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Abstract

Class-based language modeling (LM) is a long-studied and effective approach to overcome data
sparsity in the context of n-gram model training. In statistical machine translation (SMT), differ-
ent forms of class-based LMs have been shown to improve baseline translation quality when used
in combination with standard word-level LMs but no published work has systematically com-
pared different kinds of classes, model forms and LM combination methods in a unified SMT
setting. This paper aims to fill these gaps by focusing on the challenging problem of translating
into Russian, a language with rich inflectional morphology and complex agreement phenomena.
We conduct our evaluation in a large-data scenario and report statistically significant BLEU im-
provements of up to 0.6 points when using a refined variant of the class-based model originally
proposed by Brown et al. (1992).

1 Introduction

Class-based n-gram modeling is an effective approach to overcome data sparsity in language model (LM)
training. By grouping words with similar distributional behavior into equivalence classes, class-based
LMs have less parameters to train and can make predictions based on longer histories. This makes them
particularly attractive in situations where n-gram coverage is low due to shortage of training data or to
specific properties of the language at hand.

While translation into English has drawn most of the research effort in statistical machine translation
(SMT) so far, there is now a growing interest in translating into languages that are more challenging
for standard n-gram modeling techniques. Notably, morphologically rich languages are characterized by
high type/token ratios (T/T) that reflect in high out-of-vocabulary word rates and frequent backing-off to
low order n-gram estimates, even when large amounts of training data are used. These problems have
been long studied in the field of speech recognition but much less in SMT, although the target LM is a
core component of all state-of-the-art SMT frameworks.

Partly inspired by successful research in the field of speech recognition, various forms of class-based
LMs have been shown to improve the quality of SMT when used in combination with standard word-
level LMs. These approaches, however, have mostly focused on English (Uszkoreit and Brants, 2008;
Dyer et al., 2011; Monz, 2011; Hassan et al., 2007; Birch et al., 2007) with only recent exceptions
(Green and DeNero, 2012; Ammar et al., 2013; Wuebker et al., 2013; Durrani et al., 2014). Moreover,
there is no published work that systematically evaluates different kinds of classes, model forms and LM
combination methods in a unified SMT setting. On the contrary, most of the existing literature on LM
combination uses mixtures of multiple word-level LMs for domain adaptation purposes.

This paper aims to fill these gaps by applying various class-based LM techniques to the challenging
problem of translating into a morphologically rich language. In particular we focus on English-Russian,
a language pair for which a fair amount of both parallel data and monolingual data has been provided by
the Workshop of Machine Translation (Bojar et al., 2013). Russian is characterized by a rich inflectional
morphology, with a particularly complex nominal declension (six core cases, three genders and two

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

1918



number categories). This results in complex agreement phenomena and an extremely rich vocabulary.
Indeed, by examining our training data (see Section 4), we find the Russian T/T ratio to be almost two
times higher than the English one.

Given this task, we make a number of contributions leading to a better understanding of ways to utilize
class-based language models for translating into morphologically rich languages. We conduct a compar-
ative evaluation of different target LMs along the following axes: (1) Classes: data-driven versus shallow
morphology-based; (2) Model forms: simple class sequence (stream-based) versus original class-based
(Brown et al., 1992); and (3) Combination frameworks: model-level log-linear combination versus word-
level linear interpolation. When comparing the different model forms we pay particular attention to the
role word emission probabilities play in class-based models, which turns out to be a significant factor
for translating into morphologically rich languages. In this context we also evaluate for the first time a
specific form of class-based LM called fullibm (Goodman, 2001) within statistical MT.

2 Class-based language models

As introduced by (Brown et al., 1992), the idea of class-based n-gram language modeling is to group
words with similar distributional behavior into equivalence classes. The word transition probability is
then decomposed into a class transition probability and a word emission probability:

Pclass(wi|wi−1
i−n+1) = p0(C(wi)|C(wi−1

i−n+1)) · p1(wi|C(wi)) (1)

This results in models that are more compact and more robust to data sparsity. Often, in the context of
SMT, the word emission probability is dropped and only the class sequence is modeled. In this work, we
refer to this model form as stream-based n-gram LM:1

Pstream(wi|wi−1
i−n+1) = p0(C(wi)|C(wi−1

i−n+1)) (2)

Stream-based LMs are used, for instance, in factored SMT (Koehn et al., 2007), and in general many
of the ‘class-based LMs’ mentioned in the SMT literature are actually of the latter form (2) (Dyer et
al., 2011; Green and DeNero, 2012; Ammar et al., 2013; Chahuneau et al., 2013; Wuebker et al., 2013;
Durrani et al., 2014). One exception is the work of Uszkoreit and Brants (2008), who incorporate word
emission probabilities in their class-based LM used as an additional feature function in the log-linear
combination (cf. Section 3.1). Interestingly, we are not aware of work that compares actual class-based
LMs and stream-based LMs with respect to SMT quality.

While class-based LMs are known to be effective at counteracting data sparsity issues due to rich
vocabularies, it is worth noting that they adhere to the fundamental constraints of n-gram modeling.
Thus, grammatical agreement may be improved by a class-based LM approach only within a limited
context window. Previous work that attempted to overcome this limitation includes (i) syntactic LMs for
n-best reranking (Hasan et al., 2006; Carter and Monz, 2011) or integrated into decoding with significant
engineering challenges (Galley and Manning, 2009; Schwartz et al., 2011) and (ii) unification-based
constraints applied to a syntax-based SMT framework (Williams and Koehn, 2011).

We will now describe different kinds of word-to-class mapping functions used by class-based LMs.
These can be completely data-driven or based on different sorts of linguistic or orthographic features.

2.1 Data-driven classes
The most popular form of class-based LMs was introduced by (Brown et al., 1992). In this approach, the
corpus vocabulary is partitioned into a preset number of clusters by directly maximizing the likelihood
of a training corpus. No linguistic or orthographic features are taken into account while training the
classes.2 Later work has focused on decreasing the large computational cost of the exchange algorithm
proposed by Brown et al. (1992), either with a distributed algorithm (Uszkoreit and Brants, 2008) or by
using a whole-context distributional vector space model (Schütze and Walsh, 2011). In this paper we use
the standard SRILM implementation of Brown clustering.

1Not to be confused with the incrementally trainable stream-based LMs of Levenberg and Osborne (2009).
2Och (1999) extends a similar approach to bilingual clustering with the aim of generalizing the applicability of translation

rules in an alignment template SMT framework.
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2.2 Linguistic classes

Linguistic knowledge is another way to establish word equivalence classes. Common examples include
lemma, part of speech and morphology-based classes, each of which can capture different aspects of
the word sequence, such as the relative order of syntactic constituents or grammatical agreement. Has-
san et al. (2007) and Birch et al. (2007) went as far as scoring n-grams of Combinatorial Categorial
Grammar supertags. When using linguistic classes, one has to deal with the fact that the same word can
belong to different classes when used in different contexts. Solutions to this problem include tagging
the target word sequence as it is generated (Koehn et al., 2007; Birch et al., 2007; Green and DeNero,
2012), choosing the most probable class sequence for each phrase pair (Monz, 2011) or—even more
lightweight—choosing the most probable class for each word (Bisazza and Federico, 2012).

Alternatively, simpler deterministic class mappings can be derived by using shallow linguistic knowl-
edge, such as suffixes or orthographic features. The former can be obtained with a rule-based stemmer
(as in this work), or, even more simply, by selecting the φ most common word suffixes in a training
corpus and then mapping each word to its longest matching suffix (Müller et al., 2012). Orthographic
features may include capitalization information or the presence of digits, punctuation or other special
characters (Müller et al., 2012).

2.3 Hybrid surface/class models

Müller et al. (2012) obtain the best perplexity reduction when excluding frequent words from the class
mapping. That is, each word with more than θ occurrences in the training corpus is assigned to a singleton
class with word emission probability equal to 1. The frequency threshold θ is determined with a grid
search on a monolingual held-out set. Optimal values for perplexities are shown to vary considerably
among languages. In this work we follow this setup closely.

It is worth noting that Bisazza and Federico (2012) have applied a similar idea to the problem of
style adaptation: they train a hybrid POS/word n-gram LM on an in-domain corpus and use it as an
additional SMT feature function with the goal of counterbalancing the bias towards the style of the large
out-of-domain data. The idea of modeling sequences of mixed granularity (word/subword) was earlier
introduced to speech recognition by Yazgan and Saraçlar (2004).

The most extensive comparison of distributional, morphological and hybrid classes that we are aware
of is the work by Müller et al. (2012), but that does not include any SMT evaluation. Looking at perplex-
ity results over a large number of European language pairs (not including Russian), Müller et al. (2012)
conclude that a hybrid suffix/word class-based LM simply built on frequency-based suffixes performs as
well as a model trained on much more expensive distributional classes. Motivated by this finding, we
evaluate these two kinds of classes in the context of SMT into a morphologically rich language.

2.4 Fullibm language model

As outlined above, the class-based LMs generally used in SMT are in fact stream-based models in the
sense that they only estimate the probability of the class sequence (see Equation 2). However, the clas-
sic form of class-based LM (Brown et al., 1992) also includes a class-to-word emission probability
p1(wi|C(wi)) whose utility has not been properly assessed in the context of SMT.

Besides, we observe that a variety of class-based LM variants have been studied in speech recognition
but not in SMT. In particular, Goodman (2001) presents a generalization of the standard class-based form
where the word emission is also conditioned on the class history rather than on the current class alone.
The resulting model is called fullibm:

Pfullibm(wi|wi−1
i−n+1) = p0(C(wi)|C(wi−1

i−n+1)) · p1(wi|C(wii−n+1)) (3)

We expect this model to yield more refined, context-sensitive word emission distributions which may
result in better target LM probabilities for our SMT system.
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3 SMT combining framework

Class-based LMs are rarely used in isolation, but are rather combined with standard word-level models.
There exist at least two ways to combine multiple LMs into a log-linear SMT decoder: (i) as separate
feature functions in the global log-linear combination or (ii) as components of a linear mixture counting
as a single feature function in the global combination.

3.1 Log-linear combination

The standard log-linear approach to SMT allows for the combination of m arbitrary model components
(or feature functions), each weighted by a corresponding weight αm:

p(x|h) =
∏
m

pm(x|h)αm (4)

In typical SMT settings, pm(x|h) are phrase- or word-level translation probabilities, reordering prob-
abilities, and so on. Treating the new LM as an additional feature function has the advantage that its
weight can be directly optimized for SMT quality together with all other feature weights, using standard
parameter tuning techniques (Och, 2003; Hopkins and May, 2011).

3.2 Linear interpolation

The other widely used combining framework is linear interpolation or mixture model:

p(x|h) =
∑
q

λqpq(x|h) (5)

More specifically, word LMs are usually interpolated as a word-level weighted average of the n-gram
probabilities:

pmixLM(e) =
n∏
i=1

(∑
q

λqpq(ei|hi)
)

(6)

The drawback of this approach is that the linear interpolation weights, or lambdas, cannot be set with
standard SMT tuning techniques. Instead, interpolation weights are typically determined by maximizing
the likelihood of a held-out monolingual data set, but this does not always outperform simple uniform
weighting in terms of translation quality.3

Despite the lambda optimization issue, linear interpolation with uniform or maximum-likelihood
weights has been shown to work better for SMT than log-linear combination when combining regu-
lar word n-gram LMs (Foster and Kuhn, 2007). However, to the best of our knowledge, the linear
interpolation of word- and class-based LMs has never been tested in SMT.

In their intrinsic evaluation, Müller et al. (2012) show that linear mixing with hybrid class/surface
models of various kinds consistently decrease the perplexity of a Kneser-Ney smoothed word-level LM,
with relative improvements ranging between 3% (English) and 11% (Finnish). All their models are
interpolated with class-specific lambda weights, according to the following formula:

Pmix(wi|wi−1
i−n+1) = λC(wi−1) · Pclass(wi|wi−1

i−n+1) + (1− λC(wi−1)) · Pword(wi|wi−1
i−n+1) (7)

where Pword corresponds to the standard n-gram model using the lexical forms. Equation 7 can be seen
as a generalization of the simple interpolation λPclass + (1 − λ)Pword used by Brown et al. (1992).
The class-specific lambdas are estimated by a deleted interpolation algorithm (Bahl et al., 1991). In our
experiments, we test both generic and class-specific lambda interpolation for SMT.

3Foster and Kuhn (2007) also tried more sophisticated techniques to set interpolation weights but did not obtain significant
improvements.
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Corpus Lang. #Sent. #Tok. T/T

paral.train
EN

1.9M
48.9M .0107

RU 45.9M .0204
Wiki dict. EN/RU 508K – –
mono.train RU 21.0M 390M .0068
newstest12

EN
3K 64K –

newstest13 3K 56K –

Table 1: Training and test data statistics: number of sentences, number of tokens and type/token ratio
(T/T). All numbers refer to tokenized, lowercased data.

4 Evaluation

We perform a series of experiments to compare the effectiveness for SMT of various class mapping
functions, different model forms, and different LM combining frameworks.

The task, organized by the Workshop of Machine Translation (WMT, Bojar et al. (2013)), consists
of translating a set of news stories from English to Russian. As shown in Table 1, the available data
includes a fairly large parallel training corpus (1.9M sentences) from various sources, a set of Wikipedia
parallel headlines shared by CMU,4 and a larger monolingual corpus for model training (21M sentences).
By measuring the type/token ratios of the two sides of a parallel corpus, we can estimate the difference
in morphological complexity between two languages: as shown in Table 1, the Russian T/T is almost
two times higher than the English one (.0204 vs .0107) in the WMT13 parallel training data. As is
usually the case, much more data is available for LM training. Nevertheless we report a rather high
out-of-vocabulary word rate on the devsets’ reference translations (2.28%).

4.1 Baseline
Our baseline is an in-house phrase-based (Koehn et al., 2003) statistical machine translation system very
similar to Moses (Koehn et al., 2007). All system runs use hierarchical lexicalized reordering (Gal-
ley and Manning, 2008; Cherry et al., 2012), distinguishing between monotone, swap, and discontinuous
reordering, all with respect to left-to-right and right-to-left decoding. Other features include linear distor-
tion, bidirectional lexical weighting (Koehn et al., 2003), word and phrase penalties, and finally a word-
level 5-gram target language model trained on all available monolingual data with modified Kneser-Ney
smoothing (Chen and Goodman, 1999). The distortion limit is set to 6 and for each source phrase the top
30 translation candidates are considered.

The feature weights for all approaches were tuned by using pairwise ranking optimization (Hopkins
and May, 2011) on newstest12. During tuning, 14 PRO parameter estimation runs are performed in paral-
lel on different samples of the n-best list after each decoder iteration. The weights of the individual PRO
runs are then averaged and passed on to the next decoding iteration. Performing weight estimation inde-
pendently for a number of samples corrects for some of the instability that can be caused by individual
samples.

4.2 Language models
The additional LMs are trained with Witten-Bell smoothing (Witten and Bell, 1991), which is a common
choice for class-based LM training as Kneser-Ney smoothing cannot be used for computing discount
factors when the count-of-counts are zero. The main series of experiments employ 5-gram models, but
we also evaluate the usefulness of increasing the order to 7-gram (see Table 3).5

Data-driven clusters are learned with the standard Brown clustering algorithm, which greedily maxi-
mizes the log likelihood of a class bigram model on the training data. Following Ammar et al. (2013),
we set the number of data-driven clusters to 600. In preliminary experiments we also tested a 256-cluster
setting, but 600 yielded better BLEU scores. For time reasons, we train the clusters on a subset of the

4http://www.statmt.org/wmt13/wiki-titles.ru-en.tar.gz
5For this second series of experiments we use the feature weights tuned for the corresponding 5-gram LMs.
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LM type smoothing vocab. PP
words Kneser-Ney 2.7M 270
Brown clusters Witten-Bell 600 588
suffixes Witten-Bell 968 2455
suffix/word hybrid (θ=5000) Witten-Bell 8530 460

Linear interp. PP
generic λ class-spec.λ’s

words + clusters 225 224
words + suffixes 266 265
words + hybrid 243 247

Table 2: Intrinsic evaluation of various types of LMs and their linear interpolations. Perplexity (PP) is
computed on a separate held-out set of 5K Russian sentences. All models are 5-grams.

monolingual data including all the parallel data (news commentary) and the large commoncrawl corpus
for a total of 1M sentences (22M tokens). We then map all monolingual data to the learned clusters and
use that to train all our cluster-based LMs.

For the suffix-based class LMs we closely follow the setup of Müller et al. (2012) with the only
difference that we use the Russian Snowball stemmer6 to segment the vocabulary instead of frequency-
based suffixes. The suffix threshold θ (see Section 2.3) is determined by minimizing perplexity on a
separate held-out set (5K sentences): θ=5000 is the optimal setting among {2000, 5000, 10000, 20000}.7
The same held-out set is used to estimate both the generic and the class-specific lambdas for the linear
interpolation experiments.

Table 2 presents an overview of the LMs used in our experiments. We can see on the left side that
all class-based LMs have notably higher perplexities compared to the word-level, with the fully suffix-
based LM performing worst by far. Nevertheless, all class-based models yield a decrease in perplexity
when they are interpolated with the word-level model (right side). The best improvement is achieved
by the data-driven classes (225 versus 270, that is -17%), but the result of the hybrid LM is also quite
successful (-10%) and much in line with the improvements reported by Müller et al. (2012) on other
Slavic languages. Because the fully suffix-based LM yields only a modest reduction, we do not to include
it in the SMT evaluation. The right side of Table 2 also shows that using class-specific interpolation
weights is not significantly better, and sometimes is even worse than using only one generic λ, at least
from the point of view of perplexity. Since weight estimation for linear interpolation is still an open
problem for SMT, we decide nevertheless to compare these two interpolation methods in our translation
experiments (see Table 4).

4.3 SMT results

Table 3 shows the results for English to Russian translation using log-linear combination with Brown
clusters and the hybrid suffix/word classes. Translation quality is measured by case-insensitive BLEU
(Papineni et al., 2002) on newstest13 using one reference translation. The relative improvements of the
different class-based LM runs are with respect to the baseline which uses a word-based LM only and
achieves comparable results to the state-of-the-art. We use approximate randomization (Noreen, 1989)
to test for statistically significant differences between runs (Riezler and Maxwell, 2005).

We can see from Table 2(a) that using a stream-based LM as an additional feature, which is log-linearly
interpolated with the other decoder features during parameter estimation, leads to small but statistically
significant improvements. The results also indicate that using a higher n-gram class model (7-gram)
does not yield additional improvements over a 5-gram class model, which is in contrast with the results
reported by Wuebker et al. (2013) on a French-German task.

Since the stream-based models ignore word emission probabilities, one would expect further improve-
ments from the theoretically more correct class-based model which include word emission probabilities
(see Equation 1). Somewhat surprisingly, this is not the case. On the contrary, both 5- and 7-gram
class-based models perform slightly worse than the stream-based models. We suspect that this is due to
the limited context used to estimate the emission probabilities in the original Brown class-based mod-
els. To verify this we compared this to the fullibm model (Equation 3) which conditions word emission

6http://snowball.tartarus.org/algorithms/russian/stemmer.html
7Our training corpus is considerably larger than those used by Müller et al. (2012), therefore we search among higher values.
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(a) Brown clusters (600)

surface stem
Additional LM BLEU ∆ BLEU ∆

? none [baseline] 18.8 — 24.7 —
? 5g stream-based 19.1 +0.3• 24.8 +0.1

7g stream-based 19.1 +0.3• 24.9 +0.2
? 5g class-based 18.9 +0.1 24.6 −0.1

7g class-based 18.8 ±0.0 24.7 ±0.0
5g fullibm 19.4 +0.6• 25.0 +0.3•

7g fullibm 19.3 +0.5• 25.0 +0.3•

(b) Suffixes/words, θ = 5000

surface stem
Additional LM BLEU ∆ BLEU ∆

? none [baseline] 18.8 — 24.7 —
? 5g stream-based 18.9 +0.1 24.6 −0.1

7g stream-based 18.9 +0.1 24.6 −0.1
? 5g class-based 19.0 +0.2◦ 24.8 +0.1

7g class-based 19.1 +0.3◦ 24.7 ±0.0
5g fullibm 19.1 +0.3• 24.8 +0.1
7g fullibm 19.2 +0.4• 24.9 +0.2◦

Table 3: SMT translation quality on newstest13 when using different kinds of class-based language mod-
els as additional features in the log-linear combination. The settings used for weight tuning are marked
with ?. Statistically significant differences wrt the baseline are marked with • at the p ≤ .01 level and ◦

at the p ≤ .05 level.

probabilities on the entire n-gram class history of length n − 1. The fullibm class-based models yield
the biggest statistically significant improvements over the baseline and also compare favorably to the
stream-based and original class-based models. Similarly to stream- and class-based models we do not
observe a difference in performance between 5- and 7-gram models for fullibm.

Table 2(b) shows the results obtained by the shallow morphology-based classes inspired by Müller
et al. (2012). This form of classes is easy to implement in many languages and computationally much
cheaper than the Brown clusters. Although less than the data-driven class models, the hybrid suffix/word
models also appear to improve translation quality. We can see that fullibm again yields the highest
improvements, but we can also observe more consistent trends where longer n-grams help and class-
based models are preferable to stream-based models without emission probabilities.

When translating into a morphologically rich language, such as Russian, the role of the target lan-
guage model is two-fold. On the one hand, it helps choose the correct meaning from the available phrase
translation candidates, on the other hand, it helps choose the correct surface realization of the trans-
lation candidate that agrees grammatically with the previous target context. For morphologically rich
languages the second aspect plays a considerably larger role than for morphologically poor languages.
To disentangle these two roles of the language model we also evaluated the different language models
with respect to stem-based information only, stripping off any inflectional information using the Snow-
ball stemmer. These results are also reported in Table 3 and in general exhibit the same trend as the
surface-based BLEU scores. Again, fullibm performs best, and the original class-based LMs do not lead
to any improvements over the baseline. As a general observation, we find that the surface-level gains
are most of the time larger than the stem-level ones, which suggests that the additional LMs are mainly
improving the choice of word inflections.

All systems compared in Table 3 use a class language model as an additional feature, which is log-
linearly interpolated with the other decoder features. Alternatively, the word- and the class-based lan-

(a) Brown clusters (600)

surface stem
Additional LM BLEU ∆ BLEU ∆

? none [baseline] 18.8 — 24.7 —
? 5g class, log-linear comb. 18.9 +0.1 24.6 −0.1
? 5g class, linear (global λ) 18.5 –0.3 24.4 −0.3

5g class, linear (class λ’s) 18.6 –0.2 24.5 −0.2

(b) Suffixes/words, θ = 5000

surface stem
Additional LM BLEU ∆ BLEU ∆

? none [baseline] 18.8 — 24.7 —
? 5g class, log-linear comb. 19.0 +0.2◦ 24.8 +0.1
? 5g class, linear (global λ) 18.9 +0.1 24.8 +0.1

5g class, linear (class λ’s) 18.6 −0.1 24.6 −0.1

Table 4: SMT translation quality on newstest13 when using different LM combining frameworks: ad-
ditional feature in the log-linear combination or linear interpolation with perplexity-tuned weights (one
global lambda or class-specific lambdas).
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guage models may be linearly interpolated with weights determined by maximizing the likelihood of a
held-out monolingual data set (see Section 3.2). While linear interpolation often outperforms log-linear
interpolation for combining language models for domain adaptation (Foster and Kuhn, 2007), this does
not seem to be the case for language models for morphologically rich target languages. The results
presented in Table 4 consistently show that linear interpolation under-performs log-linear combination
under all conditions. Even using class-specific interpolation weights as suggested by Müller et al. (2012)
did not lead to any further improvements.

5 Conclusion

We have presented the first systematic comparison of different forms of class-based LMs and different
class LM combination methods in the context of SMT into a morphologically rich language.

First of all, our results have shown that careful modeling of class-to-word emission probabilities—
often omitted from the models used in SMT—is actually important for improving translation quality.
In particular, we have achieved best results when using a refined variant of the original class-based
LM, called fullibm, which had never been tested for SMT but only for speech recognition (Goodman,
2001). Secondly, we have found that a rather simple LM based on shallow morphology-based classes
can get close, in terms of BLEU, to the performance of more computationally expensive data-driven
classes. Although the reported improvements are modest, they are statistically significant and obtained
in a competitive large-data scenario against a state-of-the-art baseline.

On the downside, and somewhat in contrast with previous findings in domain adaptation, we have
observed that linear interpolation of word- and class-based LMs with perplexity-tuned weights performs
worse than the log-linear combination of models with model-level weights globally tuned for translation
quality. This result was confirmed also when using class-specific lambdas as suggested by Müller et al.
(2012).

Indeed, modeling morphologically rich languages remains a challenging problem for SMT but, with
our evaluation, we have contributed to assess how far existing language modeling techniques may go
in this direction. Natural extensions of this work include combining multiple LMs based on different,
and possibly complementary, kinds of classes such as data-driven and suffix-based, or using supervised
morphological analyzers instead of a simple stemmer. In a broader perspective, we believe that future re-
search should question the fundamental constraints of n-gram modeling and develop innovative modeling
techniques that conform to the specific requirements of translating into morphologically rich languages.
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