
Inverted Index Construction
Introduction to Information Retrieval

Christof Monz and Maarten de Rijke

Spring 2002

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 1



Today’s Program

I The need for indexes

I Accessing data

I Indexing choices

I Inverted index/inverted file

I Accessing the index

I Index construction

• memory-based

• sort-based

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 2



Accessing Data During Query Evaluation

I Scan the entire collection

• Typical in early (batch) retrieval systems

• Still used today, in hardware form (e.g., Fast Data Finder)

• Computational and I/O costs are O(characters in collection)

• Practical only for “small” collections

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 3



Accessing Data During Query Evaluation

I Use indexes for direct access

• Evaluation time O(query term occurrences in collection)

• Practical for “large” collections

• Many opportunities for optimization

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 4



What Should the Index Contain?

I Database systems index primary and secondary keys

• Index provides fast access to a subset of database records

• Scan subset to find solution set

I IR Problem: Cannot predict keys that people will use in queries

• Every word in a document is a potential search term

• Solution: Index by all keys (words)

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 5



Accessing the Index

I Index accessed through features or keys or terms
• Keys/terms can be atomic or complex

I Most common ‘atomic’ keys/terms:

• Words in text, punctuation

• Manually assigned terms (controlled and uncontrolled

vocabulary)

• Document structure (sentence and paragraph boundaries)

• Inter- or intra-document links (e.g., citations)

I Composed features

• Sequences (phrases, names, dates, monetary amounts)

• Sets (e.g., synonym classes)

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 6



Indexing Choices

I What is a word?

• Embedded punctuation (e.g., DC-10, long-term, AT&T)

• Case folding (e.g., New vs new, Apple vs apple)

• Stopwords (e.g., the, a, its)

• Morphology (e.g., computer, computers, computing, computed)

I Index granularity has a large impact on speed and effectiveness

• Index stems only?

• Index surface forms only?

• Index both?

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 7



Index Contents

I Feature presence/absence

• Boolean

• Statistical (tf, df, ctf, doclen, . . . )

• Often about 10% the size of the raw data, compressed

I Positional information

• Feature location within document

• Granularities include word, sentence, paragraph, etc

• Coarse granularities are less precise, but take less space

• Word-level granularity about 20–30% the size of the raw data,

compressed

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 8



Implementation
I Common implementations of indexes

• Bitmaps

• Signature files

• Inverted files

• Hashing

• n-grams

I Common index components

• Dictionary (lexicon)

• Postings (document ids, word positions)

I Inverted files (or index) vs inverted list

• inverted file: each elt of a list points to a doc or file name

• inverted list: our definition

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 9



Inverted Lists

I Inverted lists are today the most common indexing technique

I Source file: collection, organized by document

I Inverted file: collection organized by term

• one record per term, listing locations where term occurs

I During evaluation, traverse lists for each query term

• OR: the union of component lists

• AND: an intersection of component lists

• Proximity: an intersection of component lists

• SUM: the union of component lists; each entry has a score

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 10



Inverted Files

I Example text: each line is a document

Document Text

1 Pease porridge hot, pease porridge cold

2 Pease porridge in the pot

3 Nine days old

4 Some like it hot, some like it cold

5 Some like it in the pot

6 Nine days old

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 11



Inverted Files

Document Text

1 Pease porridge hot, pease porridge cold

2 Pease porridge in the pot

3 Nine days old

4 Some like it hot, some like it cold

5 Some like it in the pot

6 Nine days old

=⇒

Number Text Documents

1 cold 1, 4
2 days 3, 6
3 hot 1, 4
4 in 2, 5
5 it 4, 5
6 like 4, 5
7 nine 3, 6
8 old 3, 6
9 pease 1, 2

10 porridge 1, 2
11 pot 2, 5
12 some 4, 5
13 the 2, 5

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 12



Word-Level Inverted File

Document Text

1 Pease porridge hot, pease porridge cold

2 Pease porridge in the pot

3 Nine days old

4 Some like it hot, some like it cold

5 Some like it in the pot

6 Nine days old

=⇒

Number Text (Document; Word)

1 cold (1; 6), (4; 8)
2 days (3; 2), (6; 2)
3 hot (1; 3), (4; 4)
4 in (2; 3), (5; 4)
5 it (4; 3, 7), (5; 3)
6 like (4; 2, 6), (5; 2)
7 nine (3; 1), (6; 1)
8 old (3; 3), (6; 3)
9 pease (1; 1, 4), (2; 1)

10 porridge (1; 2, 5), (2; 2)
11 pot (2; 5), (5; 6)
12 some (4; 1, 5), (5; 1)
13 the (2; 4), (5; 5)

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 13



Inverted List Index: Access Methods

I Two basic data structures to organize data:

• search trees

• hashing

I Differ in how search is performed

• trees define a lexicographic order over the data; the complete

value of a key is used to direct search

• hashing “randomizes” the data order, leading to faster searches

on average, with the disadvatage that scanning in sequential

order is not possible (e.g., range searches are expensive)

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 14



Search Trees

I Each internal node contains a key

• left subkey stores all keys smaller than the parent key

• right subtree stores keys larger than the parent key

I B-tree (balanced tree) of order m

• root has between m and 2m keys, as do all other internal nodes

• if ki is the i-t key of a given internal node, then all keys in the

(i− 1)-th child are smaller than k, while all keys in the i-th

child are bigger

• all leaves are at the same depth

I Usually, a B-tree is used as an index, and all associated data are

stored in the leaves or buckets: B+-tree

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 15



B-Trees

I Usually, a B-tree is used as an index, and all associated data are

stored in the leaves or buckets: B+-tree

I B-trees are mainly used as a primary key access method for large

databases in secondary memory

I To search a given key, we go down the tree choosing the

appropriate branch at each step

• number of disk accesses = height of the tree

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 16



Hashing

I A hashing function h(x) maps a key x to an integer in a given

rang; e.g., 0 to m− 1
• aim: produce values uniformly distributed in the given range

I A hashing function is used to map a set of keys to slots in a

hashing table

I If the hashing function gives the same slot for two different keys, a

collision occurs

• collisions are possible if the domain of possible key values

exceeds the number of locations in which they can be stored

• whenever a collision occurs, some extra computation is

necessary to further determine a unique location for a key

• hashing techniques differ in how collisions are handled

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 17



More Hashing

I The best performance if the number of possible key values N

equals the number of locations m, using a 1-to-1 mapping

• Requires knowledge of the representation of the key domain

• Example: if keys are consecutive numbers in the range

(N1, N2) then m = N2 −N1 + 1 and the mapping on a key

k is k −N1

I In most applications the number actually stored keys is much

smaller than the number of possible key values

I Mapping involved in hashing as two aspects

• number of collisions

• amount of unused storage

I Optimizing one occurs at the expense of the other

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 18



Inverted List: Access Methods

I How is a file of inverted lists accessed?

• B-Tree (B+ Tree, B* Tree, etc)

- Supports exact-match and range-based lookup

- O(logn) lookups to find a list

- Usually easy to expand

• Hash table

- Supports exact-match lookup

- O(1) lookups to find a list

- May be complex to expand

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 19



Index Construction: Preview

I Today

• memory-based inversion

• sort-based inversion

• (compression)

I Next time

• FAST-INV

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 20



Index Construction: Computational Model

I Hypothetical collection of 5Gb and 5 million docs

I Some nominal performance figures

Parameter Symbol Assumed Value

Total text size B 5× 109 bytes

Number of docs N 5× 106

Number of distinct words n 1× 106

Total number of words F 800× 106

Number of index pointers f 400× 106

Final size of compressed inv. file I 400× 106 bytes

Disk seek time ts 10× 10−3 sec

Disk transfer time per byte tr 0.5× 10−6 sec

Inverted file coding per byte td 5× 10−6 sec

Time to compare and swap 10-byte records tc 10−6 sec

Time to parse, stem and look up one term tp 20× 10−6 sec

Amount of main memory available M 40× 106 bytes

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 21



Index Construction: Preview

I Main memory requirements, disk space requirements beyond what

is needed to store the inverted index

Method Memory (Mb) Disk (Mb) Time (hours)
Linked lists (memory) 4000 0 6
Linked lists (disk) 30 4000 1100
Sort-based 40 8000 20
Sort-based (compressed) 40 680 26
Sort-based (multiway merge) 40 540 11
Sort-based (multiway in-place) 40 150 11

...
Text-based partition 40 35 15

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 22



Memory-based Inversion: Outline

I Informal outline

• Use a dynamic dictionary data structure (B-tree, hash table) to

record distinct terms, with a linked list of nodes storing line

numbers associated with each dictionary entry

• Once all documents have been processed, the dictioary is

traversed, and the list of terms and corresponding line numbers

is written

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 23



Memory-based Inversion: Algorithm

1. /* Initialization */
Create an empty dictionary structure S

2. /* Phase one: collection of term appearances */
For each doc Dd in the collection (1 ≤ d ≤ N)

(a) Read Dd, parsing it into index terms

(b) For each index term t ∈ Dd
i. Let fd,t be the frequency in Dd of term t

ii. Search S for t

iii. If t is not in S, insert it

iv. Append a node storing (d, fd,t) to the list corresponding to

term t

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 24



Memory-based Inversion: Algorithm

3. /* Phase two: output of inverted file */
For each term 1 ≤ t ≤ n

(a) Start a new inverted file entry

(b) For each (d, fd,t) in the list corresponding to t, append

(d, fd,t) to this inverted file entry

(c) If required, compress the inverted file entry

(d) Append this inverted file entry to the inverted file

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 25



Memory-based Inversion: Costs

I At the assumed rate of 2 Mb/sec, it takes about 40 minutes to

read 5 Gb of text

I Parsing and stemming to create index terms, and searching for

these terms in the dictionary takes 4 hours (at 20 microsec/wd)

I Phase 2: each list is traversed so that the corresponding inverted

list can be encoded and written

• encoding: 2000 sec

• writing: 200 sec

I Total time = Btr + Ftp + I(td + tr)

I ∼ 6 hours

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 26



Memory-based Inversion: Costs

I Memory space requirements

• each node in each list of doc numbers typically requires 10

bytes:

- 4 for the doc number d

- 4 for the “next” pointer

- 2 or more for the frequency count fd,t

I For the example doc collection there are 400 million nodes

• 4 Gb of memory

• unrealistic amount . . .

I Why not put the linked list of doc numbers from memory onto

disk?

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 27



Memory-based Inversion: Disk-based

I Phase one: sequence of disk accesses is sequential

• Generation of the threaded file containing the linked lists is

largely unaffected

• Each new node results in a record being appended to a file, so a

file of 4 Gb is created in sequential fashion on disk (∼ 30 min’s)

I Second phase, when each list is traversed

• stored list nodes are interleaved in the same order on disk as

they appeared in the text

• each node access requires a random seek into the file on disk

• at assumed disk seek time of 10 millisecs/seek, with 10 bytes to

be read/record, this is 4 million seconds

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 28



Memory-based Inversion: Disk-based

I Inversion time

• Btr + Ftp + 10ftr + fts + 10ftr + I(td + tr)

I For gigabyte collections, linked-list approaches are inadequate

because of memory and/or time requirements

I For small collections it is the best method though

• For the Bible, in-memory inversion takes half a minute and

requires about 10 Mb of main memory

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 29



Sort-Based Inversion

I Main problems with the two methods discussed so far

• require too much memory

• use data access sequence that is random, preventing an efficient

mapping from memory onto disk

I For large disk files, sequential access is the only efficient
processing mode since transfer rates are usually high and
random seeks are time-consuming

I Moreover, for large volumes of data, the use of disk is inescapable

• → inversion should perform sequential processing on whatever

disk files are required

• → sort-based inversion

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 30



Sort-Based Inversion

1. /* Initialization */

Create an empty dictionary structure S
Create an empty temporary file on disk

2. /*Proces text and write temporary file */

For each document Dd in the collection, 1 ≤ d ≤≤ N

(a) Read Dd, parsing it into index terms
(b) For each index term t ∈ Dd

i. Let fd,t be the frequency in Dd of term t
ii. Search S for t
iii. If t is not in S, insert it
iv. Write record (t, d, fd,t) to the temporary file, where t is represented by its

term number in S

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 31



Sort-Based Inversion

3. /* Internal sorting to make runs */

Let k be the number of records that can be held in memory

(a) Read k records from the temporary file
(b) Sort into nondecreasing t order, and for equal values of t, nondecreasing d

order
(c) Write the sorted run back to the temporary file
(d) Repeat until there are no more runs to be sorted

4. /* Merging */

Pairwise merge runs in the temporary file until it is one sorted run

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 32



Sort-Based Inversion

5. /* Output inverted file */

For each term 1 ≤ t ≤ n

(a) Start a new inverted file entry
(b) Read all triples (t, d, fd,t) from the temporary file and form the inverted file

entry for term t
(c) If required, compress the inverted file entry
(d) Append this inverted file entry to the inverted file

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 33



Sort-Based Inversion: Example

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 34



Sort-Based Inversion: Costs . . . Time

I Read and parse, write file

• Btr + Ftp + 10ftr

I Sort runs

• 20ftr +R(1.2k log k)tc

I Merge runs

• dlogRe(20ftr + ftc)

I Write compressed inverted file

• 10ftr + I(td + tr)

I ∼ 20 hours, using 40 Mb of main memory

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 35



Sort-Based Inversion: Costs . . . Space
I The sorting algorithm requires two copies of the data at any given

time

I Halfway during the last merge:

• Two runs are being merged, each appr half the size of the

original file

• At the halfway stage of the merge, both of these runs have been

partially consumed

• Because of this, the merged output cannot be written

sequentially back to the same file since it might overwrite data

yet to be processed

• At the last instant, just before this merge finishes, the output

contains all of the records being sorted, and so do the two input

files

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 36



Sort-Based Inversion: Costs . . . Space

I So, two temporary input files must be allowed for

• For the example inversion, each of these contains 10× 400
million bytes→ 8 Gb

I Simple sort-based inversion is the best method for moderate sized

collections (10–100 Mb range), but not suitable for truly large

collections

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 37



What Have We Done Today?

I Index construction

I Components

I Memory-Based algorithms

I Sort-Based algorithms

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 38



Lab Session

I Experiment with indexing

• Input: Test collection

• Output: Index

Introduction to Information Retrieval, Spring 2002, Week 5 Copyright c© Christof Monz & Maarten de Rijke 39


	Inverted Index Construction
	Today's Program
	Accessing Data During Query Evaluation
	Accessing Data During Query Evaluation
	What Should the Index Contain? 
	Accessing the Index
	Indexing Choices
	Index Contents
	Implementation
	Inverted Lists
	Inverted Files
	Inverted Files
	Word-Level Inverted File
	Inverted List Index: Access Methods
	Search Trees
	B-Trees
	Hashing
	More Hashing
	Inverted List: Access Methods
	Index Construction: Preview
	Index Construction
	Index Construction: Preview
	Memory-based Inversion: Outline
	Memory-based Inversion: Algorithm
	Memory-based Inversion: Algorithm (cont'd)
	Memory-based Inversion: Costs
	Memory-based Inversion: Costs (cont'd)
	Memory-based Inversion: Disk-based
	Memory-based Inversion: Disk-based (cont'd)
	Sort-Based Inversion
	Sort-Based Inversion
	Sort-Based Inversion 
	Sort-Based Inversion 
	Sort-Based Inversion: Example
	Sort-Based Inversion: Costs
	Sort-Based Inversion: Costs protect .kern �ontdimen 3�ont .kern �ontdimen 3�ont .kern �ontdimen 3�ont Space
	Sort-Based Inversion: Costs protect .kern �ontdimen 3�ont .kern �ontdimen 3�ont .kern �ontdimen 3�ont Space
	What Have We Done Today?
	Lab Session

