′0, Qv = v − Pv. (3.3.1)

We also introduce the suggestive notation Pξ ∈ L(L2;L2) to refer to the map

Pξv = −〈v, ∂ξψtw〉L2Φ′0, (3.3.2)

noting that Pξv = P∂ξv whenever v ∈ H1. These projections enable us to remove the
simple eigenvalue at the origin and obtain the following bounds.
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Lemma 3.3.1 (see [80]). Assume that (HDt) and (HTw) hold. Then Ltw generates
an analytic semigroup S(t) and there exists a constant M ≥ 1 for which we have the
bounds
‖S(t)Q‖L(L2;L2) ≤ Me−βt, 0 < t <∞,

‖S(t)Q‖L(L2;H1) ≤ Mt−
1
2 , 0 < t ≤ 2,

‖S(t)P‖L(L2;H2) + ‖S(t)Pξ‖L(L2;H2) + ‖S(t)∂ξP‖L(L2;H2) ≤ M, 0 < t ≤ 2,

‖S(t)Q‖L(L2;H2) ≤ Me−βt, t ≥ 1,

‖[Ltw − ρ∂ξξ]S(t)Q‖L(L2;L2) ≤ Mt−
1
2 , 0 < t ≤ 2,

‖[L∗tw − ρ∂ξξ]S(t)Q‖L(L2;L2) ≤ Mt−
1
2 , 0 < t ≤ 2.

(3.3.3)

Proof. Since ρ∂ξξ generates n independent heat-semigroups, the analyticity of the
semigroup S(t) can be obtained from [80, Prop. 4.1.4]; see also Proposition 2.6.3.vi. The
desired bounds follow from [80, Prop. 5.2.1] together with the fact that Φ′0 ∈ H3.

In §3.4 we will show that the function V (t) defined in (3.2.24) satisfies an SPDE that
involves nonlinear terms containing second order derivatives. The short-term bounds
above are too crude to handle such terms as they lead to divergences in the integrals
governing short-time regularity. In addition, the variational framework in [77] only
provides control on the H1-norm of V .

In order to circumvent the first issue, we introduce the representation

S(t)v =

 S11(t) . . . S1n(t)
...

. . .
...

Sn1(t) . . . Snn(t)


 v1

...
vn

 (3.3.4)

with operators Sij(t) ∈ L
(
L2(R;R);L2(R;R)

)
. Upon writing

Sd(t) = diag
(
S11(t), . . . , Snn(t)

)
, (3.3.5)

this allows us to make the splitting

S(t) = Sd(t) + Sod(t). (3.3.6)

Our main result below shows that the off-diagonal terms Sod(t) have better short-term
bounds than the original semigroup.

The second issue can be addressed by introducing the commutator

Λ(t) = [S(t)Q, ∂ξ] = S(t)Q∂ξ − ∂ξS(t)Q (3.3.7)

that initially acts on H1. In fact, we show that this commutator can be extended to L2

in a natural fashion and that it has better short-time bounds than S(t). Upon writing

S(t)∂ξv = S(t)Q∂ξv + S(t)Pξv = ∂ξS(t)Qv + Λ(t)v + S(t)Pξv, (3.3.8)

we hence see that the right-hand side of this identity is well-defined for v ∈ L2. In §3.4
this observation will allow us to give a mild interpretation of the SPDE satisfied by
V (t) posed on the space H1.



3

106 Chapter 3 – Systems with Scalar Noise

Proposition 3.3.2. Suppose that (HDt) and (HTw) are satisfied. Then the operator
Λ(t) can be extended to L2 for each t ≥ 0. In addition, there is a constant M > 0 so
that the short-term bound

‖Λ(t)‖L2→H2 + ‖Sod(t)‖L2→H2 ≤M (3.3.9)

holds for 0 < t ≤ 1, while the long-term bound

‖Λ(t)‖L2→H2 ≤Me−βt (3.3.10)

holds for t ≥ 1.

3.3.1 Functional calculus
For any linear operator L : H2 → L2 we introduce the notation

R(L, λ) = [λ− L]−1 (3.3.11)

for any λ in the resolvent set of L. On account of (HTw) and the sectoriality of Ltw,
we can find η+ ∈ (π2 , π) and M > 0 so that the sector

Ωtw = {λ ∈ C \ {0} : |arg(λ)| < η+} (3.3.12)

lies entirely in the resolvent set of Ltw, with

‖R(Ltw, λ)‖L2→L2 ≤ M

|λ|
(3.3.13)

for all λ ∈ Ωtw. Since λ = 0 is a simple eigenvalue for Ltw, we have the limit

λR(Ltw, λ)→ P (3.3.14)

as λ→ 0.
For any r > 0 and any η ∈ (π2 , η+), the curve given by

γr,η = {λ ∈ C : |argλ| = η, |λ| > r} ∪ {λ ∈ C : |argλ| ≤ η, |λ| = r} (3.3.15)

lies entirely in Ωtw. This curve can be used [80, (1.10)] to represent the semigroup S in
the integral form

S(t) = 1
2πi

∫
γr,η

etλR(Ltw, λ) dλ (3.3.16)

for any t > 0, where γr,η is traversed in the upward direction.
We will analyze Λ(t) and Sod(t) by manipulating this integral. As a preparation,

we state two technical results concerning the convergence of contour integrals that are
similar to (3.3.16). We note that our computations here are based rather directly on
[80, §1.3].
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Lemma 3.3.3. Suppose that (HDt) and (HTw) are satisfied and pick r > 0 together
with η ∈ (π2 , η+). Suppose furthermore that λ 7→ K(λ) ∈ C is an analytic function on
the resolvent set of Ltw and that there exist constants C > 0 and ϑ ≥ 1 so that the
estimate

|K(λ)| ≤ C

|λ|ϑ
(3.3.17)

holds for all λ ∈ Ωtw. Then there exists C1 > 0 so that∣∣∣∣∣
∫
γr,η

eλtK(λ) dλ

∣∣∣∣∣ ≤ C1t
ϑ−1 (3.3.18)

for all t > 0.

Proof. Writing
I(t) =

∫
γr,η

eλtK(λ) dλ (3.3.19)

and substituting λt = ξ, the analyticity of K on Ωtw implies

I(t) =
∫
γrt,η

eξK

(
ξ

t

)
1
t
dξ =

∫
γr,η

eξK

(
ξ

t

)
1
t
dξ. (3.3.20)

Using the obvious parametrization for γr,η, we find

I(t) = −
∫ ∞
r

e(ρ cos(η)−iρ sin(η))K
(
t−1ρe−iη

)
e−iηt−1dρ

+
∫ η

η

e(r cos(α)−ir sin(α))K
(
t−1reiα

)
ireiαt−1dα

+
∫ ∞
r

e(ρ cos(η)−iρ sin(η))K
(
t−1ρeiη

)
eiηt−1dρ.

(3.3.21)

We hence obtain the desired estimate

|I(t)| ≤ Ctϑ−1
(

2
∫ ∞
r

eρ cos(η)ρ−ϑ dρ+
∫ η

η

er cos(α)r1−ϑdα

)
:= C1t

ϑ−1.

(3.3.22)

Lemma 3.3.4. Suppose that (HDt) and (HTw) are satisfied and pick r > 0 together
with η ∈ (π2 , η+). Suppose furthermore that λ 7→ K(λ) is an analytic function on the
resolvent set of Ltw and that there exists a constant C > 0 so that the estimate

|K(λ)| ≤ C (3.3.23)

holds for all λ ∈ Ωtw. Then there exists C2 > 0 so that the bound∣∣∣∣∣
∫
γr,η

eλtK(λ) dλ

∣∣∣∣∣ ≤ C2e
−βt (3.3.24)

holds for all t ≥ 1.
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Proof. Since K remains bounded for λ→ 0, this function can be analytically extended
to a neighborhood of λ = 0. We can hence replace the curve γr,η by the two half-lines

γ̃η′ = −β + {λ ∈ C : |argλ| = η′} (3.3.25)

for appropriate η′ ∈ (π2 , η+). We can then compute∣∣∣∣∣
∫
γ̃η′

eλtK(λ) dλ

∣∣∣∣∣ ≤ 2Ce−βt
∫ ∞

0
eρ cos(η′)t dρ

≤ 2Ce−βt
∫ ∞

0
eρ cos(η′) dρ

:= C2e
−βt.

(3.3.26)

3.3.2 The commutator Λ(t)
In this section we analyze Λ(t) and establish the statements in Proposition 3.3.2 that
concern this commutator. Based on the identity (3.3.16), we first set out to compute
the commutator of R(Ltw, λ) and ∂ξ. As a preparation, we introduce the commutator

B = [LtwQ, ∂ξ] = [Ltw, ∂ξ], (3.3.27)

which can easily be seen to act as

Bv = −D2f(Φ0)Φ′0v (3.3.28)

for any v ∈ H3.

Lemma 3.3.5. Suppose that (HDt) and (HTw) are satisfied and pick any λ in the
resolvent set of Ltw. Then for any g ∈ H1 we have the identity

[R(Ltw, λ)Q, ∂ξ]g = R(Ltw, λ)Q∂ξg − ∂ξR(Ltw, λ)Qg

= R(Ltw, λ)
[
BR(Ltw, λ)Qg − [P, ∂ξ]g

]
.

(3.3.29)

Proof. Let us first write
v = [λ− Ltw]−1Qg. (3.3.30)

The definition (3.3.27) implies that

[λ− Ltw]Q∂ξv = ∂ξ[λ− Ltw]Qv −Bv + λ[Q, ∂ξ]v

= ∂ξ[λ− Ltw]v − ∂ξλ(I −Q)v −Bv + λ[Q, ∂ξ]v

= ∂ξ[λ− Ltw]v − λ∂ξPv −Bv − λ[P, ∂ξ]v

= ∂ξQg −Bv − λP∂ξv

= Q∂ξg − [P, ∂ξ]g −Bv − λP∂ξv.

(3.3.31)
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Using (λ− Ltw)−1P = λ−1P we obtain

[λ− Ltw]−1Q∂ξg = Q∂ξv + [λ− Ltw]−1Bv + P∂ξv + [λ− Ltw]−1[P, ∂ξ]g

= ∂ξ[λ− Ltw]−1Qg + [λ− Ltw]−1B[λ− Ltw]−1Qg

+[λ− Ltw]−1[P, ∂ξ]g,
(3.3.32)

which can be reordered to yield (3.3.29).

On account of (3.3.29) we recall the definition (3.3.2) and introduce the operator
TA ∈ L(L2;L2) that acts as

TA = ∂ξP − Pξ. (3.3.33)

In addition, we introduce the expression

TB(λ) = BR(Ltw, λ)Q, (3.3.34)

which is well-behaved in the following sense.

Lemma 3.3.6. Suppose that (HDt) and (HTw) are satisfied. Then there exists a
constant C > 0 so that for any λ in the resolvent set of Ltw the operator TB(λ) satisfies
the bound

‖TB(λ)‖L2→L2 ≤ C

1 + |λ| . (3.3.35)

In additions, the maps

λ 7→ TB(λ) ∈ L(L2;L2), λ 7→ λ−1P
[
TA + TB(λ)

]
∈ L(L2;L2) (3.3.36)

can be continued analytically into the origin λ = 0.

Proof. Since Φ0 and Φ′0 are bounded functions, we have

‖BR(Ltw, λ)‖L2→L2 ≤ M

|λ|
‖D2f(Φ0)Φ′0‖∞. (3.3.37)

Using PLtw = 0 and the resolvent identity

LtwR(Ltw, λ) = −I + λR(Ltw, λ), (3.3.38)

we may compute

P [TA + TB(λ)
]

= PξP − Pξ + PBR(Ltw, λ)Q

= PξP − Pξ + PLtw∂ξR(Ltw, λ)Q− P∂ξLtwR(Ltw, λ)Q

= PξP − Pξ + PξQ− P∂ξλR(Ltw, λ)Q

= −P∂ξλR(Ltw, λ)Q.
(3.3.39)

Since λ 7→ R(Ltw, λ)Q can be analytically continued to λ = 0 on account of (3.3.14),
the same hence holds for the functions (3.3.36).
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Upon fixing r > 0 and η ∈ (π2 , η+), we now introduce the expressions

Λex;A(t) = 1
2πi

∫
γr,η

eλtR(Ltw, λ)TA dλ,

Λex;B(t) = 1
2πi

∫
γr,η

eλtR(Ltw, λ)TB(λ) dλ
(3.3.40)

and write
Λex(t) = Λex;A(t) + Λex;B(t). (3.3.41)

We note that
Λex;A(t) = S(t)TA = S(t)∂ξP − S(t)Pξ, (3.3.42)

which for 0 < t ≤ 1 is covered by the bounds in Lemma 3.3.1. The results below show
that Λex(t) is well-defined as an operator in L(L2;H2) and that it is indeed an extension
of the commutator Λ(t).

Lemma 3.3.7. Suppose that (HDt) and (HTw) are satisfied. Then Λex(t) is a well-
defined operator in L(L2;H2) for all t > 0 that does not depend on r > 0 and η ∈ (π2 , η+).
In addition, there exists a constant C > 0 so that the bound

‖Λex(t)‖L2→H2 ≤ Ce−βt (3.3.43)

holds for all t > 0.

Proof. Note first that there exists a constant C ′1 > 0 for which

‖v‖H2 ≤ C ′1
[
‖Ltwv‖L2 + ‖v‖L2

]
(3.3.44)

holds for all v ∈ H2. On account of the identity

LtwR(Ltw, λ)
[
TA + TB(λ)

]
= −

[
TA + TB(λ)

]
+ λR(Ltw, λ)

[
TA + TB(λ)

]
(3.3.45)

and the analytic continuations (3.3.36), we see that there exist C ′2 > 0 so that

‖LtwR(Ltw, λ)
[
TA + TB(λ)

]
‖L2→L2 + ‖R(Ltw, λ)

[
TA + TB(λ)

]
‖L2→L2 ≤ C ′2 (3.3.46)

for all λ ∈ Ωtw. We can now apply Lemma 3.3.4 to obtain the desired bound for t ≥ 1.
The bounds in Lemma 3.3.6 imply that there exists C ′3 > 0 for which

‖LtwR(Ltw, λ)
[
TB(λ)

]
‖L2→L2 ≤ C ′3

1 + |λ|
‖R(Ltw, λ)

[
TB(λ)

]
‖L2→L2 ≤ C ′3

|λ|

(3.3.47)

holds for all λ ∈ Ωtw. We can hence use Lemma 3.3.3 to find a constant C ′4 > 0 for
which we have the bound

‖Λex;B(t)‖L2→H2 ≤ C ′4 (3.3.48)
for all 0 < t ≤ 1. A direct application of Lemma 3.3.1 shows that also

‖Λex;A(t)‖L2→H2 ≤M (3.3.49)

for all 0 < t ≤ 1, which completes the proof.
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Corollary 3.3.8. Suppose that (HDt) and (HTw) are satisfied. Then for any g ∈ H1

we have
Λex(t)g = Λ(t)g := [S(t)Q, ∂ξ]g. (3.3.50)

Proof. The result follows by integrating both sides of the identity (3.3.29) over the
contour γr,η and using (3.3.16) together with (3.3.40).

3.3.3 Semigroup block structure
For the nonlinear stability proof in §3.5 we need to understand how the off-diagonal
terms of S(t) act on a second order nonlinearity. In order to do this, we first write
Sd;I(t) for the semigroup generated by

Ltw;d = ρ∂ξξv + c0vξ, (3.3.51)

which contains only diagonal terms. We also write

Sod;I(t) = S(t)− Sd;I(t) (3.3.52)

for the rest of the semigroup. Note that Sod;I(t) is not strictly off-diagonal, but it has
the same off-diagonal elements as Sod(t).

Lemma 3.3.9. Suppose that (HDt) and (HTw) are satisfied. Then there exists a
constant C > 0 for which the short-term bound

‖Sod;I(t)‖L2→H2 ≤ C (3.3.53)

holds for all 0 ≤ t ≤ 1.

Proof. Possibly decreasing the size of η+, we may assume that Ωtw is contained in the
resolvent set of Ltw;d. We may also assume that the bound

‖R(Ltw;d, λ)‖L2→L2 ≤ M

|λ|
(3.3.54)

holds for λ ∈ Ωtw by increasing the size of M > 0 if necessary.
For any r > 0 and η ∈ (π2 , η+) we have

Sod;I(t) = 1
2πi

∫
γr,η

eλt[R(Ltw, λ)−R(Ltw;d, λ)] dλ

= 1
2πi

∫
γr,η

eλtR(Ltw, λ)(Ltw − Ltw;d)R(Ltw;d, λ) dλ

= 1
2πi

∫
γr,η

eλtR(Ltw, λ)Df(Φ0)R(Ltw;d, λ) dλ.

(3.3.55)

On account of the identity

LtwR(Ltw, λ)Df(Φ0)R(Ltw;d, λ) = λR(Ltw, λ)Df(Φ0)R(Ltw;d, λ)−Df(Φ0)R(Ltw;d, λ)
(3.3.56)
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we have the bounds

‖LtwR(Ltw, λ)Df(Φ0)R(Ltw;d, λ)‖L2→L2 ≤ ‖Df(Φ0)‖∞
M(M + 1)
|λ|

,

‖R(Ltw, λ)Df(Φ0)R(Ltw;d, λ)‖L2→L2 ≤ ‖Df(Φ0)‖∞
M2

|λ|2
.

(3.3.57)

The desired estimate hence follows from Lemma 3.3.3.

Proof of Proposition 3.3.2. The statements concerning Λ(t) follow directly from Lemma
3.3.7 and Corollary 3.3.8. The bound for Sod(t) follows from Lemma 3.3.9 since Sod;I(t)
contains all the non-trivial elements of Sod(t).

3.4 Stochastic transformations
In this section we set out to derive a mild formulation for the SPDE satisfied by the
process

V (t) = T−Γ(t)[U(t)]− Φσ, (3.4.1)

which measures the deviation from the traveling wave Φσ in the coordinate ξ = x−Γ(t).
After recalling several results from Chapter 2 concerning the stochastic phaseshift, we
focus on the new extra second order nonlinearity that appears in our setting. We
use the results from §3.3 to rewrite this term in such a way that an effective mild
integral equation can be formulated that does not involve second derivatives. We obtain
estimates on all the nonlinear terms in §3.4.1 and rigorously verify that V indeed satisfies
this mild equation in §3.4.2.

We start by introducing the nonlinearity

Rσ(v) = κσ(Φσ + v, ψtw)ρ∂ξξ[Φσ + v]

+f(Φσ + v) + σ2b(Φσ + v, ψtw)∂ξ[g(Φσ + v)]

+
[
cσ + aσ

(
Φσ + v, cσ, ψtw

)]
[Φ′σ + v′],

(3.4.2)

together with

Sσ(v) = g(Φσ + v) + b(Φσ + v, ψtw)[Φ′σ + v′]. (3.4.3)

In §2.5 we established that the shifted process V can be interpreted as a weak solution
to the SPDE

dV = Rσ(V ) dt+ σSσ(V )dβt. (3.4.4)

However, in our case here κσ is a matrix rather than a scalar. This means that we
cannot transform (3.4.4) into a semilinear problem by a simple time transformation.
But, we can improve individual components of the system by rescaling time with the
diagonal elements κσ;i.

To this end, we follow Lemma 2.3.6 to find a constant Kκ > 0 for which

1 ≤ κσ;i(Φσ + v, ψtw) ≤ Kκ (3.4.5)
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holds for every σ ∈ (−δσ, δσ), every v ∈ H1 and every 1 ≤ i ≤ n. Upon introducing the
transformed time

τi(t, ω) =
∫ t

0
κσ;i

(
Φσ + V (s, ω), ψtw

)
ds, (3.4.6)

the bound (3.4.5) allows us to conclude that t 7→ τi(t) is a continuous strictly increasing
(Ft)-adapted process that satisfies

t ≤ τi(t) ≤ Kκt (3.4.7)

for 0 ≤ t ≤ T . In particular, we can define a map

ti : [0, T ]× Ω→ [0, T ] (3.4.8)

for which
τi(ti(τ, ω), ω) = τ. (3.4.9)

This in turn allows us to introduce the time-transformed map

V i : [0, T ]× Ω→ L2 (3.4.10)

that acts as
Vi(τ, ω) = V

(
ti(τ, ω), ω

)
. (3.4.11)

Upon introducing

Rσ;i(v) = κσ;i(Φσ + v, ψtw)−1Rσ(v)− Ltwv (3.4.12)

together with
Sσ;i(v) = κσ;i(Φσ + v, ψtw)−1/2Sσ(v), (3.4.13)

it is possible to follow Proposition 2.6.3 to show that V i is a weak solution of

dV i =
[
LtwV i +Rσ;i(V i)

]
dτ + σSσ;i(V i)dβτ ;i (3.4.14)

for every 1 ≤ i ≤ n, in which (βτ ;i)τ≥0 denotes the time-transformed Brownian motion
that is now adapted to an appropriately transformed filtration (Fτ ;i)τ≥0; see Lemma
2.6.2.

The nonlinearity Rσ;i is less well-behaved than its counterpart from Proposition
2.6.3 since it still contains second order derivatives. In order to isolate these terms, we
pick any v ∈ H1 and introduce the diagonal matrix

φσ;i(v) =
[
κσ;i(Φσ + v, ψtw)

]−1
κσ(Φσ + v, ψtw)− I (3.4.15)

together with the function

Υσ;i(v) = ρφσ;i(v)∂ξv. (3.4.16)
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We note that ∂ξΥσ;i can be considered as the error caused by allowing unequal
diffusion coefficients in our main structural assumption (HDt). Indeed, upon defining
our final nonlinearity implicitly by imposing the splitting

Rσ;i(v) =Wσ;i(v) + ∂ξΥσ;i(v), (3.4.17)

our first main result states that Wσ;i is well-behaved in the sense that it admits bounds
that are similar to those derived for the full nonlinearity R in Chapter 2. Indeed, it
depends at most quadratically on ‖v‖H1 but not on ‖v‖H2 . Note furthermore that Φσ
was constructed in such a way that R(0) = 0.

Proposition 3.4.1. Assume that (HDt), (HSt) and (HTw) all hold and fix 1 ≤ i ≤ n.
Then there exist constants K > 0 and δv > 0 so that for any 0 ≤ σ ≤ δσ and any
v ∈ H1, the following properties hold true.

(i) We have the bound

‖Wσ;i(v)‖L2 ≤ Kσ2‖v‖H1 +K‖v‖2H1

[
1 + ‖v‖2L2 + σ2‖v‖3L2

]
, (3.4.18)

together with
‖Υσ;i(v)‖L2 ≤ Kσ2‖v‖H1 . (3.4.19)

(ii) We have the estimate

‖Sσ;i(v)‖L2 ≤ K
[
1 + ‖v‖H1

]
. (3.4.20)

(iii) If ‖v‖L2 ≤ δv, then we have the identities

〈Rσ;i(v), ψtw〉L2 = 〈Sσ;i(v), ψtw〉L2 = 0. (3.4.21)

The second main result of this section formulates a mild representation for solutions
to (3.4.14). Items (i)-(iv) are included for completeness and are analogous to the
results in Proposition 2.6.3. However, item (v) is specific to our situation because of
the presence of the error term Υσ;i. Indeed, we shall need to exploit the techniques
developed in §3.3 to transfer the troublesome ∂ξ present in (3.4.17) from the Υσ;i term
to the semigroup. Nevertheless, the integral involving ∂ξS is integrable in H−1 but not
necessarily in L2.

Proposition 3.4.2. Assume that (HDt), (HSt), (HTw) are all satisfied. Then the map

V i : [0, T ]× Ω→ L2 (3.4.22)

defined by the transformations (3.4.1) and (3.4.11) satisfies the following properties.

(i) For almost all ω ∈ Ω, the map τ 7→ Vi(τ ;ω) is of class C
(
[0, T ];L2).

(ii) For all τ ∈ [0, T ], the map ω 7→ Vi(τ, ω) is (Fτ ;i)-measurable.
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(iii) We have the inclusion

Vi ∈ N 2([0, T ]; (F)τ ;i;H1), (3.4.23)

together with
Sσ;i(Vi) ∈ N 2([0, T ]; (F)τ ;i;L2). (3.4.24)

(iv) For almost all ω ∈ Ω, we have the inclusion

Wσ;i
(
V i(·, ω)

)
∈ L1([0, T ];L2) (3.4.25)

together with

Υσ;i
(
V i(·, ω)

)
∈ L1([0, T ];L2). (3.4.26)

(v) For almost all ω ∈ Ω, the identity

Vi(τ) =S(τ)Vi(0)

+
∫ τ

0
S(τ − τ ′)Wσ;i

(
V i(τ ′)

)
dτ ′ + σ

∫ τ

0
S(τ − τ ′)Sσ;i

(
V i(τ ′)

)
dβτ ′;i

+
∫ τ

0
∂ξS(τ − τ ′)QΥσ;i

(
V i(τ ′)

)
dτ ′ +

∫ τ

0
Λ(τ − τ ′)Υσ;i

(
V i(τ ′)

)
dτ ′

+
∫ τ

0
S(τ − τ ′)PξΥσ;i

(
V i(τ ′)

)
dτ ′

(3.4.27)

holds for all τ ∈ [0, T ].

3.4.1 Bounds on nonlinearities
In this section we set out to prove Proposition 3.4.1. In order to be able to write the
nonlinearities in a compact fashion, we introduce the expression

Jσ(u) = κσ(u, ψtw)−1
[
f(u) + cσ∂ξu+ σ2b(u, ψtw)∂ξ[g(u)]

]
(3.4.28)

for any u ∈ UH1 . This allows us to define

Qσ(v) = Jσ(Φσ + v)− Jσ(Φσ) + [ρ∂ξξ − Ltw]v (3.4.29)

for any v ∈ H1, which is the residual upon linearizing Jσ(Φσ + V ) around Φσ, up to
O(σ2) corrections. Indeed, we can borrow the following bound from Chapter 2.

Corollary 3.4.3. Consider the setting of Proposition 3.4.1. There exists K > 0 so
that for any 0 ≤ σ ≤ δσ and any v ∈ H1 we have the estimate

‖Qσ(v)‖L2 ≤ K
[
σ2 + ‖v‖L2

]
‖v‖H1

+K
[
1 + (1 + σ2)‖v‖L2 + σ2‖v‖2L2

]
‖v‖2H1 ,

(3.4.30)
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together with

|〈Qσ(v), ψtw〉L2 | ≤ K
[
1 + ‖v‖H1

]
‖v‖L2‖v‖L2

+K
[
σ2 + ‖v‖L2

]
‖v‖L2

+Kσ2‖v‖H1‖v‖2L2‖v‖L2

+Kσ2‖v‖2L2‖v‖H1 .

(3.4.31)

Proof. Recalling the function M that was defined in equation (2.7.2), we observe that

Qσ(v) =Mσ;Φσ,cσ (v, 0)−Mσ;Φσ,cσ (0, 0). (3.4.32)

In particular, the desired bounds follow directly from Corollary 2.7.5.

We now introduce the function

Wσ;I,i(v) =Qσ(v) + φσ;i(v)
[
Jσ(Φσ + v)− Jσ(Φσ)

]
(3.4.33)

together with the notation

Iσ;I,i(v) =
[
χlow

(
〈∂ξ[Φσ + v], ψtw〉L2

)]−1
〈Wσ;I,i(v), ψtw〉L2

−
[
χlow

(
〈∂ξ[Φσ + v], ψtw〉L2

)]−1
〈Υσ;i(v), ∂ξψtw〉L2 .

(3.4.34)

The following result shows that these two expressions allow us to split off the aσ-
contribution to Rσ;i that is visible in (3.4.2).

Lemma 3.4.4. Consider the setting of Proposition 3.4.1. Then for any 0 ≤ σ ≤ δσ
and v ∈ H1, we have the inclusion Wσ;i(v) ∈ L2 together with the identity

Wσ;i(v) =Wσ;I,i(v)− Iσ;I,i(v)[Φ′σ + v′]. (3.4.35)

Proof. For any u ∈ UH2 , the definition (3.2.18) implies that

aσ(u, cσ, ψtw) = −
[
χlow

(
〈∂ξu, ψtw〉L2

)]−1
〈κσ(u, ψtw)

[
ρ∂ξξu+Jσ(u)

]
, ψtw〉L2 . (3.4.36)

The implicit definition aσ(Φσ, cσ, ψtw) = 0 hence yields

Jσ(Φσ) = −ρφ′′σ. (3.4.37)

For any v ∈ H2, this allows us to compute

Qσ(v) = Jσ(Φσ + v) + ρ[Φ′′σ + v′′]− Ltwv, (3.4.38)

which gives

Wσ;I,i(v) + ∂ξΥσ;i(v) = [κσ;i(Φσ + v, ψtw)]−1κσ(Φσ + v, ψtw)
[
ρ[Φ′′σ + v′′]

]
+Jσ(Φσ + v)− Ltwv.

(3.4.39)
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Using the fact that L∗twψtw = 0, we now readily verify that for v ∈ H2 we have

Iσ;I,i(v) = [κσ;i(Φσ + v, ψtw)]−1aσ(Φσ + v, ψtw). (3.4.40)

The result hence follows by rewriting the definition (3.4.2) in the form

Rσ(v) = κσ(Φσ + v, ψtw)
[
ρ∂ξξ[Φσ + v] + Jσ(Φσ + v)

]
+aσ(Φσ + v, cσ, ψtw)[Φ′σ + v′]

(3.4.41)

and substituting this into the definition (3.4.12) of Rσ;i.

In order to obtain the estimates in Proposition 3.4.1 it hence suffices to obtain
bounds for φσ;i, Wσ;I,i and Iσ;I,i. This can be done in a direct fashion.

Lemma 3.4.5. Assume that (HDt) and (HSt) are satisfied. Then there exists a constant
Kφ > 0 so that

|φσ;i(v)| ≤ σ2Kφ (3.4.42)

holds for any v ∈ L2 and 0 ≤ σ ≤ δσ.

Proof. For any x, y ≥ 0 we have the inequality∣∣∣∣∣1 + 1
2ρj x

1 + 1
2ρix

−
1 + 1

2ρi y

1 + 1
2ρi y

∣∣∣∣∣ = 1
4ρiρj

|x− y|
(1 + 1

2ρix)(1 + 1
2ρi y)

≤ 1
4ρiρj

|x− y|. (3.4.43)

Applying these bounds with y = 0, we obtain

|φjσ;i(v)| ≤ σ2

4ρiρj
|b(Φσ + v)|2 ≤ σ2

4ρ2
min

K2
b , (3.4.44)

where the last bound on b follows from Lemma 2.3.6. The result now readily follows.

Lemma 3.4.6. Consider the setting of Proposition 3.4.1. Then there exists K > 0 so
that for any v ∈ H1 and 0 ≤ σ ≤ δσ we have the bound

‖Wσ;I,i(v)‖L2 ≤ Kσ2‖v‖H1 +K‖v‖2H1

[
1 + ‖v‖L2 + σ2‖v‖2L2

]
, (3.4.45)

together with

|Iσ;I,i(v)| ≤ K‖v‖L2
[
σ2 + ‖v‖L2

]
+K‖v‖H1

[
‖v‖2L2 + σ2‖v‖3L2

]
. (3.4.46)

Proof. Note first that we can write Wσ;I,i(v) as

Wσ;I,i(v) =Qσ(v) + φσ;i(v)
[
Qσ(v) + (Ltw − ρ∂ξξ)v

]
(3.4.47)

and hence

‖Wσ;I,i(v)‖L2 ≤‖Qσ(v)‖L2 + |φσ;i(v)|
[
‖Qσ(v)‖L2 + ‖(Ltw − ρ∂ξξ)v‖L2

]
. (3.4.48)
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The definition of Ltw implies that there exists C1 > 0 for which

‖[Ltw − ρ∂ξξ]v‖L2 ≤ C1‖v‖H1 (3.4.49)

holds. The desired bound hence follows from Corollary 3.4.3 and Lemma 3.4.5.
Turning to the second estimate, we note that there is a positive constant C2 for

which we have

|Iσ;I,i(v)| ≤ C2
[
‖Wσ;I,i(v)‖L2 + ‖Υσ;i(v)‖L2

]
. (3.4.50)

We can hence again apply Corollary 3.4.3 and Lemma 3.4.5, which yields expressions
that can all be absorbed into (3.4.46).

Proof of Proposition 3.4.1. To obtain (3.4.18), we use (3.4.35) together with Lemma
3.4.6 to compute

‖Wσ;i(v)‖L2 ≤ ‖Wσ;i‖L2 + C1 |Iσ;I,i(v)|
[
1 + ‖v‖H1

]
≤ C2σ

2‖v‖H1 + C2‖v‖2H1

[
1 + ‖v‖L2 + σ2‖v‖2L2

]
+C2‖v‖L2

[
σ2 + ‖v‖L2

][
1 + ‖v‖H1

]
+C2‖v‖H1

[
‖v‖2L2 + σ2‖v‖3L2

][
1 + ‖v‖H1

] (3.4.51)

for some constants C1 > 0 and C2 > 0. These terms can all be absorbed into (3.4.18).
The bound (3.4.19) follows from Lemma 3.4.5 and (HDt), while (ii) and (iii) follow
directly from Proposition 2.8.1.

3.4.2 Mild formulation
In this section we establish Proposition 3.4.2. We note that items (i)-(iv) follow directly
from Propositions 2.5.1 and 2.6.3, so we focus here on the integral identity (3.4.27).
We first obtain this identity in a weak sense, bypassing the need to interpret the term
involving Υσ;i in a special fashion. We note that S∗(t) is the adjoint operator of S(t),
which coincides with the semigroup generated by L∗tw.

Lemma 3.4.7. Consider the setting of Proposition 3.4.2 and pick any η ∈ H3. Then
for almost all ω ∈ Ω the identity

〈V i(τ), η〉L2 =〈S(τ)V i(0) +
∫ τ

0
S(τ − τ ′)Wσ;i

(
V i(τ ′)

)
dτ ′

+ σ

∫ τ

0
S(τ − τ ′)Sσ;i

(
V i(τ ′)

)
dβτ ′;i, η〉L2

+
∫ τ

0
〈∂ξΥσ;i

(
V i(τ ′)

)
, S∗(τ − τ ′)η〉H−1;H1 dτ ′

(3.4.52)

holds for any τ ∈ [0, T ].
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Proof. Pick any τ ∈ [0, T ]. Since Vi ∈ N 2([0, T ]; (F t);H1) is a weak solution to (3.4.14),
the identity

V i(τ) = V i(0) +
∫ τ

0

[
LtwV i(τ ′) +Rσ;i

(
V i(τ ′)

)]
dτ ′

+σ
∫ τ

0
Sσ;i

(
V i(τ ′)

)
dβτ ′;i

(3.4.53)

holds in H−1; see Proposition 2.6.3. We note that these integrals are well defined by
items (i)-(iv) of Proposition 3.4.2.

Following the proof of [67, Prop. 2.10], we pick η ∈ H3 and define the function

ζ(τ ′) = S∗(τ − τ ′)η (3.4.54)

on the interval [0, τ ]. Noting that ζ ∈ C1([0, τ ], H1), we may define the functional
φ : [0, τ ]×H−1 → R that acts as

φ(τ ′, v) = 〈v, ζ(τ ′)〉H−1;H1 , (3.4.55)

which is C1-smooth in the first variable and linear in the second variable. Applying a
standard Itô formula such as [27, Thm. 1] (with S = I) yields

φ
(
τ, V i(τ)

)
= φ

(
0, V i(0)

)
+
∫ τ

0
〈V i(τ ′), ζ ′(τ ′)〉H−1;H1 dτ ′

+
∫ τ

0
〈LtwV i(τ ′), ζ(τ ′)〉H−1;H1 dτ ′

+
∫ τ

0
〈Rσ;i

(
V i(τ ′)

)
, ζ(τ ′)〉H−1;H1 dτ ′

+σ
∫ τ

0
〈Sσ;i

(
V i(τ ′)

)
, ζ(τ ′)〉L2 dβτ ′;i.

(3.4.56)

Since ζ ′(t) = −L∗twζ(t), the second line in the expression above disappears. Using the
identities

φ
(
τ, V i(τ)

)
= 〈V i(τ), η〉L2 ,

φ
(
0, V i(0)

)
= 〈V i(0), S∗(τ)η〉L2

= 〈S(τ)V i(0), η〉L2

(3.4.57)

we hence obtain
〈V i(τ), η〉L2 = 〈S(τ)V i(0), η〉L2

+
∫ τ

0
〈S(τ − τ ′)Wσ;i(V i(τ ′)

)
dτ ′, η〉L2 dτ ′

+
∫ τ

0
〈∂ξΥσ;i

(
V i(τ ′)

)
, S∗(t− s)η〉H−1;H1 dτ ′

+σ
∫ τ

0
〈S(τ − τ ′)Sσ;i

(
V i(τ ′)

)
, η〉L2 dβτ ′;i,

(3.4.58)

as desired.
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Lemma 3.4.8. Pick v ∈ L2 together with η ∈ H1 and t > 0. Then we have the identity

〈∂ξv, S∗(t)η〉H−1;H1 = 〈∂ξS(t)Qv + Λ(t)v + S(t)Pξv, η〉L2 . (3.4.59)

Proof. For v ∈ H1, this identity follows directly from (3.3.8). For fixed η and t > 0,
both both sides of (3.4.59) can be interpreted as bounded linear functions on L2 by
Proposition 3.3.2. In particular, the result can be obtained by approximating v ∈ L2

by H1-functions.

Proof of Proposition 3.4.2. As mentioned above, items (i)-(iv) follow directly from
Propositions 2.5.1 and 2.6.3. Item (v) follows from Lemmas 3.4.7 and 3.4.8, using
the density of H3 in H1 and the fact that H−1 is separable.

3.5 Nonlinear stability of mild solutions
In this section we prove Theorem 3.2.1, which provides an orbital stability result for
the stochastic wave (Φσ, cσ). In particular, for any ε > 0, T > 0 and η > 0 we recall
the notation

Nε(t) = ‖V (t)‖2L2 +
∫ t

0
e−ε(t−s)‖V (s)‖2H1ds (3.5.1)

and introduce the (Ft)-stopping time

tst(T, ε, η) = inf
{

0 ≤ t < T : Nε(t) > η
}
, (3.5.2)

writing tst(T, ε, η) = T if the set is empty. We derive a number of technical regularity
estimates in §3.5.1 that allows us to exploit the integral identity (3.4.27) to bound the
expectation of sup0≤t≤tst(T,ε,η)Nε(t) in terms of itself, the noise-strength σ and the size
of the initial condition V (0). This leads to the following bound for this expectation.

Proposition 3.5.1. Assume that (HDt), (HSt) and (HTw) are satisfied. Pick a con-
stant 0 < ε < β, together with two sufficiently small constants δη > 0 and δσ > 0.
Then there exists a constant K > 0 so that for any T > 0, any 0 < η ≤ δη and any
0 ≤ σ ≤ δσT−1/2 we have the bound

E[ sup
0≤t≤tst(T,ε,η)

Nε(t)] ≤ K
[
‖V (0)‖2H1 + σ2T

]
. (3.5.3)

Exploiting the technique used in Stannat [105], this bound can be turned into an
estimate concerning the probability

pε(T, η) = P
(

sup
0≤t≤T

[
Nε(t)

]
> η

)
. (3.5.4)

This allows our main stability result to be established in a straightforward fashion.
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Proof of Theorem 3.2.1. Upon computing

ηpε(T, η) = ηP
(
tst(T, ε, η) < T

)
= E

[
1tst(T,ε,η)<TNε

(
tst(T, ε, η)

)]
≤ E[Nε

(
tst(T, ε, η)

)
]

≤ E[ sup
0≤t≤tst(T,ε,η)

Nε(t)],

(3.5.5)

the result follows from Proposition 3.5.3.

3.5.1 Setup

In this subsection we establish Proposition 3.5.1 by estimating each of the terms fea-
turing in (3.4.27). In contrast to the situation in Chapter 2 we cannot estimate Nε(t)
directly because the integral involving ∂ξS(t− s) applied to Υσ;i

(
V i(s)

)
presents short-

time regularity issues. Instead, we will obtain separate estimates for each of the com-
ponents N i

ε(t), which are given by

N i
ε(t) = ‖V i(t)‖2L2 +

∫ t

0
e−ε(t−s)‖V i(s)‖2H1 ds. (3.5.6)

Indeed, the definitions (3.4.15) and (3.4.16) imply that the i-th component of Υσ;i
vanishes, which allows us to replace the problematic ∂ξS(t−s) term with its off-diagonal
components ∂ξSod(t − s). More precisely, for τ ′ ≥ τ − 1 when computing short time
bounds, we will use

[
∂ξS(τ − τ ′)QΥσ;i

(
V i(τ ′)

)]i
=
[
∂ξS(τ − τ ′)(I − P )Υσ;i

(
V i(τ ′)

)]i
=
[
∂ξSod(τ − τ ′)Υσ;i

(
V i(τ ′)

)
− ∂ξS(τ − τ ′)PΥσ;i

(
V i(τ ′)

)]i
.

(3.5.7)

This will allow us to bound N i
ε(t) in terms of Nε(t).

In order to streamline our computations, we now introduce some notation that will
help us to stay as close as possible to the framework developed in Chapter 2. First of
all, we impose the splittings

Nε,I(t) = ‖V (t)‖2L2 ,

Nε,II(t) =
∫ t

0
e−ε(t−s)‖V (s)‖2H1 ds,

(3.5.8)
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together with
N i
ε;I(t) = ‖V i(t)‖2L2

= ‖V ii
(
τi(t)

)
‖2L2 ,

N i
ε;II(t) =

∫ t

0
e−ε(t−s)‖V i(s)‖2H1 ds

=
∫ t

0
e−ε(t−s)‖V ii

(
τi(s)

)
‖2H1 ds.

(3.5.9)

In addition, we split Wσ;i into a linear and nonlinear part as

Wσ;i(v) = σ2Flin(v) + Fnl(v) (3.5.10)

and we isolate the constant term in Sσ;i by writing

Sσ;i(v) = Bcn +Blin(v). (3.5.11)

Proposition 3.4.1 implies that these functions satisfy the bounds

‖Flin(v)‖L2 ≤ KF;lin‖v‖H1 ,

‖Fnl(v)‖L2 ≤ KF;nl‖v‖2H1(1 + ‖v‖3L2),
‖Bcn‖L2 <∞,

‖Blin(v)‖L2 ≤ KB;lin‖v‖H1

(3.5.12)

for appropriate constants KF;lin > 0, KF;nl > 0 and KB;lin > 0. In particular, they
satisfy assumption (hFB) in Chapter 2, which gives us the opportunity to apply some
of the ideas in §2.9.

For convenience we will write from now on tst for tst(T, ε, η). In order to understand
N i
ε;I , we introduce the expression

E0(t) = S
(
τi(t)

)
QV (0), (3.5.13)

together with the long-term integrals

E lt
F ;lin(t) =

∫ τi(t)−1

0
S(τi(t)− τ)QFlin

(
V i(τ)

)
1τ<τi(tst)dτ,

E lt
F ;nl(t) =

∫ τi(t)−1

0
S(τi(t)− τ)QFnl

(
V i(τ)

)
1τ<τi(tst)dτ,

E lt
B;lin(t) =

∫ τi(t)−1

0
S(τi(t)− τ)QBlin

(
V i(τ)

)
1τ<τi(tst)dβτ ,

E lt
B;cn(t) =

∫ τi(t)−1

0
S(τi(t)− τ)QBcn1τ<τi(tst)dβτ ,

E lt
so(t) =

∫ τi(t)−1

0
[∂ξS(τi(t)− τ)Q+ Λ(τi(t)− τ)] Υσ;i

(
V i(τ)

)
1τ<τi(tst)dτ,

(3.5.14)
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the short-term integrals

Esh
F ;lin(t) =

∫ τi(t)

τi(t)−1
S(τi(t)− τ)QFlin

(
V i(τ)

)
1τ<τi(tst)dτ,

Esh
F ;nl(t) =

∫ τi(t)

τi(t)−1
S(τi(t)− τ)QFnl

(
V i(τ)

)
1τ<τi(tst)dτ,

Esh
B;lin(t) =

∫ τi(t)

τi(t)−1
S(τi(t)− τ)QBlin

(
V i(τ)

)
1τ<τi(tst)dβτ ,

Esh
B;cn(t) =

∫ τi(t)

τi(t)−1
S(τi(t)− τ)QBcn1τ<τi(tst)dβτ ,

(3.5.15)

and finally the split second order integrals

Esh
so;A(t) = −

∫ τi(t)

τi(t)−1
∂ξS(τi(t)− τ)PΥσ;i

(
V i(τ)

)
1τ<τi(tst)dτ,

Esh
so;B(t) =

∫ τi(t)

τi(t)−1
Λ(τi(t)− τ)Υσ;i

(
V i(τ)

)
1τ<τi(tst)dτ,

Esh
so;C(t) =

∫ τi(t)

τi(t)−1
∂ξSod(τi(t)− τ)Υσ;i

(
V i(τ)

)
1τ<τi(tst)dτ.

(3.5.16)

Here we use the convention that integrands are set to zero for τ < 0. Note that
integration variables in the original time are represented by s, while integration variables
in the rescaled time are denoted by τ . For η > 0 sufficiently small, our stopping time
ensures that the identities (3.4.21) hold. This implies that we may assume

PξΥσ;i
(
V i(τ)

)
+ PWσ;i

(
V i(τ)

)
= 0. (3.5.17)

This explains why there is a Q in the first two lines of (3.5.14), as their P -counterparts
are canceled against the S(τi(t)− τ)Pξ term that is present in (3.4.27) but absent from
(3.5.14).

For convenience, we also write

EF ;#(t) = E lt
F ;#(t) + Esh

F ;#(t) (3.5.18)

for # ∈ {lin,nl}, together with

EB;#(t) = E lt
B;#(t) + Esh

B;#(t) (3.5.19)

for # ∈ {lin, cn} and finally

Esh
so (t) = Esh

so;A(t) + Esh
so;B(t) + Esh

so;C(t) (3.5.20)

for the short-term second order terms.
Turning to the terms that are relevant for evaluating N i

ε;II , we introduce the expres-
sion

Iε,δ;0(t) =
∫ t

0
e−ε(t−s)‖S(δ)E0(s)‖2H1 ds, (3.5.21)
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together with

I#
ε,δ;F ;lin(t) =

∫ t

0
e−ε(t−s)‖S(δ)E#

F ;lin(s)‖2H1 ds,

I#
ε,δ;F ;nl(t) =

∫ t

0
e−ε(t−s)‖S(δ)E#

F ;nl(s)‖
2
H1 ds,

I#
ε,δ;B;lin(t) =

∫ t

0
e−ε(t−s)‖S(δ)E#

B;lin(s)‖2H1 ds,

I#
ε,δ;B;cn(t) =

∫ t

0
e−ε(t−s)‖S(δ)E#

B;cn(s)‖2H1 ds,

I#
ε,δ;so(t) =

∫ t

0
e−ε(t−s)‖S(δ)E#

so(s)‖2H1 ds

(3.5.22)

for # ∈ {lt, sh}. The extra S(δ) factor will be used to ensure that all the integrals
we encounter are well-defined. We emphasize that all our estimates are uniform in
0 < δ < 1, allowing us to take δ ↓ 0. The estimates concerning Ish

ε,δ;F ;nl and Ish
ε,δ;B;lin in

Lemmas 3.5.5 and 3.5.11 are particularly delicate in this respect, as a direct application
of the bounds in Lemma 3.3.1 would result in expressions that diverge as δ ↓ 0.

The main difference between the approach here and the computations in §2.9 is that
we need to keep track of several time transforms simultaneously, which forces us to use
the original time t in the definitions (3.5.8)-(3.5.9). The following result plays a key role
in this respect, as it shows that decay rates in the τ -variable are stronger than decay
rates in the original time.

Lemma 3.5.2. Assume that (HDt), (HSt) and (HTw) are satisfied and pick 0 ≤ σ ≤ δσ.
Then for any pair t > s ≥ 0 we have the inequality

τi(t)− τi(s) ≥ t− s, (3.5.23)

while for any s ≥ ti(1) we have

ti(τi(s)− 1) ≥ s− 1. (3.5.24)

Proof. The first inequality can be verified by using (3.4.5) to compute

τi(t)− τi(s) =
∫ t

s

κσ;i(Φσ + V (s′), ψtw)ds′

≥ (t− s) min
s≤s′≤t

κσ;i(Φσ + V (s′), ψtw)

≥ t− s.

(3.5.25)

To obtain the second inequality, we write s̃ = ti(1) ≤ 1 and compute

τi(s)− 1 = τi(s)− τi(s̃) ≥ s− s̃ ≥ s− 1. (3.5.26)

We now set out to bound all the terms appearing in N i
ε(t). Following Chapter 2,

we first study the deterministic integrals and afterwards use H∞-calculus to bound the
stochastic integrals.
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3.5.2 Deterministic Regularity Estimates
First, we collect some results from §2.9.2 that are easily adapted to the present situation.

Lemma 3.5.3. Fix T > 0, assume that (HDt), (HSt) and (HTw) all hold and pick a
constant 0 < ε < β. Then for any η > 0, any 0 ≤ δ < 1 and any 0 ≤ t ≤ tst, we have
the bounds

‖E0(t)‖2L2 ≤ M2e−2βt‖V (0)‖2L2 ,

‖EF ;lin(t)‖2L2 ≤ K2
κK

2
F ;lin

M2

2β − εNε;II(t),

‖EF ;nl(t)‖2L2 ≤ ηK2
κK

2
F ;nlM

2(1 + η3)2Nε;II(t),

(3.5.27)

together with

Iε,δ;0(t) ≤ M2

2β − εe
−εt‖V (0)‖2H1 ,

I lt
ε,δ;F ;lin(t) ≤ K2

κK
2
F ;lin

M2

2(β − ε)εNε;II(t),

Ish
ε,δ;F ;lin(t) ≤ 4eεM2KκK

2
F ;linNε;II(t),

I lt
ε,δ;F ;nl(t) ≤ ηK2

κK
2
F ;nl(1 + η3)2 M2

β − ε
Nε;II(t).

(3.5.28)

Proof. Observe first that

‖EF ;lin(t)‖2L2 ≤ K2
F ;linM

2

(∫ τi(t)

0
e−β(τi(t)−τ)‖V i(τ)‖H1 dτ

)2

. (3.5.29)

Substituting s = ti(τ) we find

‖EF ;lin(t)‖2L2 ≤ K2
F ;linM

2
(∫ t

0
e−(β− ε2 )(τi(t)−τi(s))e−

ε
2 (τi(t)−τi(s))‖V (s)‖H1τ ′i(s) ds

)2

.

(3.5.30)
Applying (3.5.23) and using (3.4.5) to bound the extra integration factor τ ′i(s) by Kκ,
we obtain

‖EF ;lin(t)‖2L2 ≤ K2
κK

2
F ;linM

2
(∫ t

0
e−(β− ε2 )(t−s)e−

ε
2 (t−s)‖V (s)‖H1 ds

)2

. (3.5.31)

Cauchy-Schwarz now yields the desired bound

‖EF ;lin(t)‖2L2 ≤ K2
κK

2
F ;lin

M2

2β − ε

∫ t

0
e−ε(t−s)‖V (s)‖2H1 ds

= K2
κK

2
F ;lin

M2

2β − εNε;II(t).
(3.5.32)

The remaining estimates follow in an analogous fashion by making similar small adjust-
ments to the proofs of Lemmas 2.9.9-2.9.11.
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Our next result discusses the novel second order terms. The crucial ingredient here
is that we no longer have to consider the dangerous ∂ξS(ti(τ) − τ)QΥσ;i

(
V (τ)

)
term

for τ ≥ ti(τ) − 1. Indeed, this term need not be integrable even in L2 because of the
divergent (τi(t)−τ)−1/2 behavior of ∂ξS and the fact that we only have square-integrable
control of the H1-norm of V i(τ).

Lemma 3.5.4. Fix T > 0 and assume that (HDt), (HSt) and (HTw) all hold. Pick a
constant 0 < ε < 2β. Then for any 0 ≤ δ < 1 and any 0 ≤ t ≤ tst, we have the bounds

‖Esh
so (t)‖2L2 ≤ 9σ4e2βK2KκM

2Nε;II(t),

‖E lt
so(t)‖2L2 ≤ 4σ4K2Kκ

M2

2β − εNε;II(t),
(3.5.33)

together with
Ish
ε,δ;so(t) ≤ 9σ4e2βK2KκM

2Nε;II(t)

I lt
ε,δ;so(t) ≤ 4σ4K2Kκ

M2

2(β − ε)εNε;II(t).
(3.5.34)

Proof. For τ ≥ τi(t) − 1 we may use Lemma 3.3.1 together with Proposition 3.4.1 to
obtain the estimate

‖∂ξS(τi(t)− τ)PΥσ;i
(
V i(τ)

)
‖H1 ≤ σ2KM‖V i(τ)‖H1

≤ eβσ2KMe−β(τi(t)−τ)‖V i(τ)‖H1 .
(3.5.35)

In the same fashion we obtain

‖Λ(τi(t)− τ)Υσ;i
(
V i(τ)

)
‖H1 ≤ eβσ2KMe−β(τi(t)−τ)‖V i(τ)‖H1 ,

‖∂ξSod(τi(t)− τ)Υσ;i
(
V i(τ)

)
‖H1 ≤ eβσ2KMe−β(τi(t)−τ)‖V i(τ)‖H1 .

(3.5.36)

In addition, for τ ≤ τi(t)− 1 we obtain

‖
[
∂ξS(τi(t)− τ)Q+ Λ(τi(t)− τ)

]
Υσ;i

(
V i(τ)

)
‖H1 ≤ 2KMσ2‖V i(τ)‖H1e−β(τi(t)−τ).

(3.5.37)
The desired estimates can hence be obtained in the same fashion as the bounds for
EF ;lin(t) and I lt

ε,δ;F ;lin(t) in Lemma 3.5.3 .

The following results at times do require the computations in Chapter 2 to be
modified in a subtle non-trivial fashion. We therefore provide full proofs here, noting
however that the main ideas remain unchanged.

Lemma 3.5.5. Fix T > 0 and assume that (HDt), (HSt) and (HTw) all hold. Pick a
constant ε > 0. Then for any η > 0, any 0 ≤ δ < 1 and any 0 ≤ t ≤ tst, we have the
bound

Ish
ε,δ;F,nl(t) ≤ ηM2e3εK2

κK
2
F ;nl(1 + η3)2(1 + ρ−1

min)(3Kκ + 2)Nε;II(t). (3.5.38)
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Proof. We first introduce the inner product

〈v, w〉H1
ρ

= 〈v, w〉L2 + 〈√ρ∂ξv,
√
ρ∂ξw〉L2 (3.5.39)

and note that

‖v‖2H1 ≤ ‖v‖2L2 + ρ−1
min‖
√
ρ∂ξv‖2L2 ≤

(
1 + ρ−1

min
)
〈v, v〉H1

ρ
. (3.5.40)

For # ∈ {L2, H1
ρ} we introduce the expression

Eτ,τ ′,τ ′′;# =
〈
S(τ + δ − τ ′)QFnl

(
V i(τ ′)

)
, S(τ + δ − τ ′′)QFnl

(
V i(τ ′′)

)〉
#
, (3.5.41)

which allows us to obtain the estimate

Ish
ε,δ;F,nl(t) ≤

(
1 + ρ−1

min
) ∫ t

0
eε(t−s)

∫ τi(s)

τi(s)−1

∫ τi(s)

τi(s)−1
Eτi(s),τ ′,τ ′′;H1

ρ
dτ ′′dτ ′ds

≤
(
1 + ρ−1

min
) ∫ t

0
eε(t−s)

[
t′i
(
τi(s)

)]−1
∫ τi(s)

τi(s)−1

∫ τi(s)

τi(s)−1
Eτi(s),τ ′,τ ′′;H1

ρ
dτ ′′dτ ′ds.

(3.5.42)

The extra term involving the function t′i, which takes values in [K−1
κ , 1], was included

for technical reasons that will become clear in what follows.
For any v, w ∈ L2, ϑ > 0, ϑA ≥ −ϑ and ϑB ≥ ϑ, we have

d

dϑ
〈S(ϑ+ ϑA)v, S(ϑ+ ϑB)w〉L2 = 〈LtwS(ϑ+ ϑA)v, S(ϑ+ ϑB)w〉L2

+〈S(ϑ+ ϑA)v,LtwS(ϑ+ ϑB)w〉L2

= 〈S(ϑ+ ϑA)v,L∗twS(ϑ+ ϑB)w〉L2

+〈S(ϑ+ ϑA)v,LtwS(ϑ+ ϑB)w〉L2

= 〈S(ϑ+ ϑA)v,
[
L∗tw − ρ∂ξξ

]
S(ϑ+ ϑB)w〉L2

+〈S(ϑ+ ϑA)v,
[
Ltw − ρ∂ξξ

]
S(ϑ+ ϑB)w〉L2

−2〈√ρ∂ξS(ϑ+ ϑA)v,√ρ∂ξS(ϑ+ ϑB)w〉L2 .
(3.5.43)

Upon taking δ > 0 for the moment and choosing v = QFnl
(
V i(τ ′)

)
, w = QFnl(V i(τ ′′)),

ϑ = τi(s) + δ, ϑA = −τ ′ and ϑB = −τ ′′, we may rearrange (3.5.43) to obtain the
estimate

Eτi(s),τ ′,τ ′′;H1
ρ
≤ M2K2

F ;nl(1 + η3)2‖V i(τ ′)‖2H1
ρ
‖V i(τ ′′)‖2H1

+M2K2
F ;nl(1 + η3)2 1√

τi(s) + δ − τ ′′
‖V i(τ ′)‖2H1‖V i(τ ′′)‖2H1

−1
2∂1Eτi(s),τ ′,τ ′′;L2

(3.5.44)
for the values of (s, τ ′, τ ′′) that are relevant.
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Upon introducing the integrals

II =
∫ t

0
e−ε(t−s)

[
t′i
(
τi(s)

)]−1
∫ τi(s)

τi(s)−1

∫ τi(s)

τi(s)−1[
1 + 1√

τi(s) + δ − τ ′′
]‖V i(τ ′)‖2H1‖V i(τ ′′)‖2H1 dτ ′′ dτ ′ ds,

III =
∫ t

0
e−ε(t−s)

[
t′i
(
τi(s)

)]−1
∫ τi(s)

τi(s)−1

∫ τi(s)

τi(s)−1
∂1Eτi(s),τ ′,τ ′′;L2 dτ ′′ dτ ′ ds,

(3.5.45)
we hence readily obtain the estimate

Ish
ε,δ;B;nl(t) ≤ (1 + ρ−1

min)M2K2
F ;nl(1 + η3)2II −

1
2(1 + ρ−1

min)III . (3.5.46)

Using Lemma 3.5.2 we see that

II ≤ K3
κ

∫ t

0
e−ε(t−s)

∫ s

s−1

∫ s

s−1

[
1 + 1√

s+ δ − s′′
]‖V (s′)‖2H1‖V (s′′)‖2H1 ds′′ ds′ ds,

(3.5.47)
which allows us to repeat the computation (2.9.68) and conclude

II ≤ 3ηe3εK3
κNε;II(t). (3.5.48)

To understand III it is essential to change the order of integration and integrate
with respect to s before switching τ ′ and τ ′′ back to the original time. Rearranging the
integrals in (3.5.45), we find

III =
∫ τi(t)

0
e−εt

∫ min{τi(t),τ ′+1}

max{0,τ ′−1}

∫ τ+(τ ′,τ ′′)

τ−(τ ′,τ ′′)

eεs

t′i
(
τi(s)

)∂1Eτi(s),τ ′,τ ′′;L2 ds dτ ′′ dτ ′,

(3.5.49)
where we introduced the notation

τ+(τ ′, τ ′′) = min{τi(t), τ ′ + 1, τ ′′ + 1}, τ−(τ ′, τ ′′) = max{τ ′, τ ′′}. (3.5.50)

The substitution τ = τi(s) now yields

III =
∫ τi(t)

0
e−εt

∫ min{τi(t),τ ′+1}

max{0,τ ′−1}

[ ∫ τ+(τ ′,τ ′′)

τ−(τ ′,τ ′′)
eεti(τ)∂1Eτ,τ ′,τ ′′;L2 dτ

]
dτ ′′ dτ ′.

(3.5.51)
We emphasize here that the integration factor associated to this substitution cancels
out against the additional term introduced in (3.5.42). Integrating by parts, we find

III = III;A + III;B + III;C (3.5.52)
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in which we have introduced

III;A=
∫ τi(t)

0
e−εt

∫ min{τi(t),τ ′+1}

max{0,τ ′−1}
eεti(τ)Eτ,τ ′,τ ′′;L2

∣∣
τ=τ+(τ ′,τ ′′) dτ

′′dτ ′,

III;B =−
∫ τi(t)

0
e−εt

∫ min{τi(t),τ ′+1}

max{0,τ ′−1}
eεti(τ)Eτ,τ ′,τ ′′;L2

∣∣
τ=τ−(τ ′,τ ′′)dτ

′′dτ ′,

III;C =−
∫ τi(t)

0
e−εt

∫ min{τi(t),τ ′+1}

max{0,τ ′−1}

[∫ τ+(τ ′,τ ′′)

τ−(τ ′,τ ′′)

(
d

dτ
eεti(τ)

)
Eτ,τ ′,τ ′′;L2dτ

]
dτ ′′dτ ′.

(3.5.53)
Note here that III;B is well defined because δ > 0.

Using the substitutions

s′ = ti(τ ′), s′′ = ti(τ ′′) (3.5.54)

together with the bound

ti
(
τ−(τ ′, τ ′′)

)
≤ ti

(
τ+(τ ′, τ ′′)

)
≤ min{t, ti(τ ′ + 1), ti(τ ′′ + 1)}

≤ min{t, ti(τ ′) + 1, ti(τ ′′) + 1},

≤ min{s′, s′′}+ 1

≤ s′ + 1,

(3.5.55)

we find∫ τ+(τ ′,τ ′′)

τ−(τ ′,τ ′′)

∣∣∣∣ ddτ eεti(τ)
∣∣∣∣ dτ =

∫ τ+(τ ′,τ ′′)

τ−(τ ′,τ ′′)

d

dτ
eεti(τ)dτ = eεti(τ)∣∣τ+(τ ′,τ ′′)

τ−(τ ′,τ ′′) ≤ 2eεeεs
′
.

(3.5.56)
Applying Cauchy-Schwarz to the inner product E , we hence obtain

|III | ≤ 4eεM2K2
κK

2
F ;nl(1 + η3)2

∫ t

0
e−ε(t−s

′)‖V (s′)‖2H1J (s′) ds′, (3.5.57)

in which we have introduced the function

J (s′) =
∫ min{t,ti(τi(s′)+1)}

max{0,ti(τi(s′)−1)}
‖V (s′′)‖2H1 ds′′. (3.5.58)

Exploiting Lemma 3.5.2 again, we can bound

J (s′) ≤
∫ min{t,s′+1}

max{0,s′−1}
‖V (s′′)‖2H1 ds′′

≤
∫ min{t,s′+1}

max{0,s′−1}
e2εe−ε(min{t,s′+1}−s′′)‖V (s′′)‖2H1 ds′′

≤ e2εη,

(3.5.59)



3

130 Chapter 3 – Systems with Scalar Noise

which hence gives

|III | ≤ 4ηe3εM2K2
κK

2
F ;nl(1 + η3)2Nε;II(t), (3.5.60)

as desired. It hence remains to consider the case δ = 0. We may apply Fatou’s Lemma
to conclude

Ish
ε,0;F ;nl(t) =

∫ t

0
eε(t−s)(lim

δ→0
‖S(δ)Esh

B;lin(s)‖H1)21s<tst ds

≤ lim inf
δ→0

Ish
ε,δ;F ;nl(t).

(3.5.61)

The result now follows from the fact that the bounds obtained above do not depend on
δ.

3.5.3 Stochastic Regularity Estimates
We are now ready to discuss the stochastic integrals. These require special care because
they cannot be bounded in a pathwise fashion, unlike the deterministic integrals above.
Expectations of suprema are particularly delicate in this respect. Indeed, the powerful
Burkholder-Davis-Gundy inequalities cannot be directly applied to the stochastic con-
volutions that arise in our mild formulation. However, as was shown in Lemma 2.9.7,
we can obtain an H∞-calculus for our linear operator Ltw which allows us to use the
following mild version, which is the source of the extra T factors that appear in our
estimates.
Lemma 3.5.6. Fix T > 0 and assume that (HDt), (HSt) and (HTw) all hold. There
exists a constant Kcnv > 0 so that for any W ∈ N 2([0, T ]; (F)t;L2) we have

E sup
0≤t≤T

‖
∫ t

0
S(t− s)QW (s) dβs‖2L2 ≤ KcnvE

∫ T

0
‖W (s)‖2L2 ds. (3.5.62)

Proof. This is a direct result of the computations in §2.9.1, which are based on the
main theorem of [111].

Lemma 3.5.7. Fix T > 0 and assume that (HDt), (HSt), and (HTw) all hold. Then
for any ε > 0 we have the bound

E sup
0≤t≤tst

‖EB;lin(t)‖2L2 ≤ (T + 1)KcnvK
2
B;line

εE sup
0≤t≤tst

N i
ε;II(t). (3.5.63)

Proof. Using Lemma 3.5.6 we compute

E sup
0≤t≤tst

‖EB;lin(t)‖2L2 ≤ E sup
0≤t≤T

‖EB;lin(t)‖2L2

= E sup
0≤τ≤τi(T )

‖
∫ τ

0
S(τ − τ ′)QBlin

(
V i(τ ′)

)
1τ ′<τi(tst) dβτ ′‖

2
L2

≤ KcnvE

∫ τi(T )

0
‖Blin

(
V i(τ)

)
1τ<τi(tst)‖

2
L2 dτ

≤ KκKcnvK
2
B;linE

∫ tst

0
‖V (s)‖2H1 ds.

(3.5.64)
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By dividing up the integral, we obtain∫ tst

0
‖V (s)‖2H1 ds ≤ eε

∫ 1

0
e−ε(1−s)‖V (s)‖2H11s<tst ds

+eε
∫ 2

1
e−ε(2−s)‖V (s)‖2H11s<tst ds

+ . . .+ eε
∫ bTc+1

bTc
e−ε(bTc+1−s)‖V (s)‖2H11s<tst ds

≤ (T + 1)eε sup
0≤t≤T+1

∫ t

0
e−ε(t−s)‖V (s)‖2H11s<tst ds

≤ (T + 1)eε sup
0≤t≤tst

∫ t

0
e−ε(t−s)‖V (s)‖2H1 ds

= (T + 1)eε sup
0≤t≤tst

Nε;II(t),

(3.5.65)
which yields the desired bound upon taking expectations.

Lemma 3.5.8. Fix T > 0 and assume that (HDt), (HSt) and (HTw) all hold. Then
we have the bound

E sup
0≤t≤tst

‖EB;cn(t)‖2L2 ≤ TKcnvK
2
B;cn. (3.5.66)

Proof. This bound follows directly from (3.5.64) by making the substitutions

KB;lin 7→ KB;cn, ‖V (s)‖2H1 7→ 1. (3.5.67)

We now set out to bound the expectation of the suprema of the remaining double
integrals I#

ε,δ;B;lin(t) and I#
ε,δ;B;cn(t) with # ∈ {lt, sh}. This is performed in Lemma

3.5.13, but we first compute several time independent bounds for the expectation of the
integrals themselves.
Lemma 3.5.9. Fix T > 0 and assume that (HDt), (HSt) and (HTw) all hold. Pick a
constant ε > 0. Then for any 0 ≤ δ < 1 and 0 ≤ t ≤ T , we have the identities

EI lt
ε,δ;B;lin(t) =E

∫ t

0
e−ε(t−s)

∫ τi(s)−1

0
‖S(τi(s) + δ − τ ′)QBlin

(
V i(τ ′)

)
‖2H11τ ′<τi(tst)dτ

′ds,

EI lt
ε,δ;B;cn(t) =E

∫ t

0
e−ε(t−s)

∫ τi(s)−1

0
‖S(τi(s) + δ − τ ′)QBcn‖2H11τ ′<τi(tst)dτ

′ds

(3.5.68)

and their short-time counterparts

EIsh
ε,δ;B;lin(t) =E

∫ t

0
e−ε(t−s)

∫ τi(s)

τi(s)−1
‖S(τi(s) + δ − τ ′)QBlin

(
V i(τ ′)

)
‖2H11τ ′<τi(tst)dτ

′ds,

EIsh
ε,δ;B;cn(t) =E

∫ t

0
e−ε(t−s)

∫ τi(s)

τi(s)−1
‖S(τi(s) + δ − τ ′)QBcn‖2H11τ ′<τi(tst)dτ

′ds.

(3.5.69)
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Proof. This follows directly from the Itô Isometry, see also Lemma 2.9.16.

Lemma 3.5.10. Fix T > 0, assume that (HDt), (HSt) and (HTw) all hold and pick a
constant 0 < ε < 2β. Then for any 0 ≤ δ < 1 and any 0 ≤ t ≤ T , we have the bound

E I lt
ε,δ;B;lin(t) ≤ M2

2β − εKκK
2
B;linENε;II(t ∧ tst). (3.5.70)

Proof. Using (3.5.68) and switching the integration order, we obtain

E I lt
ε,δ;B;lin(t) ≤M2K2

B;linE

∫ t

0
e−ε(t−s)

∫ τi(s)∧τi(tst)

0
e−2β(τi(s)−τ ′)‖V i(τ ′)‖2H1 dτ ′ ds

≤M2KκK
2
B;linE

∫ t

0
e−ε(t−s)

∫ s∧tst

0
e−2β(s−s′)‖V (s′)‖2H1 ds′ ds

=M2KκK
2
B;linE

∫ t∧tst

0
e−εt

[ ∫ t

s′
e−(2β−ε)s ds

]
e2βs′‖V (s′)‖2H1 ds′

≤ M2

2β − εKκK
2
B;linE

∫ t∧tst

0
e−εte−(2β−ε)s′e2βs′‖V (s′)‖2H1 ds′

≤ M2

2β − εKκK
2
B;linE

∫ t∧tst

0
e−ε(t∧tst−s

′)‖V (s′)‖2H1 ds′

= M2

2β − εKκK
2
B;linENε;II(t ∧ tst).

(3.5.71)

Lemma 3.5.11. Fix T > 0 and assume that (HDt), (HSt) and (HTw), all hold. Pick
a constant ε > 0. Then for any 0 ≤ δ < 1 , and any 0 ≤ t ≤ T , we have the bound

E Ish
ε,δ;B;lin(t) ≤ KκK

2
B;linM

2(1 + ρ−1
min)eε(3Kκ + 2)ENε;II(t ∧ tst). (3.5.72)

Proof. We only consider the case δ > 0 here, noting that the limit δ ↓ 0 can be handled
as in the proof of Lemma 3.5.5. Applying the identity (3.5.43) with w = v and ϑA = ϑB ,
we obtain

d

dϑ
‖S(ϑ+ ϑA)v‖2L2 = 〈S(ϑ+ ϑA)v,

[
L∗tw − ρ∂ξξ

]
S(ϑ+ ϑA)v〉L2

+〈S(ϑ+ ϑA)v,
[
Ltw − ρ∂ξξ

]
S(ϑ+ ϑA)v〉L2

−2‖√ρ∂ξS(ϑ+ ϑA)v‖2L2 .

(3.5.73)

Recalling the inner product (3.5.39) and introducing the expression

Eτ,τ ′;# = ‖S(τ + δ − τ ′)QBlin
(
V i(τ ′)

)
‖2# (3.5.74)
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for # ∈ {L2, H1
ρ}, we obtain the bound

Eτ,τ ′;H1
ρ
≤ M2K2

B;lin‖V i(τ ′)‖2H1 +M2K2
B;lin

1√
τi(s) + δ − τ ′

‖V i(τ ′)‖2H1

−1
2∂1Eτ,τ ′;L2

(3.5.75)
for the values of (s, τ ′) that are relevant below. Upon writing

II = E

∫ t

0
e−ε(t−s)

[
t′i
(
τi(s)

)]−1
∫ τi(s)

τi(s)−1

[
1 + 1√

τi(s) + δ − τ ′
]‖V i(τ ′)‖2H11τ ′<τi(tst) dτ

′ds,

III = E

∫ t

0
e−ε(t−s)

[
t′i
(
τi(s)

)]−1
∫ τi(s)

τi(s)−1
∂1Eτi(s),τ ′;L21τ ′<τi(tst) dτ

′ds,

(3.5.76)

we obtain the estimate

E Ish
ν,δ;B;lin(t) ≤ (1 + ρ−1

min)M2K2
B;linII −

1
2(1 + ρ−1

min)III . (3.5.77)

Changing the integration order, we obtain

II =E
∫ τi(t∧tst)

0

[ ∫ min{t∧tst,ti(τ ′+1)}

ti(τ ′)

e−ε(t−s)

t′i
(
τi(s)

)[1 + 1√
τi(s) + δ − τ ′

]
ds
]
‖V i(τ ′)‖2H1dτ ′,

III =E
∫ τi(t∧tst)

0

∫ min{t∧tst,ti(τ ′+1)}

ti(τ ′)

e−ε(t−s)

t′i
(
τi(s)

)∂1Eτi(s),τ ′;L2 ds dτ ′.

(3.5.78)

The substitution s′ = ti(τ ′) together with Lemma 3.5.2 now yields

II ≤ K2
κE

∫ t∧tst

0
e−ε(t∧tst)

[ ∫ min{t∧tst,ti(τi(s′)+1)}

s′
eεs×[

1 + 1√
τi(s) + δ − τ(s′)

]
ds
]
‖V (s′)‖2H1 ds′

≤ K2
κE

∫ t∧tst

0
e−ε(t∧tst)

[ ∫ min{t∧tst,s′+1}

s′
eεs
[
1 + 1√

s+ δ − s′
]
ds
]
‖V (s′)‖2H1ds′

≤ 3eεK2
κE

∫ t∧tst

0
e−ε(t∧tst−s

′)‖V (s′)‖2H1 ds′

= 3eεK2
κENε;II(t ∧ tst).

(3.5.79)
For convenience, we introduce the notation

τ+(τ ′) = min{τi(t ∧ tst), τ ′ + 1}. (3.5.80)
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Substituting τ = τi(s) and integrating by parts, we may compute

III = E

∫ τi(t∧tst)

0
e−εt

∫ τ+(τ ′)

τ ′
eεti(τ)∂1Eτ,τ ′;L2 dτ dτ ′

= III;A + III;B + III;C ,
(3.5.81)

in which we have introduced the expressions

III;A = E

∫ τi(t∧tst)

0
e−εteεti(τ

+(τ ′))Eτ+(τ ′),τ ′;L2 dτ ′,

III;B = −E
∫ τi(t∧tst)

0
e−εteεti(τ

′)Eτ ′,τ ′;L2 dτ ′,

III;C = −E
∫ τi(t∧tst)

0
e−εt

∫ τ+(τ ′)

τ ′

(
d

dτ
eεti(τ)

)
Eτ,τ ′;L2 dτ dτ ′.

(3.5.82)

Upon computing∫ τ+(τ ′)

τ ′

∣∣∣∣ ddτ eεti(τ)
∣∣∣∣ dτ = eεti(τ)∣∣τ+(τ ′)

τ ′
≤ 2eεeεti(τ

′), (3.5.83)

we can make the substitution s′ = ti(τ ′) and obtain the final estimate

|III | ≤ 4eεKκM
2K2

B;linE

∫ t∧tst

0
e−ε(t∧tst−s

′)‖V (s′)‖2H1ds′

≤ 4eεKκM
2K2

B;linENε;II(t ∧ tst).
(3.5.84)

Lemma 3.5.12. Fix T > 0 and assume that (HDt), (HSt) and (HTw) all hold. Pick
a constant 0 < ε < β. Then for any 0 ≤ δ < 1, any (Ft)-stopping time tst and any
0 ≤ t ≤ T , we have the bounds

E I lt
ε,δ;B;cn(t) ≤ M2

(2β − ε)εK
2
B;cn,

E Ish
ε,δ;B;cn(t) ≤ 1

ε
KκK

2
B;linM

2(1 + ρ−1
min)eε(3Kκ + 2).

(3.5.85)

Proof. These results follows by repeating Lemmas 3.5.10 and 3.5.11. Since∫ t

0
e−ε(t−s) ds ≤ 1

ε
, (3.5.86)

we can obtain the bounds by making the substitution

KB;lin 7→ KB;cn, ENε;II(t ∧ tst) 7→
1
ε
. (3.5.87)
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Lemma 3.5.13. Fix T > 0 and assume that (HDt), (HSt) and (HTw) all hold. Pick
a constant 0 < ε < 2β, then for any 0 ≤ δ < 1 we have the bounds

E sup
0≤t≤tst

I lt
ε,δ;B;lin(t) ≤ eε(T + 1) M2

2β − εKκK
2
B;linE sup

0≤t≤tst
Nε;II(t),

E sup
0≤t≤tst

Ish
ε,δ;B;lin(t) ≤ eε(T + 1)K2

B;linM
2(1 + ρ−1)eε(3Kκ + 2)E sup

0≤t≤tst
Nε;II(t),

(3.5.88)
and

E sup
0≤t≤tst

I lt
ε,δ;B;cn(t) ≤ eε(T + 1) M2

(2β − ε)εKκK
2
B;cn,

E sup
0≤t≤tst

Ish
ε,δ;B;cn(t) ≤ eε(T + 1)KκK

2
B;cn

M2

ε
(1 + ρ−1)eε(3Kκ + 2).

(3.5.89)

Proof. This follows directly from Lemmas 2.9.20 and 2.9.21.

Proof of Proposition 3.5.1. Pick T > 0 and 0 < η < η0 and write tst = tst(T, ε, η).
Since the identities (3.4.21) with v = V (t∧ tst) hold for all 0 ≤ t ≤ T , we may compute

E sup
0≤t≤tst

[N i
ε;I(t)] ≤ 7E sup

0≤t≤tst

[
‖E0(t)‖2L2 + σ4‖EF ;lin(t)‖2L2 + ‖EF ;nl(t)‖2L2

+σ2‖EB;lin(t)‖2L2 + σ2‖EB;cn(t)‖2L2

+‖E lt
so(t)‖2L2 + ‖Est

so(t)‖2L2

]
(3.5.90)

by applying Young’s inequality. The inequalities in Lemmas 3.5.3-3.5.13 now imply
that

E sup
0≤t≤tst

[N i
ε;I(t)] ≤ C1

[
‖V (0)‖2H1 + (η + σ2T + σ4) sup

0≤t≤tst
Nε;II(t)

]
. (3.5.91)

In addition, we note that

E sup
0≤t≤tst

N i
ε,0;II(t) ≤ 11E sup

0≤t≤tst

[
Iε,0;0(t) + σ4I lt

ε,0;F ;lin(t) + σ4Ish
ε,0;F ;lin(t)

+I lt
ε,0;F ;nl(t) + Ish

ε,0;F ;nl(t)

+σ2I lt
ε,0;B;lin(t) + σ2Ish

ε,0;B;lin(t)

+σ2I lt
ε,0;B;cn(t) + σ2Ish

ε,0;B;cn(t)

+I lt
ε,0;so(t) + Ish

ε,0;so(t)
]
.

(3.5.92)
The inequalities in Lemmas 3.5.3-3.5.12 now imply that

E sup
0≤t≤tst

N i
ε,0;II(t) ≤ C2

[
‖V (0)‖2H1 + σ2T + (η + σ2T + σ4) sup

0≤t≤tst
Nε;II(t)

]
.

(3.5.93)
In particular, we see that

E sup
0≤t≤tst

N i
ε(t) ≤ C3

[
‖V (0)‖2H1 + σ2T + (η + σ2T + σ4)E sup

0≤t≤tst
Nε(t)

]
. (3.5.94)
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The desired bound hence follows by summing over i and appropriately restricting the
size of η + σ2T + σ4.
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4
Reaction-Diffusion Equations

Forced by Translation
Invariant Noise

Inspired by applications, we consider reaction-diffusion equations on R that are
stochastically forced by a small multiplicative noise term that is white in time,
coloured in space and invariant under translations. We show how these equations
can be understood as a stochastic partial differential equation (SPDE) forced by
a cylindrical Q-Wiener process and subsequently explain how to study stochastic
travelling waves in this setting. In particular, we generalize the phase tracking
framework that was developed in Chapters 2 and 3 for noise processes driven by
a single Brownian motion. The main focus lies on explaining how this framework
naturally leads to long term approximations for the stochastic wave profile and
speed. We illustrate our approach by two fully worked-out examples, which
highlight the predictive power of our expansions.

4.1 Introduction
In this chapter1 we set out to study the propagation of wave solutions to stochastic
equations of the form

ut = ρuxx + f(u) + σg(u)ξ(x, t), (4.1.1)

in which ξ is a Gaussian process2 that is white in time and coloured in space. In
particular, we assume formally that

E[ξ(x, t)] = 0,
E[ξ(x, t)ξ(x′, t′)] = δ(t− t′)q(x− x′),

(4.1.2)

1 The content of this chapter has been published as C.H.S. Hamster, H.J. Hupkes; Travelling Waves
for Reaction-Diffusion Equations Forced by Translation Invariant Noise in Physica D, see [50].

2 Actually ‘generalized Gaussian’ would be a more accurate term, since we will see that ξ does not
have the right properties to be a Gaussian random variable on L2(R).
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for some smooth covariance function q that describes the correlation in space. Such
equations have been used in a wide range of applications, for example to model the ap-
pearance of travelling waves in light-sensitive Belousov-Zhabotinsky chemical reactions
[63] or to study the excitability of activator-inhibitor systems such as nerve fibres [38].
We refer to [39, §6.1] for an extended list of examples.

We will assume here that (4.1.1) with σ = 0 admits a spectrally stable deterministic
travelling front or pulse and examine the impact of the multiplicative noise term for
small σ. The nonlinearity g will be chosen to vanish at the endpoints of the deterministic
wave. In particular, the full stochastic system is at rest whenever the deterministic
portion is at rest. Such an assumption is typically used to examine the distortions on a
system caused by external random effects, such as fluctuations in the intensity of the
light driving a Belousov-Zhabotinsky reaction. In a controlled setting these effects can
often be minimized or switched off completely, leading to the notion of the deterministic
limit.

On the other hand, internal fluctuations arise from the microscopic properties of
the system itself and cannot be readily eliminated. For example, the vibrations of the
individual atoms are essential ingredients in the derivation of the ideal gas equations.
It is more natural to use an additive noise term to model effects of this type, but we
do not focus on this case here.

The main goal of this chapter is to uncover the corrections to the deterministic
wave that are caused by the (small) multiplicative noise term. In particular, we develop
a framework that allows the corrections to the speed and shape of the wave to be
computed to any desired order in σ. We explicitly compute the second and third order
correction terms and show numerically that these expansions are valid for long time
scales. We also outline in which sense these predictions can be made rigorous, which
involves casting the translationally invariant Stochastic Partial Differential Equation
(SPDE) (4.1.1) into a mathematically precise form.

Example I: The Nagumo equation In order to set the stage, let us consider the
stochastic Nagumo equation

ut = ρuxx + fcub(u; a) + σu(1− u)ξ(x, t), (4.1.3)

with the bistable cubic nonlinearity

fcub(u; a) = u(1− u)(u− a), 0 < a < 1 (4.1.4)

and the Gaussian covariance kernel

q(x) = 1
2e
−πx2

4 . (4.1.5)

For 0 < a < 1, the deterministic system is known to have a spectrally stable wave
solution u(x, t) = Φ0(x− c0t) that connects the stable rest states zero and one [65]. In
fact, the travelling wave ODE

ρΦ′′0 + c0Φ′0 + fcub(Φ0; a) = 0 (4.1.6)
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can be solved by using the explicit expressions

c0 =
√

2ρ0

(
1
2 − a0

)
, Φ0(x) = 1

2

[
1− tanh

(
1

2
√

2ρ0
x

)]
(4.1.7)

with (ρ0, a0) = (ρ, a).
Note that the form of the nonlinear terms in (4.1.3) allows us to recast the system

as

ut = ρ0uxx + fcub
(
u; a0 − σξ(x, t)

)
, (4.1.8)

showing that we are stochastically forcing the (external) parameter a. As a consequence,
it is natural to ask whether effective σ-dependent parameters (ρσ, aσ) can be derived
that are able to capture the stochastic effects on the waves by replacing (4.1.7) with

cσ =
√

2ρσ
(

1
2 − aσ

)
, Φσ(x) = 1

2

[
1− tanh

(
1

2
√

2ρσ
x

)]
. (4.1.9)

In the case where ξ(x, t) is replaced by the derivative of a single x-independent Brownian
motion in time, this point of view can be made fully explicit and precise. Indeed, in
this case the wave (4.1.9) with

(ρσ, aσ) = ( ρ0

1 + σ2ρ0
, a0) (4.1.10)

is an exact solution to the underlying SPDE [19, 48], with a phase that follows a scaled
Brownian motion.

The early results in [39] for general ξ can also be seen in this light. Indeed, the
authors use a formal (partial) expansion to suggest the choices

ρσ = 1
1− σ2q(0) , aσ = 2a0 − σ2q(0)

2− 2σ2q(0) (4.1.11)

where ρ0 = 1. However, the waves found in this way are only approximate solutions3

to (4.1.3). We show in §4.3 how our techniques can be used to significantly improve the
quality of this approximation.

In order to discuss the stability of these waves, we introduce the linearized operator

Ltwv = ρv′′ + c0v
′ + f ′cub(Φ0; a)v, (4.1.12)

together with its formal adjoint

L∗tww = ρw′′ − c0w′ + f ′cub(Φ0; a)w. (4.1.13)

By direct substitution, it can be verified that ψtw(ξ) = κec0ξ/ρΦ′0(ξ) is an element of
the kernel of L∗tw; see also [65, ex. 2.3.1 and 4.1.4] for more intuition. The constant κ
can be chosen in such a way that

LtwΦ′0 = L∗twψtw = 0, 〈Φ′0, ψtw〉L2(R) = 1, (4.1.14)
3 Note that these scalings hold for the Stratonovich interpretation, while the results from [19, 48] hold

for the Itô interpretation.
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which allows us to write
Pv = 〈v, ψtw〉L2(R)Φ′0 (4.1.15)

for the spectral projection onto the simple zero eigenspace of Ltw.
Since the remainder of the spectrum of Ltw lies strictly to the left of the imaginary

axis, general considerations [80] can be used to show that the associated semigroup
satisfies the bound

‖eLtwt(I − P )v‖L2(R) ≤Me−βt‖(I − P )v‖L2(R) (4.1.16)

for some β > 0 and M ≥ 1. The approach in this chapter shows how this bound can be
exploited to show that the stochastic waves discussed above are robust against small
perturbations.

With additional ad hoc work [104] it is even possible to show that M = 1 holds
in (4.1.16). Based on this latter property we say that the semigroup is immediately
contractive. Indeed, perturbations are not able to grow even on short timescales, but
always decay exponentially fast back to the wave. We do not use this property here,
but it has played an essential role in many previous studies on stochastic waves [57, 68].

Example II: The FitzHugh-Nagumo system Our second main example is the
two-component FitzHugh-Nagumo system

ut = uxx + fcub(u; a)− w + σuξ(x, t),
wt = εwxx + %(u− γw),

(4.1.17)

in which ε > 0 and % > 0 are small parameters and γ > 0 is not too large. For
convenience, we reuse the covariance kernel q given in (4.1.5). In the deterministic case
σ = 0, this system can be used to describe signal propagation through nerve fibres. It is
famous for its fast and slow travelling pulses that make an excursion from the stable 0
state. Indeed, the construction of these pulses sparked many developments in the area
of singular perturbation theory [18, 51, 60–62]. Unlike the previous example, explicit
expressions are not available for the profiles and wave speeds. Nevertheless, it is known
that the fast pulses are spectrally stable [1]. This allows the framework developed in this
chapter to be applied to (4.1.17), leading to the numerical and theoretical discussion in
§4.4. Let us emphasize that the specific structure of the noise term in (4.1.17) is just
for illustrative purposes. Indeed, our conditions in §4.2 are rather general and allow
cross-talk between the noise on the u and w components.

For systems such as (4.1.17), we typically expect M > 1 to hold for the general
bound (4.1.16). This means that larger excursions from the wave are possible before
the exponential decay of the linear semigroup steps in. In particular, (4.1.17) does not
fit into the framework of any previous results in this area. In fact, besides the results
in Chapters 2 and 3, there do not seem to be many rigorous studies of travelling waves
for multi-component SPDEs in the literature.

Translational invariance Notice that (4.1.1) is translationally invariant, in the sense
that the deterministic terms are autonomous while the correlation function depends
only on the distance between two points. This is a natural assumption, as any explicit
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dependence on x and y individually would imply some a priori knowledge about the noise
that is often not available. Indeed, in many applications [3, 10, 38, 39] translationally
invariant noise is considered to be the preferred modelling tool.

However, this choice does present certain mathematical issues that do not arise when
replacing q(x − y) by q̃(x, y) in (4.1.1) and assuming that q̃ is square integrable with
respect to (x, y). This breaks the translational symmetry, but does allow the noise-term
to be expanded as a countable sum of Brownian motions. This approach is taken in
several other works such as [19].

In the following paragraph we will explain how to set up a framework to study
translationally invariant noise, but we emphasize that this is only relatively straightfor-
ward in the case of multiplicative noise [73, §2.2.1]. Indeed, additive noise of this type
cannot be treated directly, but needs a far more abstract machinery that is still under
development [45].

We recall that the goal of our approach is to understand the long-term behaviour
of the travelling waves under consideration, which move freely throughout the entire
spatial domain. We therefore believe that the elegance of the translationally invariant
point of view in combination with the direct relevance for applications outweighs the
additional mathematical complications.

Cylindrical Wiener process At present, (4.1.1) should be interpreted as a pre-
equation rather than an actual SPDE. Our first task is to give a mathematical inter-
pretation to the stochastic term involving the process ξ. To this end, we assume that
the correlation function q is integrable, which allows us to define a bounded4 linear
convolution operator Q : L2(R)→ L2(R) that acts as

[Qv](x) = [q ∗ v](x) =
∫
R
q(x− y)v(y) dy. (4.1.18)

Assuming furthermore that the Fourier transform q̂ is a non-negative function, one
can show that Q is a non-negative symmetric operator. More concretely, we have
〈Qv, v〉L2(R) ≥ 0 for all v ∈ L2(R) and it is possible to define a square-root Q1/2 :
L2(R)→ L2(R).

However, we caution the reader that typically Q has infinite trace and is not even
compact. In particular, it is not generally possible to construct a countable orthonormal
basis of L2(R) that consists of the eigenfunctions of Q. This prevents us from using
the Brownian-motion expansion discussed above. Stated in technical terms, we cannot
interpret ξ as the derivative of a ‘regular’ Q-Wiener process.

These difficulties can be resolved through the use of cylindrical Wiener processes.
Historically, such processes were developed to handle noise that is white (i.e. completely
decorrelated) both in space and time. In our notation, this means that q is replaced by
the delta-function to yield Q = I, which is clearly not of finite trace. This approach
only requires that Q is bounded, self-adjoint and nonnegative and hence applies to the
class of operators Q introduced above [92, §4.3].

To set the stage, we define the subspace

L2
Q = Q1/2(L2(R)

)
⊂ L2(R) (4.1.19)

4 The boundedness of Q follows from Young’s convolution inequality: ‖q∗v‖L2(R) ≤ ‖q‖L1(R)‖v‖L2(R).
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equipped with the inner product

〈v, w〉L2
Q

= 〈Q− 1
2 v,Q−

1
2w〉L2(R). (4.1.20)

In addition, we follow the construction in [93, §2.5] to define a Hilbert space L2
ext

that contains L2(R) and has the special property that the inclusion L2
Q ⊂ L2

ext is
Hilbert-Schmidt.

One can now follow the procedure in [93, §2.5] or [66], to construct the so-called
cylindrical Q-Wiener process WQ

t . This process arises as a limit of processes on L2
Q

that converges as a process on L2
ext, where it can be understood as a ‘regular’ Q̄-Wiener

process for some compact Q̄ : L2
ext → L2

ext. This means that WQ
t does not necessarily

attain values in L2(R), but fortunately, the exact choice for L2
ext is immaterial5 for two

important reasons.
First, it turns out [66, Prop. 2] that the expression 〈WQ

t , v〉L2(R) is well-defined for
any v ∈ L2(R). In fact, it can be interpreted as a scaled Brownian motion that satisfies
the correlations

E
[
〈WQ

t , v〉L2(R)〈WQ
s , w〉L2(R)

]
= (t ∧ s)〈Qv,w〉L2(R). (4.1.21)

In particular, formally replacing v and w by delta functions δx(·) and δy(·) and taking
the derivative with respect to t and s, we see that

E
[
〈dWQ

t , δx〉L2(R)〈dWQ
s , δy〉L2(R)

]
= δ(t− s)q(x− y). (4.1.22)

Comparing this with (4.1.2), we see that d

dt
WQ
t (x) and ξ(x, t) are natural counterparts.

The second reason is that all the essential stochastic estimates we will need only
rely on the space L2

Q. For example, the full noise term in (4.1.1) is well-defined if the
pointwise multiplication

v(ξ) 7→ g
(
U(ξ)

)
v(ξ) (4.1.23)

can be interpreted as a Hilbert-Schmidt operator from L2
Q into L2(R) for any relevant

function U . We will show in Appendix 4.A that this can be achieved by imposing simple
bounds on the scalar function g : R→ R and its derivative.

Interpretation In many applications involving external noise, it is natural to inter-
pret the stochastic terms in the Stratonovich sense [110]. Indeed, this interpretation
yields the correct limit when approximating a Wiener process by regularized versions
that can be fitted into the standard deterministic framework (a so-called Wong-Zakai
Theorem). Upon using the process WQ

t to recast (4.1.1) as a SPDE in Stratonovich
form, we arrive at

dU = [ρ∂xxU + f(U)]dt+ σg(U) ◦ dWQ
t . (4.1.24)

5 For translation invariant processes it is possible to explicitly characterize a choice for L2
ext in terms

of the dual of a Schwartz space, see [90].
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The equivalent Itô formulation is given by

dU =
[
ρ∂xxU + f(U) + µ

σ2

2 q(0)g′(U)g(U)
]
dt+ σg(U)dWQ

t
(4.1.25)

with µ = 1. From a mathematical point of view it is more convenient to work in this
formulation, since most of the technical machinery for SPDEs is based on Itô calculus.
The choice µ = 0 allows us to interpret the noise in (4.1.1) in the Itô sense directly. Our
results in this chapter cover both cases, in order to ease the comparison with previous
work and to illustrate how the two types of noise impact the deterministic waves in
different ways.

Previous results Rigorous results concerning the well-posedness of SPDEs of type
(4.1.25) are widely available by now, see e.g. [93]. However, the dynamics of this type
of equation is less well studied in the math community. Several authors have considered
the dynamics of stochastic waves driven by Q-Wiener processes, which means that the
noise is necessarily localized in space. For example, the shape and speed of stochastic
waves for Nagumo-type SPDEs were computed numerically in [79] and derived formally
in [19] using a collective coordinate approach. In addition, short-time stability results
for immediately contractive systems can be found in [57, 68]. The results in [86] do use
cylindrical Q-Wiener processes for waves in the Fisher-KPP equation, but there the
smooth covariance function q is replaced by a delta-function in order to model noise
that is white in space and time. A more detailed overview of results on stochastic
travelling waves can be found in the review by Kuehn [69].

Turning to non-rigorous results for (4.1.1) from other fields, we refer to [39] for
an interesting overview of studies that have appeared in the physics and chemistry
literature. For the Nagumo SPDE (4.1.3), the dynamics up to first order in σ of have
been formally computed [39, eq. (6.11)]. At this order, the shape of the wave is equal
to the deterministic shape and the phase of the wave follows a Brownian motion with a
variance that can be expressed in closed form. We will see in §4.3 how these conclusions
can be recovered as special cases from our expansions.

Phase tracking Our work here builds on the framework developed in Chapters 2 and
3 to study travelling waves in stochastic reaction-diffusion equations forced by a single
Brownian motion. The main idea is to use a phase-tracking approach that is based
purely on technical considerations rather than ad hoc geometric intuition. Inspired by
the overview in [117], this allows us to adapt modern tools developed for deterministic
stability results for use in a stochastic setting.

In order to explain the key concepts, we turn to the deterministic Nagumo PDE
that arises by taking σ = 0 in (4.1.3). The translational invariance of the travelling
wave u(x, t) = Φ0(x− c0t) can be captured by introducing an Ansatz of the form

u
(
·+γ(t), t

)
= Φ0(·) + v(·, t),

in which γ(t) can be interpreted as the phase of u. We now demand that the evolution
of the phase is governed by

γ̇(t) = c0 + a
(
v(·, t)

)
, (4.1.26)
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for some (nonlinear) functional a : L2(R) → R that we are still free to choose. The
resulting equation for v is then given by

∂tv(t) = Ltwv(t) +N
(
v(t)

)
+ a
(
v(t)

)
∂ξ
[
Φ0 + v(t)

]
, (4.1.27)

in which N(v) = fcub(Φ0 + v)− fcub(Φ0)− f ′cub(Φ0)v. This can be recast into the mild
form

v(t) = eLtwtv0 +
∫ t

0
eLtw(t−s)

[
N
(
v(s)

)
+ a
(
v(s)

)
∂ξ
[
Φ0 + v(s)

]]
ds, (4.1.28)

inviting us to apply the bound (4.1.16).
In order to apply exponential bounds such as (4.1.16) to the semigroup eLtwt, we

must avoid the neutral non-decaying part of the semigroup. In order to force the
integrand to be orthogonal to the zero eigenspace, we recall the spectral projection
(4.1.15) and choose

a(v) = −
〈N
(
v
)
, ψtw〉L2(R)

〈∂ξ(Φ0 + v), ψtw〉L2(R)
. (4.1.29)

In fact, one arrives at the same choice if one directly imposes the orthogonality condition
〈v(t), ψtw〉L2(R) = 0. By a standard bootstrapping procedure one can now establish the
limits ‖v(t)‖L2(R) → 0 and t−1γ(t) → c0 for t → ∞, provided that v0 is sufficiently
small. This allows us to conclude that the travelling wave is orbitally stable.

In our stochastic setting, the pair (v, γ) is replaced by its stochastic counterpart
(V,Γ), which we always write in capitals. The resulting equations for this pair are
naturally much more complicated. They both consist of a deterministic and a stochastic
part, resulting in two free functionals that can be tuned to ensure 〈V, ψtw〉L2(R) = 0, see
§4.2.2.

Besides the fact that we use the adjoint eigenfunction ψtw instead of Φ′0, the main
difference with the phase tracking approaches developed in [57, 68] is that our pertur-
bation V is taken relative to a novel pair (Φσ, cσ) that we refer to as the instantaneous6

stochastic wave. This pair is chosen in such a way that the deterministic part of the
equation for V vanishes at V = 0. However, this does not hold for the stochastic part,
leading to persistent fluctuations that must be controlled.

Stability Our first contribution is that we establish that the wave (Φσ, cσ) is stable,
in the sense that the perturbation V (t) remains small over time scales of O(σ−2). In
particular, we show that the semigroup techniques developed in our earlier chapters are
general enough to remain applicable in the present more convoluted setting. The main
effort is to verify that certain technical estimates remain valid, which is possible by the
powerful theory that has been developed for cylindrical Q-Wiener processes.

The procedure in Chapters 2 and 3 is rather delicate in order to compensate for
the lack of immediate contractivity. Indeed, the H1-norm of V (t) must be kept under
control, resulting in apparent singularities in the stochastic integrals that must be
handled with care. The time scale mentioned above arises as a consequence of the
6 See §4.2.4 for a justification for this terminology.
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mild Burkholder-Davis-Gundy inequality that we used to obtain supremum bounds on
stochastic integrals. However, these bounds are known to be suboptimal. Indeed, we
believe that our phase tracking approach can be maintained for time scales that are
exponential in σ. This is confirmed by the numerical results at the end of §4.3.

Expansions in σ The second – and main – contribution in this chapter is that we
explicitly show how to expand the fluctuations around the stochastic wave (Φσ, cσ)
in powers of the noise strength σ. In particular, we show that our framework yields
a natural procedure to compute Taylor expansions for the pair

(
V (t),Γ(t)

)
. These

results extend the pioneering work in [68, 72], where related multi-scale expansions were
achieved in a variety of settings on short time-scales.

An important advantage of our semigroup approach is that the resulting terms have
expectations that are well-defined in the limit t → ∞. In particular, we are able to
uncover the long-term stochastic corrections to the speed and shape of the travelling
waves.

We provide explicit formula’s for the first and second order corrections, which all
crucially involve the semigroup eLtwt. In addition, we show how to compute the third
order corrections in the phase Γ from these second order corrections. In principle, the
expansions can be computed to any desired order in σ, but the process quickly becomes
unwieldy.

At first order in σ, our predictions concur with many earlier results [16, 19, 39, 68],
which show that the phase Γ(t) of the wave behaves as a Brownian motion centred around
the deterministic position c0t. In addition, the shape of the wave fluctuates at first
order like an infinite dimensional Ornstein-Uhlenbeck process around the deterministic
wave Φ0.

At second order in σ, two distinct effects start to play a role. The first is that
differences start to appear between the instantaneous stochastic wave (Φσ, cσ) and
the deterministic wave (Φ0, c0). This generalizes the wave steepening effect (4.1.10)
discussed in Chapter 2 and [19, 79]. On top of this, there is an additional contribution to
the average speed and shape that is caused by the feedback of the first order fluctuations
of V (t). These effects – which we refer to as orbital drift – become visible after an
initial transient period. Besides a brief discussion in our earlier chapters, we do not
believe that this long-term behaviour has been systematically explored before.

Taken together, we now have a quantitative procedure that is able to accurately
describe the numerical results in [79] and the formal computations in [19] for the
Nagumo SPDE (4.1.3), both for the Stratonovich and Itô formulation. This allows us to
understand the differences in speed and shape between both interpretations analytically.
These predictions are confirmed by our numerical results, which compare the solutions
of the full SPDE with our explicit formula’s and exhibit the rate of convergence with
respect to σ.

Outlook In this chapter we will not treat space-time white noise, i.e. q(x − y) =
δ(x − y), as our mathematical framework does not yet allow distributions to be used
as kernels. This can already be seen from the fact that (4.1.24) depends explicitly on
q(0), which of course is not well-defined for distributions. In fact, it is still a subject
of active research [45] to give a clear interpretation of (4.1.1) in this case. In the Itô
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interpretation however, many of our computations concerning the shape and speed of
the stochastic wave have a well-defined limit if we let q converge to δ. In addition, many
of our expressions still make sense for g = 1, which suggests that our expansions could
also be used to make predictions for additive noise.

In addition, we expect that our methods can be extended to other types of equations.
For example, stochastic neural field models have attracted a lot of attention in recent
years, but they lack the smoothening effect of the diffusion operator. Finally, we are
exploring techniques that would allow us to extend the O(σ−2) time scales in our results
to the exponentially long scales observed in the numerical computations.

Organization In §4.2 we state our assumptions and give a step-by-step overview of
the steps that lead to our expansions. In addition, we provide explicit formula’s that
describe the first and second order terms in the expansions for (V,Γ). In §4.3 and §4.4
we illustrate how our results can be applied to the Nagumo and FitzHugh-Nagumo
SPDEs and verify the predictions with numerical computations.

The remaining sections contain the technical heart of this chapter and provide the
link between our setting here and the bootstrapping procedure developed in Chapters
2 and 3. In particular, we show in §4.5 how the stochastic evolution equation for V
can be computed using Itô calculus, which represents the core computation of this
work. In §4.6 we explain how the technical machinery available for cylindrical Q-Wiener
processes can be used to follow the steps of Chapters 2 and 3. Appendix 4.A provides
the main link between these chapters, showing how the estimates in Chapter 2 can be
generalized to the nonlinearities appearing here.
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4.2 Main results
In this chapter we study the properties of travelling wave solutions to stochastic reaction-
diffusion systems with translationally invariant noise. In §4.2.1 we introduce the class
of systems that we are interested in. The main steps of our approach are outlined in
§4.2.2, which allows us to expand the stochastic corrections to the shape and speed
of the waves in powers of the noise strength. The precise form of these expansions is
described in §4.2.3. Finally, we discuss several consequences of our results in §4.2.4 and
compare them to earlier work in this area.

4.2.1 Setup
In this section we formulate the conditions that we need to impose on our stochastic
reaction-diffusion system. Taken together, these conditions ensure that the noise-term
is well-defined, that the SPDE is well-posed and that the deterministic part admits a
spectrally stable travelling wave.

Noise Process We start by discussing the covariance function q that underpins the
noise process, which we assume to have m components. In particular, we impose the
following condition on the m×m components of the function q and its Fourier transform
q̂.

(Hq) We have q ∈ H1(R,Rm×m) ∩ L1(R,Rm×m), with q(−ξ) = q(ξ) and qT (ξ) = q(ξ)
for all ξ ∈ R. In addition, for each k ∈ R the m×m matrix q̂(k) is non-negative
definite.

Since the Fourier transform maps Gaussians onto Gaussians, this condition can
easily be verified for q(x) = exp(−x2) in the scalar case m = 1. Other examples include
the exponential q(x) = exp

(
− |x|

)
and the tent function q(x) = 1− |x| supported on

[−1, 1].
The integrability of q allows us to introduce a bounded linear operator Q on

L2(R,Rm) that acts as

[Qv](x) = [q ∗ v](x) =
∫
R
q(x− y)v(y) dy. (4.2.1)

The remaining conditions in (Hq) show that Q is symmetric and that 〈Qv, v〉L2(R,Rm) ≥ 0
holds for all v ∈ L2(R,Rm). As explained in §4.1 and §4.5.1, this allows us to follow
[93, §2.5] and [66] to define a cylindrical Q-Wiener process WQ

t over L2(R,Rm). In
particular, for any v, w ∈ L2(R,Rm) we have

E[〈WQ
t , v〉L2(R,Rm)〈WQ

s , w〉L2(R,Rm)] = s ∧ t 〈q ∗ v, w〉L2(R,Rm). (4.2.2)

Upon writing {ei} for the standard unit vectors together with v(x) = δ(x− x0)ei and
w(x) = δ(x− x1)ej , this reduces formally to the familiar expression

E[dWQ
t (x0)dWQ

s (x1)] = δ(t− s)qij(x0 − x1), (4.2.3)

after taking the time derivative with respect to t and s. This highlights the role that
the correlation function q plays in our setup.
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Stochastic reaction-diffusion equation The main SPDE that we will study can
now be formulated as

dU =
[
ρ∂xxU + f(U) + σ2h(U)

]
dt+ σg(U)dWQ

t . (4.2.4)

Here we take U = U(x, t) ∈ Rn with x ∈ R and t ≥ 0. The nonlinearities f : Rn → Rn,
h : Rn → Rn and g : Rn → Rn×m are considered to act in a pointwise fashion. In
order to proceed, we need to assume that these nonlinearities have a common pair of
equilibria.

(HEq) There exist u± ∈ Rn so that

f(u±) = g(u±) = h(u±) = 0. (4.2.5)

If u− 6= u+, then the relevant solutions U to (4.2.4) cannot be captured in the Hilbert
space L2(R,Rn). In order to remedy this, we pick a smooth reference function Φref that
has the limits Φref(±∞) = u± and introduce the affine spaces

UH1 = Φref +H1(R,Rn), UH2 = Φref +H2(R,Rn). (4.2.6)

Naturally, we can simply take Φref = 0 if u− = u+. We will see that (4.2.4) is well-
posed as a stochastic evolution equation on UH1 . In fact, it is advantageous to study
X(t) = U(t)− Φref , which solves the SPDE7

dX =
[
ρ∂xx(X + Φref) + f(X + Φref) + σ2h(X + Φref)

]
dt+ σg(X + Φref)dWQ

t

(4.2.7)

and hence attains values in H1(R,Rn). This decomposition will be used in §4.5-§4.6.

Stochastic terms In order to ensure that the stochastic term in (4.2.4) is well-defined,
we impose the following growth bound on g.

(HSt) We have g ∈ C2(Rn,Rn×m). In addition, the derivative Dg is bounded and
globally Lipschitz continuous.

Indeed, in Appendix 4.A this assumption is used to establish that the pointwise map

[g(U)v](x) = g
(
U(x)

)
v(x) (4.2.8)

is a Hilbert-Schmidt operator from

L2
Q = Q1/2(L2(R,Rm)

)
(4.2.9)

into L2(R,Rn) for any U ∈ UH1 . We note that the existence of the square-root Q1/2 fol-
lows from the fact that Q is a nonnegative operator. This square-root has a convolution
kernel p that is also translationally invariant; see Appendix 4.A.1 for the details.

For clarity, we take the noise intensity σ to be a scalar factor in front of g. In principle
however, each of the n×m components of g could have its own scaling. This can also
be fitted into our framework, but it would unnecessarily complicate the expansions we
are after.
7 We emphasize that the reference function Φref does not depend on time, which is why (4.2.7) contains

no additional time derivatives.
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Deterministic terms Turning to the deterministic part of (4.2.4), we first note that
h is a function that can be used to represent the appropriate Itô-Stratonovich correction
terms. For example, in the scalar case n = m = 1 we saw in §4.1 that the choice
h(U) = 1

2q(0)g′(U)g(U) allows us to interpret (4.2.4) as the Stratonovich SPDE

dU =
[
ρ∂xxU + f(U)

]
dt+ σg(U) ◦ dWQ

t . (4.2.10)

We refer to [33, 108] for further information concerning the construction of similar
correction terms for multi-component systems.

We now impose the following conditions on the nonlinearities f and h.

(HDt) The matrix ρ ∈ Rn×n is a diagonal matrix with strictly positive diagonal elements
{ρi}ni=1. In addition, we have f, h ∈ C3(Rn,Rn). Finally, D3f and D3h are
bounded and there exists a constant Kvar > 0 so that the one-sided inequality

〈f(uA)− f(uB), uA − uB〉Rn + σ2〈h(uA)− h(uB), uA − uB〉Rn ≤ Kvar |uA − uB |2

(4.2.11)

holds for all pairs (uA, uB) ∈ Rn × Rn and all 0 ≤ σ ≤ 1.

The precise form of these assumptions is strongly motivated by the setup in [77]. Indeed,
the four conditions (Hq), (HEq), (HSt) and (HDt) together allow us to apply [77, Thm
1.1]. This implies that our system (4.2.4) has a unique solution in UH1 that is defined
for all t ≥ 0. A precise statement on the properties of these solutions can be found in
Proposition 4.5.2.

Travelling wave The following assumption states that the deterministic part of
(4.2.4) has a spectrally stable travelling wave solution that connects the two equilibria
u±. We remark again that these two limiting values are allowed to be equal.

(HTw) There exists a wavespeed c0 ∈ R and a waveprofile Φ0 ∈ C2(R,Rn) that satisfies
the travelling wave ODE

ρΦ′′0 + c0Φ′0 + f(Φ0) = 0 (4.2.12)

and approaches its limiting values Φ0(±∞) = u± at an exponential rate. In
addition, the associated linear operator Ltw : H2(R,Rn) → L2(R,Rn) that acts
as

[Ltwv](ξ) = ρv′′(ξ) + c0v
′(ξ) +Df

(
Φ0(ξ)

)
v(ξ) (4.2.13)

has a simple eigenvalue at λ = 0 and has no other spectrum in the half-plane
{<λ ≥ −2β} ⊂ C for some β > 0.

The formal adjoint
L∗tw : H2(R,Rn)→ L2(R,Rn) (4.2.14)

of the operator (4.2.13) acts as

[L∗tww](ξ) = ρw′′(ξ)− c0w′(ξ) +Df
(
Φ0(ξ)

)T
w(ξ). (4.2.15)
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Indeed, one easily verifies that

〈Ltwv, w〉L2(R,Rn) = 〈v,L∗tww〉L2(R,Rn) (4.2.16)

holds whenever (v, w) ∈ H2(R,Rn)×H2(R,Rn).
The assumption that zero is a simple eigenvalue for Ltw implies that L∗twψtw = 0

for some ψtw ∈ H2(R,Rn) that can be normalized to have

〈Φ′0, ψtw〉L2(R,Rn) = 1. (4.2.17)

These assumptions imply [65, §4] that the family of travelling wave solutions

U(x, t) = Φ0(x+ c0t+ ϑ), ϑ ∈ R, (4.2.18)

is nonlinearly stable under the dynamics of (4.2.4) at σ = 0. In particular, any small
perturbation from such a wave converges exponentially fast to a nearby translate.

4.2.2 Overview
Guided by the short sketch in §4.1 of the ideas behind the deterministic stability proof,
we now give a step-by-step description of the stochastic framework that we use to
generalize this result and compute our expansions. At this stage we only give an
overview of the key concepts, leaving the details to §4.2.3 and later sections.

Step 1: Stochastic phase. We introduce a wavespeed cσ ∈ R, together with a
nonlinear functional aσ : UH1 × R → R. In addition, for any U ∈ UH1 and Γ ∈ R we
define a Hilbert-Schmidt operator b(U,Γ) that maps L2

Q into R. We emphasize that all
three objects are unknown at present; see §4.5.2 for their precise definitions. However,
they do allow us to define a stochastic phase Γ(t) by coupling the SDE

dΓ =
[
cσ + aσ(U,Γ)

]
dt+ σb(U,Γ)dWQ

t (4.2.19)

to the SPDE (4.2.4) that governs U . This generalizes the deterministic phase that was
introduced in (4.1.26). For convenience, we also write the phase in the integrated form

Γ(t) = Γ0 + cσt+
∫ t

0
aσ
(
U(s),Γ(s)

)
ds+ σ

∫ t

0
b
(
U(s),Γ(s)

)
dWQ

s . (4.2.20)

Step 2: Decomposition of U . We now introduce a, yet unknown, waveprofile
Φσ ∈ UH2 . We can use this together with the phase Γ defined in Step 1 to define the
perturbation

V (t) = U(·+ Γ(t), t)− Φσ, (4.2.21)

which measures the deviation from Φσ of U after shifting it to the left by Γ(t). We note
that V takes values in H1(R,Rn) in a sense that is made precise in Proposition 4.5.4.
In addition, we will from now on write

aσ(V ) = aσ(Φσ + V, 0), bσ(V ) = b(Φσ + V, 0). (4.2.22)
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Using Itô calculus, we will show in §4.5 that V (t) solves an equation of the form

dV =
[
Fσ(Φσ, cσ; bσ) + LtwV +Nσ(V ; bσ) + aσ(V )∂ξ(Φσ + V )

]
dt+ σSσ(V ; bσ)dWQ

t .
(4.2.23)

Due to the second order terms in the Itô formula, the specific shapes of Fσ, Nσ and Sσ
all depend on the functional bσ. It is therefore helpful to make a choice for bσ, which
we will do in the next step.

However, at this point an important warning is in order. We are using the same
symbol for the noise processes driving (4.2.4) and (4.2.23), because - by translation
invariance - they are are indistinguishable from one another.

On the other hand, when one wants to compare U(t) and V (t) numerically for a
specific realisation of WQ

t , then one must take care to spatially translate this realisation
by Γ(t) when passing between (4.2.4) and (4.2.23). Indeed, these two equations are
defined in separate coordinate systems. This distinction will be explained in detail
in the proof of Proposition 4.5.4. For now, we remark that all the averages that we
compute in this section are invariant under translations in the noise.

Step 3: Choice of b. For any V ∈ H1(R,Rn), the computations in §4.5 show that

Sσ(V ; bσ)[v] = g(Φσ + V )v + ∂ξ(Φσ + V )bσ(V )[v] (4.2.24)

for all v ∈ L2
Q. As in the deterministic case, the goal is to achieve the identity〈

Sσ(V ; bσ)[v], ψtw
〉
L2(R,Rn) = 0 (4.2.25)

for all v ∈ L2
Q in order to circumvent the neutral mode of the semigroup. Whenever

‖V ‖L2(R,Rn) is sufficiently small, this can be achieved by writing

bσ(V )[v] = −

〈
g(Φσ + V )v, ψtw

〉
L2(R,Rn)〈

∂ξ(Φσ + V ), ψtw
〉
L2(R,Rn)

. (4.2.26)

Having made this choice, we now drop the dependence on bσ in Fσ(V ), Nσ(V ) and
Sσ(V ).

Step 4: Construction of (Φσ, cσ). Ideally, we would like V (t) = 0 to be a solution
to (4.2.23), since then U(x, t) = Φσ(x + Γ(t), t) would be an exact solution to (4.2.4).
However, since the deterministic and stochastic terms both need to vanish simultane-
ously, this can only be achieved in very special situations8. In Prop. 4.5.1 we show that
for small σ, it is possible to construct a pair (Φσ, cσ) for which Fσ(Φσ, cσ) = 0. Since
we will see below that Nσ(0) = 0 and aσ(0) = 0, this ensures that the state V = 0 only
experiences (instantaneous) stochastic forcing.

For any pair (Φ, c) ∈ UH2 × R, the nonlinearity Fσ(Φ, c) can be decomposed as

Fσ(Φ, c) = F0(Φ, c) + σ2F0;2(Φ). (4.2.27)
8 In the case of 1d Brownian motion, we explain in Chapter 2 how g can be chosen to make this

possible.
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The leading order term F0(Φ, c) is related to the deterministic wave in the sense that

F0(Φ, c) = ρΦ′′ + cΦ′ + f(Φ), (4.2.28)

while the correction term F0;2(Φ) is found to be

F0;2(Φ) = 1
2
〈g(Φ)QgT (Φ)ψtw, ψtw〉L2(R,Rn)

〈Φ′, ψtw〉2L2(R,Rn)
Φ′′ − (g(Φ)QgT (Φ)ψtw)′

〈Φ′, ψtw〉L2(R,Rn)
+ h(Φ) (4.2.29)

whenever ‖Φ− Φ0‖L2(R,Rn) is sufficiently small. We emphasize here that the transpose
is taken in a pointwise fashion.

Note here that the correction term F0;2(Φ) depends on the operator g(Φ)QgT (Φ),
which is the covariance operator of the stochastic process∫ t

0
g(Φ)dWQ

s (4.2.30)

for t→∞ [44]. Therefore, as we will see, the lowest order corrections of Φσ to Φ0 can

be understood in terms of the covariance of the stochastic process
∫ t

0
g(Φ0)dWQ

s .

Step 5: Choice of aσ. As in the deterministic case, we now define aσ in such a way
that the deterministic part of (4.2.23) becomes orthogonal to ψtw. In particular, for V
small we write

aσ(V ) = −

〈
Nσ(V ), ψtw

〉
L2(R,Rn)〈

∂ξ(Φσ + V ), ψtw
〉
L2(R,Rn)

. (4.2.31)

For reference, we note that the non-linearity Nσ introduced in (4.2.23) is given by

Nσ(V ) =Fσ(Φσ + V, cσ)− Fσ(Φσ, cσ)− LtwV. (4.2.32)

As we claimed in Step 4, we indeed see that aσ(0) = 0 and Nσ(0) = 0. Upon introducing
a nonlinearity Rσ that acts as

Rσ
(
V
)

= Fσ(Φσ + V, cσ) + aσ(V )∂ξ(Φσ + V ) (4.2.33)

for small V , we conclude that V solves the equation

dV = Rσ(V )dt+ σSσ(V )dWQ
t . (4.2.34)

The nonlinearities on the right hand side of this equation are now both orthogonal to
ψtw for small V .

Step 6: Stability. We write S(t) for the semigroup generated by the linear operator
Ltw and consider the mild formulation of (4.2.34), which is given by the integral equation

V (t) = S(t)V0 +
∫ t

0
S(t− s)R̃σ

(
V (s)

)
ds+ σ

∫ t

0
S(t− s)Sσ

(
V (s)

)
dWQ

s , (4.2.35)
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in which we have

R̃σ(V ) = Rσ(V )− LtwV = Nσ(V ) + aσ(V )∂ξ(Φσ + V ). (4.2.36)

By construction, we have achieved 〈R̃σ(V ), ψtw〉L2(R,Rn) = 〈Sσ(V ), ψtw〉L2(R,Rn) = 0 for
small V . Whenever U(0) is sufficiently close to Φ0, we can also ensure 〈V0, ψtw〉L2(R,Rn) =
0 by picking the initial phase Γ(0) appropriately.

We caution the reader that it is hard to obtain estimates on V directly from (4.2.35),
because the term R̃σ(V ) still contains second order derivatives. Tackling this problem
is the key part of Chapter 3, as we discuss in §4.6. Nevertheless, it is possible to show
that the instantaneous wave (Φσ, cσ) is stable in the sense that the size of V (t) can be
kept under control. An exact statement to this effect can be found in §4.6, but we here
provide an informal summary.
Theorem 4.2.1 (see §4.6). Assume that (Hq), (HEq), (HDt), (HSt) and (HTw) all
hold and that σ and V0 are sufficiently small. Then for time scales up to O(σ−2), the
perturbation V (t) remains small and the phase Γ(t) accurately represents the position
of U(t) relative to the wave (Φσ, cσ).

As we discussed in §4.1, we expect this result to remain valid up to exponentially
long time scales. This is supported by the numerical evidence in §4.3.

Step 7: Expansion in σ. In order to investigate the fluctuations around the instan-
taneous stochastic wave (Φσ, cσ), we choose (V0,Γ0) = (0, 0) and expand our equations
for (V,Γ) in powers of σ. In particular, we look for expansions of the form

V (t) = σV (1)
σ (t) + σ2V (2)

σ (t) + Vres(t) (4.2.37)

and
Γ(t) = cσt+ σΓ(1)

σ (t) + σ2Γ(2)
σ (t) + σ3Γ(3)

σ (t) +O(σ4). (4.2.38)
For example, using (4.2.35) we may write

V (1)
σ (t) =

∫ t

0
S(t− s)Sσ(0)dWQ

s , (4.2.39)

which can be substituted back into (4.2.35) to find an expression for V (2)
σ (t) and so on.

In addition, using (4.2.20) it is natural to write

Γ(1)
σ (t) =

∫ t

0
bσ(0)dWQ

s . (4.2.40)

Knowledge of V (1)
σ can subsequently be used to define Γ(2)

σ , while V (2)
σ can be used to

compute Γ(3)
σ .

We provide explicit formula’s for these expansion terms in §4.2.3 below. We mention
here that we are including a σ-dependence in these terms as it often increases the
readability to use (Φσ, cσ) instead of (Φ0, c0). For example, Sσ(0) can be expanded in
terms of σ to yield V (1)

σ (t) = V
(1)
0 (t) + O(σ2), hence the difference between σV (1)

σ (t)
and σV

(1)
0 (t) is only seen at third order.

Corollary 4.2.2 (see §4.6). Assume that (Hq), (HEq), (HSt), (HDt) and (HTw) all
hold. Then σ−2Vres remains small for time scales up to O(σ−2).
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Step 8: Formal limits. We are now in a position to address our main question
concerning the average long-term behaviour of the speed and shape of U(t). In particular,
we are interested to see if - and in what sense - it is possible to define limiting quantities(

Φσ;lim, cσ;lim
)

= ‘ lim
t→∞

’ E
(
U(·+ Γ(t), t), t−1Γ(t)

)
. (4.2.41)

Any rigorous definition of such a limit most likely requires the use of carefully
constructed stopping times, since our wave-tracking mechanism almost surely fails at
some finite time (see also §4.2.4). This delicate theoretical question is outside of the
scope of this thesis unfortunately. From a practical point of view however, the numerical
results in §4.3-4.4 displayed in the stochastic reference frame Γ(t) clearly indicate that
some type of fast convergence is taking place on long time scales. In fact, by evaluating
the averages in (4.2.41) for sufficiently large values of t, we construct observed quantities(
Φobs
σ;lim, c

obs
σ;lim

)
that we feel are useful proxies for the limits (4.2.41).

We emphasize that we expect these quantities to differ from the instantaneous
stochastic wave (Φσ, cσ). Indeed, the stochastic forcing leads to an effect that we refer
to as ‘orbital drift’. Upon (formally) writing(

V od
σ , cod

σ

)
=
(
Φσ;lim − Φσ, cσ;lim − cσ

)
(4.2.42)

to quantify this difference, we note that

cod
σ = ‘ lim

t→∞
’ E t−1[Γ(t)− cσt],

V od
σ = ‘ lim

t→∞
’ E V (t).

(4.2.43)

Of course, the same theoretical issues discussed above apply to these limits.
The key point however, is that such limits do exist naturally for the individual

terms in the expansions (4.2.37)-(4.2.38). In particular, it is possible to compute the
expansions

cod
σ;i = lim

t→∞
E t−1Γ(i)

σ (t),

V od
σ;i = lim

t→∞
E V (i)

σ (t),
(4.2.44)

which allows us to compute approximations for (4.2.41) that can be explicitly evaluated.
In §4.3-4.4 we show that they agree remarkably well with the observed numerical proxies(
Φobs
σ;lim, c

obs
σ;lim

)
for (4.2.41).

Giving an interpretation to the pair (Φσ;lim, cσ;lim) however is difficult. We do not
have any ODE that it solves, but we think of (Φσ;lim, cσ;lim) as the ceasefire line between
the stochastic term that pushes the solution away from (Φσ, cσ) and the exponential
decay of the deterministic part that pushes it back to (Φσ, cσ). We remark that it
might be possible to embed (Φσ;lim, cσ;lim) in some type of an invariant measure for the
SPDE. There is a rich literature on the existence of invariant measures to stochastic
Reaction-Diffusion equations, see e.g. [20] and we intend to study this in the future.

4.2.3 Explicit expansions
We now set out to explain in detail how the expansions discussed in §4.2.2 can be
derived. We give general results here, but also show how they can be applied to two
explicit examples in §4.3 and §4.4.
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Expansions for (Φσ, cσ) First, we examine the correction terms that are required
to obtain the instantaneous stochastic wave from the deterministic wave (Φ0, c0). In
particular, we recall the defining identity

F0(Φσ, cσ) + σ2F0;2(Φσ, cσ) = 0 (4.2.45)

and write

Φσ = Φ0 + σ2Φ0;2 +O(σ4),
cσ = c0 + σ2c0;2 +O(σ4)

(4.2.46)

for the solutions that are constructed in Proposition 4.5.1. We note that the O(1)-terms
in (4.2.45) indeed vanish because F0(Φ0, c0) = 0. Balancing the O(σ2)-terms, we find

LtwΦ0;2 =− 1
2Φ′′0〈g(Φ0)QgT (Φ0)ψtw, ψtw〉2L2(R,Rn) − c0;2Φ′0

+ (g(Φ0)QgT (Φ0)ψtw)′ − h(Φ0)
=− F0;2(Φ0, c0)− c0;2Φ′0.

(4.2.47)

By the Fredholm alternative, we know that we can solve for Φ0;2 when the right hand side
of this equation is orthogonal to ψtw. In view of the normalization 〈Φ′0, ψtw〉L2(R,Rn) = 1,
we hence find

c0;2 =− 〈F0;2(Φ0, c0), ψtw〉L2(R,Rn). (4.2.48)

The function Φ0;2 can now be computed by numerically (or analytically when possible)
inverting Ltw and solving (4.2.47).

First order: (Γ(1)
σ , V (1)

σ ) We now turn our attention to the first order terms in the
expansions (4.2.37)-(4.2.38). Expanding the expressions (4.2.39)-(4.2.40), we may write

V (1)
σ (t) =

∫ t

0
S(t− s)g(Φσ)dWQ

s

−
∫ t

0
S(t− s)Φ′σ

〈ψtw, g(Φσ)dWQ
s 〉L2(R,Rn)

〈Φ′σ, ψtw〉L2(R,Rn)
,

(4.2.49)

together with

Γ(1)
σ (t) = −

∫ t

0

〈ψtw, g(Φσ)dWQ
s 〉L2(R,Rn)

〈Φ′σ, ψtw〉L2(R,Rn)
. (4.2.50)

We note that E[V (1)
σ (t)] = E[Γ(1)

σ (t)] = 0. On account of the decay of the semigroup,
V (1)
σ can be regarded as a process of Ornstein-Uhlenbeck type. On the other hand, Γ(1)

σ

behaves as a scaled Brownian motion with variance

Var(Γ(1)
σ (t)) = 〈g(Φσ)QgT (Φσ)ψtw, ψtw〉2L2(R,Rn)t. (4.2.51)
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Second order: (Γ(2)
σ , V (2)

σ ) Substituting the first order term V (1)
σ into the right-

hand-side of (4.2.35), we find that V (2)
σ (t) picks up a deterministic contribution coming

from the quadratic terms in Rσ, together with a stochastic contribution arising from
the linear terms in Sσ. In particular, we obtain

V (2)
σ (t) =

∫ t

0
S(t− s)R(2)

σ [V (1)
σ (s), V (1)

σ (s)] ds+
∫ t

0
S(t− s)S(1)

σ

(
V (1)
σ (s)

)
dWQ

s ,

(4.2.52)

in which we have

R(2)
σ [V, V ] =1

2D
2f(Φσ)[V, V ]− 1

2Φ′σ
〈D2f(Φσ)[V, V ], ψtw〉L2(R,Rn)

〈Φ′σ, ψtw〉L2(R,Rn)
, (4.2.53)

together with

S(1)
σ (V )[w] =Dg(Φσ)[V ]w − ∂ξV

〈ψtw, g(Φσ)w〉L2(R,Rn)

〈Φ′σ, ψtw〉L2(R,Rn)

− Φ′σ
〈ψtw, Dg(Φ0)[V ]w〉L2(R,Rn)

〈Φ′σ, ψtw〉L2(R,Rn)

+ Φ′σ〈∂ξV, ψtw〉L2(R,Rn)
〈ψtw, g(Φσ)w〉L2(R,Rn)

〈Φ′σ, ψtw〉2L2(R,Rn)

(4.2.54)

for any w ∈ L2
Q. In a similar fashion, we find

Γ(2)
σ (t) =

∫ t

0
a(2)
σ (Φσ)[V (1)

σ (s), V (1)
σ (s)] ds+

∫ t

0
b(1)
σ (Φσ)[V (1)

σ (s)] dWQ
t , (4.2.55)

in which we have

a(2)
σ [V, V ] =− 1

2 〈D
2f(Φσ)[V, V ], ψtw〉L2(R,Rn), (4.2.56)

together with

b(1)
σ (Φσ)[V ][w] =−

〈ψtw, Dg(Φσ)[V ]v〉L2(R,Rn)

〈Φ′σ, ψtw〉L2(R,Rn)

− 〈∂ξV, ψtw〉L2(R,Rn)
〈ψtw, g(Φσ)w〉L2(R,Rn)

〈Φ′σ, ψtw〉2L2(R,Rn)
.

(4.2.57)

Note that the expressions for V (2)
σ (t) and Γ(2)

σ (t) depend on f , but not on h. This is
due to the fact that the O(σ2) part of the Itô-Stratonovich correction term is already
absorbed in (Φσ, cσ). If we would have started our computations around (Φ0, c0), the
dependence of h would show up via (Φ0;2, c0;2). However the extra second order terms
together form (4.2.47) and therefore vanish.

We remark that both of these second order terms have a nonzero expectation, which
can be explicitly computed using the Itô lemma. To this end, we introduce the notation

Kσ(s)[w1, w2] = 1
2D

2f(Φσ)[S(s)Sσ(0)w1, S(s)Sσ(0)w2] (4.2.58)
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for any v, w ∈ L2
Q. Upon choosing a basis (ek) of L2(R,Rm) and applying Lemma 4.5.3,

we find

E[Γ(2)
σ (t)] = −

∫ t

0

∫ s

0

∞∑
k=0
〈Kσ(s′)[

√
Qek,

√
Qek], ψtw〉L2(R,Rn) ds

′ds, (4.2.59)

together with

E[V (2)
σ (t)] =

∫ t

0
S(t− s)

∫ s

0

∞∑
k=0

[
Kσ(s′)[

√
Qek,

√
Qek]

− Φ′σ
〈Kσ(s′)[

√
Qek,

√
Qek], ψtw〉L2(R,Rn)

〈Φ′σ, ψtw〉L2(R,Rn)

]
ds′ds.

(4.2.60)

Sending t→∞, we can explicitly compute

cod
σ;2 = lim

t→∞
t−1E[Γ(2)

σ (t)] = −
∫ ∞

0

∞∑
k=0
〈Kσ(s′)[

√
Qek,

√
Qek], ψtw〉L2(R,Rn) ds. (4.2.61)

Note that this integral converges because Sσ(0) is orthogonal to ψtw, which circumvents
the nondecaying mode of the semigroup.

In a similar fashion, we can obtain

V od
σ;2 = lim

t→∞
E
[
V (2)
σ (t)

]
. (4.2.62)

Switching the integrals in (4.2.60) and applying the operator identity [80, Prop. 1.3.6]

Ltw

∫ t

0
S(s)ds = S(t)− I, (4.2.63)

we arrive at

V od
σ;2 =−L−1

tw

∫ ∞
0

∞∑
k=0

[
Kσ(s)[

√
Qek,

√
Qek]− Φ′σ

〈Kσ(s)[
√
Qek,

√
Qek], ψtw〉L2(R,Rn)

〈Φ′σ, ψtw〉L2(R,Rn)

]
ds.

(4.2.64)

Third order: Γ(3)
σ Provided that the nonlinearities are sufficiently smooth, the

methods in the previous paragraphs can in principle be extended to any desired order
in σ, but the computations get more involved. However, it is important to note that in
order to compute the n-th order approximation of Γ(t), we only need information from
V (t) up to order n− 1. In particular, upon inspecting equation (4.2.20) we find that

σ3Γ(3)
σ (t) =

∫ t

0
aσ
(
σV (1)

σ (s) + σ2V (2)
σ (s)

)
ds+ σ

∫ t

0
bσ
(
σV (1)

σ (s) + σ2V (2)
σ (s)

)
dWQ

s

− σΓ(1)
σ (t)− σ2Γ(2)

σ (t) +O(σ4).
(4.2.65)
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This gives us a convenient numerical procedure to compute cod
0;3 without having to

explicitly compute a(3)
σ and b(2)

σ . Indeed, we may write

cod
0;3 = lim

σ→0, t→∞
σ−3E

[ ∫ t

0
aσ
(
σV (1)

σ (s) + σ2V (2)
σ (s)

)
ds− σ2Γ(2)

σ (t)
]
. (4.2.66)

4.2.4 Predictions
Based upon the perturbation analysis in the previous section, we can make the following
predictions on the behaviour of the wave.

Diffusive phase wandering At leading order in σ, we see that the phase wanders
diffusively around the deterministic position c0t. Indeed, based upon (4.2.51) we predict
that

Var
(
Γ(t)

)
= σ2〈g(Φσ)QgT (Φσ)ψtw, ψtw〉2L2(R,Rn)t+O(σ3). (4.2.67)

Note that this expression coincides with the mean square deviation from the determin-
istic phase E[(Γ(t)− c0t)2] up to O(σ3). In the specific case of the stochastic Nagumo
equation, this expression has been known for two decades already [39, eq. (6.25)]. Sim-
ilar identities (with g(u) = 1) were found for almost translationally invariant additive
noise [68, §3.4] and in the context of neural field equations [16, 72]. Remark that the
difference between the Itô and Stratonovich interpretation cannot yet be observed at
this level.

Short term behaviour Based on (4.2.59) we see that on short timescales we have

E[Γ(2)
σ (t)] ∼ t2, (4.2.68)

which does not contribute meaningfully to the speed for small t. Similarly, we have

Var[V (1)
σ (t)] ∼ t, E[V (2)

σ (t)] ∼ t2, (4.2.69)

which shows that also the shape of the wave is relatively unaffected by these correction
terms. In particular, we see that on short timescales the pair (Φσ, cσ) indeed accurately
describes the shape and speed of the wave. We feel that this justifies the use of our
‘instantaneous stochastic wave’ terminology.

Long term behaviour On longer timescales the Ornstein-Uhlenbeck-like process
V (1)
σ starts to play an important role, causing fluctuations around (Φσ, cσ) that lead

to the orbital drift corrections. Using the Itô isometry, we predict that the size of the
perturbations behaves as

E[‖V (t)‖2L2(R,Rn)] = σ2E[‖V (1)
0 (t)‖2L2(R,Rn)] +O(σ3)

= σ2
∫ t

0
‖S(s)S0(0)‖2

HS
(
L2
Q
,L2(R,Rn)

) ds+O(σ3),
(4.2.70)
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see [26, Ex. 4]. We point out that the integral actually converges (at an exponential
rate) as t→∞. Naturally, the residual is predicted to behave as

E[‖Vres(t)‖2L2(R,Rn)] = E[‖V (t)− V (1)
σ (t)− V (2)

σ (t)‖2L2(R,Rn)] ∼ O(σ6). (4.2.71)

Although the average of V (1)
0 (t) can be kept under control, our phase tracking breaks

down as soon as ‖V (t)‖L2(R,Rn) exceeds a certain σ-independent threshold. Based on the
hitting-time estimates for the scalar Ornstein-Uhlenbeck process that were obtained in
[87, eq. (6a)], we conjecture that the expected break-down time increases exponentially
with respect to σ−2. In a similar vein, the quantity of interest for our stability analysis
is the expectation of the supremum of ‖V (t)‖2 over the interval [0, T ]. Based on
detailed and very delicate computations for the standard scalar Ornstein-Uhlenbeck
process [2, 91, 96], we conjecture that E sup0≤t≤T ‖V

(1)
0 (t)‖2L2(R,Rn) ∼ ln(T ), while the

corresponding expression for V (2)
0 grows as ln2(T ); see also Figure 4.8a.

Both these conjectures suggest that our framework remains valid for T up toO(eησ
−2

)
for some small η > 0. However, it is not clear to us how the bounds above can be
obtained in the infinite-dimensional semigroup setting. In our rigorous stability proof we
are therefore forced to work with a weaker O(σ2T ) bound for the supremum expectation,
which understates the timescales over which we can keep track of the stochastic wave.

Once we have lost track of the wave, it could potentially be possible to restart the
tracking mechanism by allowing for an instantaneous jump in the phase. In [57, §7]
some first promising results in this direction were obtained by defining the phase as the
- possibly discontinuous - solution to a global minimisation problem.

Turning to the limiting speed and shape of the wave, we arrive at the prediction

cσ;lim = cσ + σ2cod
σ;2 + σ3cod

σ;3 +O(σ4)
= c0 + σ2[c0;2 + cod

0;2] + σ3cod
0;3 +O(σ4),

(4.2.72)

where we used (Φσ, cσ) = (Φ0, c0) +O(σ2) to conclude that the difference between cod
σ;2

and cod
0;2 is also of order σ2. In a similar fashion, we obtain

Φσ;lim = Φσ + σ2V od
0;2 +O(σ3)

= Φ0 + σ2[Φ0;2 + V od
0;2
]

+O(σ3).
(4.2.73)

The leading order terms in the expressions (4.2.72)-(4.2.73) can all be explicitly com-
puted, which will allow us to test our predictions against numerical simulations in §4.3
and §4.4.

4.3 Example I: The Nagumo equation
In this section, we study the explicit example

dU = [∂xxU + fcub(U) + µσ2

2 q(0)g′(U)g(U)]dt+ σg(U)dWQ
t , (4.3.1)
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in which µ is either zero (Itô) or one (Stratonovich), while the nonlinearities are given
by

fcub(U) = U(1− U)(U − a), g(U) = U(1− U) (4.3.2)
for some a ∈ (0, 1). We do remark that g does not have a bounded second derivative
as demanded by our assumption (HSt). This technical problem can be remedied by
applying a cut-off function to g(U) to ensure that this value levels off for U >> 1.

Following [79], we use the normalized kernel

q(x) = 1
2ζ e

−πx2

4ζ2 (4.3.3)

to generate the cylindrical Q-Wiener process WQ
t over L2(R). Here the parameter

ζ > 0 is a measure for the spatial correlation length, which is defined [39] as the second
moment of q, i.e. 2ζ

π
. The kernel p of

√
Q can be computed by taking the inverse

Fourier transform of
√
q̂; see Appendix 4.A.1. This yields

p(x) = 4

√
π

2
e
−πx2

2ζ2

ζ
. (4.3.4)

Notice that the dimensions of the problem are n = m = 1, which means that g = gT .
We now set out to carefully perform the computations in §4.2.3 and compare the

results with our numerical simulations. These simulations are based on the algorithms
from [78, Ch. 10]. In particular, we use a semi-implicit scheme in time and a straight-
forward central-difference discretization in space. In addition, we use circulant embed-
ding [78, Alg. 6.8] to generate a stochastic Wiener process with the prescribed spatial
correlation function.

Computing (Φσ, cσ) As explained in §4.1, the wave (Φ0, c0) satisfies the ODE

Φ′′0 + c0Φ′0 + fcub(Φ0) = 0 (4.3.5)

and is given by

Φ0 = 1
2

[
1− tanh

(
1

2
√

2
x

)]
, c0 =

√
2
(

1
2 − a

)
. (4.3.6)

The linear operators Ltw and L∗tw act as

Ltwv = v′′ + c0v
′ + f ′cub(Φ0)v, L∗tww = w′′ − c0w′ + f ′cub(Φ0)w (4.3.7)

and we write Φ′0 respectively ψtw(x) = ec0xΦ′0/〈Φ′0, ec0·Φ′0〉L2(R) for their normalized
simple eigenfunctions at zero.

In this scalar setting, the full equation Fσ(Φσ, cσ) = 0 can be written as

Φ′′σ + cσΦ′σ + fcub(Φσ) =− σ2

2
〈q ∗ (g(Φσ)ψtw), g(Φσ)ψtw〉L2(R)

〈Φ′σ, ψtw〉2L2(R)
Φ′′σ

+ σ2
(
g(Φσ)q ∗ (g(Φσ)ψtw)

)′
〈Φ′σ, ψtw〉L2(R)

− µσ2

2 q(0)g′(Φσ)g(Φσ).

(4.3.8)
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(a) (b)

Figure 4.1: Panel (a) compares the deterministic wave speed (4.3.6) (green), the instanta-
neous stochastic wave speed cσ for the Ito (blue) and Stratonovich (red) interpretations
and the speed csne derived in [39, eq. (6.33)] (orange), all for σ = 1 and ζ = 1. The red
and orange lines are only plotted for aeff ∈ (0, 1/2). Panel (b) compares the associated
wave profiles for a = 0.45 and σ = 1.3. Notice the steepening and flattening of the
waves for the Itô respectively Stratonovich interpretations. The profiles are computed
on the interval [−40, 40], but here zoomed in to [−15, 15] to highlight the differences.

It is interesting to compare this equation with the system

Φ′′sne + csneΦ′sne + fcub(Φsne) = −µσ
2

2 q(0)g′(Φsne)g(Φsne) (4.3.9)

used to construct the waves (Φsne, csne) in [39] using their so-called small noise expansion
technique. As the authors remark, this equation is not the result of a systematic
perturbative expansion in σ, but rather a partial resummation of such an expansion.
For example, the additional two O(σ2) terms in (4.3.8) arise from the second order
terms in the Itô formula which were neglected in [39].

In any case, for µ = 1 we can rewrite (4.3.9) in the explicit form

Φ′′sne + csneΦ′sne +
(
1− σ2q(0)

)
u(1− u)

(
u− aeff

)
= 0, (4.3.10)

with a new effective detuning parameter

aeff = 2a− σ2q(0)
2− 2σ2q(0) . (4.3.11)

This equation is just a scaled version of the original ODE, which can be solved by
rescaling (4.3.6) as

Φsne = 1
2

[
1− tanh

(√
1− σ2q(0)

2
√

2
x

)]
, csne =

√
2
(
1− σ2q(0)

)
(1
2 − aeff).

(4.3.12)

Our full system (4.3.8) cannot be solved explicitly, but in the bistable regime
aeff ∈ (0, 1) we were able to use a straightforward fixed point method to numerically
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(a) U(x+ c0t, t) (b) U(x+ cσt, t) (c) U(x+ Γ(t), t)

Figure 4.2: A single realisation of (4.3.1) in the Stratonovich interpretation with initial
condition Φσ in 3 different reference frames, with parameters a = 0.25, σ = 0.3 and
ζ = 1. We can clearly see in (a) that the deterministic speed underestimates the
stochastic speed. Replacing c0 with cσ in (b) captures the movement better, but the
position is still fluctuating. Panel (c) shows that these fluctuations can be captured
almost completely in the Γ(t)-frame.

approximate the solutions; see Figure 4.1a. These results show that csne is a reasonable
approximation for cσ, but in Figure 4.4b we shall see that csne compares less favourably
with the full limiting wave speed. Note that our solutions are in agreement with the
numerical observations from [79]: for the Stratonovich interpretation the wave moves
faster and is less steep, but for the Itô interpretation the wave slows down and becomes
steeper.

We now turn to expanding (Φσ, cσ) in powers of σ. Following (4.2.48), the lowest
order correction to cσ becomes

c0;2 =− 1
2 〈Φ

′′
0 , ψtw〉L2(R)〈q ∗ (g(Φ0)ψtw), g(Φ0)ψtw〉L2(R)

− 〈g(Φ0)q ∗ (g(Φ0)ψtw), ψ′tw〉L2(R) −
µq(0)

2 〈g′(Φ0)g(Φ0), ψtw〉L2(R).

(4.3.13)

We can subsequently find Φ0;2 by numerically inverting the linear operator Ltw to solve

LtwΦ0;2 = −1
2Φ′′0〈q ∗ (g(Φ0)ψtw), ψtw〉2L2(R) − c0;2Φ′0 +

(
g(Φ0)q ∗ (g(Φ0)ψtw)

)′
− q(0)

2 g′(Φ0)g(Φ0).
(4.3.14)

We remark that these approximations can also be evaluated for additive noise (g = 1),
or, in the Itô interpretation, for q(x − y) = δ(x − y). In Figure 4.3 we compare
(Φσ−Φ0, cσ− c0) with our quadratic approximations for a range of different values of σ.
There appears to be a good agreement, both for the Itô and Stratonovich interpretation.

Limiting wave speed In order to provide some insight on the effectiveness of our
stochastic phase Γ(t), Figure 4.2 describes the behaviour of U(t) for a single realisation
of (4.3.1) in three different reference frames. The first panel shows the wave in the
deterministic co-moving frame, which clearly underestimates the wave speed. Replacing
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the speed c0 by cσ gives a better approximation, but the wave is still wandering.
The right panel shows that these fluctuations can be largely eliminated by using Γ(t),
confirming that this an appropriate representation for the position of the wave.

At leading order, the fluctuations around cσt are described by the scaled Brownian
motion

Γ(1)
0 (t) =

∫ t

0
〈ψtw, g(Φ0)dWQ

s 〉L2(R). (4.3.15)

The corresponding variance is given by

Var
(
σΓ(1)

0 (t)
)

= σ2〈q ∗ (g(Φ0)ψtw), g(Φ0)ψtw〉L2(R)t, (4.3.16)

which exactly matches [39, eq. (6.25)]. Since E Γ(1)
0 (t) = 0, the orbital drift corrections

to the limiting wave speed are only visible at second order in σ. In particular, the lowest
order contribution given in (4.2.61) reduces to

cod
0;2 = −1

2

∫ ∞
0

∞∑
k=0
〈f ′′cub(Φ0)

(
S(s)S0(0)[p ∗ ek]

)2
, ψtw〉L2(R) ds. (4.3.17)

Here the square is taken in a pointwise fashion, with

S0(0)[p ∗ ek] = g(Φ0)p ∗ ek − Φ′0〈p ∗ ek, g(Φ0)ψtw〉L2(R). (4.3.18)

In order to evaluate this expression for cod
0;2, we need to choose an appropriate orthonor-

mal basis for L2([−L,L];R), where [−L,L] is the domain that we use for the numerical
simulations. Following [79, 103], we take

e
(L)
k,c (x) = 1√

L
cos(πkx

L
), e

(L)
k,s (x) = 1√

L
sin(πkx

L
) (4.3.19)

for all integers k ≥ 0 and introduce the quantities

λk;apx = exp[−πk2ζ2/L2]. (4.3.20)

A short computation shows that

Qe
(L)
k,c = q ∗ e(L)

k,c =
∫ L

−L
q(· − y)e(L)

k,c (y)dy ≈
∫ ∞
−∞

q(· − y)e(L)
k,c (y)dy = λk;apxe

(L)
k,c

(4.3.21)

and in the same fashion we find Qe(L)
k,s ≈ λk;apxe

(L)
k,s . These observations can be used to

approximate the expression (4.3.17) by writing

cod
0;2 ≈ −

1
2

∫ ∞
0

150∑
k=0

∑
#∈{c,s}

λk;apx〈f ′′cub(Φ0)
(
S(s)I(L)

k#
)2
, ψtw〉L2([−L,L];R) ds, (4.3.22)
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(a) (b)

Figure 4.3: These panels display the stochastic corrections cσ − c0 and Φσ −Φ0 for the
wave speed (a) and wave profile (b), together with their leading order approximations.
We chose a = 0.25 and ζ = 1, which results in c0;2 = −0.0298 (Itô) and c0;2 = 0.0563
(Stratonovich). The profiles in (b) were computed for σ = 0.5.

in which we have

I(L)
k# = g(Φ0)e(L)

k# − Φ′0〈e
(L)
k# , g(Φ0)ψtw〉L2([−L,L];R). (4.3.23)

We verified numerically that the resulting sum converges exponentially fast in both
L and k.

In order to approximate the cubic coefficient cod
σ;3, we use the fact that Γ(3)

σ (t) depends
only on V (1)

σ (t) and V (2)
σ (t). In particular, we made the approximation

σ3cod
0;3 ≈ cod

cub(σ) (4.3.24)

by numerically computing

cod
cub(σ) = 2

T

∫ T

T
2

1
t
E
[
Γapx(t)− cσt− σΓ(1)

σ (t)− σ2Γ(2)
σ (t)

]
dt, (4.3.25)

in which

Γapx(t) = cσt+
∫ t

0
aσ
(
σV (1)

σ (s) + σ2V (2)
σ (s)

)
ds+

∫ t

0
bσ(σV (1)

σ (s) + σ2V (2)
σ (s)

)
dWQ

s

(4.3.26)
denotes the value for Γ(t) that is obtained by integrating (4.2.20) using only the second
order approximation of V .

Putting everything together, we obtain the prediction

cpred
σ;lim = c0 + σ2[c0;2 + cod

0;2] + cod
cub(σ) +O(σ4). (4.3.27)

To get a feeling for the sizes of the perturbations in the Stratonovich interpretation, we
remark that our computations for a = 0.25 and ζ = 1 yield

cpred
σ;lim = 0.3536 + σ2[0.056− 0.0043] + 0.0036σ3 +O(σ4). (4.3.28)



4

§4.3 – Example I: The Nagumo equation 165

(a) (b)

Figure 4.4: In (a) we computed the average E[Γ(t) − cσt] over 1000 simulations of
(4.2.34) for the Stratonovich interpretation, using the procedure described in the main
text for several values of σ. Notice that a clear trend is visible, which validates the
orbital drift principle. In (b) we show the relative deviation of cσ;lim from c0. Here
the observed limiting speed is computed by evaluating the average (4.3.29) for the
data in (a), while the quadratic and cubic approximations were computed using the
relevant terms in (4.3.27). The orange line is the prediction arising from the small noise
expansion (4.3.12). Both plots use a = 0.25 and ζ = 1.

Clearly, the contribution from the orbital drift is significantly smaller then the contri-
bution from cσ.

To test this prediction, we numerically computed a proxy for the limiting wave speed
by evaluating the integral

cobs
σ;lim = cσ + 2

T

∫ T

T
2

1
t
E[Γ(t)− cσt− σΓ(1)

σ (t)] dt, (4.3.29)

which computes the average speed over the interval [T/2, T ] in order to remove any
transients from the data. Note that subtracting Γ(1)

σ (t) does not change the average but
speeds up the convergence towards the average. This computation is motivated by the
plots of E[Γ(t) − cσt] contained in Figure 4.4a, which have a clear linear trend. This
validates the concept of a limiting wavespeed, but also illustrates the need to include
the orbital drift corrections to the instantaneous wavespeed cσ.

In Figure 4.4b we show the relative deviation of cσ;lim from c0, i.e. (cσ;lim − c0)/c0.
The blue dots represent the numerically observed values. The red dashed line shows the
quadratic approximation c0 + σ2[c0;2 + cod

0;2] and there is indeed a good correspondence.
We also provide a cubic approximation to the wave speed by adding the term cod

cub(σ).
This indeed improves the prediction, validating our computations. However, it also
shows that the improvement is small and might not be worth the effort.

For completeness, we also included the predictions (4.3.9) arising from the small
noise expansion technique. The results show that these predictions capture the overall
behaviour of the limiting speed correctly, but the values deviate significantly.

Size of V (t) Next, we turn our attention to the size of the perturbation V (t) defined
in (4.2.34). Although the leading order term V

(1)
0 (t) has zero mean, this does not hold
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(a) (b)

Figure 4.5: In (a) we computed the average E[‖V (t)‖2L2(R)] over 1000 realisations of
(4.2.34) in the Itô interpretation. The dashed line shows the numerical evaluation of the
first order term (4.3.30). In (b) we computed the corresponding averages for the residual
(4.3.32) by evaluating and subtracting σV (1)

σ (t) and σ2V (2)
σ (t) for every realisation in

(a). Note that both V (t) and Vres(t) stabilize over time.

for its norm. Indeed, using (4.2.70) we find

E[‖V (1)
0 (t)‖2L2(R)] =

∫ t

0
‖S(s)S0(0)‖2

HS
(
L2
Q
,L2(R)

)ds
=
∫ t

0

∞∑
k=0
‖S(s)[g(Φ0)p ∗ ek − Φ′0〈g(Φ0)ψtw, p ∗ ek〉L2(R)]‖2L2(R) ds.

(4.3.30)

This expectation can be approximated using the same basis functions and eigenvalues
that we used for the orbital drift. Stated more concretely, we recall (4.3.23) and write

E[‖V (1)
0 (t)‖2L2(R)] ≈

∫ t

0

150∑
k=0

∑
#∈{c,s}

λk;apx‖S(s)I(L)
k# ‖

2
L2([−L,L];R) ds. (4.3.31)

This function is represented by the red dashed line in Figure 4.5a. This agrees
well with the numerical average of E[‖V (t)‖2L2(R)] that we computed directly from our
simulations. The exponential behaviour for short time scales as well as the longer
term stabilisation are nicely captured by these results. We note that we expect this
limiting value to be of order O(σ2). This is confirmed by Figure 4.7a, which shows how
E‖V (T )‖2L2(R) scales with σ for T = 1000.

Similar behaviour was found during our simulations for the residual

Vres(t) = V (t)− σV (1)
σ (t)− σ2V (2)

σ (t). (4.3.32)

Indeed, Figure 4.5b shows that this residual also stabilizes exponentially fast to a small
value which we expect to be O(σ6), as confirmed in Figure 4.7a.

We emphasize that we do not expect the running supremum of ‖V (t)‖L2(R) to
stabilize in the same fashion. Indeed, we numerically computed E[ sup

0≤s≤t
‖V (s)‖2L2(R)] for
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(a) E[V (t)] (b) σ2E[V (2)
0 (t)]

Figure 4.6: Panel (a) displays the average of V (t) over 500 iterations of (4.3.1) in the
Stratonovich interpretation for a = 0.25, ζ = 1 and σ = 0.5. Panel (b) contains a
numerical evaluation of (4.3.33) that includes the first 150 terms of the sum.

0 ≤ t ≤ 1000. The results strongly suggest that this supremum grows logarithmically
in time (Figure 4.8a) and scales as σ2 for large fixed t (Figure 4.8b). This is hence
significantly better than the O(σ2t) bound that arises from the Burkholder-Davis-Gundy
inequality and confirms our belief that our approach can be used to track waves over
time scales that are exponential in σ.

Limiting wave profile Since E[V (1)
σ (t)] = 0, we expect the leading order contribution

to the average of V (t) to be given by σ2E[V (2)
0 (t)]. Using (4.3.18) once more, we find

that (4.2.60) can be written as

E[V (2)
0 (t)] = 1

2

∫ t

0
S(t− s)

∫ s

0

∞∑
k=0

[
f ′′cub(Φ0) (S(s′)S0(0)[p ∗ ek])2

− Φ′0〈f ′′cub(Φ0) (S(s′)S0(0)[p ∗ ek])2
, ψtw〉L2(R)

]
ds′ds.

(4.3.33)

This can be evaluated using the same expressions for the eigenvalues and eigenfunctions
that we used for the orbital drift. In order to compare this to our simulations, we
numerically approximated E[V (t)] by taking the average over 500 simulations of V (t)−
σV (1)

σ (t). Since E[V (1)
σ (t)] = 0, this again speeds up the convergence to the mean.

The results are contained in Figure 4.6, which shows that σ2E[V (2)
0 (t)] is indeed very

good approximation for E[V (t)]. These plots also show that the average shape indeed
appears to converge to a limit, motivating us to write

Φobs
σ;lim = Φσ + E[V (20)]. (4.3.34)

We recall our prediction

Φpred
σ;lim = Φ0 + σ2[Φ0;2 + V od

0;2 ] +O(σ3) (4.3.35)

for the limiting wave profile. We can now numerically approximate the expression
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(a) (b)

Figure 4.7: The data points in (a) are computed from Figure 4.5 by evaluating the expec-
tations at T = 1000 and plotting them as function of σ. We observe that E[‖V (T )‖2L2(R)]
and E[‖Vres(T )‖2L2(R)] scale as O(σ2) and O(σ6) respectively, as predicted. Panel (b)
compares the observed (solid) and predicted (dashed) limiting deviations from Φ0 for
multiple values of σ in the Stratonovich interpretation, see (4.3.34) and (4.3.35).

(4.2.64) for V od
0;2 by computing

V od
0;2 ≈ −

1
2L
−1
tw

∫ T

0

150∑
k=0

∑
#∈{c,s}

λk;apx

[
f ′′cub(Φ0)

(
S(s)I(L)

k#
)2 − Φ′0〈f ′′cub(Φ0)

(
S(s)I(L)

k#
)2
, ψtw〉L2([−L,L];R)

]
ds.

(4.3.36)

To test our prediction, we compare Φobs
σ;lim−Φ0 against σ2[Φ0;2 +V od

0;2 ] for multiple values
of σ. The results are plotted in Figure 4.7b, which again confirms that there is a good
match.

4.4 Example II: The FitzHugh-Nagumo system
In this section we repeat the experiments from §4.3 for the two-component FitzHugh-
Nagumo system

dU =
[
Uxx + fcub(U)−W + µσ2h(u)(U,W )]dt+ σg(u)(U,W )dWQ1

t ,

dW =
[
%Vxx + ε(U − γW ) + µσ2h(w)(U,W )]dt+ σg(w)(U,W )dWQ2

t ,
(4.4.1)

where fcub is the same cubic polynomial as in §4.3 and %, ε, γ, σ > 0. We assume that
the two processes WQ1

t and WQ2
t are independent, allowing us to write

g(U,W ) =
(
g(u)(U,W ) 0

0 g(w)(U,W )

)
, Qv =

(
Q1v1 0

0 Q2v2

)
=
(
q1 ∗ v1 0

0 q2 ∗ v2

)
(4.4.2)

for two convolution kernels q1 and q2. In particular, we have n = m = 2 and we assume
that the combination diag(q1, q2) satisfies (Hq).
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(a)
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Figure 4.8: Panel (a) shows the numerical evaluation of E[sup0≤s≤t‖V (s)‖2L2(R)] for
different values of σ, where the average is computed over 500 iterations. The trend lines
indicate that this supremum admits logarithmic growth. Panel (b) plots the supremum
at t = 1000 against σ, illustrating the O(σ2) behaviour. We used the Itô interpretation
with a = 0.25 and ζ = 1.

Upon combining the general computations in [33, p. 123] with the abstract infinite-
dimensional framework developed in [108, §4.1], one can show that the Itô-Stratonovich
correction term is given by(

h(u)(U,W )
h(w)(U,W )

)
= 1

2

(
q1(0)D1g

(u)(U,W )g(u)(U,W )
q2(0)D2g

(w)(U,W )g(w)(U,W )

)
. (4.4.3)

As usual, we can switch between the Itô (µ = 0) and Stratonovich (µ = 1) interpretations
for the noise term.

All the expressions that we derive in this section are valid for the general situation
described in (4.4.2). However, in order to generate our plots we used the specific choices

g(u)(U,W ) = U, g(w)(U,W ) = 0, q1(x) = q2(x) = 1
2e
−πx2

4 , (4.4.4)

together with the parameter values a = 0.1, % = 0.01, ε = 0.01 and γ = 5. Although
we were unable to find prior work to which our results can be compared, we do point
out that computations for the somewhat related Barkley model are discussed in [38].

Computing (Φσ, cσ). Assume for the moment that the deterministic travelling wave
ODE

∂ξξΦ(u)
0 + c0∂ξΦ(u)

0 + fcub(Φ(u)
0 )− Φ(w)

0 = 0,

%∂ξξΦ(w)
0 + c0∂ξΦ(w)

0 + ε(Φ(u)
0 − γΦ(w)

0 ) = 0
(4.4.5)

has a spectrally stable wave solution Φ0 = (Φ(u)
0 ,Φ(w)

0 ). We then recall the associated
linear operator Ltw : H2(R,R2)→ L2(R,R2) that acts as

Ltw =

 ∂ξξ + c0∂ξ + f ′cub(Φ(u)
0 ) −1

ε %∂ξξ + c0∂ξ − εγ

 , (4.4.6)



4

170 Chapter 4 – Translation Invariant Noise

0 0.05 0.1 0.15
-0.15

-0.1

-0.05

0

(a)

-40 -20 0 20 40

0

0.2

0.4

0.6

0.8

1

(b)

Figure 4.9: These panels display the stochastic corrections cσ − c0 for the wave speed
(a) and the stochastic wave profiles Φσ for σ = 0.3 (b), together with their quartic
approximations.

(a) U(x+ c0t, t) (b) U(x+ cσt, t) (c) U(x+ Γ(t), t)

Figure 4.10: A single realisation of the U -component of (4.4.1) with σ = 0.1 in 3
different reference frames. The initial condition is given by U(0) = Φσ.

together with the formal adjoint operator that is given by

L∗tw =

 ∂ξξ − c0∂ξ + f ′cub(Φ(u)
0 ) ε

−1 %∂ξξ − c0∂ξ − εγ

 . (4.4.7)

The spectral stability implies that L∗tw admits an eigenfunction ψtw = (ψ(u)
tw , ψ

(w)
tw ) that

can be normalized in such a way that

〈∂ξΦ0, ψtw〉L2(R,R2) = 1. (4.4.8)

To summarise, we have

Ltw∂ξ(Φ(u)
0 ,Φ(w)

0 )T = 0, L∗tw(ψ(u)
tw , ψ

(w)
tw )T = 0. (4.4.9)

The existence of such spectrally stable waves has been obtained in various parameter
regions [1, 24, 25, 62], but no explicit expressions are available for (Φ0, c0). However,
they can readily be computed numerically.

Upon writing Φσ = (Φ(u)
σ ,Φ(w)

σ ), the stochastic wave equation Fσ(Φσ, cσ) = 0
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becomes

∂ξξΦ(u)
σ + cσ∂ξΦ(u)

σ + fcub(Φ(u)
σ )− Φ(w)

σ =− σ2

2 b̃(Φσ)∂ξξΦ(u)
σ − µσ2h(u)(Φσ)

+ σ2 ∂ξ[g(u)(Φσ)q1 ∗ (g(u)(Φσ)ψ(u)
tw )]

〈∂ξΦσ, ψtw〉L2(R,R2)
,

%∂ξξΦ(w)
σ + cσ∂ξΦ(w)

σ + ε(Φ(u)
σ − γΦ(w)

σ ) =− σ2

2 b̃(Φσ)∂ξξΦ(w)
σ − µσ2h(w)(Φσ)

+ σ2 ∂ξ[g(w)(Φσ)q2 ∗ (g(w)(Φσ)ψ(w)
tw )]

〈∂ξΦσ, ψtw〉L2(R,R2)
,

(4.4.10)

where b̃ is given by

b̃(Φ) = −
〈q1∗ (g(u)(Φ)ψ(u)

tw ), g(u)(Φ)ψ(u)
tw 〉L2(R) + 〈q2∗ (g(w)(Φ)ψ(w)

tw ), g(w)(Φ)ψ(w)
tw 〉L2(R)

〈∂ξΦσ, ψtw〉2L2(R,R2)
.

(4.4.11)

Using (4.4.10) to evaluate (4.2.48), we find that the lowest order correction to the
speed cσ reduces to

c0;2 =− 1
2 b̃(Φ0)〈∂ξξΦ0, ψtw〉L2(R,R2) − 〈g(u)(Φ0)q1 ∗ (g(u)(Φ0)ψ(u)

tw ), ∂ξψ(u)
tw 〉L2(R)

− 〈g(w)(Φ0)q2 ∗ (g(w)(Φ0)ψ(w)
tw ), ∂ξψ(w)

tw 〉L2(R) − µ〈h(Φ0), ψtw〉L2(R,R2).

(4.4.12)

In Figure 4.9a we numerically computed cσ for the two interpretations. It turns out
that the second order approximation above is only accurate for a range of σ that is
much smaller than we saw for the Nagumo equation. By also including the quartic term
c0;4 in our expansion we are able to track Φσ reasonably well up to σ = 0.3. This is
more than sufficient for practical purposes, as our simulations of the full system (4.4.1)
revealed that the pulse is unstable for values of σ larger than approximately σ = 0.15.
Figure 4.9b displays the shape of the instantaneous stochastic wave profile Φσ for the
two different interpretations. It is striking that the wave becomes significantly wider
for Stratonovich noise.

Limiting wave speed In Figure 4.10 we illustrate the behaviour of a representative
sample solution to (4.4.1) by plotting it in three different moving frames. Figure 4.10a
clearly shows that the deterministic speed c0 overestimates the actual speed as the wave
moves to the left. The situation is slightly improved in Figure 4.10b, where we use a
frame that travels with the stochastic speed cσ. However, the position of the wave now
fluctuates around a position that still moves slowly to the left as a consequence of the
orbital drift. This is remedied in Figure 4.10c, where we use the full stochastic phase
Γ(t). This again validates the idea of using Γ(t) as position of the wave.
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Figure 4.11: In (a) we computed the average E[Γ(t) − cσt] over 500 simulations of
(4.2.34) with µ = 0 for several values of σ, using the procedure described in the main
text. Notice that a clear trend is visible. In (b) we show the relative deviation of
cσ;lim from c0. Here the observed limiting speed is computed by evaluating the average
(4.4.18) for the data in (a), while the various quadratic predictions are obtained from
the relevant terms in (4.4.17).

As in the previous example, the variance of Γ(t) is well-described by the variance of
the leading order term Γ(1)

0 , which is given by

Var
(
Γ(1)

0 (t)
)

= 〈q1 ∗ (g(u)(Φ0)ψ(u)
tw ), g(u)(Φ0)ψ(u)

tw 〉L2(R)t

+ 〈q2 ∗ (g(w)(Φ0)ψ(w)
tw ), g(w)(Φ0)ψ(w)

tw 〉L2(R)t.
(4.4.13)

In order to explain the drift observed in Figure 4.10, we split the semigroup S(t) into
its two rows by writing S(t) =

(
S(u)(t), S(w)(t)

)T . The coefficient (4.2.61) can now be
computed as

cod
0;2 = lim

t→∞
t−1E[Γ(2)

0 (t)] = −
∫ ∞

0

∞∑
k=0
〈K0(s)[

√
Qek,

√
Qek], ψtw〉L2(R,R2)ds

= −1
2

∫ ∞
0

∞∑
k=0
〈f ′′cub(Φ(u)

0 )
(
S(u)(s)Ik

)2
, ψ

(u)
tw 〉L2(R) ds.

(4.4.14)

Here Ik is given by

Ik =
(
g(u)(Φ0)p1 ∗ e(u)

k

g(w)(Φ0)p2 ∗ e(w)
k

)
− αk∂ξ

(
Φ(u)

0
Φ(w)

0

)
, (4.4.15)

in which (ek) = (e(u)
k , e

(w)
k ) is a basis of L2(R,R2) and αk is given by

αk =
〈p1 ∗ e(u)

k , g(u)(Φ0)ψ(u)
tw 〉L2(R)+〈p2 ∗ e(w)

k , g(w)(Φ0)ψ(w)
tw 〉L2(R)

〈∂ξΦ0, ψtw〉L2(R,R2)
. (4.4.16)

It is important to note here that the two components in the equation above mix even
when g(w) = 0 due to the presence of the semigroup.
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(a) (b)

Figure 4.12: In (a) we computed the average E[‖V (t)‖2L2(R,R2)] over 500 realisations
of (4.2.34) in the Itô interpretation. The dashed line shows the numerical evaluation
of the first order term (4.4.20). In (b) we computed the corresponding averages for
the residual (4.3.32) by evaluating and subtracting σV (1)

σ (t) and σ2V (2)
σ (t) for every

realisation in (a). Again, both V (t) and Vres(t) stabilize over time.

In order to evaluate (4.4.14) numerically, we reuse the basis (4.3.19) for L2([−L,L];R)
to construct a basis for L2([−L,L];R)× L2([−L,L];R). Because Q is diagonal we can
also recycle the approximate eigenvalues λk;apx. For the Itô interpretation and the
parameter values used in Figure 4.11a, we obtain

cpred
σ;lim = c0 + σ2[c0;2 + cod

0;2] +O(σ3)
= 0.4693− σ2[0.5138 + 0.1470] +O(σ3).

(4.4.17)

Clearly, for the FitzHugh-Nagumo equation the influence of the orbital drift is signifi-
cant.

To validate our predictions, we again numerically compute

cobs
σ;lim = cσ + 2

T

∫ T

T
2

1
t
E[Γ(t)− cσt− σΓ(1)

σ (t)] dt (4.4.18)

and compare the outcome with (4.4.17). Figure 4.11b shows that the total observed
speed is indeed well approximated by the two leading order corrections, σ2c0;2 and
σ2cod

0;2.

Size of V (t) We now turn our attention to the perturbation

V (t) = (V (u)(t), V (w)(t)) =
(
U(·+ Γ(t), t),W (·+ Γ(t), t)

)
− (Φ(u)

σ ,Φ(w)
σ ) (4.4.19)

introduced in (4.2.34). As in §4.3, Figs. 4.12a and 4.14a show that E‖V (t)‖2L2(R,R2)
stabilizes exponentially fast to a fixed value of size O(σ2). These curves are nicely
captured by the red dashed lines, which describe the integral

E[‖V (1)
0 (t)‖2L2(R,R2)] =

∫ t

0

∞∑
k=0
‖S(s)Ik‖2L2(R,R2)ds (4.4.20)
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(a) E[V (u)(t)] (b) σ2E[V (u,2)
0 (t)]

Figure 4.13: Panel (a) shows the average of the first component of V (t), computed over
500 iterations of (4.4.1) with σ = 0.1 and µ = 0. Panel (b) shows the first component of
the numerical evaluation of (4.4.22). As before, there is a good correspondence between
the two figures.

that measure the size of the first order approximation

V
(1)
0 (t) =

(
V

(u,1)
0 (t), V (w,1)

0 (t)
)T
. (4.4.21)

Figure 4.12b shows that E‖Vres(t)‖2L2(R,R2) also stabilizes over time, but Figure 4.14a
indicates that the expected O(σ6) scaling is not achieved (although the behaviour is
significantly better than O(σ4)). We expect that this can be improved by utilising more
advanced numerical schemes, but do not pursue this further here.

Limiting Wave Profile Turning our attention to the average shape of V (t), we recall
(4.4.15) and note that (4.2.60) can be computed as

E [V (2)
0 (t)] =1

2

∫ t

0
S(t− s)

∫ s

0

∞∑
k=0

[(
f ′′cub(Φ0)

(
S(u)(s′)Ik

)2
0

)
− Φ′0〈f ′′cub(Φ0)

(
S(u)(s′)Ik

)2
, ψ

(u)
tw 〉L2(R)

]
ds′ds.

(4.4.22)

In Figure 4.13 we compare this second order expression with the numerical average
of E[V (t)] over 500 simulations of (4.4.1). To speed up the convergence of the average,
we subtract both σV (1)

σ (t) and the stochastic integral of σ2V (2)
σ (t) from V (t). This does

not change the outcome as both terms have zero expectation.
Notice that these two processes are almost indistinguishable from each other. To

illustrate this, we provide snapshots of both processes at t = 50 in Figure 4.14b for
various values of σ. Notice that the second order approximants follow the intricate
shape of E[V (t)] very closely.
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Figure 4.14: Panel (a) is computed from Figure 4.12 by evaluating the expectations
at the last time step T = 1000 and plotting them as function of σ. We observe
that E[‖V (T )‖2L2(R,R2)] scales as O(σ2) as predicted and E[‖Vres(T )‖2L2(R,R2)] scales
significantly faster then O(σ4), but not as the predicted O(σ6). Panel (b) is computed
from Figure 4.13, by evaluating E[V (u)(50)]. The dashed lines correspond to the second
order predictions σ2E[V (u,2)

0 (50)].

4.5 The stochastic phase-shift
In this section we derive the SPDE (4.2.34) that we used to describe the behaviour of
the phase-shifted perturbation

V (t) = T−Γ(t)[X(t) + Φref ]− Φσ (4.5.1)

introduced in (4.2.21). Here Tγ stands for the right-shift operator9 TγU = U(· − γ).
We recall from §4.2 that the process X is a solution to the SPDE

dX =
[
ρ∂xx(X + Φref) + f(X + Φref) + σ2h(X + Φref)

]
dt+ σg(X + Φref)dWQ

t

(4.5.2)

posed on the Hilbert space L2(R,Rn). In addition, the phase Γ(t) was assumed to
satisfy the SDE

dΓ =
[
cσ + aσ(U,Γ)

]
dt+ σb(U,Γ)dWQ

t , (4.5.3)

with nonlinearities aσ and b that were only defined locally.
In §4.5.1 we sketch how the noise process dWQ

t can be rigorously constructed. We
subsequently introduce several cut-off functions in §4.5.2 that allow us to define aσ and
b in such a way that (4.5.3) remains well-posed globally. This allows us to formulate an
appropriate Itô lemma in §4.5.3, which we use in §4.5.4 to perform the computations
that lead to (4.2.34).

9 These operators will always carry a subscript and should not be confused with the time T introduced
in §4.2.
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4.5.1 Background
In this section we briefly recall some of the functional analysis needed to set up the
rigorous framework to study SPDEs. In order to ease the comparison with the earlier
work in Chapter 2, it turns out to be convenient to work in an abstract setting for the
moment. In particular, we consider noise that lives in an arbitrary separable Hilbert
space W and pick a non-negative symmetric operator Q ∈ L(W,W). We then write10

WQ = Q1/2(W), (4.5.4)

which is again a separable Hilbert space with inner product

〈v, w〉WQ
= 〈Q−1/2v,Q−1/2v〉W . (4.5.5)

We now fix an orthonormal basis (ek) for W, which means that (
√
Qek) is a basis

for WQ. For any Hilbert space H, we recall that a linear map Λ :WQ → H is contained
in the set of Hilbert-Schmidt operators HS(WQ,H) if it satisfies 〈Λ,Λ〉HS(WQ,H) <∞.
Here the inner product is given by

〈Λ1,Λ2〉HS(WQ,H) : =
∞∑
k=0
〈Λ1
√
Qek,Λ2

√
Qek〉H. (4.5.6)

The construction in [93, §2.5] allow us to define a Hilbert space Wext ⊃ W so that the
inclusion WQ ⊂ Wext is such a Hilbert-Schmidt operator. This (non-unique) extension
space is the key ingredient that allows our noise process to be rigorously constructed.

Turning to this task, we introduce a complete probability space
(

Ω,F ,P
)

, together
with a normal filtration (Ft)t≥0 and a set of independent (Ft)-Brownian motions (βk).
Following [66, eq. (2)], we introduce the formal sum

WQ
t =

∞∑
k=0

√
Qekβk(t), (4.5.7)

which converges in L2(Ω,F , P ;Wext) for every t ≥ 0. We will refer to this limiting
process WQ

t as a (Ft, Q)-cylindrical Wiener process. The computations in [66, Prop. 2]
show that the formal sums

〈WQ
t , w〉W =

∞∑
k=0
〈
√
Qek, w〉W βk(t), w ∈ W (4.5.8)

define scalar Wiener processes that satisfy

E
[
〈WQ

t , w1〉W〈WQ
s , w2〉W

]
= (t ∧ s)〈Qw1, w2〉W . (4.5.9)

10 In the literature, the pair (WQ,W) is often denoted as (U0, U), but in our setting this might be
confusing with the solution U(t).
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For any Hilbert space H and any T > 0, we follow the convention in [93, 95] and
introduce the space

N 2([0, T ]; (Ft);H
)

= {X ∈ L2([0, T ]× Ω; dt⊗ P;H
)

:

X has a (Ft)-progressively measurable version},
(4.5.10)

For any process B ∈ N 2([0, T ]; (Ft);HS(WQ,H)
)
, we now use [66, eq. (7)] to define

the stochastic integral∫ t

0
B(s) dWQ

s = lim
m→∞

m∑
k=0

∫ t

0
B(s)[

√
Qek] dβk(s) (4.5.11)

for all 0 ≤ t ≤ T . This limit can be taken directly in L2(Ω,F , P ;H) and hence avoids
the use of the external space. In this setting, the Itô isometry can be stated as

E〈
∫ t

0
B1(s) dWQ

s ,

∫ t

0
B2(s) dWQ

s 〉H = E

∫ t

0
〈B1(s), B2(s)〉HS(WQ,H) ds. (4.5.12)

Returning to our main SPDE (4.2.4), we assume for the moment that g(U) is a
Hilbert-Schmidt operator from WQ into L2(R,Rn) for every U ∈ UH1 . The formal
adjoint

gadj(U) : L2(R,Rn)→WQ (4.5.13)

is then defined in such a way that

〈g(U)[w], ψ〉L2(R,Rn) = 〈w, gadj(U)ψ〉WQ
= 〈Q−1/2w,Q−1/2gadj(U)[ψ]〉W (4.5.14)

holds for any w ∈ W and ψ ∈ L2(R,Rn). This point of view allows us to unify the
framework of this chapter with the setup used in Chapters 2 and 3 where scalar noise
is considered.

Indeed, for the setting described in §4.1-4.4 we can take W = L2(R,Rm) and
WQ = L2

Q. A simple computation shows that

gadj(U)[ψ] = Qg(U)Tψ, (4.5.15)

in which the matrix transpose is taken in a pointwise fashion. However, for W = Rm
we must take

gadj(U)[ψ] = Q

∫
R
g
(
U(x)

)T
ψ(x) dx, (4.5.16)

which for m = 1 reduces further to

gadj(U)[ψ] = Q〈g(U), ψ〉L2(R). (4.5.17)

We shall see that (4.5.17) can be used to recover the results in Chapters 2 and 3 from
the expressions that we derive in this section.
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4.5.2 Construction of aσ, b, Φσ and cσ

In order to ensure that the SDE for the phase Γ(t) is well-defined and admits global
solutions, we need to define the functions aσ and b appearing in (4.2.19) in such a way
that b is globally bounded, while the singularities in (4.2.26) and (4.2.31) are avoided.

To achieve this, we pick a C∞-smooth non-decreasing cut-off function

χlow : R→ [ 14 ,∞), (4.5.18)

that satisfies the identities

χlow(ϑ) = 1
4 for ϑ ≤ 1

4 , χlow(ϑ) = ϑ for ϑ ≥ 1
2 . (4.5.19)

In addition, we choose a C∞-smooth non-increasing cut-off function

χhigh : R+ → [0, 1], (4.5.20)

for which we have

χhigh(ϑ) = 1 for ϑ ≤ Kup, χhigh(ϑ) = 0 for ϑ ≥ Kup + 1 (4.5.21)

for some sufficiently large Kup >> 1.
For convenience, we now introduce the notation

χl(U,Γ) =
[
χlow

(〈
∂ξU, TΓψtw

〉
L2(R,Rn)

)]−1
, χh(U,Γ) = χhigh(‖U − TΓΦref‖L2(R,Rn)).

(4.5.22)
We remark that χl and χh are both uniformly bounded. Whenever ‖U − TΓΦ0‖L2(R,Rn)
is sufficiently small, we have

χl(U,Γ) =
[
〈∂ξU, TΓψtw〉L2(R,Rn)

]−1
, χh(U,Γ) = 1. (4.5.23)

We now define

b(U,Γ)[v] = −χh(U,Γ)2χl(U,Γ)
〈
g(U)v, TΓψtw

〉
L2(R,Rn), (4.5.24)

noting that the square on the high cut-off is simply for administrative reasons that will
become clear in the sequel. A short computation shows that

‖b(U,Γ)‖2HS(L2
Q
,R) = χh(U,Γ)4χl(U,Γ)2

∞∑
k=0
〈g(U)

√
Qek, TΓψtw〉2L2(R,Rn)

= χh(U,Γ)4χl(U,Γ)2
∞∑
k=0
〈
√
Qek, g

adj(U)TΓψtw〉2L2
Q

= χh(U,Γ)4χl(U,Γ)2〈gadj(U)TΓψtw, g
adj(U)TΓψtw〉L2

Q

= χh(U,Γ)4χl(U,Γ)2〈g(U)gadj(U)TΓψtw, TΓψtw〉L2(R,Rn).

(4.5.25)
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At this point, it is convenient to introduce the notation

Kσ;A(U) = ρU ′′ + f(U) + σ2h(U),

KB(U,Γ) = 1
2‖b(U,Γ)‖2HS(L2

Q
,R)U

′′,

KC(U,Γ) = −χ2
h(U,Γ)χl(U,Γ)g(U)gadj(U)TΓψtw,

(4.5.26)

together with

Kσ(U,Γ, c) = cU ′ +Kσ;A(U) + σ2KB(U,Γ) + σ2
[
KC(U,Γ)

]′
. (4.5.27)

In order to relate this back to §4.2, we write

Fσ(U, c) = Kσ(U, 0, c) (4.5.28)

and note that this expression reduces to (4.2.27) whenever ‖U−Φ0‖L2(R,Rn) is sufficiently
small on account of (4.5.25) and (4.5.15). We are now in a position to construct the
instantaneous stochastic waves (Φσ, cσ) by looking for zeroes of Fσ.
Proposition 4.5.1. Suppose that (Hq), (HEq), (HDt), (HSt) and (HTw) are all satis-
fied and pick a sufficiently large constant K > 0. Then there exists δσ > 0 so that for
every 0 ≤ σ ≤ δσ, there is a unique pair

(Φσ, cσ) ∈ UH2 × R (4.5.29)

that satisfies the system
Kσ(Φσ, 0, cσ) = 0 (4.5.30)

and admits the bound

‖Φσ − Φ0‖H2(R,Rn) + |cσ − c0| ≤ Kσ2. (4.5.31)

Proof. On account of the estimates in Appendix 4.A, the bounds in 2.7 can be trans-
ferred to the current context. The result can hence be established by following the
proof of 2.2.2 .

Having defined b,Φσ and cσ, aσ can now be written as

aσ(U,Γ) = −χl(U,Γ)
〈
Kσ(U,Γ, cσ), TΓψtw

〉
L2(R,Rn). (4.5.32)

The commutation relations

TΓf(U) = f(TΓU), TΓg(U)[w] = g(TΓU)[TΓw], TΓg
adj(U)[ψ] = gadj(TΓU)[TΓψ],

(4.5.33)
the latter of which exploits the translation invariance of Q, allow us to conclude the
crucial identities

aσ(U,Γ) = aσ(T−ΓU, 0), b(U,Γ)[w] = b(T−ΓU, 0)[T−Γw]. (4.5.34)

This motivates the definitions

aσ(V ) = aσ(Φσ + V, 0), bσ(V ) = b(Φσ + V, 0) (4.5.35)

that were introduced in §4.2.1. In order to see that these expressions reduce to
(4.2.26) and (4.2.31) when ‖V ‖L2(R,Rn) is small, we note that Fσ(Φσ, cσ) = 0 and
〈LtwV, ψtw〉L2(R,Rn) = 0.
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4.5.3 Itô lemma
Our goal here is to apply an appropriate version of the Itô lemma to the combined
stochastic process Z(t) =

(
X(t),Γ(t)

)
, which takes values in the Hilbert spaces

H1
Z = H1(R,Rn)×R, HZ = L2(R,Rn)×R, H−1

Z = H−1(R,Rn)×R. (4.5.36)

Indeed, upon defining nonlinearities

Aσ : H1
Z → H−1

Z , B : H1
Z → HS

(
L2
Q,HZ

)
(4.5.37)

that act as
Aσ(X,Γ) =

(
Kσ;A(X + Φref), cσ + āσ(X + Φref ,Γ)

)
, (4.5.38)

together with
B(X,Γ) =

(
g(X + Φref), b(X + Φref ,Γ)

)
, (4.5.39)

the coupled system for Z can formally be written as

dZ = Aσ(Z) dt+ σB(Z) dWQ
t . (4.5.40)

Our first result here clarifies how solutions to this system should be interpreted. We
emphasize that our phase Γ is almost surely continuous, unlike its counterpart in [57]
which admits jumps. This is a direct consequence of the fact that Γ is defined to be
the solution of an SDE rather than the minimizer of a distance functional. The cut-off
functions introduced in §4.5.2 ensure that the phase Γ remains well-defined even if the
orthogonality condition 〈V, ψtw〉L2(R,Rn) = 0 can no longer be maintained.

Proposition 4.5.2. Suppose that (Hq), (HEq), (HDt), (HSt) and (HTw) are all sat-
isfied and fix T > 0, 0 ≤ σ ≤ δσ and cσ ∈ R. In addition, pick an initial condi-
tion Z0 ∈ HZ. Then there is a unique map Z : [0, T ] × Ω → HZ that is of class11

N 2([0, T ]; (Ft);H1
Z
)

and satisfies the following properties.

(i) For almost all ω ∈ Ω, the map t 7→ Z(t, ω) is of class C([0, T ];HZ).

(ii) For all t ∈ [0, T ], the map ω 7→ Z(t, ω) ∈ HZ is (Ft)-measurable.

(iii) We have the inclusion B(Z) ∈ N 2([0, T ]; (Ft);HS(L2
Q,HZ)

)
.

(iv) For almost all ω ∈ Ω, the identity

Z(t) = Z0 +
∫ t

0
Aσ

(
Z(s)

)
ds+ σ

∫ t

0
B
(
Z(s)

)
dWQ

s (4.5.41)

holds for all 0 ≤ t ≤ T .

Proof. In light of the estimates obtained in Appendix 4.A, we can closely follow the
proof of 2.2.1. Indeed, the existence of the dt⊗P version of X that is (Ft)-progressively
measurable as a map into H1(R,Rn) follows from [93, Ex. 4.2.3]. The main result from
11 Recall definition (4.5.10) for N 2.
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[77] with α = 2 and β = 4 can be used to verify the remaining statements concerning
X.

As in Chapter 2, the techniques developed in [93, Ch. 3] can be used to treat
the second component of (4.5.40) as an SDE for Γ with random coefficients. The key
ingredient is [93, Thm. 3.1.1], which however is stated only for finite dimensional noise.
We claim here that the conclusions also extend to the current setting where a cylindrical
Q-Wiener process drives the stochastic terms. To see this, we note that the Itô formula
used in line 3.1.14 of the proof and the Burkholder-Davis-Gundy inequality used on
page 56 both extend naturally to our infinite-dimensional setting. Most importantly,
the local martingale defined in 3.1.14 remains a local martingale. The remaining details
can now easily be filled in by the interested reader.

The main ingredient to compute the equation for V is the Itô lemma. There are
many versions available in the literature, but we choose to apply the formulation in [27]
to our framework. Note here that Dφ and D2φ are Fréchet derivatives.
Lemma 4.5.3. Consider the setting of Proposition 4.5.2 and pick a functional φ ∈
C2(H−1

Z ,R). Then for almost all ω ∈ Ω, the identity

φ
(
Z(t)

)
=φ
(
Z(0)

)
+
∫ t

0
Dφ
(
Z(s)

)
[Aσ

(
Z(s)

)
] ds+ σ

∫ t

0
Dφ
(
Z(s)

)
[B
(
Z(s)

)
] dWQ

s

+ 1
2σ

2
∞∑
k=0

∫ t

0
D2φ

(
Z(s)

)
[B
(
Z(s)

)√
Qek,B

(
Z(s)

)√
Qek] ds

(4.5.42)

holds for all t > 0.
Proof. Item (iii) of Proposition 4.5.2 and the identity (4.5.41) allow us to interpret Z(t)
as a (standard) Itô process on H−1

Z in the sense of [27, Def. 1], with Ss,t = I. In
particular, we can apply [27, Thm. 1] to obtain the result.

4.5.4 SPDE for V
The defining identity (4.2.33) for Rσ can be formulated as

Rσ(V ) = Fσ(Φσ + V, cσ) + aσ(V )[Φ′σ + V ′]

= Kσ(Φσ + V, 0, cσ) + aσ(V )[Φ′σ + V ′],
(4.5.43)

which is now well-defined as an element of H−1(R,Rn) for all V ∈ H1(R,Rn). Recalling
the definition

Sσ(V )[w] = g(Φσ + V )[w] + ∂ξ(Φσ + V )bσ(V )[w], (4.5.44)

we now set out to establish the following result.
Proposition 4.5.4. Suppose that (Hq), (HEq), (HDt), (HSt) and (HTw) all hold.
Then the map

V : [0, T ]× Ω→ L2(R,Rn) (4.5.45)
defined by (4.5.1) is of class N 2([0, T ]; (Ft);H1(R,Rn)

)
and satisfies the following

properties.
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(i) For almost all ω ∈ Ω, the map t 7→ V (t, ω) is of class C
(
[0, T ];L2(R,Rn)

)
.

(ii) For all t ∈ [0, T ], the map ω 7→ V (t, ω) ∈ L2(R,Rn) is (Ft)-measurable.

(iii) We have the inclusion
Sσ(V ) ∈ N 2([0, T ]; (Ft);HS

(
L2
Q, L

2(R,Rn)
))
.

(iv) For almost all ω ∈ Ω, we have the inclusion

Rσ
(
V (·, ω)

)
∈ L1([0, T ];H−1(R,Rn)

)
(4.5.46)

and the identity

V (t) = V (0) +
∫ t

0
Rσ
(
V (s)

)
ds+ σ

∫ t

0
Sσ
(
V (s)

)
dWQ

s (4.5.47)

holds for all 0 ≤ t ≤ T .

Our main task here is to establish (4.5.47). Taking derivatives of translation oper-
ators typically requires extra regularity of the underlying function, which prevents us
from applying an Itô formula directly to (4.5.1). In order to circumvent this technical
issue, we pick a test function ζ ∈ C∞c (R,Rn) and consider the map

φζ : H−1(R,Rn)× R→ R (4.5.48)

that acts as
φζ
(
X,Γ

)
= 〈X + Φref − TΓΦσ, TΓζ〉H−1;H1 . (4.5.49)

Here 〈·, ·〉H−1;H1 denotes the duality pairing between H−1(R,Rn) and H1(R,Rn), which
coincides with the inner product on L2(R,Rn) when both factors are from this space;
see §2.2. This map does have sufficient smoothness for our purposes here and allows us
to write

〈V (t), ζ〉 = φζ
(
X(t),Γ(t)

)
. (4.5.50)

We now introduce the notation

Rσ;ζ(U,Γ) =
〈
Kσ(U,Γ, cσ) + aσ(U,Γ)U ′, TΓζ

〉
H−1;H1 , (4.5.51)

together with

Sσ;ζ(U,Γ)[w] = 〈g(U)[w], TΓζ〉L2(R,Rn) + 〈U ′, TΓζ〉L2(R,Rn)b(U,Γ)[w]. (4.5.52)

As usual, we have

Rσ;ζ(U,Γ) = Rσ;ζ(T−ΓU, 0), Sσ;ζ(U,Γ)[w] = Sσ;ζ(T−ΓU, 0)[T−Γw]. (4.5.53)

In addition, we note that

〈Rσ
(
V
)
, ζ〉H−1;H1 = Rσ;ζ(Φσ + V, 0), 〈Sσ

(
V
)
[w], ζ〉L2(R,Rn) = Sσ;ζ(Φσ + V, 0)[w].

(4.5.54)
These auxiliary functions can be used to formulate the equation that arises when
applying Lemma 4.5.3 to the functional φζ .
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Lemma 4.5.5. Suppose that (Hq), (HEq), (HDt), (HSt) and (HTw) all hold. Then
for almost all ω ∈ Ω, the identity

φζ
(
X(t),Γ(t)

)
=φζ

(
X(0),Γ(0)

)
+
∫ t

0
Rσ;ζ

(
U(s),Γ(s)

)
ds+

∫ t

0
Sσ;ζ

(
U(s),Γ(s)

)
dWQ

s

(4.5.55)

holds for all 0 ≤ t ≤ T , in which we have used U(s) = X(s) + Φref .

Proof. For convenience, we introduce the splitting

φζ(X,Γ) = φ1;ζ(X,Γ) + φ2;ζ(Γ) (4.5.56)

with
φ1;ζ

(
X,Γ

)
= 〈X,TΓζ〉H−1;H1 ,

φ2;ζ
(
Γ
)

= 〈Φref − TΓΦσ, TΓζ〉H−1;H1

= 〈T−ΓΦref − Φσ, ζ〉L2(R,Rn).

(4.5.57)

We note that φ1;ζ and φ2;ζ are both C2-smooth, with derivatives given by

Dφ1;ζ(X,Γ)[X̃, Γ̃] = D1φ1;ζ(X,Γ)[X̃] +D2φ1;ζ(X,Γ)[Γ̃]

= 〈X̃, TΓζ〉H−1;H1 − Γ̃〈X,TΓζ
′〉H−1;H1 ,

Dφ2;ζ(Γ)[Γ̃] = −Γ̃〈Φref , TΓζ
′〉L2(R,Rn),

(4.5.58)

together with

D2φ1;ζ(X,Γ)[X̃, Γ̃][X̃, Γ̃] =D2
1φ1;ζ(X,Γ)[X̃, X̃] + 2D1,2φ1;ζ(X,Γ)[X̃, Γ̃]

+D2
2φ1;ζ(X,Γ)[Γ̃, Γ̃]

=− 2Γ̃〈X̃, TΓζ
′〉H−1;H1 + β2〈X,TΓζ

′′〉H−1;H1 ,

D2φ2;ζ(Γ)[Γ̃, Γ̃] =Γ̃2〈Φref , TΓζ
′′〉L2(R,Rn).

(4.5.59)

We hence see that

Dφζ
(
Z(s)

)
[Aσ

(
Z(s)

)
] = 〈KA;σ

(
U(s)

)
, TΓ(s)ζ〉H−1;H1

−
[
cσ + aσ

(
U(s),Γ(s)

)]
〈U(s), TΓ(s)ζ

′〉L2(R,Rn)

Dφζ
(
Z(s)

)
[B
(
Z(s)

)
w] = 〈g

(
U(s)

)
[w], TΓ(s)ζ〉H−1;H1

−b
(
U(s),Γ(s)

)
[w]〈U(s), TΓ(s)ζ

′〉L2(R,Rn).
(4.5.60)

Upon writing

Ik(U,Γ) = −2b(U,Γ
)
[
√
Qek]〈g(U)[

√
Qek], TΓζ

′〉L2(R,Rn)

+
(
b(U,Γ)[

√
Qek]

)2
〈U, TΓζ

′′〉L2(R,Rn),
(4.5.61)
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we also observe that

D2φζ
(
Z(s)

)[
B
(
Z(s)

)√
Qek,B

(
Z(s)

)√
Qek

]
= Ik

(
U(s),Γ(s)

)
. (4.5.62)

A short computation yields

Ik(U,Γ) = 2χh(U,Γ)2χl(U,Γ)
〈
g(U)[

√
Qek], TΓψtw

〉
L2(R,Rn)

×〈g
(
U
)
[
√
Qek], TΓζ

′〉L2(R,Rn)

+
(
b(U,Γ)[

√
Qek]

)2
〈U, TΓζ

′′〉L2(R,Rn)

= 2χh(U,Γ)2χl(U,Γ)
〈√

Qek, g
adj(U)TΓψtw

〉
L2
Q

×〈
√
Qek, g

adj(U)TΓζ
′〉L2

Q

+
(
b(U,Γ)[

√
Qek]

)2
〈U, TΓζ

′′〉L2(R,Rn).

(4.5.63)

In particular, we see that
∞∑
k=0
Ik(U,Γ) = 2χh(U,Γ)2χl(U,Γ)

〈
gadj(U)TΓψtw, g

adj(U)TΓζ
′〉
L2
Q

+‖b(U,Γ)‖2HS(L2
Q
,R)〈U, TΓζ

′′〉L2(R,Rn),
(4.5.64)

which yields
∞∑
k=0
Ik
(
U(s),Γ(s)

)
= −2

〈
KC
(
U(s),Γ(s)

)
, TΓ(s)ζ

′〉
L2(R,Rn)

+‖b
(
U(s),Γ(s)

)
‖2HS(L2

Q
,R)〈U(s), TΓ(s)ζ

′′〉L2(R,Rn).

(4.5.65)
The derivatives can now be transferred from ζ to yield the desired expression.

Corollary 4.5.6. Suppose that (Hq), (HEq), (HDt), (HSt) and (HTw) all hold and
pick a test-function ζ ∈ C∞c (R,Rn). Then for almost all ω ∈ Ω, the map V defined by
(4.5.1) satisfies the identity

〈V (t), ζ〉L2(R,Rn) = 〈V (0), ζ〉L2(R,Rn) +
∫ t

0
〈Rσ

(
V (s)

)
, ζ〉H−1;H1 ds

+σ
∫ t

0
〈Sσ
(
V (s)

)
T−Γ(s)dW

Q
s , ζ〉L2(R,Rn)

(4.5.66)

for all 0 ≤ t ≤ T .

Proof. In view of Lemma 4.5.5, the result follows from (4.5.50) together with

Rσ;ζ
(
U(s); Γ(s)

)
= Rσ;ζ(T−Γ(s)U(s), 0) = Rσ;ζ

(
Φσ + V (s), 0

)
= 〈Rσ

(
V (s)

)
, ζ〉H−1;H1

(4.5.67)
and a similar identity involving Sσ.
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Proof of Proposition 4.5.4. As a preparation, we modify the definition (4.5.7) and define
a new process W̃Q

t via the formal sum

W̃Q
t =

∞∑
k=0

∫ t

0
T−Γ(s)

√
Qekdβk(s). (4.5.68)

The estimates in [66, §2] all remain valid since T−Γ(s) is an isometry. In particular, we
can replace the T−Γ(s)dW

Q
s term in (4.5.66) by dW̃Q

s . The proof of Proposition 2.5.1
can then be readily applied to the current setting, yielding all the desired properties
after replacing dWQ

s by dW̃Q
s in (4.5.47).

The key issue here is that - by design - stochastic integrals with respect to dWQ
s

and dW̃Q
s are indistinguishable from each other in the sense that they generate the

same statistical properties. To see this, we pick a Hilbert space H together with two
processes

B1, B2 ∈ N 2([0, T ]; (Ft);HS(L2
Q,H)

)
(4.5.69)

and consider the shifted inner product

I1,2 = E 〈
∫ t

0
B1(s) dW̃Q

s ,

∫ t

0
B2(s) dW̃Q

s 〉H

= E 〈
∫ t

0
B1(s)T−Γ(s)dW

Q
s ,

∫ t

0
B2(s)T−Γ(s)dW

Q
s 〉H.

(4.5.70)

The translational invariance of
√
Q allows us to write

Tγ
√
Qek =

√
QTγek (4.5.71)

for any γ ∈ R. In view of the fact that (Tγek) is also an orthonormal basis for L2(R,Rm),
we have

〈B1(s)T−Γ(s), B2(s)T−Γ(s)〉HS(L2
Q
,H) =

∞∑
k=0
〈B1(s)T−Γ(s)

√
Qek, B2(s)T−Γ(s)

√
Qek〉H

=
∞∑
k=0
〈B1(s)

√
QT−Γ(s)ek, B2(s)

√
QT−Γ(s)ek〉H

=〈B1(s), B2(s)〉HS(L2
Q
,H)

(4.5.72)

for all 0 ≤ s ≤ t. The Itô isometry (4.5.12) hence allows us to compute

I1,2 = E

∫ t

0
〈B1(s)T−Γ(s), B2(s)T−Γ(s)〉HS(L2

Q
,H) ds

= E

∫ t

0
〈B1(s), B2(s)〉HS(L2

Q
,H) ds

= E 〈
∫ t

0
B1(s) dWQ

s ,

∫ t

0
B2(s) dWQ

s 〉H.

(4.5.73)
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Applying this with H = R, t = t1 ∧ t2 and

B1(s) = 1s<t1〈·, w1〉L2(R,Rm), B2(s) = 1s<t2〈·, w2〉L2(R,Rm), (4.5.74)

we recover the familiar correlations

E
[
〈W̃Q

t1 , w1〉L2(R,Rm)〈W̃Q
t2 , w2〉L2(R,Rm)

]
= (t1 ∧ t2)〈Qw1, w2〉L2(R,Rm). (4.5.75)

In view of [29, Defn. 2.1], this means that W̃Q
t is also a (Ft, Q)-cylindrical Wiener

process. We therefore follow the convention in [79, §2.2.2] and drop the distinction
between WQ

t and W̃Q
t .

4.6 Stability
Our goal here is to provide a rigorous formulation of the two stability results provided
in §4.2.1 and give a brief outline of their proofs. Given our preparatory work in §4.5 and
Appendix 4.A, we can appeal to Chapter 3 for many of the details. However, we will
need to generalize a stochastic time transformation result to our setting of cylindrical
Q-Wiener processes.

Given an initial condition U0 ∈ UH1 that is sufficiently close to Φσ, it is possible to
find a corresponding (Γ0, V0) so that U0 = TΓ0 [V0 + Φσ] with 〈V0, ψtw〉L2(R,Rn) = 0; see
Proposition 2.2.3. Recalling the function V defined by

V (t) = V (0) +
∫ t

0
Rσ
(
V (s)

)
ds+ σ

∫ t

0
Sσ
(
V (s)

)
dWQ

s , (4.6.1)

we fix a sufficiently small ε > 0 and introduce the scalar function

NU0(t) = ‖V (t)‖2L2(R,Rn) +
∫ t

0
e−ε(t−s)‖V (s)‖2H1(R,Rn) ds. (4.6.2)

In addition, for any η > 0 we introduce the (Ft)-stopping time

tst(U0, T, η) = inf
{

0 ≤ t < T : NU0(t) > η
}
, (4.6.3)

writing tst(U0, T, η) = T if the set is empty.
The small (but fixed) parameter η > 0 allows us to keep the nonlinearities in the

problem under control. Our main technical result provides a bound for NU0 in terms
of the initial perturbation and the noise strength.

Proposition 4.6.1. Assume that (Hq), (HEq), (HDt), (HSt) and (HTw) are satisfied
and pick two sufficiently small constants δη > 0 and δσ > 0. Then there exists a constant
K > 0 so that for any T > 0, any 0 < η ≤ δη and any 0 ≤ σ ≤ δσT

−1/2 we have the
bound

E
[

sup
0≤t≤tst(U0,T,η)

NU0(t)
]
≤ K

[
‖V (0)‖2H1(R,Rn) + σ2T

]
. (4.6.4)
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In a standard fashion, this bound can be used to show that the probability of hitting
η can be made arbitrarily small by reducing the noise strength and the size of the initial
perturbation. Indeed, upon writing

p(U0, T, η) = P
(

sup
0≤t≤T

[
NU0(t)

]
> η

)
, (4.6.5)

we can compute

ηp(U0, T, η) = ηP
(
tst < T

)
= E

[
1tst<TNU0

(
tst
)]

≤ E
[
NU0

(
tst
)]

≤ E
[

sup
0≤t≤tst

NU0(t)
]

≤ K
[
‖V (0)‖2H1(R,Rn) + σ2T

]
.

(4.6.6)

This is the rigorous interpretation of the informal statement contained in Theorem
4.2.1.

We now set out to quantify the residual resulting from the expansion process outlined
in §4.2. To this end, we take U0 = Φσ (i.e. V (0) = 0) and make the decomposition
V (t) = Vapx(t) + Vres(t). Here

Vapx(t) = σV 1
σ (t) + σ2V 2

σ (t) (4.6.7)

denotes the second order approximation obtained formally in §4.2.1. We subsequently
introduce the scalar quantity

Nres(t) = σ4‖Vapx(t)‖2L2(R,Rn) + ‖Vres(t)‖2L2(R,Rn)

+
∫ t

0
e−ε(t−s)

[
σ4‖Vapx(s)‖2H1(R,Rn) + ‖Vres(s)‖2H1(R,Rn)

]
ds,

(4.6.8)
together with the (Ft)-stopping time

tst(T, σ, η; res) = inf
{

0 ≤ t < T : Nres(t) > σ4η
}
, (4.6.9)

writing tst(T, σ, η; res) = T if the set is empty. Note that the scalings imply that Vapx
remains bounded by η as long as the stopping time is not hit, which allows the nonlinear
terms to be controlled in the same fashion as in the proof of Proposition 4.6.1. Since all
the quadratic terms have now been accounted for, we arrive at the following estimate.

Corollary 4.6.2. Assume that (Hq), (HEq), (HDt), (HSt) and (HTw) are satisfied and
pick two sufficiently small constants δη > 0 and δσ > 0. Then there exists a constant
K > 0 so that for any T > 0, any 0 < η ≤ δη and any 0 ≤ σ ≤ δσT

−1/2, we have the
bound

E
[

sup
0≤t≤tst(T,σ,η;res)

Nres(t)
]
≤ Kσ6T. (4.6.10)
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In order to turn this into a probability estimate, we write

pres(T, σ, η) = P
(

sup
0≤t≤T

Nres(t) > σ4η
)

(4.6.11)

and compute

σ4ηpres(T, σ, η) = σ4ηP
(
tst(T, σ, η; res) < T

)
= E

[
1tst(T,σ,η;res)<TNres

(
tst(T, σ, η; res)

)]
≤ Kσ6T.

(4.6.12)

In particular, in the setting of Corollary 4.6.2 we find

pres(T, σ, η) ≤ η−1Kσ2T, (4.6.13)

which is the quantitative version of Corollary 4.2.2.

4.6.1 Stochastic time transform
We now set out to outline how the techniques developed in Chapter 3 can be used to
establish Proposition 4.6.1. The key issue is that we cannot study (4.6.1) or its mild
counterpart in a direction fashion because it is a quasi-linear system. The offending
component is KB, which represents an extra nonlinear - but spatially homogeneous -
diffusive term that arises as a consequence of the Itô lemma.

Our strategy is to partially eliminate these terms by appropriate time transforms.
In particular, for each component 1 ≤ i ≤ n we define the function

κσ;i(V ) = 1 + σ2

2ρi
‖bσ(V )‖2

HS
(
L2
Q
,L2(R,Rn)

) (4.6.14)

and observe that ρiκσ;i(V ) corresponds precisely with the coefficient in front of V ′′i that
appears in Rσ(V ). In order to reset this single coefficient to the value ρi, we introduce
the (faster) transformed time

τi(t) =
∫ t

0
κσ;i

(
V (s)

)
ds ≥ t. (4.6.15)

The map t 7→ τi(t) is a continuous strictly increasing (Ft)-adapted process that hence
admits an inverse ti(τ), i.e.,

τi(ti(τ)
)

= τ, ti
(
τi(t)

)
= t. (4.6.16)

This allows us to define the time-transformed function

V (i)(τ) = V
(
ti(τ)

)
, (4.6.17)

for which an appropriate SPDE can be derived.
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Lemma 4.6.3. Consider the setting of Proposition 4.5.4 and pick 1 ≤ i ≤ n. Then
there exists a filtration (Fτ )τ≥0 together with a cylindrical (Fτ , Q)-Wiener process WQ

τ

so that the following properties hold.
(i) For almost all ω ∈ Ω, the map τ 7→ V (i)(τ ;ω) is of class C

(
[0, T ];L2).

(ii) For all τ ∈ [0, T ], the map ω 7→ V (i)(τ, ω) is (Fτ )-measurable.

(iii) The map τ 7→ κ
−1/2
σ;i

(
V (i)(τ)

)
Sσ
(
V (i)(τ)

)
is of class

N 2([0, T ]; (F)τ ;HS
(
L2
Q, L

2(R,Rn)
))

.

(iv) For almost all ω ∈ Ω, the identity

V (i)(τ) = V (i)(0) +
∫ τ

0
κ−1
σ;i
(
V (i)(τ ′)

)
Rσ
(
V (i)(τ ′)

)
dτ ′

+σ
∫ τ

0
κ
−1/2
σ;i

(
V (i)(τ ′)

)
Sσ
(
V (i)(τ ′)

)
dW

Q

τ ′

(4.6.18)

holds for all 0 ≤ τ ≤ T .
Proof. Recall the set of independent (Ft)-Brownian motions βk used to define WQ

t in
§4.5.1. Following the proof of Lemma 2.6.2, we now construct the processes

βk(τ) =
∫ τ

0

1√
∂τ ti(τ ′)

dβk
(
ti(τ ′)

)
. (4.6.19)

These are independent Brownian motions with respect to the filtration (F t) defined in
(2.6.14). As explained in §4.5.1, the sum

W
Q

τ =
∑
k

√
Qekβk(τ) (4.6.20)

hence defines a cylindrical (Fτ , Q)-Wiener process. We can now apply the transforma-
tion rule from Lemma 2.6.2 for individual Brownian motions to compute the desired
transformation∫ ti(τ)

0
Sσ
(
V (s)

)
dWQ

s = lim
m→∞

m∑
k=1

∫ ti(τ)

0
Sσ
(
V (s)

)
[
√
Qek] dβk(s)

= lim
m→∞

m∑
k=1

∫ τ

0
κ
−1/2
σ;i (V (i)(τ ′)

)
Sσ
(
V (i)(s)

)
[
√
Qek] dβk(τ ′)

=
∫ τ

0
κ
−1/2
σ;i (V (i)(τ ′)

)
Sσ
(
V (i)(s)

)
dW

Q

τ ′ .

(4.6.21)
The remaining statements can now be established as in the proof of Proposition 2.6.3.

We remark that the diffusion coefficient for the i-th component of V (i) is now again
equal to ρi. This allows this component to be appropriately estimated by analysing
the mild formulation of (4.6.18). The key here is that the off-diagonal elements of the
semigroup S(t) have better smoothening properties than the diagonal elements. Since
all the relevant estimates carry over on account of §4.A, the computations in Chapter
3 can be used to establish Proposition 4.6.1. and Corollary 4.6.2.
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Appendix

4.A Estimates
In this section we set out to derive certain key estimates that will build a bridge between
our setting here and the extensive computations in Chapters 2 and 3. The main issues
are that the functions g and b now need to be bounded in an appropriate Hilbert-
Schmidt norm and that the term KC has a more delicate structure than its counterpart
in Chapter 2.

Throughout this section, we will often use a general pair (Φ, c) for our estimates,
since a priori the wave (Φσ, cσ) has not been constructed yet. This pair is assumed to
satisfy the following conditions.

(hPar) The condition (HTw) holds and the pair (Φ, c) ∈ UH1 × R satisfies the bounds

‖Φ− Φ0‖H1(R,Rn) ≤ min{1, [4‖ψtw‖L2(R,Rn)]−1}, |c− c0| ≤ 1. (4.A.1)

We start in §4.A.1 by deriving some preliminary estimates. This will help us in §4.A.2 to
formulate the ‘bridge’ estimates on the three functions discussed above, which concern
both their size and their Lipschitz properties.

4.A.1 Preliminaries
On account of (Hq), the function k 7→

√
q̂(k) is well-defined. It is hence tempting to

construct a convolution kernel p for
√
Q by taking the inverse Fourier transform of this

map, since then one formally has q ∗ v = p ∗ p ∗ v. Our first result shows that this is
indeed possible.

Lemma 4.A.1. Suppose that (Hq) is satisfied. Then the map k 7→
√
q̂(k) is contained

in L2(R,Rm×m).

Proof. It suffices to show that q̂ ∈ L1(R,Rm×m), which follows from the bound

‖q̂‖L1(R,Rm×m) =
∫
R

1
(1 + |k|2) 1

2
(1 + |k|2) 1

2 |q̂(k)|dk ≤ K‖q‖H1(Rm×m). (4.A.2)

Using this L2-bound on p, one can now show that any z ∈ L2(Rn×m) can be
interpreted as a Hilbert-Schmidt operator from L2

Q into L2(R,Rn). As usual, this
proceeds via the pointwise multiplication z[w](x) = z(x)w(x).

Lemma 4.A.2. Suppose that (Hq) is satisfied. There exists K > 0 so that for any
z ∈ L2(R,Rn×m), we have z ∈ HS

(
L2
Q, L

2(R,Rn)
)

with

‖z‖
HS
(
L2
Q
,L2(R,Rn)

) ≤ K‖z‖L2(R,Rn×m). (4.A.3)
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Proof. Writing out the various matrix multiplications in a component-wise fashion, we
obtain
‖z‖2

HS
(
L2
Q
,L2(R,Rn)

)
=
∞∑
k=0
‖z[
√
Qek]‖2L2(R,Rn)

=
∞∑
k=0

n∑
i=1

m∑
j,j′=1

∫
zij(x)〈pj·(x− ·), ek〉L2(R,Rm)zij′〈pj′·(x− ·), ek〉L2(R,Rm) dx

=
n∑
i=1

m∑
j,j′=1

∫
zij(x)zij′(x)〈pj·(x− ·), pj′·(x− ·)〉L2(R,Rm) dx

=
n∑
i=1

m∑
j,j′,l=1

〈pjl, pj′l〉L2(R)

∫
zij(x)zij′(x) dx

(4.A.4)

The result now follows by appealing to Cauchy-Schwarz.

Our final two results concern a bound on the cut-off functions (4.5.22) and a bound
on the L2-norm of g that we borrow from Chapter 2. This is especially useful when
combined with the bound in Lemma 4.A.2.
Lemma 4.A.3. Suppose that (HEq), (Hg) and (hPar) are satisfied. Then there exists
a constant K > 0, which does not depend on the pair (Φ, c), so that the following holds
true. For any v ∈ H1(R,Rn) and γ ∈ R we have the bound

|χl(Φ + v, γ)|+ |χh(Φ + v, γ)| ≤ K, (4.A.5)

while for any pair (vA, vB) ∈ H1(R,Rn) ×H1(R,Rn) and (γA, γB) ∈ R2 we have the
estimates
|χl(Φ + vA, γA)− χl(Φ + vB , γB)| ≤ K

[
‖vA − vB‖L2(R,Rn)

+ (1 + ‖vA‖L2(R,Rn)) |γ1 − γ2|
]
,

|χh(Φ + vA, γA)− χh(Φ + vB , γB)| ≤ K
[
‖vA − vB‖L2(R,Rn) + |γA − γB |

]
.

(4.A.6)

Proof. The bound (4.A.5) follows directly from the definition of the cut-off functions.
The first Lipschitz bound in (4.A.6) can be found in Lemma 2.3.3, while the second
bound follows from the observation

|‖Φ + vA − TγAΦref‖L2(R,Rn) − ‖Φ + vB − TγBΦref‖L2(R,Rn)|
≤ K

[
‖vA − vB‖L2(R,Rn) + |γA − γB |

]
.

(4.A.7)

Lemma 4.A.4. Suppose that (HEq), (Hg) and (hPar) are satisfied. Then there exists
a constant K > 0, which does not depend on the pair (Φ, c), so that the following holds
true. For any v ∈ H1(R,Rn) we have the bounds

‖g(Φ + v)‖L2(Rn×m) ≤ K[1 + ‖v‖L2(R,Rn)],

‖∂ξg(Φ + v)‖L2(Rn×m) ≤ K[1 + ‖v‖H1(R,Rn)],
(4.A.8)



4

192 Chapter 4 – Translation Invariant Noise

while for any pair (vA, vB) ∈ H1(R,Rn)×H1(R,Rn) we have the estimates

‖g(Φ + vA)− g(Φ + vB)‖L2(Rn×m) ≤ K‖vA − vB‖L2(R,Rn),

‖∂ξ[g(Φ + vA)− g(Φ + vB)]‖L2(Rn×m) ≤ K
[
1 + ‖vA‖H1(R,Rn)

]
‖vA − vB‖H1(R,Rn).

(4.A.9)

Proof. This follows using the same techniques as in Lemma 2.3.2.

4.A.2 Estimates for g, bσ and KC
By combining the estimates in Lemmas 4.A.2 and 4.A.4 above, we immediately obtain
bounds on g(U) viewed as a pointwise multiplication operator from L2

Q into L2(R,Rn).
These correspond precisely with the L2-bounds for the function g(U) itself, allowing
the follow-up estimates to be readily transferred from Chapter 2 to the current setting.

Corollary 4.A.5. Suppose that (Hq), (HEq), (HSt) and (hPar) are satisfied. Then
there exists a constant K > 0, which does not depend on (Φ, c) so that the following
holds true. For any v ∈ H1(R,Rn) we have the bounds

‖g(Φ + v)‖
HS
(
L2
Q
,L2(R,Rn)

) ≤ K[1 + ‖v‖L2(R,Rn)], (4.A.10)

while for any pair (vA, vB) ∈ H1(R,Rn)×H1(R,Rn) we have the estimates

‖g(Φ + vA)− g(Φ + vB)‖
HS
(
L2
Q
,L2(R,Rn)

) ≤ K‖vA − vB‖L2(R,Rn). (4.A.11)

Turning to the nonlinearity KC defined in (4.5.26), our goal here is to derive estimates
for ∂ξKC(U, γ) that are comparable to those obtained for the product b(U, γ)∂ξg(U) in
the context of Chapter 2, where b evaluates to a scalar. To this end, we introduce the
auxiliary function

K̃C(U,Γ) = χl(U,Γ)χh(U,Γ)QgT (U)TΓψtw, (4.A.12)

which in view of the identification (4.5.15) allows us to write

KC(U, γ) = −χh(U,Γ)g(U)K̃C(U,Γ). (4.A.13)

The strategy is to use the splitting

‖∂ξKC(U,Γ)‖L2(R,Rn) ≤ ‖χh(U,Γ)∂ξg(U)‖
HS
(
L2
Q
,L2(R,Rn)

)‖K̃C(U,Γ)‖L2
Q

+‖χh(U,Γ)g(U)‖
HS
(
L2
Q
,L2(R,Rn)

)‖∂ξK̃C(U,Γ)‖L2
Q

(4.A.14)
together with its natural analogue for ∂ξ[KC(UA,ΓA) − KC(UB ,ΓB)]. The following
two results provide bounds for the factors in (4.A.14) that show that both products on
the right hand side lead to similar expressions as those obtained in Chapter 2. In fact,
we obtain slightly better estimates as a consequence of a more refined use of the cutoff
functions.
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Corollary 4.A.6. Suppose that (Hg), (HEq) and (hPar) are satisfied. Then there
exists a constant K > 0, which does not depend on the pair (Φ, c), so that the following
holds true. For any v ∈ H1(R,Rn) and γ ∈ R we have the bounds

‖χh(Φ + v, γ)g(Φ + v)‖L2(Rn×m) ≤ K,

‖χh(Φ + v, γ)∂ξg(Φ + v)‖L2(Rn×m) ≤ K
[
1 + ‖v‖H1(R,Rn)

]
.

(4.A.15)

In addition, for any pair (vA, vB) ∈ H1(R,Rn) × H1(R,Rn) and (γA, γB) ∈ R2, the
expression

∆ABχhg = χh(Φ + vA, γA)g(Φ + vA)− χh(Φ + vB , γB)g(Φ + vB) (4.A.16)

satisfies the estimates

‖∆ABχhg‖L2(Rn×m) ≤ K
[
‖vA − vB‖L2(R,Rn) + |γ1 − γ2|

]
,

‖∂ξ∆AB‖L2(Rn×m) ≤ K
[
‖vA − vB‖H1(R,Rn) + |γA − γB |

][
1 + ‖vA‖H1(R,Rn)

]
.

(4.A.17)

Proof. The estimates (4.A.15) follow directly from Lemma 4.A.4, using the fact that
the cut-off allows us to assume an a priori bound for ‖v‖L2(R,Rn). The Lipschitz bounds
(4.A.17) can be obtained by writing

∆ABχhg =
[
χh(Φ + vA, γA)− χh(Φ + vB , γB)

]
g(Φ + vA)

+χh(Φ + vB , γB)
[
g(Φ + vA)− g(Φ + vB)

] (4.A.18)

and applying the results from Lemmas 4.A.3 and 4.A.4.

Lemma 4.A.7. Suppose that (Hq), (HEq), (HSt) and (hPar) are satisfied. Then there
exists a constant K > 0, which does not depend on the pair (Φ, c), so that the following
holds true. For any v ∈ H1(R,Rn) and γ ∈ R we have the bounds

‖K̃C(Φ + v, γ)‖L2
Q

≤ K,

‖∂ξK̃C(Φ + v, γ)‖L2
Q
≤ K[1 + ‖v‖H1(R,Rn)].

(4.A.19)

In addition, for any pair (vA, vB) ∈ H1(R,Rn) × H1(R,Rn) and (γA, γB) ∈ R2, the
expression

∆ABT̃C = K̃C(Φ + vA, γA)− K̃C(Φ + vB , γB) (4.A.20)

satisfies the estimates

‖∆ABT̃C‖L2
Q

≤ K
[
‖vA − vB‖L2(R,Rn) + |γA − γB |

]
,

‖∂ξ∆ABT̃C‖L2
Q
≤ K

[
1 + ‖vA‖H1(R,Rn)

][
‖vA − vB‖H1(R,Rn) + |γA − γB |

]
.

(4.A.21)

Proof. Note first that for any z ∈ H1(R,Rm×n) and any ψ ∈W 1,∞(R,Rn), we have

‖Qzψ‖2L2
Q

= 〈Qzψ, zψ〉L2(R,Rm) ≤ ‖q‖L1(R,Rm×m)‖z‖2L2(R,Rn×m)‖ψ‖
2
∞ (4.A.22)
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together with

‖∂ξQzψ‖2L2
Q

= ‖Q∂ξ[zψ]‖2L2
Q
≤ ‖q‖L1(R,Rm×m)‖∂ξ[zψ]‖2L2(R,Rm)

≤ ‖q‖L1(R,Rm×m)‖z‖2H1(R,Rn×m)[‖ψ‖∞ + ‖ψ′‖∞]2.
(4.A.23)

The bounds (4.A.19) hence follow directly from Lemma 4.A.4, using the cut-off function
again to eliminate the dependence on ‖v‖L2(R,Rn).

Turning to the Lipschitz estimates (4.A.21), we first compute

∆ABK̃C =
[
χl(Φ + vA, γA)− χl(Φ + vB , γB)

]
Qχh(Φ + vA, γA)gT (Φ + vA)TγAψtw

+χl(Φ + vB , γB)Qχh(Φ + vA, γA)gT (Φ + vA)
[
TγAψtw − TγBψtw

]
+χl(Φ + vB , γB)Q

[
∆ABχhg

]T
TγBψtw.

(4.A.24)
If χh(Φ + vA, γA) 6= 0, then we can use an a priori bound on ‖vA‖L2(R,Rn) to obtain the
result directly from Lemma 4.A.3 and Corollary 4.A.6. On the other hand, if we have
an a priori bound on ‖vB‖L2(R,Rn), we can exploit symmetry to replace the ‖vA‖L2(R,Rn)
term in (4.A.9) by ‖vB‖L2(R,Rn) and obtain the same result.

We are now ready to consider the final nonlinearity b that was defined in (4.5.24).
Fortunately, our estimates for K̃C can also be used to establish the following bounds,
which correspond precisely to those obtained in Chapter 2.

Lemma 4.A.8. Suppose that (Hq), (HEq), (Hg), (HSt) and (hPar) are satisfied. Then
there exist constants Kb > 0 and K > 0, which do not depend on the pair (Φ, c) so that
the following holds true. For any v ∈ H1(R,Rn) and γ ∈ R we have the bound

‖b(Φ + γ, ψ)‖HS(L2
Q
,R) ≤ Kb, (4.A.25)

while for any set of pairs (vA, vB) ∈ H1(R,Rn)×H1(R,Rn) and (γA, γB) ∈ R2 we have
the estimate
‖b(Φ + vA, γA)− b(Φ + vB , γB)‖HS(L2

Q
,R) ≤ K‖vA − vB‖L2(R,Rn)

+K
[
1 + ‖vB‖L2(R,Rn)

]
|γA − γB | .

(4.A.26)

Proof. The computation (4.5.25) shows that

‖b(Φ + v, γ)‖2HS(L2
Q
,R) = χh(Φ + V, γ)2‖K̃C(Φ + vA, γA)‖2L2

Q
, (4.A.27)

which on account of (4.A.19) immediately implies (4.A.25).
Turning to the Lipschitz bound (4.A.26), we introduce the notation

Ik = b(vA + Φ, γA)[
√
Qek]− b(vB + Φ, γB)[

√
Qek] (4.A.28)

and note that

‖b(Φ + vA, γA)− b(Φ + vB , γB)‖2HS(L2
Q
,R) =

∞∑
k=0
I2
k . (4.A.29)
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We now compute

Ik = χh(vA + Φ, γA)2χl(vA + Φ, γA)〈g(Φ + vA)
√
Qek, TγAψtw〉

− χh(VB + Φ, γB)2χl(VB + Φ, γB)〈g(Φ + VA)
√
Qek, TγBψtw〉

= 〈
√
Qek, χh(vA + Φ, γA)K̃C(Φ + vA, γA)− χh(vB + Φ, γB)K̃C(Φ + vB , γB)〉L2

Q
.

(4.A.30)

In particular, we see that
∞∑
k=0
I2
k = ‖χh(vA+Φ, γA)K̃C(Φ+vA, γA)−χh(vB+Φ, γB)K̃C(Φ+vB , γB)‖2L2

Q
. (4.A.31)

The desired bound now follows by combining Lemmas 4.A.3 and 4.A.7.
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5

5
Long Time Stability of

Stochastic Travelling Waves

In this chapter we establish the meta-stability of travelling waves for a class of
reaction-diffusion equations forced by a multiplicative noise term. In particular,
we show that the phase-tracking technique developed in Chapters 2 and 4 can be
maintained over timescales that are exponentially long with respect to the noise
intensity. This is achieved by combining the generic chaining principle with a
mild version of the Burkholder-Davis-Gundy inequality to establish logarithmic
supremum bounds for stochastic convolutions in the critical regularity regime.

5.1 Introduction
In this chapter1 we focus on the stochastic Nagumo equation

dU = [ρ∂xxU + f(U)] dt+ σg(U)dWQ
t , (5.1.1)

in which we take U = U(x, t) with x ∈ R and t ≥ 0. The nonlinearities are given by

f(u) = u(1− u)(u− a), g(u) = u(1− u)χ(u) (5.1.2)

for a parameter a ∈ (0, 1) and a smooth cut-off function χ(u) that forces g to be
bounded and globally Lipschitz continuous on R. The stochastic forcing is generated
by the cylindrical Q-Wiener process WQ

t characterized by the convolution operator

Q : L2(R)→ L2(R), [Qv](x) =
∫ ∞
−∞

e−(x−y)2
v(y) dy. (5.1.3)

In particular, our noise satisfies the formal relation

E
[
dWQ

s (x0)dWQ
t (x1)

]
= δ(t− s)e−(x0−x1)2

(5.1.4)

1 The content of this chapter has been accepted by SIADS as C.H.S. Hamster, H.J. Hupkes; Stability
of Travelling Waves on Exponentially Long Timescales in Stochastic Reaction-Diffusion Equations,
see [49].
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and hence is white in time but coloured and translationally invariant in space. The
well-posedness of such equations has been studied extensively [77, 93] and one can
following Proposition 4.5.2 construct globally defined solutions in (for example) the
affine space

UH1 = H1(R) + 1
2
(
1− tanh(·)

)
. (5.1.5)

The choice for this space is motivated by the fact that it contains the well-known
deterministic travelling wave solution

U(x, t) = Φ0(x− c0t), Φ0(−∞) = 1, Φ0(+∞) = 0 (5.1.6)

for (5.1.1) with σ = 0. In Chapters 2 and 4 we showed that this pair (Φ0, c0) can be
generalized to a branch of so-called instantaneous stochastic waves (Φσ, cσ) for (5.1.1)
that - at onset - travel with velocity velocity cσ and feel only stochastic forcing. These
waves can be shown to satisfy

‖Φσ − Φ0‖H2 + |cσ − c0| = O(σ2). (5.1.7)

The key question is if one can understand the perturbations

V (t) = U(·+ Γ(t), t)− Φσ (5.1.8)

from these profiles, using an appropriate phase shift Γ to stochastically ‘freeze’ the
solution U . In particular, we are interested in the behaviour of the stopping time

tst(η) = inf{t ≥ 0 : ‖V (t)‖2L2 +
∫ t

0
e−ε(t−s)‖V (s)‖2H1 ds > η} (5.1.9)

for some small ε > 0, which measures when U exits an appropriate orbital η-neighbour-
hood of the profile Φσ. Our main result states that this exit-time is (with high prob-
ability) exponentially long with respect to the parameter 1/σ. As such, it establishes
the meta-stability of the deterministic travelling wave (5.1.6) under small stochastic
forcing, significantly extending our earlier results in Chapters 2 and 4.

Theorem 5.1.1. Pick a sufficiently large constant K > 0 and sufficiently small con-
stants ε > 0, η0 > 0, δ0 > 0 and δσ > 0. Then for any U(0) ∈ UH1 that satisfies
‖U(0)− Φσ‖H1 < δ0 and any 0 ≤ σ ≤ δσ, there exists a scalar stochastic process Γ so
that

P (tst(η0) < T ) ≤ K
[
‖U(0)− Φσ‖2H1 + σ

√
ln(T )

]
. (5.1.10)

holds for all 2 ≤ T ≤ exp[δ2
σ/σ

2],

We remark here that general ‘exit-problems’ have been well-studied in finite-dimensio-
nal contexts [36], but much less is known in infinite dimensions [9, 41]. The recent paper
by Salins and Spiliopoulous [98] discusses some of the main developments in this area,
which chiefly focus on SPDEs with gradient-independent noise posed on finite domains.
In this case, the associated semigroups are compact, allowing tightness results to be
established that lead naturally to large deviation principles [21]. Such compactness
properties do not apply in the current setting and we take a completely different ap-
proach.
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Stochastic waves The impact of noise on pattern formation is an important topic
that has attracted significant interest from the applied community [3, 13, 39, 102, 103,
112], but for which little rigorous mathematical theory is available [12, 52, 71, 86]. The
Nagumo equation is a natural starting point for such investigations since it has served
in the past as a prototypical system to analyse the interaction between two competing
stable states in spatially extended domains [4, 5]. The deterministic travelling waves
(5.1.6) represent a primary invasion mechanism by which the favourable state can spread
throughout the entire domain. They are robust under perturbations, which allows them
to be used as building blocks to understand the global behaviour of (5.1.1) in one
[34, 65, 113] but also higher spatial dimensions [8, 64, 83].

The behaviour of these invasion waves under several types of stochastic forcing has
been studied by various authors using a range of different techniques. The consensus
emerging from a number of formal computations for (5.1.1) is that - to leading order
in σ - the phase-shift of the wave follows a Brownian motion with a variance that
can be expressed in closed form [16, 19, 39]. Various rigorous approaches have been
pursued over the past five years that can successfully explain this diffusive behaviour
on short time scales [57, 68, 104, 105]; see e.g [69] for a very recent overview and the
introductions of Chapters 2 and 4 for a detailed technical discussion. Several of these
techniques have been extended to stochastic neural field equations [15, 74, 81] and (very
recently) to the FitzHugh-Nagumo system [31].

In the previous chapters, we pioneered a novel ‘stochastic freezing’ approach to
rigorously analyse the behaviour of travelling fronts and pulses to a large class of
reaction-diffusion equations (RDEs) - which includes (5.1.1) and the (fully diffusive)
FitzHugh-Nagumo system. In essence, we developed a stochastic version of the freezing
approach introduced by Beyn [11], which allows us to adopt the spirit behind the modern
machinery for deterministic stability issues initiated by Howard and Zumbrun [118].
The power of this approach is that it leads naturally to long-term predictions concerning
both the speed and the shape of the stochastic wave that can be computed to arbitrary
order in σ. We demonstrated the accuracy of these novel predictions in Chapter 4
by performing a series of numerical experiments. As a consequence, we now have a
quantitative explanation for the wave-steepening and speed-reduction phenomena that
were illustrated numerically in [79] and - in a special case - derived formally in [19]
using a collective coordinate approach.

Regularity issues The key novel feature of the approach in the previous chapters is
that the perturbation V in the decomposition (5.1.8) is measured in the same reference
frame as the frozen profile Φσ. This allows the delicate interaction between the speed
and shape of the wave to be untangled, but also presents several fundamental compli-
cations that need to be carefully addressed. The most important of these is that the
stochastic phase shift causes extra diffusive correction terms for V that are not seen in
the deterministic context, together with a multiplicative noise term that involves the
derivative of V . Unlike any of the previous approaches in this area, we hence need to
keep the H1-norm of V (t) under control.

To be more specific, an essential step in our stability proofs is to obtain bounds for
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the expression

E sup
0≤t≤T

‖
∫ t

0
S(t− s)B

(
V (s), ∂xV (s)

)
dWQ

s ‖2L2 , (5.1.11)

together with its integrated H1-counterpart

E sup
0≤t≤T

∫ t

0
e−ε(t−s)‖

∫ s

0
S(s− s′)B

(
V (s′), ∂xV (s′)

)
dWQ

s′ ‖
2
H1 ds. (5.1.12)

Here S denotes the semigroup associated to the linearization of (5.1.1) around the deter-
ministic travelling wave (5.1.6). In the previous chapters we used the mild Burkholder-
Davis-Gundy (BDG) inequality obtained by Veraar [111] to control (5.1.11), but the
resulting bounds are unfortunately not optimal. As such, they restricted the validity
range of our rigorous results to timescales of order T ∼ σ−2.

This shortfall is repaired by the bound in Theorem 5.1.1, which confirms that our
phase-tracking can be maintained over the exponentially long timescales observed in
the numerical results from Chapter 4. We emphasise that our improved bound also
covers regimes where the stochastic phase Γ is expected to be very far away from its
deterministic counterpart. This provides a solid theoretical underpinning to the formal
predictions that we made in Chapter 4 concerning the stochastic corrections to (5.1.6).

To understand the issues that are involved, it is highly instructive to consider the
scalar Ornstein-Uhlenbeck process

X(t) =
∫ t

0
e−(t−s)dβs, (5.1.13)

which here starts at X(0) = 0 and is driven by a standard Brownian motion βt. Since
B(0, 0) 6= 0, the behaviour of X is highly comparable to that of V at lowest order in σ.
Indeed, the deterministic dynamics pulls X towards zero at an exponential rate, but the
stochastic forcing does not vanish there. Applying the mild Burkholder-Davis-Gundy
inequality to (5.1.13) results in the bound

E sup
0≤t≤T

|X(t)|2 ≤ K
∫ T

0
1 ds = KT. (5.1.14)

This hence fails to reproduce the well-known fact that this expectation behaves as
O
(

ln(T )
)

for large T , which was originally established by examining crossing numbers
[91] or analysing explicit probability distributions [2]. Fortunately, a more general
abstract approach has been developed in recent years.

Chaining A powerful modern tool to derive supremum bounds for stochastic processes
is commonly referred to as ‘generic chaining’; see [106] for an accessible introduction.2
Based on contributions from a range of authors, including Kolmogorov, Dudley, Fernique
and Talagrand, it uses information on the increments of a stochastic process to establish
2 This unpublished chapter by Pollard could also be useful: http://www.stat.yale.edu/˜pollard/

Books/Mini/Chaining.pdf

http://www.stat.yale.edu/~pollard/Books/Mini/Chaining.pdf
http://www.stat.yale.edu/~pollard/Books/Mini/Chaining.pdf
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long-term supremum bounds. For instance, exploiting the fact that the Ornstein-
Uhlenbeck process (5.1.13) is centred and Gaussian, one can obtain the tail bound

P (|X(t)−X(s)| > ϑ) ≤ 2e−
ϑ2

2d(t,s)2 (5.1.15)

characterized by the metric d(t, s) =
√
E
(
X(t)−X(s)

)2. An explicit computation
yields the bound

d(t, s)2 = 1
2
(
2− e−2t − e−2s − 2(e−|t−s| − e−(t+s))

)
≤ 1− e−|t−s|

≤ min{|t− s| , 1}.

(5.1.16)

This shows that the covering number N(T, d, ν) - which measures the minimum number
of intervals of length ν or less in the metric d required to cover [0, T ] - can be bounded
by T/ν2 for ν ∈ (0, 1] and by 1 for ν ≥ 1. The main result in [106] - see Theorem 5.2.7
below - now provides the Dudley bound

sup
t∈[0,T ]

Xt ∼
∫ ∞

0

√
ln(N(T, d, ν))dν ≤

∫ 1

0

√
ln (T/ν2)dν ∼

√
ln(T ), (5.1.17)

which captures the desired logarithmic behaviour in a relatively straightforward manner.
Our main contribution in this chapter is that we extend this technique to provide

similar sharp bounds for the stochastic integrals (5.1.11) and (5.1.12). On account of
the regularity issues that are involved, this is a surprisingly delicate task. In fact, we
are not aware of any related results in this direction besides the factorization method
developed by Da Prato, Kwapień and Zabczyk [28], which typically only provides
polynomial bounds in T . Let us remark that it was not immediately clear to us
how this factorization technique should be applied in the present setting, because it
introduces extra singularities into integrals that cannot be readily accommodated in
our critical regularity regime.

Obstructions In order to illustrate the key complications, let us consider the L2-
valued process

Y (t) =
∫ t

0
S(t− s)BdWQ

s , (5.1.18)

which can be seen as an infinite-dimensional version of (5.1.13). Here B is an appropriate
constant Hilbert-Schmidt operator, which can be used to define the covariance operator

Q∞ = lim
t→∞

∫ t

0
S(t− s)BQB∗S∗(t− s)ds. (5.1.19)

The analogue of the bound (5.1.16) is now given by3

d(t, s)2 = E‖Y (t)− Y (s)‖2L2 ≤ 2 tr
(
(I − S(t− s))Q∞

)
, (5.1.20)

3 This computation can be made rigorous using [44, §5].
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but this time there is no α > 0 for which one can extract a term of the form |t − s|α
from the difference S(t− s)− I. In principle this can be repaired by ‘borrowing’ some
smoothness from B, but in our case this would again lead to unintegrable singularities.

In order to resolve this, it is crucial to combine the strong points of both the chaining
technique and the mild Burkholder-Davis-Gundy inequality. Indeed, the former works
well in the regime where |t− s| ≥ 1 in (5.1.11), since here the decay and smoothening
properties of the semigroup can both be put to excellent use. On the other hand, for
|t− s| ≤ 1, the H∞-calculus underlying the mild Burkholder-Davis-Gundy inequality
can resolve the critical regularity issues associated to supremum bounds without causing
too much growth. The main issue is to set up an appropriate framework that allows
this splitting to be achieved.

The second fundamental complication is that the integrands in (5.1.11) and (5.1.12)
are time-dependent, which means that - in contrast to (5.1.18) - the stochastic integrals
are not Gaussian. In this case, one must construct a metric such that a corresponding
tail bound like (5.1.15) can be derived from scratch. Effectively, this requires us to
control all the moments of the increments of (5.1.11). This is made possible by an
effective use of stopping times in combination with a mild Itô formula.

Scope and outlook In order to make the arguments in this chapter as clear and
concise as possible, we chose to restrict our attention to the single specific problem
(5.1.1). However, we emphasise that our arguments transfer immediately to the general
class of (multi-component) problems considered in Chapter 2 and Chapter 4, with the
single restriction that all diffusion coefficients must be equal (condition (hA) in Chapter
2). This latter restriction can be removed by applying the spirit of Chapter 3, but this
requires more complicated machinery that we will describe in an extensive forthcoming
companion paper. There we will also address the long-term validity of the perturbation
results from Chapter 4.

Organization We start in §5.2 by introducing some basic probabilistic and deter-
ministic concepts. The heart of this chapter is contained in §5.3, where we provide
logarithmic bounds for the stochastic integrals (5.1.11) and (5.1.12). Several supremum
bounds for deterministic integrals are provided in §5.4, which allow for a streamlined
proof of our main theorem in §5.5.

5.2 Preliminaries

In this section we collect several useful preliminary results that will streamline our
arguments. We start in §5.2.1 by recalling well-known facts concerning the linearization
of the Nagumo PDE around its travelling wave. We subsequently consider the relation
between tail bounds and moment estimates for scalar stochastic processes in §5.2.2.
Finally, in §5.2.3 we formulate the key technical tools that will allow us to apply the
chaining principle to stochastic convolutions in the critical regularity regime.
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5.2.1 Semigroup bounds
It is well-known that the Nagumo PDE (5.1.1) with σ = 0 admits a travelling front
solution U(x, t) = Φ0(x− c0t) that necessarily satisfies the travelling wave ODE

ρΦ′′0 + c0Φ′0 + f(Φ0) = 0, Φ0(−∞) = 1, Φ0(+∞) = 0. (5.2.1)

The associated linear operators

Ltwv = ρv′′ + c0v
′ +Df (Φ0) v, L∗tww = ρw′′ − c0w′ +Df (Φ0)w, (5.2.2)

which we view as maps from H2(R) into L2(R), both admit a simple eigenvalue at
λ = 0 and have no other spectrum in the half-plane {<λ ≥ −2β} ⊂ C for some β > 0.
Writing Ptw for the spectral projection onto this neutral eigenvalue for Ltw, we can
obtain the identifications

Ker(Ltw) = span{Φ′0}, Ker(L∗tw) = span{ψtw}, Ptwv = 〈v, ψtw〉L2Φ′0 (5.2.3)

by writing ψtw(ξ) = κe−
c0ξ
ρ Φ′0(ξ) for some κ that we fix by the requirement 〈Φ′0, ψtw〉L2 =

1.
In fact, the operator Ltw is sectorial and hence generates an analytic semigroup

S(t) = eLtwt; see [80, Prop. 4.1.4] and Proposition 2.6.3. Upon introducing the notation

Jtw(t)[v, w] = 〈S(t)v, S(t)w〉L2 + 1
2ρ 〈S(t)v, (Ltw − ρ∂xx)S(t)w〉L2

+ 1
2ρ 〈S(t)v, (L∗tw − ρ∂xx)S(t)w〉L2 ,

(5.2.4)

a short computation (see §2.9.2) shows that

〈S(t)v, S(t)w〉H1 =Jtw(t)[v, w]− 1
2ρ

d

dt
〈S(t)v, S(t)w〉L2 (5.2.5)

holds for all t > 0 and v, w ∈ L2. This identity allows the regularity issues that arise in
§5.3 and §5.4 to be resolved.
Lemma 5.2.1. Pick a sufficiently large M ≥ 1 and write Π = I −Ptw. Then for every
t > 0 we have the bounds

‖S(t)Π‖L(L2,L2) ≤ Me−βt,

‖S(t)Π‖L(L2,H1) ≤ Mt−
1
2 e−βt,

‖[Ltw − ρ∂ξξ]S(t)Π‖L(L2,L2) ≤ Mt−
1
2 e−βt,

‖[L∗tw − ρ∂ξξ]S(t)Π‖L(L2,L2) ≤ Mt−
1
2 e−βt,

‖(S(t)− I)S(1)‖L(L2,L2) ≤ M |t| .

(5.2.6)

In particular, for any t > 0 and v, w ∈ L2 we obtain the estimate

|Jtw(t)[Πv,Πw]| ≤M2e−2βt
(

1 + ρ−1t−1/2
)
‖v‖L2‖w‖L2 . (5.2.7)

Proof. The bounds (5.2.6) can be deduced from [80, Prop. 5.2.1], while (5.2.7) follows
readily by inspecting (5.2.4).
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5.2.2 Moment estimates and tail bounds

We briefly review here the technique that we use to pass back and forth between moment
estimates and tail probabilities. The former are easier to estimate, but the latter are
better suited for handling maxima. Our computations are based heavily on [106, Lem.
2.2.3] and [111].

Lemma 5.2.2. Consider a random variable Z ≥ 0 and suppose that there exists a
B > 0 so that the bound

E[Z2p] ≤ ppB2p (5.2.8)

holds for all integers p ≥ 1. Then for every ϑ > 0 we have the estimate

P (Z > ϑ) ≤ 2 exp
[
− ϑ2

2eB2

]
. (5.2.9)

Proof. For any ν > 0 a formal computation shows that

P (Z > ϑ) = P (eνZ
2
> eνϑ

2
)

≤ e−νϑ
2
E
[
eνZ

2
]

≤ e−νϑ
2
E

[ ∞∑
p=0

νp

p! Z
2p

]

≤ e−νϑ
2
∞∑
p=0

νp

p! p
pB2p.

(5.2.10)

Using p! ≥ ppe−p we obtain

P (Z > ϑ) ≤ e−νϑ
2
∞∑
p=0

νpepB2p, (5.2.11)

which leads to (5.2.9) by choosing ν = (2eB2)−1.

Lemma 5.2.3. Fix two constants A ≥ 2 and B > 0 and consider a random variable
Z ≥ 0 that satisfies the estimate

P (Z > ϑ) ≤ 2A exp
[
− ϑ2

2eB2

]
(5.2.12)

for all ϑ > 0. Then we have the moment bounds

E[Z] ≤ 2
√

2eB
√

ln(A), E[Z2] ≤ 8eB2 ln(A). (5.2.13)
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Proof. Starting with the second moment, we pick an arbitrary u0 > 0 and compute

E[Z2] =
∫ ∞

0
P (Z2 > u) du

=
∫ u0

0
P (Z >

√
u) du+

∫ ∞
u0

P (Z >
√
u) du

≤ u0 +
∫ ∞
u0

2Ae−u/(2eB
2) du

= u0 + 4eAB2exp
(
−u0

2eB2

)
.

(5.2.14)

Fixing u0 = 2eB2 ln(2A) and using ln(2A) > 1, we obtain the desired estimate

E[Z2] ≤ 2eB2 ln(2A) + 2eB2 ≤ 8eB2 ln(A). (5.2.15)

The bound for E[Z] can now be deduced by taking square roots and applying Jensen’s
inequality.

By applying a crude bound for tail-probabilities, Lemmas 5.2.2 and 5.2.3 can be com-
bined to control maximum expectations. This results in the following useful logarithmic
growth estimate.

Corollary 5.2.4. Consider N ≥ 2 non-negative random variables Y1, Y2, ..., YN and
suppose that there exists B > 0 so that the bound

E
[
Y 2p
i

]
≤ ppB2p (5.2.16)

holds for all integers p ≥ 1 and each i ∈ {1, .., N}. Then we have the bounds

E max
i∈{1,...,N}

Yi ≤ 2
√

2eB
√

ln(N), E max
i∈{1,...,N}

Y 2
i ≤ 8eB2 ln(N). (5.2.17)

Proof. For any ϑ > 0 we may use Lemma 5.2.2 to estimate

P
(

max
i∈{1,...,N}

Y 2
i > ϑ

)
≤

N∑
i=1

P (Y 2
i > ϑ) ≤ 2N exp

(
− ϑ2

2eB2

)
, (5.2.18)

so we can directly apply Lemma 5.2.3. The proof for E max
i∈{1,...,N}

Yi is identical.

5.2.3 Supremum bounds
In this subsection we collect several key results that we will use to understand stochastic
convolutions such as (5.1.11). In order to setup such integrals in a precise fashion, we
follow the extensive discussion in §4.5 and introduce the Hilbert space

L2
Q = L2

Q(R) = Q1/2 (L2(R)
)
, (5.2.19)

together with the set of Hilbert-Schmidt operators

HS = HS(L2
Q, L

2) = HS
(
L2
Q(R), L2(R)

)
(5.2.20)
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that map L2
Q(R) into L2(R). Choosing an orthonormal basis (ek) for L2(R), we recall

that the Hilbert-Schmidt norm of the operator B is given by

‖B‖2HS =
∞∑
k=0
‖B
√
Qek‖2L2 . (5.2.21)

Fixing a complete filtered probability space
(

Ω,F , (Ft)t≥0,P
)

, it turns out [66, 93, 95]
that stochastic integrals against dWQ

t are well-defined if the integrand is taken from
the class

N 2([0, T ]; (Ft), HS) := {B ∈ L2([0, T ]× Ω; dt⊗ P;HS
)

:

B has a progressively (Ft)-measurable version}.
(5.2.22)

Our results in the previous chapters relied heavily on various versions of the Burkholder-
Davis-Gundy inequality, but we only used the special case p = 1. The general form is
stated below, where we highlight the p -dependence of the prefactors on the right-hand
sides.

Lemma 5.2.5. Pick4 a sufficiently large Kcnv ≥ 1. Then for any T > 0, any integer
p ≥ 1 and any integrand B ∈ N 2 ([0, T ]; (Ft);HS(L2

Q, L
2)
)

we have the bound

E sup
0≤t≤T

‖
∫ t

0
B(s) dWQ

s ‖
2p
L2 ≤K2p

cnvp
pE

[∫ T

0
‖B(s)‖2HS ds

]p
, (5.2.23)

together with its mild counterpart

E sup
0≤t≤T

‖
∫ t

0
S(t− s)B(s) dWQ

s ‖
2p
L2 ≤K2p

cnvp
pE

[∫ T

0
‖B(s)‖2HS ds

]p
. (5.2.24)

Proof. We note first that L2(R) is a Banach space of type 2. In particular, (5.2.23)
follows from [111, Prop. 2.1 and Rem. 2.2]. In addition, the linear operator Ltw admits
a bounded H∞-calculus (see Lemma 2.9.7), which allows us to apply [111, Thm. 1.1]
and obtain (5.2.24).

We remark that the inequalities (5.2.23)-(5.2.24) are very strong and useful on short
time intervals, but on longer timescales it is no longer possible to exploit the decay
properties of the semigroup. Indeed, the right-hand side of (5.2.24) grows linearly in
time for integrands that are constant - as for the Ornstein-Uhlenbeck process. This
changes if one drops the supremum.

Corollary 5.2.6. Consider the setting of Lemma 5.2.5. Then for any 0 ≤ t ≤ T and
any integer p ≥ 1 we have the bound

E‖
∫ t

0
S(t− s)B(s) dWQ

s ‖
2p
L2 ≤ K2p

cnvp
pE

[∫ t

0
‖S(t− s)B(s)‖2HS ds

]p
. (5.2.25)

4 Let us emphasise that all constants that appear in this chapter do not depend on T .
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Proof. Note that

E‖
∫ t

0
S(t− s)B(s) dWQ

s ‖
2p
L2 ≤ E sup

0≤t̃≤t
‖
∫ t̃

0
S(t− s)B(s) dWQ

s ‖
2p
L2 , (5.2.26)

so the result follows directly from (5.2.23).

The following general result due to Talagrand [106, eq. (2.49)] is the key ingredient
that will allow us to significantly improve the bound (5.2.24). It is based on the
chaining principle, which requires us to understand the tail behaviour of the probability
distribution for the temporal increments of stochastic processes.

Theorem 5.2.7 ([106]). Pick a sufficiently large Cch > 0, choose an arbitrary T > 0
and consider a stochastic process X : [0, T ] → L2 with paths that are almost-surely
continuous. Suppose furthermore that there exists a metric d = d(·, ·) on [0, T ] so that
the increments of X satisfy the estimate

P (‖X(t1)−X(t2)‖L2 > ϑ) ≤ 2 exp
(
− ϑ2

2d(t1, t2)2

)
, (5.2.27)

for every t1, t2 ∈ [0, T ] and ϑ > 0. Then we have the bound

E sup
0≤t≤T

‖X(t)‖2L2 ≤ Cch

(∫ ∞
0

√
ln
(
N(T, d, ν)

)
dν

)2
(5.2.28)

where N(T, d, ν) is the smallest number of intervals of length at most ν in the metric d
required to cover [0, T ].

5.3 Supremum bounds for stochastic integrals
In this section we develop the machinery needed to obtain bounds for two types of
stochastic integrals. In particular, we introduce the L2-valued integral

EB(t) =
∫ t

0
S(t− s)B(s)dWQ

s (5.3.1)

together with the scalar integral

I s
B(t) =

∫ t

0
e−ε(t−s)

∫ s

0
〈S(s− s′)V (s′), S(s− s′)B(s′) dWQ

s′ 〉H1 ds (5.3.2)

and set out to obtain bounds for the quantities

E sup
0≤t≤T

‖EB(t)‖2L2 , E max
i∈{1,...,T}

|I s
B(i)| . (5.3.3)

We will use the first of these expressions in §5.5.1 to control the L2-norm of V (t),
while the second term plays a crucial role in §5.5.2 where we bound the H1-norm of V (t)
in an integrated sense. In both cases B will be replaced by a (complicated) function
of V , but we make use of a generic placeholder here in order to emphasise the broad
applicability of our techniques. Indeed, we only need to impose the following two general
conditions on our integrands.
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(hB) The process B ∈ N 2 ([0, T ]; (Ft);HS(L2
Q, L

2)
)

satisfies

〈B(t)v, ψtw〉L2 = 0 (5.3.4)

for all t ∈ [0, T ] and v ∈ L2
Q. Furthermore, there exist ε ∈ (0, β) and Θ∗ > 0 so

that the following pathwise bounds hold for all 0 ≤ t ≤ T :∫ t

0
e−ε(t−s)‖B(s)‖2HSds ≤ Θ2

∗, ‖S(1)B(t)‖2HS ≤ Θ2
∗. (5.3.5)

(hV) The process V ∈ N 2 ([0, T ]; (Ft);H1) satisfies

〈V (t), ψtw〉L2 = 0 (5.3.6)

for all t ∈ [0, T ]. Furthermore, there exists a Λ∗ > 0 so that the pathwise bound

‖V (t)‖L2 ≤ Λ∗ (5.3.7)

holds for all 0 ≤ t ≤ T .

We remark that (5.3.4) and (5.3.6) imply that B and V do not feel the neutral mode
of the semigroup. This allows us to use the decay rates from Lemma 5.2.1 and establish
our main result below. In particular, we obtain (5.3.8) in §5.3.1 and (5.3.9) in §5.3.2.
For convenience, we will consider T to be an integer from now on. This will make the
splitting of the integrals easier in the following sections and any results for non-integer
T can be shown by rounding T up to the nearest integer.

Proposition 5.3.1. Fix a sufficiently large constant K > 0. Then for any integer
T ≥ 2 and any pair of processes (B, V ) that satisfies (hB) and (hV), we have the
supremum bound

E sup
0≤t≤T

‖EB(t)‖2L2 ≤ KΘ2
∗ ln(T ) (5.3.8)

together with its counterpart

E max
i∈{1,....,T}

|I s
B(i)| ≤ KΛ∗Θ∗

√
ln(T ). (5.3.9)

5.3.1 Estimates for EB
Motivated by the considerations in the introduction, we make the splitting

EB(t) = E lt
B(t) + Esh

B (t), (5.3.10)

in which the short time (sh) and long time (lt) contributions are respectively given by

E lt
B(t) =

∫ t−1

0
S(t− s)B(s) dWQ

s , Esh
B (t) =

∫ t

t−1
S(t− s)B(s) dWQ

s , (5.3.11)

where we interpret the boundary t− 1 as max{t− 1, 0} if necessary. Both these terms
need to be handled using separate techniques.
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Short time bounds Remembering that T is an integer, we introduce the function

Υ(i)
B = sup

0≤s≤1
‖
∫ i+s

i

S(i+ s− s′)B(s′) dWQ
s′ ‖L2 (5.3.12)

for any i ∈ {0, . . . , T − 1}, while for i = −1 we define Υ(i)
B = 0. An elementary

computation allows us to bound Esh
B (t) in terms of at most two of this finite set of

quantities.

Lemma 5.3.2. Pick any integer T ≥ 2 and assume that (hB) holds. Then for all
0 ≤ t ≤ T we have the bound

‖Esh
B (t)‖L2 ≤ 2MΥ(btc−1)

B + Υ(btc)
B . (5.3.13)

Proof. Since the estimate is immediate for 0 ≤ t < 1, we pick t ≥ 1. Splitting the
integral yields

‖Esh
B (t)‖L2 ≤‖

∫ btc
t−1

S(t− s)B(s)dWQ
s ‖L2 + ‖

∫ t

btc
S(t− s)B(s)dWQ

s ‖L2

≤‖
∫ btc
btc−1

S(t− s)B(s)dWQ
s ‖L2 + ‖

∫ t−1

btc−1
S(t− s)B(s)dWQ

s ‖L2

+ ‖
∫ t

btc
S(t− s)B(s)dWQ

s ‖L2 .

(5.3.14)

Using Lemma 5.2.1 we obtain the estimate

‖
∫ btc
btc−1

S(t− s)B(s)dWQ
s ‖L2 ≤ ‖S(t− btc)‖L(L2)‖

∫ btc
btc−1

S(btc − s)B(s)dWQ
s ‖L2

≤ M‖
∫ btc
btc−1

S(btc − s)B(s)dWQ
s ‖L2

≤ MΥ(btc−1)
B ,

(5.3.15)
together with

‖
∫ t−1

btc−1
S(t− s)B(s)dWQ

s ‖L2 ≤ ‖S(1)‖L(L2,L2)‖
∫ t−1

btc−1
S(t− 1− s)B(s)dWQ

s ‖L2

≤ MΥ(btc−1)
B ,

(5.3.16)
from which the desired bound readily follows.

Corollary 5.3.3. Pick any integer T ≥ 2 and assume that (hB) holds. Then we have
the pathwise bound

sup
0≤t≤T

‖Esh
B (t)‖2L2 ≤ 9M2 max

i∈{0,...,T−1}

(
Υ(i)
B

)2
. (5.3.17)
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The expectation of the right-hand side of (5.3.17) can be controlled using Corollary
5.2.4. We hence require moment bounds on Υ(i)

B , which can be obtained by applying
the mild Burkholder-Davis-Gundy inequality. Here we use the crucial fact that Ltw
admits an H∞-calculus.

Lemma 5.3.4. Pick any integer T ≥ 2 and assume that (hB) holds. Then for any
integer p ≥ 1 and any i ∈ {0, . . . , T − 1} we have the bound

E
[
Υ(i)
B

]2p
≤ K2p

cnvp
peεpΘ2p

∗ . (5.3.18)

Proof. Applying Lemma 5.2.5, we readily compute

E
[
Υ(i)
B

]2p
≤ K2p

cnvp
pE

[∫ i+1

i

‖B(s)‖2HS ds
]p

≤ K2p
cnvp

peεpE

[∫ i+1

0
e−ε(i+1−s)‖B(s)‖2HS ds

]p
,

(5.3.19)

which implies the stated bound on account of (5.3.5).

Long-term bounds The goal here is to apply the chaining result from Theorem
5.2.7 to the long-term integral E lt

B. To achieve this, we will use Lemma 5.2.2 to turn
moment bounds for the increments of E lt

B into the desired tail bounds for the associated
probability distribution.

For any pair 0 ≤ t1 ≤ t2 ≤ T , we split this increment into two parts

E lt
B(t1)− E lt

B(t2) = I1(t1, t2) + I2(t1, t2) (5.3.20)

that are defined by

I1(t1, t2) =
∫ t1−1

0
[S(t2 − s)− S(t1 − s)]B(s) dWQ

s ,

I2(t1, t2) =
∫ t2−1

t1−1
S(t2 − s)B(s) dWQ

s .

(5.3.21)

The first of these can be analysed by exploiting the regularity of the semigroup S(t− s)
for t− s ≥ 1, while the second requires a supremum bound on the ‘smoothened’ process
S(1)B, hence explaining the assumption in equation (5.3.5).

Lemma 5.3.5. Pick any integer T ≥ 2 and assume that (hB) holds. Then for any
1 ≤ t1 ≤ t2 ≤ T and any integer p ≥ 1 we have the bound

E‖I1(t1, t2)‖2pL2 ≤ ppK2p
cnvM

4pΘ2p
∗ |t2 − t1|

2p
. (5.3.22)

Proof. Observe first that

E‖I1(t1, t2)‖2pL2 ≤ ‖[S(t2 − t1)− I]S(1)‖2pL(L2)E‖
∫ t1−1

0
S(t1 − 1− s)B(s) dWQ

s ‖
2p
L2

≤ M2p |t2 − t1|2pE‖
∫ t1−1

0
S(t1 − 1− s)B(s) dWQ

s ‖
2p
L2 .

(5.3.23)
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Applying (5.2.25) with T = t1 − 1, we find

E‖I1(t1, t2)‖2pL2 ≤ ppK2p
cnvM

2p |t2 − t1|2pE
[∫ t1−1

0
‖S(t1 − 1− s)B(s)‖2HS ds

]p
≤ ppK2p

cnvM
4p |t2 − t1|2pE

[∫ t1−1

0
e−2β(t1−1−s)‖B(s)‖2HS ds

]p
,

(5.3.24)
which yields the stated bound in view of (5.3.5).

Lemma 5.3.6. Pick any integer T ≥ 2 and assume that (hB) holds. Then for any
1 ≤ t1 ≤ t2 ≤ T and any integer p ≥ 1 we have the bound

E‖I2(t1, t2)‖2pL2 ≤ ppK2p
cnvM

2pΘ2p
∗ |t2 − t1|

p
. (5.3.25)

Proof. It suffices to compute

E‖I2(t1, t2)‖2pL2 = E

[
‖
∫ t2−1

t1−1
S(t2 − 1− s)S(1)B(s) dWQ

s ‖L2

]2p

≤ ppK2p
cnvE

[∫ t2−1

t1−1
‖S(t2 − 1− s)‖2L(L2,L2)‖S(1)B(s)‖2HS ds

]p
≤ ppK2p

cnvM
2p |t2 − t1|pE

[
sup

t1−1≤s≤t2−1
‖S(1)B(s)‖2HS

]p
(5.3.26)

and apply (5.3.5).

The previous two results were tailored to handle small increments |t2 − t1| ≤ 1. For
larger increments one can exploit the decay of the semigroup to show that E lt

B remains
bounded in expectation.

Lemma 5.3.7. Pick any integer T ≥ 2 and assume that (hB) holds. Then for any
0 ≤ t ≤ T and any integer p ≥ 1 we have the bound

E‖E lt
B(t)‖2pL2 ≤ ppK2p

cnvM
2pΘ2p

∗ . (5.3.27)

Proof. Using Corollary 5.2.6, we find

E‖E lt
B(t)‖2pL2 ≤ ppK2p

cnvE

[∫ t−1

0
‖S(t− s)Π‖2L(L2,L2)‖B(s)‖2HS ds

]p
≤ ppK2p

cnvM
2pE

[∫ t−1

0
e−2β(t−1−s)‖B(s)‖2HSds

]p
≤ ppK2p

cnvM
2pΘ2p

∗ .

(5.3.28)

Corollary 5.3.8. Pick any integer T ≥ 2 and assume that (hB) holds. Then for any
0 ≤ t1 ≤ t2 ≤ T and any integer p ≥ 1 we have the bound

E‖E lt
B(t1)− E lt

B(t2)‖2pL2 ≤ 22pppK2p
cnvM

4pΘ2p
∗ min{|t2 − t1|1/2 , 1}2p. (5.3.29)
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Proof. This follows from the standard inequality (a + b)2p ≤ 22p−1(a2p + b2p) and a
combination of the estimates from Lemmas 5.3.5-5.3.7.

Lemma 5.3.9. Fix a sufficiently large constant Klt ≥ 1. Then for any integer T ≥ 2
and any process B that satisfies (hB), we have the supremum bound

E sup
0≤t≤T

‖E lt
B(t)‖2L2 ≤ KltΘ2

∗ ln(T ). (5.3.30)

Proof. Upon writing dmax = 2
√
eKcnvM

2Θ∗ together with

d(t1, t2) = dmax min{
√
|t2 − t1|, 1}, (5.3.31)

an application of Lemma 5.2.2 to Corollary 5.3.8 provides the bound

P
(
‖E lt
B(t1)− E lt

B(t2)‖L2 > ϑ
)
≤ 2 exp

[
− ϑ2

2d(t1, t2)2

]
. (5.3.32)

Turning to the packing number N(T, d, ν) introduced in Theorem 5.2.7, we note that
N(T, d, ν) = 1 whenever ν ≥ dmax, while for smaller ν we have

N(T, d, ν) ≤ Td2
max
ν2 . (5.3.33)

In particular, the Dudley entropy integral can be bounded by∫ ∞
0

√
ln(N(T, d, ν)) dν ≤

∫ dmax

0

√
ln(Td2

max/ν
2) dν

=
∫ dmax

0

√
−2 ln

(
ν/(dmax

√
T )
)
dν

= dmax
√
T

∫ 1/
√
T

0

√
−2 ln(ν) dν

= dmax

(√
2 ln(T ) +

√
π
√
T erfc

(√
ln(T )

))
.

(5.3.34)

Since the function
√
T erfc(

√
ln(T )) is uniformly bounded for T ≥ 2, the desired estimate

now follows directly from Theorem 5.2.7.

Proof of (5.3.8) in Proposition 5.3.1. Applying Corollary 5.2.4 to the estimates (5.3.17)-
(5.3.18), we directly find

E sup
0≤t≤T

‖Esh
B (t)‖2L2 ≤ 108M2eK2

cnve
εΘ2
∗ ln(T ). (5.3.35)

Combining this with the analogous long-term estimate (5.3.30) readily yields the result.
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5.3.2 Estimates for I s
B

Our strategy here for controlling I s
B is to appeal to Corollary 5.2.4, which requires us to

obtain moment bounds on I s
B(i). As a preparation, we switch the order of integration

to find

I s
B(i) =

∫ i

0
e−ε(i−s)

∫ s

0
〈S(s− s′)V (s′), S(s− s′)B(s′)·〉H1 dWQ

s′ ds

=
∫ i

0

∫ i

s′
e−ε(i−s)〈S(s− s′)V (s′), S(s− s′)B(s′)·〉H1 ds dWQ

s′ .

(5.3.36)

Corollary 5.2.6 hence yields

E[I s
B(i)]2p ≤ ppK2p

cnvE

[∫ i

0

∞∑
k=0
K(i)
k (s′)2ds′

]p
, (5.3.37)

in which we have introduced the expression5

K(i)
k (s′) =

∫ i

s′
e−ε(i−s)〈S(s− s′)V (s′), S(s− s′)B(s′)

√
Qek〉H1ds. (5.3.38)

Motivated by (5.2.5), we split K(i)
k into the two parts

K(i)
I;k(s′) =

∫ i

s′
e−ε(i−s)Jtw[V (s′), B(s′)

√
Qek]ds,

K(i)
II;k(s′) = − 1

2ρ

∫ i

s′
e−ε(i−s)

d

ds
〈S(s− s′)V (s′), S(s− s′)B(s′)

√
Qek〉L2ds.

(5.3.39)
Performing an integration by parts, the second of these integrals can be further decom-
posed into the three terms

K(i)
IIa;k(s′) = − ε

2ρ

∫ i

s′
e−ε(i−s)〈S(s− s′)V (s′), S(s− s′)B(s′)

√
Qek〉L2ds,

K(i)
IIb;k(s′) = − 1

2ρ 〈S(i− s′)V (s′), S(i− s′)B(s′)
√
Qek〉L2 ,

K(i)
IIc;k(s′) = 1

2ρe
−ε(i−s′)〈V (s′), B(s′)

√
Qek〉L2 .

(5.3.40)

Lemma 5.3.10. Pick a sufficiently large constant KK > 0. Then for any integer T ≥ 2,
any pair of processes (B, V ) that satisfies (hB) and (hV) and any i ∈ {1, . . . , T}, we
have the bound ∑

k

K(i)
#;k(s′)2 ≤ KKe

−2ε(i−s′)‖V (s′)‖2L2‖B(s′)‖2HS (5.3.41)

5 Note that this integral is an improper integral, as the integrand is not defined for the lower boundary
s = s′. In Chapter 2 we show how this problem can be circumvented by replacing s by s + δ and
subsequently sending δ → 0.



5

214 Chapter 5 – Long Time Stability of Stochastic Travelling Waves

for all 0 ≤ s′ ≤ i and each of the symbols # ∈ {I, IIa, IIb, IIc}.

Proof. Upon introducing the expression

K(ε, β) = eε(i−s
′)
∫ i

s′
e−ε(i−s)e−2β(s−s′)

(
1 + ρ−1(s− s′)−1/2

)
ds (5.3.42)

we may exploit (5.2.7) to obtain the bound∑
k

K(i)
I;k(s′)2 ≤ M2e−2ε(i−s′)

∑
k

‖V (s′)‖2L2‖B(s′)
√
Qek‖2L2K(ε, β)2

= M2e−2ε(i−s′)‖V (s′)‖2L2‖B(s′)‖2HSK(ε, β)2.
(5.3.43)

The estimate for # = I hence follows from the computation

K(ε, β) ≤
∫ ∞

0
e(ε−2β)s

(
1 + ρ−1s−1/2

)
ds = 1

2β − ε + 1
ρ

√
π

2β − ε . (5.3.44)

The estimate for K(i)
IIa;k can be obtained in the same fashion, but here the (s− s′)−1/2

term in (5.3.42) is not required. Finally, the estimates for K(i)
IIb;k and K(i)

IIc;k are imme-
diate from Lemma 5.2.1 and the choice β > ε.

Proof of (5.3.9) in Proposition 5.3.1. Applying Young’s inequality to the decomposi-
tion above, we obtain the pathwise bound∫ i

0

∑
k

K(i)
k (s′)2ds′ ≤ 16KK

∫ i

0
e−2ε(i−s′)‖V (s′)‖2L2‖B(s′)‖2HS ds′ ≤ 16KKΛ2

∗Θ2
∗.

(5.3.45)
In view of (5.3.37) this implies

E[I s
B(i)]2p ≤ 24pppKp

KK
2p
cnvΛ2p

∗ Θ2p
∗ , (5.3.46)

which leads to the desired bound by exploiting Corollary 5.2.4.

5.4 Deterministic supremum bounds
Our goal here is to obtain pathwise bounds on the deterministic integrals

IF (t) =
∫ t

0
e−ε(t−s)

∫ s

0
〈S(s− s′)V (s′), S(s− s′)F (s′)〉H1 ds′ ds,

Id
B(t) =

∫ t

0
e−ε(t−s)

∫ s

0
‖S(s− s′)B(s′)‖2HS(L2

Q
,H1) ds

′ ds.

(5.4.1)

We are using the process F in the first integral as a placeholder for various linear and
nonlinear expressions in V that we will encounter in §5.5. The second integral arises
as the Itô correction term coming from the integrated H1-norm of V ; see Lemma 5.5.5.
Besides the assumptions (hB) and (hV) introduced in §5.5, we impose the following
condition on the new function F .
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(hF) The process F : [0, T ]× Ω→ L2 has paths in L1([0, T ];L2) and satisfies

〈F (t), ψtw〉L2 = 0 (5.4.2)

for all t ∈ [0, T ].

In contrast to the stochastic setting of §5.3, pathwise bounds for the expressions
(5.4.1) can be easily used to control their supremum expectations. Indeed, we do not
need to use the Burkholder-Davis-Gundy inequalities, which allows us to take a far more
direct approach to establish our two main results below. Notice that we are making
no a priori assumptions on the size of F . This will be useful in §5.5 to obtain sharp
estimates for the nonlinear terms.

Proposition 5.4.1. Fix a sufficiently large constant K > 0. Then for any T > 0 and
any pair of processes (F, V ) that satisfies (hF) and (hV), we have the supremum bound

E sup
0≤t≤T

|IF (t)| ≤ KΛ∗E sup
0≤t≤T

∫ t

0
e−ε(t−s)‖F (s)‖L2 ds. (5.4.3)

Proposition 5.4.2. Fix a sufficiently large constant K > 0. Then for any T > 0 and
any process B that satisfies (hB), we have the supremum bound

E sup
0≤t≤T

Id
B(t) ≤ KΘ2

∗. (5.4.4)

5.4.1 Estimates for IF and Id
B

Upon introducing the expressions

KF (t, s′) =
∫ t

s′
e−ε(t−s)〈S(s− s′)V (s′), S(s− s′)F (s′)〉H1ds,

Kd
B;k(t, s′) =

∫ t

s′
e−ε(t−s)〈S(s− s′)B(s′)

√
Qek, S(s− s′)B(s′)

√
Qek〉H1ds,

(5.4.5)
we may reverse the order of integration to find

IF (t) =
∫ t

0
KF (t, s′)ds′, Id

B(t) =
∫ t

0

∑
k

Kd
B;k(t, s′)ds′. (5.4.6)

Lemma 5.4.3. Pick a sufficiently large constant KF > 0. Then for any T > 0, any
pair of processes (V, F ) that satisfies (hV) and (hF) and any t ∈ [0, T ], we have the
bound

KF (t, s′) ≤ KF e
−ε(t−s′)‖V (s′)‖L2‖F (s′)‖L2 (5.4.7)

for all 0 ≤ s′ ≤ t.

Proof. Observe that KF (t, s′) is identical to (5.3.38) after making the replacement
B(s′)

√
Qek 7→ F (s′). We can hence use the same decomposition as in §5.3.2 and follow

the proof of Lemma 5.3.10 to obtain the stated bound.
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Lemma 5.4.4. Pick a sufficiently large constant Kd
B > 0. Then for any T > 0, any

process B that satisfies (hB) and any t ∈ [0, T ], we have the bound∑
k

Kd
B;k(t, s′) ≤ Kd

B e
−ε(t−s′)‖B(s′)‖2HS (5.4.8)

for all 0 ≤ s′ ≤ t.

Proof. Observe that Kd
B;k(t, s′) is identical to (5.3.38) after making the replacement

V (s′)7→ B(s′)
√
Qek. We can hence use the same decomposition as in §5.3.2 and follow

the proof of Lemma 5.3.10 to obtain the stated bound.

Proof of Proposition 5.4.1. Combining the identity (5.4.6) with the bound (5.4.7), we
readily obtain the pathwise bound

|IF (t)| ≤ KFΛ∗
∫ t

0
e−ε(t−s)‖F (s)‖L2ds. (5.4.9)

The result hence follows by taking the expectation of the supremum.

Proof of Proposition 5.4.2. Combining the identity (5.4.6) with the estimate (5.4.8), we
readily obtain the pathwise bound∣∣Id

B(t)
∣∣ ≤ Kd

B Θ2
∗, (5.4.10)

which of course survives taking the expectation of the supremum.

5.5 Nonlinear stability
With the results from the previous sections under our belt, we now set out to prove the
estimates in Theorem 5.1.1 and hence establish the stochastic stability of the travelling
wave on exponentially long timescales. Our starting point will be the computations in
Chapters 2 and 4, which use a time transformation to construct a mild integral equation
for the perturbation V (t) that contains no dangerous second order derivatives.

The arguments in Proposition 2.6.4 and §5.5 indicate that this time transformation
only affects the constants in the final estimate (5.1.10). For presentation purposes, we
therefore simply reuse t for the transformed time and leave the definition (5.1.9) for the
stopping time tst(η) intact. The mild representation for V can now be written in the
generic form

V (t) = V (0) +
∫ t

0
S(t− s)[σ2Flin

(
V (s)

)
+ Fnl

(
V (s)

)
]ds+ σ

∫ t

0
S(t− s)B

(
V (s)

)
dWQ

s ,

(5.5.1)

where the maps

Flin : H1 → L2, Fnl : H1 → L2, B : H1 → HS(L2
Q, L

2) (5.5.2)



5

§5.5 – Nonlinear stability 217

satisfy the bounds

‖Flin(v)‖L2 ≤ Klin‖v‖H1 ,

‖Fnl(v)‖L2 ≤ Knl‖v‖2H1(1 + ‖v‖3L2),

‖B(v)‖HS ≤ KB(1 + ‖v‖H1),

‖S(1)B(v)‖HS ≤ KBM(1 + ‖v‖L2).

(5.5.3)

In addition, whenever ‖v‖L2 is sufficiently small, we have the identities

〈σ2Flin(v) + Fnl(v), ψtw〉L2 = 0, 〈B(v)[w], ψtw〉L2 = 0 (5.5.4)

for every w ∈ L2
Q. Notice that v = V (t) automatically satisfies this condition for

t ≤ tst(η) provided that η < η0 for some sufficiently small η0.
In order to state the main result of this section, we write

N(t) = ‖V (t)‖2L2 +
∫ t

0
e−ε(t−s)‖V (s)‖2H1 ds (5.5.5)

for the size of the solution V , which also features in the definition (5.1.9) for the stopping
time tst = tst(η). The various supremum bounds derived in §5.3 and §5.4 can now be
used to obtain a similar bound for N(t). This result can be seen as a significantly
sharpened version of its counterpart Proposition 2.9.1, which allows Theorem 5.1.1 to
be established in a standard fashion.

Proposition 5.5.1. Pick a constant 0 < ε < β, together with two sufficiently small
constants δη > 0 and δσ > 0. Then there exists a constant K > 0 so that for any integer
T ≥ 2, any 0 < η < δη and any 0 ≤ σ ≤ δσ ln(T )−1/2 we have the bound

E

[
sup

0≤t≤tst
N(t)

]
≤ K

[
‖V (0)‖2L2 + σ2 ln(T ) + σ

√
η
√

ln(T )
]
. (5.5.6)

Proof of Theorem 5.1.1. The arguments in Corollary 2.9.4 and the proof of Theorem
2.2.4 can be used almost verbatim to derive (5.1.10) from (5.5.6).

5.5.1 Supremum bounds in L2

In this subsection we establish the following bound on the supremum of the L2-norm
of V (t). Notice that we are imposing less restrictions on σ and η here, but N(t) still
appears on the right-hand side of our estimate.

Lemma 5.5.2. Pick a constant 0 < ε < β. Then there exists a constant K > 0 so that
for any integer T ≥ 2, any 0 < η < η0 and any 0 ≤ σ ≤ 1 we have the bound

E sup
0≤t≤tst

‖V (t)‖2L2 ≤ K
[
‖V (0)‖2L2 + σ2 ln(T ) + (σ4 + η)E sup

0≤t≤tst
N(t)

]
. (5.5.7)
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In order to streamline the proof, we recall the definition of Π from Lemma 5.2.1 and
define the functions

E0(t) =S(t)V (0),

Elin(t) =
∫ t

0
S(t− s)ΠFlin

(
V (s)

)
1s≤tstds,

Enl(t) =
∫ t

0
S(t− s)ΠFnl

(
V (s)

)
1s≤tstds,

EB(t) =
∫ t

0
S(t− s)B

(
V (s)

)
1s≤tstdWQ

s .

(5.5.8)

The three deterministic expressions can be controlled in a direction fashion, while the
final stochastic integral was analysed in §5.4.

Lemma 5.5.3. For any 0 < η < η0, any 0 ≤ σ ≤ 1 and any T > 0, we have the bounds

E sup
0≤t≤T

‖E0(t)‖2L2 ≤M2‖V (0)‖2L2 ,

E sup
0≤t≤T

‖Elin(t)‖2L2 ≤M2K2
linE sup

0≤t≤tst
‖V (t)‖2L2 ,

E sup
0≤t≤T

‖Enl(t)‖2L2 ≤M2K2
nl(1 + η3)2ηE sup

0≤t≤tst

∫ t

0
e−ε(t−s)‖V (t)‖2H1ds.

(5.5.9)

Proof. These results follow directly from Lemmas 2.9.8-2.9.11, where they were estab-
lished using straightforward direct norm estimates.

Lemma 5.5.4. Pick a constant 0 < ε < β. Then there is a K > 0 such that the bound

E sup
0≤t≤T

‖EB(t)‖2L2 ≤ K ln(T ) (5.5.10)

holds for any integer T ≥ 2, any 0 < η < η0 and any 0 ≤ σ ≤ 1.

Proof. We will prove this by appealing to Proposition 5.3.1. In order to verify (hB), we
simply compute∫ t

0
e−ε(t−s)‖B

(
V (s)

)
1s≤tst‖2HS ds ≤K2

B

∫ t

0
e−ε(t−s)(1 + ‖V (s)‖2H1)1s≤tst ds

≤K2
B

(
ε−1 +

∫ min{t,tst}

0
e−ε(t−s)‖V (s)‖2H1 ds

)
≤K2

B(ε−1 + η),
(5.5.11)

together with

‖S(1)B
(
V (s)

)
1s≤tst‖2HS ≤M2K2

B(1 + ‖V (s)1s≤tst‖2L2) ≤M2K2
B(1 + η), (5.5.12)

which allows us to take Θ2
∗ = M2K2

B(ε−1 + η).
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Proof of Lemma 5.5.2. We directly find that

E sup
0≤t≤tst

‖V (t)‖2L2 ≤ 4E sup
0≤t≤T

[
‖E0(t)‖2L2 + σ4‖Elin(t)‖2L2 + ‖Enl(t)‖2L2 + σ2‖EB(t)‖2L2

]
.

(5.5.13)

Collecting the results from Lemmas 5.5.3 and 5.5.4 now proves the result.

5.5.2 Supremum bounds in H1

In this subsection we control the H1-norm of V by establishing a supremum bound for
the integrated expression

I(t) =
∫ t

0
e−ε(t−s)‖V (s)‖2H1ds. (5.5.14)

In particular, we set out to obtain the following estimate.

Lemma 5.5.5. Pick a constant 0 < ε < β. Then there exists a constant K > 0 so that
for any integer T ≥ 2, any 0 < η < η0 and any 0 ≤ σ ≤ 1 we have the bound

E sup
0≤t≤T

I(t) ≤ K
[
‖V (0)‖2H1 + ησ2 +√ηE

[
sup

0≤t≤tst
N(t)

]
+ σ2 + σ

√
η
√

ln(T )
]
.

(5.5.15)

Compared to §5.5.1 and §2.9, our approach here is rather indirect. First of all, we
exploit the fact that T is an integer to compute

sup
0≤t≤T

I(t) = max
i∈{1,....,T}

sup
i−1≤t≤i

∫ t

0
e−ε(t−s)‖V (s)‖2H1ds

≤ max
i∈{1,....,T}

eε
∫ i

0
e−ε(i−s)‖V (s)‖2H1ds

= eε max
i∈{1,....,T}

I(i).

(5.5.16)

We continue by applying a mild Itô formula [27] to ‖V (s)‖2H1 , which yields

‖V (s)‖2H1 =‖S(s)V (0)‖2H1 + 2σ2
∫ s

0
〈S(s− s′)V (s′), S(s− s′)Flin(V (s′))〉H1ds′

+ 2
∫ s

0
〈S(s− s′)V (s′), S(s− s′)Fnl

(
V (s′)

)
〉H1ds′

+ 2σ
∫ s

0
〈S(s− s′)V (s′), S(s− s′)B

(
V (s′)

)
dWQ

s′ 〉H1

+ σ2
∫ s

0
‖S(s− s′)B

(
V (s′)

)
‖2HS(L2

Q
,H1)ds

′.

(5.5.17)
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In particular, upon introducing the components

I0(t) =
∫ t

0
e−ε(t−s)‖S(s)V (0)‖2H1ds,

Ilin(t) =
∫ t

0
e−ε(t−s)

∫ s

0
〈S(s− s′)V (s′), S(s− s′)ΠFlin

(
V (s′)

)
1s′≤tst〉H1ds′ds,

Inl(t) =
∫ t

0
e−ε(t−s)

∫ s

0
〈S(s− s′)V (s′), S(s− s′)ΠFnl

(
V (s′)

)
1s′≤tst〉H1ds′ds,

I s
B(t) =

∫ i

0
e−ε(t−s)

∫ s

0
〈S(s− s′)V (s′), S(s− s′)B

(
V (s′)

)
1s′≤tstdW

Q
s′ 〉H1ds,

Id
B(t) =

∫ i

0
e−ε(t−s)

∫ s

0
‖S(s− s′)B

(
V (s′)

)
1s′≤tst‖2HS(L2

Q
,H1)ds

′ds,

(5.5.18)

we obtain the bound
E sup

0≤t≤tst
I(t) ≤ eεE max

i∈{1,..,T}

[
I0(i) + 2σ2Ilin(i) + 2Inl(i) + 2σI s

B(i) + σ2Id
B(i)

]
≤ eεE sup

0≤t≤T

[
I0(t) + 2σ2Ilin(t) + 2Inl(t) + σ2Id

B(t)
]
+2eεσE max

i∈{1,..,T}
I s
B(i).

(5.5.19)

This decomposition highlights the fact that supremum bounds over deterministic in-
tegrals are easily obtained, while the stochastic integral needs to be handled with
care.
Lemma 5.5.6. Pick a constant 0 < ε < β. Then there exists a constant K > 0 so that
for any integer T ≥ 2, any 0 < η < η0 and any 0 ≤ σ ≤ 1 we have the bounds

E sup
0≤t≤T

Ilin(t) ≤Kη,

E sup
0≤t≤T

Inl(t) ≤K
√
ηE sup

0≤t≤T

∫ t

0
e−ε(t−s)‖V (s)‖2H11s≤tstds.

(5.5.20)

Proof. In order to exploit Proposition 5.4.1, we first note that the orthogonality condi-
tions (5.3.6) and (5.4.2) hold true by virtue of the stopping time. In particular, (hF)
and (hV) are both satisfied, with Λ∗ = √η. The stated bounds can hence be obtained
by using the computation∫ t

0
e−ε(t−s)‖Flin(V (s))1s≤tst‖L2ds ≤Klin

∫ t

0
e−ε(t−s)‖V (s)‖H11s≤tstds

≤Klin
1√
ε

√∫ t

0
e−ε(t−s)‖V (s)‖2H11s≤tstds

≤Klin

√
η

ε
,

(5.5.21)
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together with∫ t

0
e−ε(t−s)‖Fnl(V (s))1s≤tst‖L2ds ≤Knl

∫ t

0
e−ε(t−s)‖V (s)‖2H1(1 + ‖V (s)‖3L2)1s≤tstds

≤Knl(1 + η3)
∫ t

0
e−ε(t−s)‖V (s)‖2H11s≤tstds

(5.5.22)

to evaluate the right-hand side of (5.4.3).

Lemma 5.5.7. Pick a constant 0 < ε < β. Then there exists a constant K > 0 so that
for any integer T ≥ 2, any 0 < η < η0 and any 0 ≤ σ ≤ 1 we have the bounds

E sup
0≤t≤T

Id
B(t) ≤K,

E max
i∈{1,....,T}

I s
B(t) ≤K√η

√
ln(T ).

(5.5.23)

Proof. Recall from the proof of Lemma 5.5.2 that (hB) holds with Θ2
∗ = M2K2

B(ε−1+η).
The first estimate now follows directly from Proposition 5.4.2, while the second can be
obtained from Proposition 5.3.1 using the fact that (hV) is satisfied with Λ∗ = √η.

Proof of Lemma 5.5.5. The bound follows immediately from the decomposition (5.5.19)
and Lemmas 5.5.6-5.5.7.

Proof of Proposition 5.5.1. Summing the estimates from Lemmas 5.5.2 and 5.5.5 yields
the bound

E sup
0≤t≤tst

N(t) ≤ K
[
‖V (0)‖2L2+σ2 ln(T )+σ2+σ√η

√
ln(T )+(σ4+η+√η)E sup

0≤t≤tst
N(t)

]
.

(5.5.24)
Upon restricting the size of σ4 + η +√η, the result readily follows.
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Transactions of the American Mathematical Society.



B

Bibliography 225
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Wiskundigen mogen graag vertellen dat de kracht van de wiskunde ligt in de abstractie.
We strippen elk probleem, ongeacht of het komt uit de natuurkunde, biologie, scheikunde,
logistiek, of welke tak van sport dan ook, tot er iets overblijft dat we kunnen vangen in
definities, stellingen en bewijzen. De terugkoppeling naar de echte wereld is echter vaak
lastig en de meeste wiskundigen zullen dan ook opmerken dat hun werk ‘misschien ooit
een echte toepassing1 zal krijgen.’ Dit betekent echter niet dat we als wiskundigen niet
druk bezig zijn met ‘ooit’ dichterbij te brengen.

Stochastiek
Als eerste zullen we ons moeten realiseren dat de buitenwereld niet perfect is zoals onze
wiskundige modellen, maar dat er juist vaak ruis op de lijn zit. Stel je de volgende
situatie voor: je hebt een baksteen in je ene hand, een veer in de andere, en laat ze
tegelijkertijd vallen. Allebei vallen ze volgens de wetten van Newton, allebei ondervinden
ze dezelfde versnelling door de zwaartekracht (per definitie 1g), maar het resultaat is
totaal anders. De stroming van de lucht heeft nauwelijks invloed op de baksteen, maar
des te meer op de veer. Het is dan ook gemakkelijk uit te rekenen waar de baksteen
terecht komt (recht onder de plek waar je de steen losliet), maar datzelfde doen voor de
veer is praktisch onmogelijk. Daarvoor zouden we de luchtstromen zeer gedetailleerd
moeten kennen wat (nog) niet haalbaar is.

We kunnen dus de echte plek waar de veer landt niet bepalen, maar we kunnen onszelf
wel de volgende vraag stellen: kunnen we voorspellen waar de veer waarschijnlijk terecht
komt? Hiervoor moeten we dus bepalen hoe de lucht de veer bëınvloedt, maar welke
kant de lucht de veer op duwt en hoe sterk weten we niet. Daarom zullen we de invloed
van de lucht modelleren als een zogenaamde stochastische2 variabele. Een stochastische
variabele ligt, in tegenstelling tot een ‘normale’ variabele, of deterministische variabele,
niet vast. We weten de massa van de veer, we kennen de temperatuur in ons laboratorium
en hoewel deze waarden natuurlijk kunnen veranderen (het zijn immers variabelen)
kunnen we de waarden op elk tijdstip zo precies mogelijk meten als onze meetapparatuur
toelaat. Bij een stochastische variabele is dat anders, je weet alleen welke waarden een
stochastische variabele kan aannemen.

Een voorbeeld van een stochastische variabele dat iedereen zal kennen is de dobbel-
steen: voor elke worp komt er 1, 2, 3, 4, 5 of 6 tevoorschijn, maar je weet van te
voren niet welke er boven komt. Wat we wel weten van de (eerlijke) dobbelsteen is de
1 In de woorden van een meer nihilistisch ingestelde wiskundige: “Een toepassing, het kan de beste

overkomen.”
2 Afgeleid van het Oudgriekse στoχαζoµαι, stochadzomai, gokken.
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kansverdeling: de kans dat je een specifiek getal gooit is 1/6. Nu wordt het tijd voor
wat wiskunde. Eerst geven we de stochastische variabele ‘gooi een dobbelsteen’ een
naam of symbool, laten we X nemen. Verder introduceren we de letter E voor het
nemen van het gemiddelde. De zin ‘het gemiddelde van een dobbelsteenworp’ kan nu
dus compact worden geschreven als E[X]. Dit getal kunnen we uitrekenen: er zijn 6
uitkomsten mogelijk die allemaal een gelijke kans hebben van 1/6, dus we vinden

E[X] =
1
6 · 1 + 1

6 · 2 + 1
6 · 3 + 1

6 · 4 + 1
6 · 5 + 1

6 · 6
6 = 3,5.

Nota Bene: Je kan dus in een enkele worp nooit het gemiddelde gooien want er staat
geen 3,5 op de dobbelsteen.

Terug naar de veer. We behandelen de invloed van de lucht op de veer dus ook als een
stochastische variabele en we introduceren hiervoor de notatie3 FL(t). We nemen voor
het gemak aan dat op elk tijdstip de sterkte en de richting van de kracht willekeurig
zijn. Dit betekent dus dat de netto kracht die de lucht uitoefent op de veer 0 is, of in
wiskundige notatie:

E[FL(t)] = 0.

Het is hier dus essentieel om op te merken dat, alhoewel de gemiddelde bijdrage van de
lucht op 0 uitkomt, het effect op een individuele veer duidelijk niet nul is. De vraag is
nu: als je het gemiddelde neemt van alle plekken waar de veer landt, is dat wel recht
onder de plek waar je hem losliet? Een veer is nooit perfect symmetrisch, dus het zou
zomaar kunnen dat een klein duwtje naar links meer effect heeft dan een klein duwtje
naar rechts. Dit zou dan als resultaat kunnen hebben dat een kracht met netto sterkte
nul, een niet-nul effect heeft op de veer, maar hoe zou je dat kunnen uitrekenen?

Dynamische systemen
Voordat we verder gaan met de stochastiek, keren we weer terug naar de klassieke
tweede wet van Newton:

kracht = massa× versnelling.

Het is hier belangrijk om op te merken dat de kracht van veel factoren afhangt. Als
we opnieuw het voorbeeld van de vallende baksteen nemen, weten we bijvoorbeeld dat
de luchtweerstand afhangt van hoe snel de baksteen valt. Hoe sneller de steen valt,
hoe groter de luchtweerstand. De luchtweerstand hangt ook af van de dichtheid van
de lucht. Als je de steen laat vallen vanuit een vliegtuig, waar de lucht erg ijl is, zal
hij sneller vallen dan vanaf een flat. De snelheidsverandering van de steen hangt dus
af van een veranderende kracht die weer afhangt van de valsnelheid en de hoogte, die
beide weer constant veranderen omdat de steen valt. Kortom, alle parameters in het
systeem veranderen, niet alleen door een oorzaak van buitenaf, maar juist ook door de
beweging van de steen zelf. De vergelijkingen die dit samenspel beschrijven noemen we
een dynamisch systeem.
3 F voor kracht (force), het subscript L om de afhankelijkheid van de lucht aan te geven (i.t.t.

bijvoorbeeld de zwaartekracht) en de t om de afhankelijkheid van de tijd aan te geven.



S

Samenvatting 233

(a) (b)

Afbeelding 1: Twee voorbeelden van patronen die kunnen worden verklaard met behulp
van RDV’s. In afbeelding (a) zien we strepen op de kop van een zebra. In afbeelding (b)
zien we cirkelpatronen in een Belousov–Zhabotinsky-reactie. Afbeelding (b) met dank
aan Stephen Morris, Toronto, Canada.

In bijna alle situaties in de natuur waar verandering plaats vindt, of het nu het
weer is of het groeien van een plant, kan men beschrijven met zogenoemde dynamische
systemen. Slechts in zeldzame simpele gevallen kan je de oplossingen van dit type
vergelijkingen met pen en papier uitrekenen. Indien men kwantitatieve resultaten over
zo’n systeem wil hebben, wordt er vaak naar de computer gegrepen om het rekenwerk te
doen. Je kan hierbij bijvoorbeeld denken aan uitgebreide simulaties voor de dagelijkse
weersvoorspellingen. Indien meer kwalitatieve resultaten gewenst zijn, is de hulp van
wiskundigen vaak onontbeerlijk. Nog los van het feit dat ook bij computersimulaties
wiskundigen onontbeerlijk zijn, omdat de vraag “hoe stop ik vergelijkingen voor het
weer in een computer?” niet kan worden beantwoord zonder wiskundigen.

Stochastische reactie-diffusievergelijkingen
In Leiden besteden we veel aandacht aan een specifiek type dynamisch systeem genaamd
reactie-diffusievergelijkingen (RDV’s). Oorspronkelijk werd dit type vergelijking gëıntro-
duceerd door Alan Turing (die om andere redenen beroemd is geworden) om strepen
op zebra’s te kunnen verklaren. Bijna zeventig jaar later zijn RDV’s hét middel gewor-
den om allerhande patroonvorming in de natuur te begrijpen, variërend van de vorm
van golven op het water tot de patronen die optreden tijdens hartritmestoornissen
(tachycardia).

Het basisidee van RDV’s is als volgt. Stel je een scheikunde-experiment voor waarbij
meerdere chemicaliën zijn opgelost in water. De chemicaliën kunnen twee dingen doen:
diffunderen en reageren. Denk bij diffunderen aan een druppel inkt in een bak water:
ook als je niet roert zal de inkt vanzelf worden verspreid in het water. Dit proces
noemen we diffusie. Als je meerdere stoffen toevoegt, kunnen deze gaan reageren met
de inkt. Deze reactie zal het sterkst zijn op de plek waar van beide stoffen het meest
aanwezig is. Als er nu een chemische reactie mogelijk is waardoor het reactieproduct
ook weer terug kan naar de stoffen waar het uit is opgebouwd, kan de volgende keten
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ontstaan: stel je voegt een druppel inkt toe aan de bak met chemicaliën, dan zal op de
plek waar de druppel landt én een sterke reactie optreden én veel diffusie van de inkt
plaatsvinden. Dit betekent dat er na korte tijd geen inkt meer is op de oorspronkelijke
plek, maar wel veel reactieproduct, en dat er in een kring omheen juist veel inkt is.
Vervolgens zal er dus op de oorspronkelijke plek het reactieproduct weer terug kunnen
gaan naar inkt, terwijl de reactie die de inkt wegneemt nu in een kring om de plek waar
de druppel landde heen het sterkst zal zijn. Nu gaat het proces zich herhalen. Dit kan
dus patronen opleveren met ringen waar veel inkt of weinig inkt aanwezig is. Zoek maar
eens op YouTube naar de Belousov–Zhabotinsky-reactie of zie afbeelding 1(b).

De centrale vraag die we stellen in dit proefschrift is nu als volgt: stel we hebben een
reactie-diffusievergelijking waarvan we de bijbehorende patronen kennen en technieken
hebben om die te bestuderen, wat kunnen we dan zeggen over de patronen als we ruis
toevoegen aan de vergelijking? Om terug te keren naar de veer: kunnen we begrijpen
hoe de veer valt door de lucht in vergelijking met hoe de veer valt in het vacuüm
(namelijk recht naar beneden). Of voor de patronen in afbeelding 1(b): kunnen we
begrijpen hoe de patronen zich gedragen als de tafel, waar het petrischaaltje op ligt
trilt, ten opzichte van de patronen als de tafel niet trilt? Is het gedrag slechts een kleine
afwijking van het deterministische gedrag of zal er kwalitatief ander gedrag optreden?

Nieuwe resultaten
In dit proefschrift leggen we een basis om met pen en papier stochastische RDV’s te kun-
nen bestuderen en ze te kunnen vergelijken met hun deterministische tegenhanger. We
doen dit niet voor complexe systemen zoals de vallende veer of de Belousov–Zhabotinsky-
reactie, maar voor simpelere systemen die zonder ruis goed begrepen zijn, zogenaamde
‘toy models’. Voorbeelden hiervan zijn vergelijkingen met namen als de Nagumovergelij-
king of de FitzHugh-Nagumovergelijking, die veelvuldig voorkomen in dit proefschrift.
De pulsen die overal onderaan de oneven bladzijdes in dit proefschrift staan, vormen
een oplossing van de stochastische FitzHugh-Nagumovergelijking. Zonder ruis zou de
afbeelding op elke pagina identiek zijn. De puls uit de inhoudsopgave zou stil staan en
niet van vorm veranderen. We zien echter dat de puls wél beweegt en wél van vorm
verandert. Met de technieken in dit proefschrift kunnen we deze veranderingen van de
vorm en snelheid begrijpen en nauwkeurig berekenen.

De basis is gelegd, maar er is ook heel veel wat we nog niet kunnen op dit moment.
We hebben één klasse van toy models bestudeerd, zogenaamde bistabiele vergelijkingen
en we hebben de eerste stappen gezet om monostabiele vergelijkingen te bestuderen.
Echter, andere belangrijke type vergelijkingen zoals de Korteweg-De Vriesvergelijk-
ing of Burgersvergelijking vragen nog om veel tijd en aandacht. Bovendien zijn al
onze resultaten alleen nog maar in 1D; vergelijkbare problemen in 2D en 3D, zoals de
Barkleyvergelijking op de cover, zijn nog onontgonnen terrein. Wij zijn niet de eersten
die aan deze onderwerpen werken, maar dus ook zeker niet de laatsten. Samengevat,
om ‘ooit’, het moment waarop dit onderzoek daadwerkelijk toepassingen op zal leveren,
te bereiken, zullen nog vele promovendi aan de slag moeten.
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In de eerste plaats gaat mijn dank uit naar de man die waarschijnlijk de meeste slapeloze
nachten heeft gehad van dit proefschrift, en nee, ik begin niet bij mezelf. Hermen Jan,
in vier jaar tijd ben ik erachter gekomen dat er in jouw brein een schier onuitputtelijke
voorraad aan mij onbekende wiskunde ligt opgeslagen. Als je me vraagt wat ik anders
had willen doen tijdens mijn promotie, dan is het wel dat ik ook in mijn eerste jaar op
de hoogte had willen zijn van dit feit, want de samenwerking in het eerste jaar was niet
optimaal. Misschien kwam dat omdat we allebei geen idee hadden waar we mee bezig
waren, maar waarschijnlijk had alleen ik geen idee waar ik mee bezig was. Ik weet niet
of het oorspronkelijk de bedoeling was om het onderzoek uit het onderzoeksvoorstel te
gaan doen, maar ik denk dat je daarvoor een nieuwe promovendus moet gaan zoeken.
Na een traag eerste jaar kwam de samenwerking goed op gang en heb ik ontzettend
veel van je geleerd, zowel over wiskunde als over hoe je over wiskunde moet schrijven
(en dan met name dat ik mijn literaire carrière niet in mijn artikelen moest opstarten).
Je hebt grootse plannen om de resultaten uit dit proefschrift verder te ontwikkelen en
ik zal zeker in de gaten blijven houden hoe dat gaat verlopen.

Tijdens een promotietraject gaat natuurlijk niet altijd alles even soepel en soms kan
het fijn zijn om even alles eruit te gooien tegen iemand die niet Hermen Jan is. Martina,
hier heb jij een belangrijke rol gespeeld. Het ging helaas vaak in het Engels in plaats
van het afgesproken Nederlands of Duits, desalniettemin hebben we alsnog goed kunnen
praten over het leven als beginnend wiskundige. Op wiskundig gebied heb je misschien
niet de rol gespeeld die je had gewild, maar het was fijn om je in de buurt te hebben.

Verder gaat mijn dank natuurlijk uit naar alle fascinerende wezens die de afgelopen
4 jaar kamer 202 hebben bevolkt. Olfa, Robbin, Esmée, Leonie, David, Willem en
Hans, kamer 202 mag dan al de gezelligste zijn geweest van het Snellius door de rode
vloerbedekking en de gele stoelen, jullie hebben er voor gezorgd dat er ook nog wat leven
in de brouwerij kwam. Robbin, na een bachelor-, master-, en promotie-onderzoek in
dezelfde groep te hebben gedaan, zijn onze wegen nu echt gescheiden, al heb ik nog mijn
best gedaan wéér in dezelfde groep terecht te komen. Ik zal me de rest van mijn leven
blijven verbazen over jouw vermogen om wiskunde op papier te doen zonder krassen en
doorhalen. Olfa, elke ochtend hoorden we je al van verre aankomen, het geslof op de
gang was een voorbode van het feit dat de serene rust van de vroege morgen voorbij
zou zijn. Omvallende theevazen (vaak gevuld), heavy metal1, een laptop die de tijd in
blikkerig Russisch door de kamer schreeuwt; je wist ons altijd weer wakker te krijgen.
Ook zorgde jij voor de sociale cohesie, je spoorde ons altijd aan iets te gaan drinken
in de FooBar of de laatste tijd om online af te spreken. Willem, het was altijd erg
1 Dit is sowieso de verkeerde muzikale term.
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geruststellend om jou in de buurt te hebben, omdat jij dezelfde dingen als ik meemaakt
met jouw begeleider.

Hermen Jans schatkamer aan wiskunde heb ik vaak geplunderd, maar er is nog
iemand anders die ik vaak heb lastig gevallen als Google weer eens geen antwoord had
op mijn vragen. Onno, je was altijd bereid om mee te denken als ik me op functionaal-
analytisch gebied weer eens in de nesten had gewerkt. En eerlijk gezegd, niet alleen
de afgelopen vier jaar, maar de afgelopen tien jaar heb je geholpen met de meest
uiteenlopende vragen. Veel dank daarvoor.

Onno is een goed voorbeeld van waar het Mathematisch Instituut zo trots op is:
een informeel opendeurenbeleid waar studenten met al hun vragen terecht kunnen. Als
student heb ik het MI van binnen uit leren kennen als lid van de opleidingscommissie
en heb dus kunnen meemaken hoe er altijd wordt meegedacht met de studenten. Ook
over studenten met ingewikkelde vakkenlijsten (dubbele bachelor, half jaar buitenland,
vakken van ander universiteiten) werd nooit moeilijk gedaan. Om een handtekening
te krijgen voor mijn dubbele bachelor wis- en natuurkunde hoefde ik slechts naar een
speech te luisteren over het feit dat natuurkundigen nooit ergens zullen komen tot het
moment dat ze gedegen definities hebben. Ook toen ik wegens schouderklachten2 geen
opdrachten kon inleveren, waren alle docenten bereid er een mouw aan te passen en
kon ik door zonder enige vertraging.

Verder zijn er natuurlijk ook veel mensen buiten de wiskunde belangrijk geweest.
Pauline, meer dan eens heb ik conferenties als excuus gebruikt om afwezig te zijn tijdens
belangrijke momenten op onze kalender, al leg ik de verantwoordelijkheid hiervoor bij
de kwade geesten van SIAM. Ondanks het feit dat je lang niet altijd begreep waar
ik mee bezig was, zorgde je er altijd voor dat de dingen die wel te begrijpen waren
(filmpjes, het publiceren van papers, conferenties) uitgebreid werden verspreid onder
familie en vrienden. Het enthousiasme waarmee jij reclame maakte voor mijn onderzoek
was altijd erg fijn.

Ook die andere belangrijke vrouw, mama, heeft vaak wat moeite gehad met mijn
onderwerp. Eerlijk is eerlijk, stochastische reactie-diffusievergelijkingen onthouden en
snel uitspreken is best lastig. Het was wel heerlijk om tegen je te klagen over onderwerpen
waar je je beter in kon inleven. Met name frustraties over papers die 95% af waren,
maar ook niet verder wilden, was iets wat je erg goed begreep. En natuurlijk veel dank
aan mijn broers, die als dappere paranimfen achter me staan.

Ik heb het geluk dat er onder mijn muzikale vrienden ook veel promovendi zijn. Er
was natuurlijk de PhDriehoek waar ik deel van uit maakte met Sierk en Petra, maar
ook Floris en Maurits, het is altijd goed om ook het wel en wee van promovendi buiten
wiskunde te horen.

Verder natuurlijk iedereen van Sempre, BLOQ en daarbuiten, die altijd vriendelijk
vroeg hoe het ging met mijn promotie ook al vreesde hij/zij het antwoord, bedankt
daarvoor.

2 Veel dank aan Don de fysiotherapeut voor het regelmatig redden van mijn rug en schouders.
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