Interpreting direct detection searches

Christopher McCabe

with Oliver Buchmueller, Matthew Dolan and Sarah Alam Malik

JHEP 1401 025 (arXiv:1308.6799) and work in progress

Dark matter brainstorming meeting, Imperial College – 29th May 2014
Outline of this talk

• Standard interpretation of direct detection results
• Application to simple models
• Comparing direct detection and LHC limits
Direct detection results

Spin-independent

Spin-dependent
Why constrain these parameters?

- Interactions that dark matter might have with quarks

<table>
<thead>
<tr>
<th>Name</th>
<th>Operator</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>$\bar{\chi} \chi \bar{q} q$</td>
<td>m_q / M_*^3</td>
</tr>
<tr>
<td>D2</td>
<td>$\bar{\chi} \gamma^5 \chi \bar{q} q$</td>
<td>im_q / M_*^3</td>
</tr>
<tr>
<td>D3</td>
<td>$\bar{\chi} \chi \bar{q} \gamma^5 q$</td>
<td>im_q / M_*^3</td>
</tr>
<tr>
<td>D4</td>
<td>$\bar{\chi} \gamma^5 \chi \bar{q} \gamma^5 q$</td>
<td>m_q / M_*^3</td>
</tr>
<tr>
<td>D5</td>
<td>$\bar{\chi} \gamma^\mu \chi \bar{q} \gamma^\mu q$</td>
<td>$1 / M_*^2$</td>
</tr>
<tr>
<td>D6</td>
<td>$\bar{\chi} \gamma^\mu \gamma^5 \chi \bar{q} \gamma^\mu q$</td>
<td>$1 / M_*^2$</td>
</tr>
<tr>
<td>D7</td>
<td>$\bar{\chi} \gamma^\mu \chi \bar{q} \gamma^\mu \gamma^5 q$</td>
<td>$1 / M_*^2$</td>
</tr>
<tr>
<td>D8</td>
<td>$\bar{\chi} \gamma^\mu \gamma^5 \chi \bar{q} \mu \gamma^\nu q$</td>
<td>$1 / M_*^2$</td>
</tr>
<tr>
<td>D9</td>
<td>$\bar{\chi} \sigma^\mu \bar{q} \sigma^\nu q$</td>
<td>$1 / M_*^2$</td>
</tr>
<tr>
<td>D10</td>
<td>$\bar{\chi} \sigma_{\mu \nu} \gamma^5 \chi \bar{q} \sigma_{\alpha \beta} q$</td>
<td>i / M_*^2</td>
</tr>
<tr>
<td>D11</td>
<td>$\bar{\chi} \chi G_{\mu \nu} G^{\mu \nu}$</td>
<td>$\alpha_s / 4M_*^3$</td>
</tr>
<tr>
<td>D12</td>
<td>$\bar{\chi} \gamma^5 \chi G_{\mu \nu} G^{\mu \nu}$</td>
<td>$i\alpha_s / 4M_*^3$</td>
</tr>
<tr>
<td>D13</td>
<td>$\bar{\chi} \chi G_{\mu \nu} \tilde{G}^{\mu \nu}$</td>
<td>$i\alpha_s / 4M_*^3$</td>
</tr>
<tr>
<td>D14</td>
<td>$\bar{\chi} \gamma^5 \chi G_{\mu \nu} \tilde{G}^{\mu \nu}$</td>
<td>$\alpha_s / 4M_*^3$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Operator</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>$\chi^\dagger \chi \bar{q} q$</td>
<td>m_q / M_*^2</td>
</tr>
<tr>
<td>C2</td>
<td>$\chi^\dagger \chi \bar{q} \gamma^5 q$</td>
<td>im_q / M_*^2</td>
</tr>
<tr>
<td>C3</td>
<td>$\chi^\dagger \partial_\mu \chi \bar{q} \gamma^\mu q$</td>
<td>$1 / M_*^2$</td>
</tr>
<tr>
<td>C4</td>
<td>$\chi^\dagger \partial_\mu \chi \bar{q} \gamma^\mu \gamma^5 q$</td>
<td>$1 / M_*^2$</td>
</tr>
<tr>
<td>C5</td>
<td>$\chi^\dagger \chi G_{\mu \nu} G^{\mu \nu}$</td>
<td>$\alpha_s / 4M_*^2$</td>
</tr>
<tr>
<td>C6</td>
<td>$\chi^\dagger \chi G_{\mu \nu} \tilde{G}^{\mu \nu}$</td>
<td>$i\alpha_s / 4M_*^2$</td>
</tr>
<tr>
<td>R1</td>
<td>$\chi^2 \bar{q} q$</td>
<td>$m_q / 2M_*^2$</td>
</tr>
<tr>
<td>R2</td>
<td>$\chi^2 \bar{q} \gamma^5 q$</td>
<td>$im_q / 2M_*^2$</td>
</tr>
<tr>
<td>R3</td>
<td>$\chi^2 G_{\mu \nu} G^{\mu \nu}$</td>
<td>$\alpha_s / 8M_*^2$</td>
</tr>
<tr>
<td>R4</td>
<td>$\chi^2 G_{\mu \nu} \tilde{G}^{\mu \nu}$</td>
<td>$i\alpha_s / 8M_*^2$</td>
</tr>
</tbody>
</table>

Goodman et al:1008.1783

- Using operators excellent approximation when $M_{\text{med}} > 500$ MeV
Why constrain these parameters?

- In the non-relativistic limit ($\nu_{\text{DM}} \sim 10^{-3}$)

$$u = \left(\frac{\sqrt{p \cdot \sigma \xi}}{\sqrt{p \cdot \bar{\sigma} \xi}} \right) \xrightarrow{\text{NR limit}} \sqrt{m} \begin{pmatrix} \xi \\ \bar{\xi} \end{pmatrix} \quad v = \left(\frac{\sqrt{p \cdot \sigma \eta}}{-\sqrt{p \cdot \bar{\sigma} \eta}} \right) \xrightarrow{\text{NR limit}} \sqrt{m} \begin{pmatrix} \eta \\ -\eta \end{pmatrix}$$

$$\bar{\chi} \chi \bar{q} q \propto \mathbb{I} + \mathcal{O}(\nu_{\text{DM}}^2) \quad \bar{\chi} \gamma^\mu \gamma^5 \chi \bar{q} \gamma_\mu \gamma^5 q \propto \vec{s}_{\text{DM}} \cdot \vec{s}_N + \mathcal{O}(\nu_{\text{DM}}^2)$$

$$\bar{\chi} \gamma^\mu \chi \bar{q} \gamma_\mu q \propto \mathbb{I} + \mathcal{O}(\nu_{\text{DM}}^2) \quad \bar{\chi} \gamma^5 \chi \bar{q} \gamma^5 q \propto \vec{s}_{\text{DM}} \cdot \vec{s}_N \nu_{\text{DM}}^2 + \mathcal{O}(\nu_{\text{DM}}^4)$$

- All interactions fall into two categories: spin-independent or spin-dependent
Direct detection results

- Constrain the cross-section to scatter with nucleon
Why constrain these parameters?

- Dark matter scatters off the whole nucleus ...but different experiments use different target nuclei

- Parameterising in terms of the nucleon cross-section allows an easy comparison of different experiments

- SI limits assume $\sigma_N \propto A^2 \sigma_n$
 - more generally $\sigma_N \propto (f_p Z + f_n (A - Z))^2 \sigma_n$

- SD limits assume the DM couples either to neutron or proton only – good approximation
Why constrain these parameters?
Mini summary

• All interactions are either spin-independent or spin-dependent
 – Experiments place separate constraints on each

• Limit is on the cross-section to scatter of a nucleon (not the whole nucleus)

• SI limit – assumes equal coupling to protons and neutrons
• SD limit – separate limit for scattering on proton and neutron
Uncertainties?

• How robust are these limits?

• Sources of uncertainty come from
 – Astrophysical parameters
 – Response of the detector
 – Nuclear physics
Astrophysical parameters

- Cross-section is degenerate with the local DM density:
 \[N_{\text{events}} \propto \rho_{\text{DM}} \sigma_n \quad \text{where} \quad \rho_{\text{DM}} = 0.3 \text{ GeV cm}^{-3} \]

<table>
<thead>
<tr>
<th>Label</th>
<th>Reference</th>
<th>Description</th>
<th>Sampling</th>
<th>(\rho_{\text{dm}}) [M(_{\odot}) pc(^{-3})]</th>
<th>(\rho_{\text{dm}}) [GeV cm(^{-3})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Local measures ((\rho_{\text{dm}}))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kapteyn</td>
<td>Kapteyn (1922)</td>
<td>–</td>
<td>–</td>
<td>0.0076</td>
<td>0.285</td>
</tr>
<tr>
<td>Jeans</td>
<td>Jeans (1922)</td>
<td>–</td>
<td>–</td>
<td>0.051</td>
<td>1.935</td>
</tr>
<tr>
<td>Oort</td>
<td>Oort (1932)</td>
<td>–</td>
<td>–</td>
<td>0.0006 ± 0.0184</td>
<td>0.0225 ± 0.69</td>
</tr>
<tr>
<td>Hill</td>
<td>Hill (1960)</td>
<td>–</td>
<td>–</td>
<td>-0.0054</td>
<td>-0.202</td>
</tr>
<tr>
<td>Oort</td>
<td>Oort (1960)</td>
<td>–</td>
<td>–</td>
<td>0.0586 ± 0.015</td>
<td>2.2 ± 0.56</td>
</tr>
<tr>
<td>Bahcall</td>
<td>Bahcall (1984a)</td>
<td>–</td>
<td>–</td>
<td>0.033 ± 0.025</td>
<td>1.24 ± 0.94</td>
</tr>
<tr>
<td>Bienaymé(^f)</td>
<td>Bienaymé et al. (1987)</td>
<td>–</td>
<td>–</td>
<td>0.006 ± 0.005</td>
<td>0.22 ± 0.187</td>
</tr>
<tr>
<td>KG(^f)</td>
<td>Kuijken & Gilmore (1991)</td>
<td>–</td>
<td>–</td>
<td>0.0072 ± 0.0027</td>
<td>0.27 ± 0.102</td>
</tr>
<tr>
<td>Bahcall</td>
<td>Bahcall et al. (1992)</td>
<td>–</td>
<td>–</td>
<td>0.033 ± 0.025</td>
<td>1.24 ± 0.94</td>
</tr>
<tr>
<td>Creze</td>
<td>Creze et al. (1998)</td>
<td>–</td>
<td>–</td>
<td>-0.015 ± 0.015</td>
<td>-0.58 ± 0.56</td>
</tr>
<tr>
<td>HF(^f)</td>
<td>Holmberg & Flynn (2000b)</td>
<td>–</td>
<td>–</td>
<td>0.011 ± 0.01</td>
<td>0.4 ± 0.375</td>
</tr>
<tr>
<td>HF(^f)</td>
<td>Holmberg & Flynn (2004)</td>
<td>–</td>
<td>–</td>
<td>0.0086 ± 0.0027</td>
<td>0.324 ± 0.1</td>
</tr>
<tr>
<td>Bienaymé</td>
<td>Bienaymé et al. (2006)</td>
<td>–</td>
<td>–</td>
<td>0.0059 ± 0.005</td>
<td>0.51 ± 0.56</td>
</tr>
</tbody>
</table>

Latest measurements					
MB12	Moni Bidin et al. (2012)	CSF	412	0.00062 ± 0.001	0.023 ± 0.042
[0 ± 0.001]	[0 ± 0.042]				
BT12	Bovy & Tremaine (2012)	CSF	412	0.008 ± 0.003	0.3 ± 0.11
G12	Garbari et al. (2012)	VC	\(2 \times 10^3 \)	0.022\(^{+0.015}_{-0.023}\)	0.85\(^{+0.57}_{-0.3}\)
G12*	Garbari et al. (2012)	VC + \(\Sigma_b \)	\(2 \times 10^3 \)	0.0087\(^{+0.007}_{-0.002}\)	0.33\(^{+0.26}_{-0.075}\)
S12	Smith et al. (2012)	CSF	\(10^4 \)	0.005 [no error]	0.19
[0.015]	[0.57]				
Z13	Zhang et al. (2013)	CSF	\(10^4 \)	0.0065 ± 0.0023	0.25 ± 0.09
BR13	Bovy & Rix (2013)	CSF + MAP	\(10^4 \)	0.006 ± 0.0018	0.22 ± 0.07
[0.008 ± 0.0025]	[0.3 ± 0.094]				

Read: 1404.1938

Christopher McCabe IPPP - Durham University
Astrophysical parameters

- Velocity parameters of Sun (v0) also has some influence
- Shifts the limit horizontally at low mass
Response of the detector

- Detector effects important near threshold
 eg light response of XENON100 (now understood better)
Nuclear physics

- Issue for SD: Spin structure functions not known well
Mini summary

• How robust are these limits?

• About a 30-50% uncertainty at 30 GeV and above

• Can be larger at low mass (near threshold)
Application to simple models

• Consider vector mediators

\[\mathcal{L} = \bar{\chi} \gamma^\mu (a + b \gamma^5) \chi Z'_\mu + \bar{q} \gamma^\mu (c + d \gamma^5) q Z'_\mu \]

\[\sum_q \frac{ac}{M^2_{Z'}} \bar{\chi} \gamma^\mu \chi \bar{q} \gamma^\mu q \quad \text{N.R.} \quad \text{Spin-independent (SI)} \]

\[\sum_q \frac{bd}{M^2_{Z'}} \bar{\chi} \gamma^\mu \gamma^5 \chi \bar{q} \gamma^\mu \gamma^5 q \quad \text{N.R.} \quad \text{Spin-dependent (SD)} \]

\[\sum_q \frac{bc}{M^2_{Z'}} \bar{\chi} \gamma^\mu \gamma^5 \chi \bar{q} \gamma^\mu q \quad \text{N.R.} \quad \text{Suppressed by} \quad v^2_{DM} \sim 10^{-6} \]

\[\sum_q \frac{ad}{M^2_{Z'}} \bar{\chi} \gamma^\mu \chi \bar{q} \gamma^\mu \gamma^5 q \quad \text{N.R.} \quad \text{Suppressed by} \quad v^2_{DM} \sim 10^{-6} \]

• If vector (SI) interaction is present, it will dominate
 – forbidden for Majorana fermions
Vector interaction (SI)

- The nucleon cross-section is \(\sigma_n = \frac{f^2 \mu^2}{\pi} \)

 - For protons: \(f_p = \frac{(2g_u + g_d)g_{DM}}{M_Z^2} \)

 - For neutrons: \(f_n = \frac{(g_u + 2g_d)g_{DM}}{M_Z^2} \)

- Only \(u, d \) coupling contributes

- Interactions with proton and neutron generally different

- Simplify problem by assuming all \(g_q \) equal
Vector interaction (SI) – some intuition

For
\[g_q \sim g_{DM} \sim 1 \]
\[M_{Z'} \sim 100 \text{ GeV} \]
\[\sigma_n \approx 10^{-36} \text{ cm}^2 \]
Vector interaction (SI)

Vector: 90% CL limits

$g_q = g_{DM} = 1$

LUX

$M_{med} [\text{GeV}]$

$m_{DM} [\text{GeV}]$
Vector interaction (SI)

$g_q = g_{DM} = 1$

- LUX
- LHC8: 20 fb$^{-1}$

$m_{DM} \text{ [GeV]}$ vs $M_{med} \text{ [GeV]}$
Axial-Vector interaction (SD)

- The nucleon cross-section is \(\sigma_n = \frac{3f^2\mu^2}{\pi} \)

- For protons: \(f_p = \frac{g_{DM}}{M_{Z'}^2} \sum_{q=u,d,s} g_q \Delta^p_q \)

- For neutrons: \(f_n = \frac{g_{DM}}{M_{Z'}^2} \sum_{q=u,d,s} g_q \Delta^n_q \)

- Only u, d, s coupling contributes
- Interactions with proton and neutron generally different

- Simplify problem by assuming all \(g_q \) equal

\[\Delta^p_u = \Delta^n_u \approx 0.842 \]
\[\Delta^p_d = \Delta^n_u \approx -0.427 \]
\[\Delta^p_s \approx \Delta^n_s \approx -0.085 \]
Axial-Vector interaction (SD) – some intuition

For
\[g_q \sim g_{\mathrm{DM}} \sim 1 \]
\[M_{Z'} \sim 100 \ \text{GeV} \]
\[\sigma_n \approx 10^{-36} \ \text{cm}^2 \]
Axial-Vector interaction (SD)

- Searches have comparable sensitivity and are complementary
Axial-Vector interaction (SD)

- Searches have comparable sensitivity and are complementary
Problems with EFT approach

- Limit on \(\Lambda \) in the EFT approach for

- Are these limits useful?
Problems with EFT approach: Example

- Find limit in simplified model and map back onto direct detection plane:

 - EFT limit gives misleading results

\[g_q = g_{DM} = 1 \]

- CMS: EFT

\[\sigma_n \leq 10^{-39} \, \text{cm}^2 \]

\[M_{DM} \leq 10^{-38} \, \text{GeV} \]

\[M_{med} \geq 10^{3} \, \text{GeV} \]

\[m_{DM} \geq 10^{3} \, \text{GeV} \]

Christopher McCabe IPPP - Durham University
Summary

• Important to interpret dark matter searches in the right framework

• Direct detection experiments constrain the ‘WIMP-nucleon cross section’
 – Very useful: constrains a large number of theories
 – Straightforward to map limits into other forms

• LHC monojet searches have been interpreted in an EFT framework
 – Limited use: gives wrong constraints when applied to simple models
 – Comparison with direct detection limits is misleading