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Abstract

The QMUL system to the IWSLT 2008 evaluation campaign
is a phrase-based statistical MT system implemented in C++.
The decoder employs a multi-stack architecture, and uses a
beam to manage the search space. We participated in both
BTEC Arabic → English and Chinese → English tracks, as
well as the PIVOT task. In our first submission to IWSLT,
we are particularly interested in seeing how our SMT system
performs with speech input, having so far only worked with
and translated newswire data sets.

1. Introduction
The IWSLT 2008 evaluation campaign has allowed us to
gain experience working with spoken language translation.
Three systems were submitted for evaluation: Arabic → En-
glish and Chinese → English BTEC tasks and the Chinese
→ Spanish PIVOT task.

In Section 2.1 we look at phrase-based SMT, before go-
ing on to describe the features used in out system in Section
2.2 and describe our decoder in Section 2.3. We then go on
to look at the experimental set up and the data used in the
in Section ??, before presenting the results of our system in
Section 3.

2. Translation Framework
The aim of Statistical Machine Translation(SMT) is to take a
foreign sentence, f, and translate it into an English sentence,
e using statistical models generated using machine learning
techniques. Using a corpus of foreign and target sentences
which we know to be translations of one another, SMT be-
comes a problem of constructing accurate probability distri-
butions, or models, that can be used to translate a collection
of foreign sentences, unseen in the training data, into a target
language. In this section we start by describing phrase based
translation, before examining the models we use, and then
describing the QMUL decoder.

2.1. Phrase Based SMT

Intuitively, given a source sentence f, the problem of statis-
tical machine translation can be formulated as picking the

target sentence e with the highest probability according to
the model Pr(e|f). Using Bayes theorem, we can say:

Pr(e|f) =
Pr(f|e)Pr(e)

Pr(f)
(1)

Given that we seek to find the target, or English sen-
tence for which the probability arrived at through equation 1
is greatest, and considering that the denominator Pr(f) is a
constant independent of e, we can reformulate equation 1 to:

ê = arg max
e

{p(f|e)p(e)} (2)

This approach is often referred to as the noisy channel ap-
proach [1]. p(f|e) is the translation model, or the likelihood
of generating the source sentence given the target sentence,
and e is the language model, which tells us the likelihood
of a given English sentence. Together these form the core
of all SMT systems, and thus equation 2 is described as the
Fundamental Equation of SMT [1].

Phrase based SMT, as described by [2, 3], extends the
noisy channel approach by using a weighted log linear com-
bination of a set of H feature functions, hi, i = 1, ...,H , to
score possible translations.

ê = arg max
e,a

H∑
i=1

λihi(f, e) (3)

p(f|e) and p(e) become a subset of the H different fea-
ture functions, each with their own weights λi, which can be
trained according to an optimisation criterion based on the
translation quality [4], as we have done for IWSLT 08.

2.2. Features

In addition to the phrase translation probabilities that have
already been discussed, there are a number of common fea-
tures that we use during decoding. As these features operate
over phrase segmentations, it is first usefull to define what a
phrase is. If we represent a given sentence pair as (fJ

1 , eI
1),

it’s phrase segmentation can be defined in terms of K units:

k → sk := (ik; bk, jk), for k = 1...K (4)

moku
Proceedings of IWSLT 2008, Hawaii - U.S.A.

moku
- 104 -



(bk, jk) denotes the start and end positions of the source
phrase that is aligned to the kth target phrase, and ik denotes
the last position of the kth target phrase. Because the mod-
els operate over the phrase segmentations k in s, we say the
model features are over (fJ

1 , eI
1, s

K
1 ). A more detailed de-

scription of the phrase segmentation can be found in [5].
Our language model is a standard n-gram based feature

function, where the probability of a given word is condi-
tioned on its history:

hLM (fJ
1 , eI

1, s
K
1 ) = log

l+1∏
i=1

p(ei|ei−1
i−n+1) (5)

We used the publicly available SRILM toolkit [6] to con-
struct tri-gram Kneser-Ney discounted language models.

Re-ordering issues are explicitly dealt with through a
simple feature that penalises jumps during decoding with
respect to the jump width. Thus long distance re-ordering,
which requires a long jump within the source sentence, is pe-
nalised more heavily than smaller, more local re-ordering. If
ep represents the end position of the last phrase and sp is the
start position of the new phrase, then:

hRM (fJ
1 , eI

1, s
K
1 ) = −

K∑
k=1

|spk − epk−1 − 1| (6)

Due to the reliance on relative frequencies by phrase
translation probabilities, longer phrases which tend to be rare
have over estimated probabilities. We therefore use a lexicon
model, based on the frequencies of the words within a phrase,
to smooth the phrase translation probabilities. As with the
phrase based model, the word based lexicon is used in both
translation directions p(f|e) and p(e|f).

hLEX(fJ
1 , eI

1, s
K
1 ) = log

K∏
k=1

jk∏
j=bk

ik∑
i=ik−1+1

p(fj |ei) (7)

To control the length of the translation, we use a word
penalty, described in Equation 8. A negative penalty favours
longer translations, and positive penalties are used to produce
shortened translations.

hWP (fJ
1 , eI

1, s
K
1 ) = I (8)

Similar to the word penalty, we use a phrase penalty to
control the number of phrase applications used in the trans-
lation of a source sentence:

hPP (fJ
1 , eI

1, s
K
1 ) = K (9)

K is the number of phrase segmentation used. As with
the word penalty hWP , if longer phrases are trusted over
smaller phrases, which is intuitively the case as the longer
phrase carries more context, than a positive penalty can be

used. If smaller phrase applications are desired, a negative
penalty would be employed.

In our system we also use a binary version of a phrase
count feature, which favours phrase segmentations that ap-
pear in the bitext over a certain threshold. Generally rare
phrase pairs have overestimated probabilities. By taking into
account the phrase count, we can make up for data that may
just be noise, representing mistranslations or erratic word
alignments.

hcr (f
J
1 , eI

1, s
K
1 ) =

K∑
K=1

[N(fk, ek) ≤ r] (10)

The feature is binary, so that a phrase has a cost of 0 or 1
in log space, dependent on whether the threshold r is met or
not. For our experiments an r value of 4 was manually cho-
sen. For a more detailed description of these models please
refer to [7].

2.3. Decoding

The QMUL system is a stack based decoder implemented
in C++, similar to the publicly available Pharaoh system [8].
Hypotheses are ranked and stored in stacks, where each stack
represents the number of source words translated so far. We
start with a null hypothesis, and pick a segment of the source
sentence to begin translating. We apply multiple different
translations that exist for the same source phrase, and then
store the hypothesis in a stack. The hypotheses in a stack
are ranked according to their score, which takes into account
the phrase translation costs, language model cost, and other
feature functions in the system mentioned in section 2.2. The
retrieved translation is the cheapest hypothesis in the final
stack representing hypotheses with no untranslated foreign
words.

As the search space is quadratic with respect to input
source sentence size, we manage the number of hypotheses
we generate through the use of a beam and stack limit. The
beam is set with respect to the highest scoring states in each
stack. The stack limit reserves a certain amount of places
for the highest scoring hypothesis, meaning that each time
we start to expand states in a new stack, we always have the
same number. These measures can cause search errors, how-
ever increasing the stack limit or widening the beam makes
relatively minor improvements to translation quality whilst
often dramatically degrading translation speed.

One risk free manner to reduce the search space is
through hypothesis re-combination. If two states share the
following same characteristics, then they can be safely com-
bined into one:

• the last two English words generated

• the foreign words covered so far

• the last foreign segment translated
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Corpus Task BLEU ASR.1 BLEU CCR

BTEC AE 25.55 28.97
CE 20.10 22.19

PIVOT CES 12.47 3.85

Table 1: Primary run results.

If two hypotheses share the same properties, the best
scoring one is kept for further analysis, with the other safely
discarded.

When comparing the costs of states for pruning purposes,
it is necessary to take into account the work they have done
and the work yet to do. It would not be fair to discount a state
in comparison to another for having translated a difficult part
of the source sentence. We therefore include a future cost,
calculated prior to the translation process using a dynamic
programming algorithm. For each possible translation span
in the source sentence, we take the product of the translation
and language model probabilities. We then store these costs
in a table for lookup during decoding.

During decoding, if a hypothesis has non-contiguous seg-
ments of untranslated source phrases, the future cost is then
the product of the future costs of each segment retrieved from
the look up table. Notice that while we assume monotonic
decoding when pre-computing the future cost matrix, when
calculating the actual future cost for a state, we include the
best possible distortion model cost involved in translating the
uncovered source sentence segments.

3. Experiments
Table 1 displays the QMUL results for IWSLT 08. The poor
results reflect the fact that we had little time to prepare our
submissions to the IWSLT08 evaluation campaign. In partic-
ular, the system for the PIVOT was not optimised, and results
for the PIVOT CCR task are influenced by errors in our im-
plementation.

The experiments were conducted using the provided data
sets from the Basic Travel Expression Corpus (BTEC). The
BTEC corpus contains relatively short tourism related sen-
tences. For the BTEC and PIVOT tasks, one set of training
data comprising just 20k aligned sentences and six develop-
ment sets from previous IWSLT conferences were provided.
Corpus statistics can be seen in Table 2. For the Arabic and
Chinese BTEC tasks we only used the bitext supplied to us
by IWSLT for training purposes. Word alignment was con-
ducted using the open source GIZA++ toolkit [9], and phrase
extraction is done according to Philip Koehn’s refined align-
ment and extraction software [10].

We were provided with 6 different development sets. To
be able to compare our systems during tuning to previous
IWSLT submissions, we optimised our systems on devset5
with 7 references per translation, and evaluated on devset6
with 6 references per translation. Optimisation was carried
out using a minimum error rate trainer (MERT).

BTEC AE BITEXT Arabic English
Sentences 19723
Tokens 14649 6778
BTEC CE BITEXT Chinese English
Sentences 19723
Tokens 8387 7716
PIVOT CE BITEXT Chinese English
Sentences 19723
Tokens 8387 7716
PIVOT ES BITEXT + EUROPARL English Spanish
Sentences 122088
Tokens 31653 54228

Table 2: Corpus statistics.

LM Perplexity BLEU ASR.1 BLEU CCR
bitext 155.758 0.2706 0.3751
+europarl 151.631 0.2978 0.4235
+europarl549 151.631 0.2946 0.4201
+bnc 59.8367 0.2955 0.4060
+bnc+europarl 94.7524 0.2943 0.4190

Table 3: Perplexity of English LMs tested on the Arabic →
English deveset6 references. Bitext is from the English side
of supplied training data.

Prior to translating the CCR and ASR development and
test sets, we undertook two pre-processing steps to transform
aspects of the data, including tokenization and lowercasing.
For the Chinese −→ English part of the BTEC and PIVOT
tasks, Chinese segmentation was left as provided. System
output was post processed, including un-tokenizing and true-
casing, to make it ready for evaluation.

Our Language Models used for the BTEC and PIVOT
tasks were built using the open source SRILM toolkit [6].
Due to the domain of the BTEC corpus, we examined the use
of spoken language transcripts from the British National Cor-
pus (BNC). In extracting the spoken language data, we ex-
cluded those transcripts where a speech or presentation was
being given, thereby enforcing the conversational aspect of
the data. There were in total 549K sentences extracted from
the BNC corpus. The Europarl data used for both English
and Spanish language models totalled 1.3m sentences.

Table 3 shows the perplexities of the various LMs tested
on the English side of BTEC Arabic - English bitext, with
relevant BLEU scores. The +bnc LM achieved the lowest
perplexity, however it was the +europarl LM that received
the highest BLEU scores. If we factor out the differences
in the LMs resulting from the size of their training corpora,
the LM constructed on BNC data performs better, as can be
seen in the result of the +europarl549 LM, which was con-
structed using 549k of Europarl data instead of the full 1.3m.
Experiments are conducted with the +bnc LM.

As Arabic is a morphologically rich language, we de-
cided to examine to what effect stripping morphological in-
formation would have in improving translation quality when
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System BLEU
Baseline 0.0948
Nopunc 0.1123
Stemmed 0.2598
Stemmed + Nopunc 0.2955

Table 4: BLEU scores for ASR.1 Arabic systems evaluated
on devset6.

TEXT System OOV BLEU BLEU CI

CCR Baseline 16.5% 0.3903 0.4056
Stemmed 11.6% 0.4060 0.4159

ASR.1 Baseline 63.5% 0.0948 0.0990
Stemmed 21.5% 0.2598 0.2663

Table 5: Percentage of OOV tokens of baseline and stemmed
Arabic systems with BLEU scores (CI: case insensitive). Op-
timisation was carried out on devset5, and evaluated on de-
vset6.

using a small corpus. We also examined to what effect re-
moving punctuation from the source side of the bitext aids
in translating ASR output. Table 4 displays results for the
QMUL systems optimised on devset5 and evaluated on de-
vset6.

Stemming Arabic has the greatest biggest single im-
provement in scores, causing a jump of 15BP over the base-
line. An examination of the percentage of out-of-vocabulary
(OOV) tokens of the various bitexts can help understand why.
Table 5 reports the number of OOV tokens for the baseline
and stemmed systems on CCR and ASR.1 best input respec-
tively. We can see that whilst stemming does not play a major
factor for CCR text, with an OOV reduction of 5% leading
to a marginal increase in BLEU score, for ASR text it does
lead to big improvements on word and phrase recognition.
Considering the output of arbitrarily chosen sentences from
both systems confirms these findings.

Our PIVOT system consisted of two SMT systems, one
Chinese −→ English and the other English −→ Spanish,
used in a piggy-back fashion, where the output of the first
was used as input to the second. For this task we were able
to augment the IWSLT supplied training data for the English
−→ Spanish system with an extra 100k of aligned sentences
from the Europarl corpus. Word alignment and phrase ex-
traction were done in a similar fashion to the BTEC tasks,
and optimisation was also carried out using a minimum error
rate trainer (MERT). On examination of the cause of the par-
ticularly low PIVOT CCR results, we can confirm an error in
the configuration file lead to the English −→ Spanish part of
the PIVOT CCR system running without a Language Model.
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