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1
Introduction

Machine translation (MT) is a field of natural language processing that investigates
methods to automatically translate texts from one language into another. The first
major point of categorization of MT frameworks is between rule-based (Nirenburg,
1989) and data-driven frameworks (Brown et al., 1993; Koehn, 2009; Carl et al., 2004).
Rule-based systems are in a nutshell a set of rewrite rules specifying how to transform
an input sequence to an output sequence. The rules are designed by human experts.
On the other hand, data-driven approaches derive a way to translate one language to
another by ‘observing’ and learning patterns of translation correspondence from data.
The underlying assumption of this method is that a learning algorithm is universal and
can be applied to any language or language pair, provided sufficient training data is
available. Data in MT typically comes in the form of parallel corpora, also referred
to as bitexts, which are tuples of text conveying the same information in two or more
languages (Brown et al., 1993). In the standard case, parallel corpora are bilingual, and
the language from which one translates is called the source language, while the language
one translates into is called the target language. Many available parallel corpora are
sentence-aligned. Another source of data are comparable corpora, where the texts
in each language convey approximately the same information (Munteanu and Marcu,
2002).

Naturally, there are also hybrid systems, combining elements of both data-driven
and rule-based systems.1 In this thesis we work solely within data-driven frameworks,
and more specifically statistical frameworks, where one uses principles of statistical
learning to obtain the optimal translation procedure. The core problem areas of the
statistical approach to MT are instances of many other machine learning applications:
model estimation and optimization, approximate inference (since exhaustive search is
usually intractable), data selection and generation, output evaluation, model transfer and
domain adaptation, and system combination. The two major state-of-the-art frameworks
of the statistical approach are statistical machine translation (SMT (Koehn, 2009)) and
neural machine translation (NMT (Kalchbrenner and Blunsom, 2013; Sutskever et al.,
2014)).2 In this thesis we work with both types of frameworks.

1Strictly speaking, almost any data-driven system has some elements of a rule-based approach in the
pipeline, for example pre- or post-processing rules.

2Even though NMT does not have the word “statistical” in its name, it is still based on methods from
statistical learning. On the other hand, SMT has this word in its name because it was the first major statistical
framework in MT (Brown et al., 1993).
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1. Introduction

SMT and NMT are different in the way they conceptualize the translation task, which
entails differences in the approaches to research areas listed above. SMT decomposes the
translation correspondence between sentences and longer strings into a correspondence
between smaller units, such as words or sequences of words. In particular, phrase-based
SMT (PBSMT (Koehn et al., 2003)) operates with phrase pairs, where a phrase is a
contiguous string of words (n-gram). Syntax-based SMT (Wu, 1997b; Yamada and
Knight, 2001) operates with pairs of simple tree structures. The problem of translation
thus consists of estimating a translation distribution for such basic units (translation
probability estimation) and learning a model for deciding in which order to translate
parts of an input text (reordering problem). SMT is characterized by the modularity of
its architecture, where each of the modules (commonly called features) can be trained
independently. NMT defines the problem of translating one sentence into another as
an end-to-end task and does not attempt to learn an independent model of more local
translation correspondence. Unlike PBSMT (and other flavors of SMT), in its current
form NMT is characterized by the relative simplicity of its model architecture, and most
of the burden of system training lies on finding the right estimation method and having
sufficient amounts of training data.

This thesis addresses a diverse set of questions that are united by the general quest
for understanding and exploiting structural differences between languages to enhance
machine translation quality. In the first part of the thesis, we focus on how syntactic
representations can be used to characterize the translational correspondence. Our work
is grounded in the assumption that the syntactic structure of both source and target
languages is similar enough for re-using language-specific syntactic representations
to define features for a translation system. In the second part of the thesis we take an
opposite stance and exploit the differences between languages. The main idea here is to
employ several language pairs when translating. The benefit is that different translation
systems for different language pairs make a diverse set of predictions, but also that the
resulting aggregate evaluation of translation hypotheses is typically more accurate.

The two parts of the thesis are also split according to the base machine translation
framework that we build upon. The first part is about phrase-based statistical machine
translation (PBSMT) and looks into structural regularities of translation correspondence
of subsentential units. The second part is about neural machine translation (NMT),
namely the sequence-to-sequence class of models, and looks how we combine outputs
of multiple translation systems.

1.1 Research outline and questions

We now start with formulating the central research questions addressed in this thesis.
The research questions for the first part of the thesis revolve around the universality of
syntactic structures and their role across languages. Syntactic representations have been
used extensively in machine translation. Some of their major applications include using
syntax to define bilingual structures to better characterize the translation process and to
constrain search (decoding). Some approaches to MT have syntactic structures at the
core of their framework (such as syntax-based MT (Yamada and Knight, 2001; Quirk
and Menezes, 2006; Huang et al., 2006; Shieber, 2007; Liu et al., 2007; Shen et al.,

2



1.1. Research outline and questions

2008)), some use syntactic models and constraints as additional features Ge (2010);
Xiang et al. (2011); Lerner and Petrov (2013). One important point of categorization
of syntactic methods in MT is whether the training of a system starts with standard
word alignment (IBM models (Brown et al., 1993)) and is constrained by syntax at
a later stage, or whether it uses syntactic representation to find atomic translation
correspondences (Eisner, 2003; Ding and Palmer, 2004; Gildea, 2004). Most methods
fall into the first group, and so do ours. Specifically, we assume that syntactic relations
between words are preserved when mapped through word alignments, or at least mapped
in a systematic way.

Both contributions in Part I use syntax as an additional feature incorporated in a
phrase-based system, which is a syntax-agnostic framework and models translation as a
flat sequential process. Such an approach allows one to study the role of syntax in a
relatively isolated way, as opposed to syntax-based MT. On a high level, in Part I we
define language models of bilingual parallel sentences based on syntactic representations.
We refer to such language models as bilingual language models, as they characterize
sequences obtained in a bilingual process (translation). An important aspect of our
general approach in this part of the thesis is the move towards simplification of the
original structural sentential representations. Many syntactically augmented methods
model translation of a source sentence as a restructuring of its parse tree, guided by the
complex constraints of the tree formalisms (Wu, 1997a; Huang et al., 2006; Lerner and
Petrov, 2013). In the same way, one can model translation as the building up of a target
tree (Yamada and Knight, 2001). On the contrary, we stay in the realm of sequential
processes.

Our first method to employ syntax is to use tree-based representations of basic
bilingual units that are operated on during the process of translation. Phrase pairs are
commonly used basic bilingual units. However, we choose to work with bilingual
language model tokens (see Section 4.2.1 for a motivation). The tree-based represen-
tations are obtained from the complete syntactic parses of the source sentence. Our
approach can be seen as approximating the tree construction by generating a sequence
of uniformly structured tree fragments. We design this method to specifically improve
reordering, i.e., the order in which words and phrases are translated and added to the
right-hand side of the partial translation hypothesis. This brings us to our first research
question:

RQ1 Can we improve reordering by modeling sequences of syntactic structures repre-
senting basic operational units of translation?

RQ1.a. Can the representations only include the local syntactic information of a
node in a syntactic parse? What is the minimum context that the local
representation should incorporate?

RQ1.b. How do local syntactic representations compare to representations including
explicit lexical information of the basic translational units?

RQ1.c. What kind of reordering phenomena are captured by such models?

The second model presented in Part I is built to derive global sentential syntactic
structure as a result of translation. Namely, the method consists in building up a parse

3



1. Introduction

of a translation hypothesis, with the constraint that all the decisions about the parse
operations are strictly guided by the structure of the source sentence and the order in
which the target sentence was generated. The obtained syntactic structure of the target
sentences is used as input to a syntactic language model, a common class of language
models used in natural language processing. The target parse in our method is the
result of the translation sequential process, and not a separate probabilistic process
modeling a parse tree generation. The question is, how meaningful the parse obtained
by projection is and how useful it is for improving translation (when fed to a syntactic
language model). We do not focus on a particular aspect of translation (like reordering)
but rather investigate how justified it is to characterize the translation process between
two languages in terms of structures produced just for one of the languages:

RQ2 Is there a systematic mapping between source and target syntactic representations
in a parallel sentence and can it be used to improve translation?

RQ2.a. Is there a universal characterization of a mapping between source and target
structure? Can this characterization be used to constrain the decoding
process to produce better translations?

RQ2.b. Can the mapping be defined in terms of projection constraints between
elementary parts of source and target structures? Can we fit a statistical
model over the resulting corresponding source and target structures to
characterize the overall mapping?

RQ2.c. What are the important mapping constraints that result in structured lan-
guage models improving translation output?

For RQ2, we compare two basic approaches to answering it. The first one, outlined
by RQ2.a, assumes we can design some characterization that can be directly imposed
during the search of a translation hypothesis. The second one, RQ2.b, proposes to start
with a set of constraints on how elementary substructures should be mapped during
translation to obtain a corresponding target structure. The conceptual difference between
the approaches from RQ2.a and RQ2.b is that the latter can learn a characterization
(in terms of the parameters of the statistical model) of an arbitrary mapping, while
the former requires one to explicitly predefine the mapping. We exploit the advantage
of the latter approach by defining mappings in terms of different kinds of constraints
on the correspondence between elementary structures. Different combinations of such
constraints will produce different mappings. RQ2.c is about which of the constraints
are important and beneficial for translation.

We formulated the research questions from Part I based on the idea that there are
systematic similarities between languages expressible with some syntactic formalisms.
Assumptions about such linguistic constraints limit the space of learnable parameters.
If the assumptions turn out to be empirically valid, then it facilitates the learning task
and thus indirectly leads to more accurate models, which is what we aim for in the end.

At the same time, variable parameters across languages can also be useful for practi-
cal purposes. If we fix some semantics and let it be expressed in different languages,
then the task of translating from each of the given languages into the same language is
likely to be of different degrees of difficulty. This is because some language pairs share
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a lot of characteristics, which facilitates the training task of finding correspondences
between languages, and some do not. But the degree of translation difficulty is not the
only way one can distinguish between language pairs. Different pairs of languages will
share different common properties. If we fix a target language and consider multiple
source languages and the corresponding translation systems, then there is likely to be
some aspect of the target language that is better captured by only one of the trained
translation systems.

Previous research on system combination for machine translation (Och and Ney,
2001; Matusov et al., 2006; Schwartz, 2008; Schroeder et al., 2009) has exploited this
assumption. Most of the existing approaches do not so much focus on some specific
cross-linguistic properties that are captured differently by different pairs, but rather
propose direct methods to combine the expertise of different translation systems.

In this thesis, we apply these ideas in the new setting of neural machine translation
(NMT), in particular within the sequence-to-sequence class of models (Sutskever et al.,
2014). Unlike the pre-neural translation frameworks, NMT treats the problem of trans-
lation at the level of sentences (sequences) and does not explicitly estimate translation
correspondence between smaller linguistic units (words or phrases). Such a “black box”
approach to translation is very much in the spirit of the previous research on system
combination in machine translation, which does not modify the internal algorithm
of decoding or translation correspondence model estimation, but typically considers
combinations of completely generated translation hypotheses. Another important aspect
of our proposed method of multi-source translation is that it can be cast naturally as a
general machine learning problem of ensemble combination. Sequence-to-sequence
models are essentially sequential classifiers, so the existing ensemble methods can be
easily applied without the additional engineering requirements of pre-neural system
combination methods. This allows us to formulate our last research question:

RQ3 Can we exploit the variation in cross-lingual correspondence and improve transla-
tion quality with multi-source NMT ensembles?

RQ3.a. How does ensemble performance depend on the quality of individual trans-
lation systems that are part of it?

RQ3.b. Is there systematicity in what a neural translation system for a given lan-
guage pair is good at, and what aspects of the target side it reproduces
suboptimally? Can we exploit this systematicity in multi-source translation?

RQ3.c. How do multi-source ensembles compare to ensembles of NMT systems
for single language pair trained with different initialization seeds?

We answer RQ3.a and RQ3.b by designing corresponding translation experiments. For
RQ3.b, we propose two methods for learning a combination function for ensemble
prediction, and evaluate them in translation. We evaluate both multi-source ensembles
and monolingual ensembles (produced by different initialization seeds) for both of the
research questions. Finally, we answer RQ3.c based on the observed performance of
the two kinds of ensembles for all types of experiments.

5



1. Introduction

1.2 Main contributions
Here we summarize the main contributions of this thesis. We categorize them into
theoretical (new ideas and concepts, new approach to an existing problem), algorithmic
(proposing a new method to modify the baseline translation pipeline) and empirical
(experimental evaluation of the proposed methods).

1.2.1 Theoretical contributions
1. We propose to generalize bilingual language model tokens (Niehues et al., 2011),

which are typically considered as lexicalized forms, and consider syntactic-based
representations of arbitrary levels of complexity. This approach can be viewed
as an approximate model of restructuring of a source tree during translation
(reordering). [Chapter 4]

2. We connect the ideas of a direct correspondence assumption (Hwa et al., 2002)
between source and target syntactic structures with structured language models
(Chelba and Jelinek, 2000) to obtain a simple method to integrate the latter
models into phrase-based machine translation. Additionally, we propose to view
our bilingual structured language model from the perspective of research on
discovering patterns of source and target syntactic correspondence. [Chapter 5]

3. We introduce a source of ensemble diversity specific to machine translation
where we exploit different source languages while translating into the same target
language. [Chapter 7]

1.2.2 Algorithmic contributions
1. We propose a method to construct dependency based representations for bilingual

language models incorporating the local syntactic context of a words comprising
the token. [Chapter 4]

2. We describe an algorithm for an incremental projection of syntactic structure via
word alignment, which is easily integrated into a phrase-based decoder. [Chapter

5]

3. We propose a mixture of experts model for neural machine translation. The core
novelty is to regard concatenated hidden states of neural systems in the ensembles
as the input to a mixing gate. [Chapter 7]

1.2.3 Empirical contributions
1. We evaluate translation performance of a phrase-based statistical machine transla-

tion system augmented with bilingual language models with dependency based
representations. We evaluate general translation performance, as well as the
reordering aspect specifically. We compare our models to the performance of
previously proposed bilingual language models. [Chapter 4]

6



1.3. Thesis overview

2. We conduct an empirical evaluation of structured language models with word
alignment-projected parses by integrating it into a phrase-based machine trans-
lation scenario as an n-best translation reranking model and as a feature in the
decoder. [Chapter 5]

3. We evaluate a series of combination methods for multi-source neural machine
translation systems for a diverse set of language pairs. We compare the resulting
translation quality to the one obtained by monolingual ensembles which are
induced by different random parameter initializations. [Chapter 7]

1.3 Thesis overview

As outlined in the preceding sections, this thesis revolves around the question of how
different or similar languages are and how this diversity affects machine translation.
We start with a general background chapter (Chapter 2 - General Background) that
introduces the core concepts and terminology of statistical machine translation and
neural machine translation, and also provides a detailed explanation of the automatic
evaluation metrics that we use in our experiments. We organize the thesis into two parts,
the first part exploring the idea of inherent syntactic similarity between languages and
the second part utilizing the diverse behaviors of different language pairs in translation.
In addition to that, the proposed models are grounded in different translation frameworks
in the two parts.

• Part I - Syntax-based Bilingual Language Models for Statistical Machine

Translation. In this part we explore the idea of similarity between syntactic
structures in a pair of parallel source and target sentences. We implement our
ideas in the form of bilingual language models that incorporate syntactic structure.
These language models are used as features in a phrase-based statistical machine
translation system.

• Chapter 3 - Background: Concepts, Related Work, Baseline. This is a back-
ground chapter. It provides an overview of syntactic models that have been used
to improve phrase-based SMT. We also provide some background on syntactic
formalisms commonly used in machine translation. The syntactic model proposed
later in Chapter 4 is a so-called bilingual language model, and we also provide
the definitions and discuss previous research on this type of language models.
Finally, this chapter also contains a detailed specification of the phrase-based
system that we use in the experiments in this part of the thesis. We also describe
the training and test data.

• Chapter 4 - Dependency-Based Bilingual Language Models for Reordering

in Statistical Machine Translation is a research chapter where we propose a
bilingual language model with tokens based on source syntax. The model is
grounded in the idea that source syntax can provide useful information about the
reordering process between the source and target sides during translation.

7



1. Introduction

• Chapter 5 - Bilingual Structured Language Models for Statistical Machine

Translation is a research chapter where we propose a method to adapt structured
language models to a bilingual scenario. We use it as a target language model,
but instead of having a probabilistic model to infer the target parse (which is part
of the structured language model), we propose to deterministically project it from
the source sentence via word alignments.

• Part II - Exploring Diversity in Neural Machine Translation. The field of
machine translation has accumulated an extensive body of observations implying
that different language pairs demonstrate substantial differences in translation
performance while being trained on the same amount of data and with the same
algorithm. We propose to utilize this naturally occurring diversity to the benefit
of translation. Building on the foundation of general research on ensemble predic-
tion, we propose a series of models for multi-source neural machine translation
ensembles.

• Chapter 6 - Background: Ensembles, System Combinations, and Baselines.

This chapter provides the relevant background on previous research on ensemble
prediction. Additionally, it provides an overview of a conceptually close approach
of system combination in (pre-neural) machine translation. Finally, it also pro-
vides the specifics of our neural machine translation system and the training and
test data that we use in the experiments in Chapter 7.

• Chapter 7 - Ensemble Learning for Multi-Source Neural Machine Transla-

tion is a research chapter. It proposes to use ensembles of translation systems
with different source languages and the same target language during decoding,
thus requiring the availability of a multi-parallel test set, but not training set. It
introduces a series of combination models used in ensembling.

• Chapter 8 - Conclusions summarizes both parts of the thesis and revisits the
research questions introduced in Section 1.1. It also provides an outlook for
future work.

1.4 Origins

Research presented in the following chapters was based on previosly published papers:

• Garmash and Monz (2014): Ekaterina Garmash and Christof Monz. Dependency-
based Bilingual Language Models for Reordering in Statistical Machine Transla-
tion. EMNLP, Doha, Qatar, 2014 (Chapter 4).

The model was proposed by Monz. Experiments and analyses were performed by
Garmash. Both authors contributed to the text. Garmash did most of the writing.

• Garmash and Monz (2015): Ekaterina Garmash and Christof Monz. Bilingual
Structured Language Models for Statistical Machine Translation. EMNLP, Lisbon,
Portugal, 2015 (Chapter 5).
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The model was developed by Garmash. Experiments and analyses were performed
by Garmash. Both authors contributed to the text. Garmash did most of the
writing.

• Garmash and Monz (2016): Ekaterina Garmash and Christof Monz. Ensemble
learning for Multi-Source Neural Machine Translation. Coling, Osaka, Japan,
2016 (Chapter 7).

The models were developed by Garmash. Experiments and analyses were per-
formed by Garmash. Both authors contributed to the text. Garmash did most of
the writing.
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2
General Background

In this chapter we provide some general background on machine translation (MT).
Specifically, we discuss the core concepts and models of statistical machine translation
(SMT; Section 2.1), neural machine translation (NMT; Section 2.2), and the evaluation
of machine translation output (Section 2.3). In this chapter we intend to provide minimal
background for non-specialists in the field to be able to understand the rest of the thesis.
Sources for a more thorough introduction include (Koehn, 2009; Goldberg, 2017) and
the references throughout this chapter.

2.1 Basics of statistical machine translation

Brown et al. (1993) have laid the foundation for the state-of-the-art SMT. They formalize
the task of translating a given foreign sentence F into the target sentence E as finding
argmaxEp(E|F ). This formula can be rewritten as:

E
⇤ = argmaxEp(E|F ) = argmaxE

p(F |E)p(E)
p(F ) (2.1)

= argmaxEp(F |E)p(E) (2.2)

The resulting model is referred to as the noisy channel model of SMT and defines
the process of generating a parallel sentence hE, F i as first generating E and then
generating E conditioned on F . p(F |E) models translation correspondence itself,
while p(E) is called a (target) language model.

As we mentioned in Chapter 1, the translation correspondence in SMT is conceptu-
alized in terms of correspondence between minimal units, such as words or multi-word
expressions. The translation correspondence between sentences or larger chunks is
derived from a correspondence of the smaller units comprising them. Brown et al. (1993)
proposed the first statistical model of translation correspondence between individual
words, called the IBM models. Their paper formalizes the process of translating from a
given foreign sentence as first deciding, for each word f in a foreign sentence, what its
‘English’ translation e is, and then deciding into what position e should be realized. The
first step models non-positional translation correspondence and is an instantiation of a
translation model, the second step models reordering. Extensions of this basic model
add additional steps to the generative process (see Section 2.1.1).
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2. General Background

Later as SMT progressed, a discriminative view on modeling translation was
adopted, whereby the conditional probability of translating E from F is modeled
as a log-linear function of an arbitrary set of features that are useful for describing the
translation correspondence between the two given languages (Och and Ney, 2002):

p(E|F ) =
exp

P
i �ihi(E, F )

Z(F )
, (2.3)

where hi are feature functions each weighted by �is, and Z(F ) is the partition function
(which is in practice irrelevant as the translation search problem has the F variable
fixed, see Section 2.1.7). Despite the switch of the modeling framework, target lan-
guage models, translation models and reordering models remain at the core of SMT
(comprising the so-called standard model of phrase-based SMT, Section 2.1.2).

In the subsections below we describe the introduced models in some more detail.
Section 2.1.1 provides background on the IBM models. Section 2.1.2 explains the
basics of the phrase-based model, which follows the overall strategy introduced by
Brown et al. (1993), but operates with larger translational units. Sections 2.1.6 and 2.1.7
explain how decoding (inference) and estimation of the parameters of the log-linear
model (Equation 2.3) are realized.

2.1.1 IBM models
A central concept of the IBM models is the alignment function: a one-to-many map
from words (positions) of a foreign sentence F into words (positions) of an ‘English’
sentence E. Given a corpus of parallel sentences, F and E are observed variables, while
alignment a is hidden. Brown et al. (1993) derive a method to estimate distributions of
these variables. Namely, IBM models 1 and 2 estimate translation probability t(e|f)
between words and alignment probability pa, which is an instantiation of a reordering
model:

pIBM1,2(E, a|F ) =
lEY

j=1

t(ej |faj )pa(a(j)|j, lE , fF ). (2.4)

Brown et al. (1993) estimate these functions via an expectation-maximization algorithm
by first deriving an exact expectation of alignment counts, and then performing the
maximization step. IBM3 refines IBM2 by adding an initial step of deciding how many
English positions a foreign word translates into. This is called a fertility model, resulting
in the overall joint probability:

pIBM3(E, a|F ) =

✓
lE � �0

�0

◆
p
�0
1 p

le�2�0
o ⇥ pIBM1,2(E, a|F ), (2.5)

where �i is the number of words generated by the ith source foreign word and n is the
conditional probability over this variable. The model is additionally equipped with a step
of generating a NULL token (to model unaligned target words), which is parametrized
by �0, the number of unaligned words, p0, the probability that no NULL was generated,
and p1, the probability of generating NULL. The new formulation of the model prevents
one from deriving efficient exact expectations, which is why the E-step is approximated

12



2.1. Basics of statistical machine translation

by sampling.
Another difference of IBM3 from IBM1, 2 is that pa is modeled as relative distortion

with respect to the previously placed cept, a tuple of an foreign word the set of English
words aligned to it. IBM4 elaborates the relative distortion model by conditioning it on
word classes of words in a cept. IBM5 further reformulates the distortion to address the
deficiency of the preceding model variants which allow multiple English words to be
placed in the same position.

Most SMT models use the IBM models as a preprocessing step to obtain word
alignments of a parallel corpus. They serve as constraints to extract translation corre-
spondence between larger chunks, such as phrases (Section 2.1.2). While IBM models
learn a one-to-many alignment, it is common to run training in both directions (source
to target and target to source) to obtain a many-to-many mapping by taking the union of
the two alignments excluding alignment pairs which are not in the intersection and are
not adjacent to pairs which are in the intersection (the grow-diag-final strategy (Och
and Ney, 2003b)). GIZA++1 (Och and Ney, 2003a) is a popular software package for
training IBM models and obtaining a word-aligned corpus.

2.1.2 Phrase-based statistical machine translation

Modeling the distributions over single words simplifies what we know about language.
Namely, it has been frequently observed that the semantics and the usage of words
strongly depend on the context in which they occur such as a sentence or document.
Translational correspondence is, to a large extent, semantic correspondence across
languages, therefore it could be useful to have a model that can infer the semantics and
the translation of a words based on the context they occur in.

Phrase-based SMT (PBSMT (Koehn et al., 2003)) implements this idea by directly
considering words in their context when modeling translation correspondence. The
framework defines phrases as contiguous strings of words observed in a sentence. Given
a preprocessed word-aligned corpus, a phrase pair is defined as a pair of observed
source and target phrases such that no word in either of the phrase is aligned to a word
outside of this pair. With this definition, phrases in a parallel sentence can be ordered
hierarchically. Typically, phrase lengths are limited to 5–7 words (Koehn et al., 2003).
A minimal translational unit in PBSMT is a minimal phrase pair, i.e., one that cannot be
further decomposed into sub-phrase pairs.

As we mentioned above, the problem of estimating translation probabilities and the
problem of reordering and language modeling are at the core of SMT modeling. Namely,
they are typically used as features in the log-linear interpolation function of translation
correspondence between languages (Equation 2.3). Below we provide background on
concrete model instantiations of these problems which are commonly used in PBSMT
systems (Section 2.1.3-2.1.5). Following Koehn (2009), we refer to a system consisting
of these models as the standard model of PBSMT.

Besides modeling the source or target sentence and their correspondence, an impor-
tant question is how to find the optimal translation E

⇤, given a source sentence F and a
trained model p(E|F ) (Equation 2.3), a task called decoding. Since a phrase pair is the

1
http://www.statmt.org/moses/giza/GIZA++.html
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2. General Background

basic structure of PBSMT, the task of decoding is formulated as finding the derivation
of E

⇤, which is an ordered sequence of phrase pair applications:

derivation = he1, f1i, ..., hek, fki, 2 (2.6)

so that in the end there is no phrase in the input sentence that is not translated (f1, ..., fk

in Equation 2.6 cover the whole input sentence, but not necessarily in this order), and no
phrase is translated twice (the intersection of f1, ..., fk is empty). This is implemented
by keeping track of a coverage vector during decoding. The concatenation of e1, ..., ek

(in this order) is the output translation hypothesis. Given this formulation of decoding, it
is an NP-complete problem (Knight, 1999) and one has to resort to approximations. In
Section 2.1.6 we describe the most common version of the PBSMT decoding algorithm.
Additionally, we describe a set of features, which are also part of the PBSMT standard
model, that directly characterize the decoding process.

Beside estimating the models included into the log-linear interpolation, the feature
weights themselves have to be tuned. This is done on a held-out set, by sampling from
p(E|F ) (via the given decoding algorithm). The common approaches to tuning are
outlined in Section 2.1.7.

2.1.3 Translation models

For each phrase pair he, fi extracted from a given word-aligned corpus (see Sec-
tion 2.1.2), the standard PBSMT model estimates four translation probabilities: condi-
tional phrase translation probabilities in both directions (p(e|f) and p(f |e)), and lexical
translation probabilities in both direction (plex(e|f) and plex(f |e)). The conditional
translation probabilities are estimated by their relative counts (Equation 2.7, analogously
for p(f |e)). The use of lexical translation probabilities is motivated by the need of
alternative estimation methods for infrequent phrase pairs for which simple counts
may be unreliable. They are computed by looking into the phrase-internal alignment
and taking the normalized product of word translation probabilities of the alignment
pairs inside the phrase (Equation 2.8, analogously for plex(f |e)). In addition, it is also
possible to smooth these maximum-likelihood estimates (Foster et al., 2006):

p(e|f) =
count(he, fi)

P

f
02source corpus

count(he, f 0i)
, (2.7)

where count returns the number of occurences of a phrase pair in word-aligned parallel
corpus. And:

plex(e|f) = maxa2observed alignments ofhe,fi

length(e)Y

i=1

1

|j|(i, j) 2 a|
X

(i,j)2a

w(ei|fj), (2.8)

2Note that the index here denotes the order of a phrase pair application, not the position of phrases in a
sentence.
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2.1. Basics of statistical machine translation

where w(ei|fj) is the IBM word translation probability defined analogously to p(e|f).
The max operator in Equation 2.8 can be substituted by a sum operator, or by an operator
selecting the most frequent alignment for the given phrase pair.

2.1.4 Language models
The most common language model (LM) used in MT is the n-gram language model. It
models a sequence in a natural language (sentence) as a product of probabilities of each
word in a sequence conditioned on the history of this word in this sequence. An LM of
order n conditions each word on a sequence of n � 1 immediately preceding words:

p(w1, ..., wm) =
mY

i=1

p(pi|pi�n+1...pi�1). (2.9)

Typically, the smallest order of n-gram models in SMT is 3.
In count-based models,3 conditional probabilities are estimated by relative counts

on a large monolingual corpus. Since monolingual corpora are easier to obtain than
parallel corpora, LMs can be trained on substantially larger data sets, which results in
more accurate estimates, potentially compensating for some of the shortcomings of
the translation model. In addition to plain relative counts, smoothing techniques are
used to obtain more realistic estimates and to deal with the zero observation problem
during testing (Goodman, 2001). Common smoothing techniques include Kneser-
Ney smoothing (Kneser and Ney, 1995; Chen and Goodman, 1996) and Witten-Bell
smoothing (Witten and Bell, 1991).

2.1.5 Reordering models
The reordering problem of PBSMT is about how to model the sequence of phrase
pair applications that produces the output translations. The observed diversity of
reordering patterns across language pairs is substantial, which has lead to a great variety
of models proposed over the years (Bisazza and Federico, 2016), which includes our
own contribution that models reordering as a sequential process (Chapter 4, (Garmash
and Monz, 2014)). However, the standard models includes the relatively simple, but
effective linear distortion and the lexicalized distortion model.

Linear distortion (Koehn et al., 2003) is a model of the distance (in word positions)
between start of the foreign phrase translated at the phrase pair application step i and
the end of the phrase translated at step i � 1.

The lexicalized distortion model (LDM (Tillmann, 2004)) is a set of conditional
distributions of orientations given the phrase pair that is applied during translation. The
orientation is a variable denoting the relative order of source sides of phrase pairs applied
at times i and i + 1 (hei, f ii and hei+1, f i+1i).4 One distinguishes between monotone,
swap and discontinuous orientations. Monotone orientation means that the source side
of the phrase pair applied at time step i + 1 is adjacent to the right of the source side of

3I.e., not neural models (Bengio et al., 2003), which have also been used in SMT (Luong et al., 2015b).
4Note that the index i here denotes the order in which a phrase pair is used in a derivation, not the position

of the phrases in a sentence.
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the phrase pair from time step i (position(f i+1)�position(f i) = 1).5 Swap orientation
means that is it adjacent to the left (position(f i) � position(f i+1) = 1). Discontin-
uous orientation means that the source sides are not adjacent (abs(position(f i+1) �
position(f i)) > 1).6 Typically, each of the orientations are estimated with a separate
conditional distribution. The conditioning variable comprises the entries of the phrase
table itself. Additionally, each of the distributions is split into two by either considering
the current phrase pair as the phrase pair from step i, or i + 1 (forward-looking and
backward-looking distortion, respectively). Thus, the standard model typically has six
LDM models.

2.1.6 Decoding

As we mentioned above, exhaustive search is intractable in PBSMT, therefore approxi-
mations are used. The most common decoding method is beam search whereby stacks
with partial hypotheses are organized by the number of source words translated. Thus,
decoding starts from the stack corresponding to zero translating words, containing one
hypothesis (hsi). For each stack, each partial hypothesis is expanded with k top phrase
pairs from the phrase table. The resulting partial hypotheses obtained from applica-
tions of the candidate phrase pairs are scored with respect to log-linear combination of
features and then assigned to a corresponding new stack. The stacks are pruned (with
respect to log-linear translation probability) to keep the stack size below the fixed beam
size. Specifying the decoding procedure in more detail is beyond the purpose of this
chapter, and we refer the reader to (Koehn, 2009).

In addition to the translation modeling features described above (Section 2.1.3–
2.1.5), the standard model also includes a set of features directly characterizing decoding.
A word penalty is a binary feature firing for each new target word added to the partial
hypothesis. A phrase penalty is a binary feature which fires with each phrase application.

During pruning an additional a future cost function is used to heuristically approxi-
mate the expected cost of translating the untranslated part of the source sentence, given
the partial hypothesis.

In addition to the beam size, another hyper-parameter restricts the search space:
distortion limit. It is defined as the maximal distance (in word positions) between
the previously translated source phrase and the currently translated source phrase. In
addition to simply reducing the search space, it also prevents the decoder from exploring
unrealistically long reorderings; for instance, English and French typically involve only
very short distance reorderings.

2.1.7 Tuning of log-linear weights

The weights of the features in Equation 2.3 are tuned iteratively on a held-out parallel set
(tuning/development set) until convergence. The tuning objective is a translation evalua-
tion metric, typically BLEU (see Section 2.3.1). The log-linear model in Equation 2.3

5Note that the target sides of the phrase pair from time step i+ 1 is always adjacent to the right of the
target side of the phrase pair from step i.

6In some versions discontinuous-left and discontinuous-right are distinguished.
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is reformulated as a linear model, since:

E
⇤ = argmaxE

exp
P

i �ihi(E,F )
Z(F ) (2.10)

= argmaxE
P

i �ihi(E, F ), (2.11)

where hi(E, F ) is interpreted as either a binary feature (Section 2.1.6) or the logarithm
of a probability model from Section 2.1.3–2.1.5. The most common algorithms are
MERT (Och, 2003), MIRA (Watanabe et al., 2007), and PRO (Hopkins and May, 2011).
They involve updating the linear weights �i based on the metric scores of hypotheses
sampled from a decoder (with feature weights from the previous iteration).

2.2 Neural machine translation
In recent years, neural machine translation has emerged as a major framework of data-
driven translation and by now has become, if not state-of-the-art, then at least the focus
of academic research in machine translation.

The structure of an SMT system is very modular (Section 2.1), and its end-to-end
training typically requires a series of independent training steps, including computation
of word alignments, estimation of each model (feature) separately, and tuning of the
feature weights. In contrast, the neural framework formulates the task as an end-to-end
task of generating a target sequence given an input source sentence with one connected
neural network, without decomposing it into individual steps and building blocks like in
SMT. On the one hand, such an approach does not allow, like in SMT, to train system
modules independently and the combine them later. Yet in SMT combining different
models together often requires some additional engineering effort, for example in system
combination, see Section 6.2. More importantly, while state-of-the-art performance
of the two types of framework are comparable (Bentivogli et al., 2016), the internal
architecture of a typical NMT system is considerably simpler than the structure of
a phrase-based system. In NMT, quality is improved by utilizing domain-agnostic
methods from the general research on neural networks, such as: the choice of neural
units, number of layers, choice of activation function, regularization, optimization. Such
a generic definition of NMT also allows for relatively easy transfer across modalities
(Huang et al., 2016; Elliott and Kádár, 2017).

In the following subsections we describe the most commonly used NMT architec-
tures and how inference is carried out (Section 2.2.1), as well as the relevant optimization
procedure (Section 2.2.2). We should point out that the research area of NMT is de-
veloping very rapidly, and for this reason even the current state-of-the-art models may
become obsolete soon. Additionally, several aspects of NMT, such as decoding, have
not yet been investigated to the same extent as in SMT. Here we describe models and
methods most frequently used as baselines in recent research papers.

2.2.1 Architecture
The high-level structure of a baseline NMT network is commonly referred to as an
encoder-decoder architecture (Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014;
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Bahdanau et al., 2015) and most models fall under this type of architecture. An
encoder is a network that takes as input the source sentence and returns a real-valued
representation intended to capture all the necessary information needed to generate the
target sequence. A decoder is a network that, conditioned on the input representation,
generates a target sequence.

The simplest classic instantiation of an encoder-decoder model is a sequence-to-
sequence model (Sutskever et al., 2014). It defines both the encoder and the decoder as
recurrent neural networks (RNNs). Encoding is done by feeding the source sequence
to the first RNN element by element.7 At each decoding step i, the output hidden
representation of the decoder RNN h

t
i is mapped to a layer with a size of the target

vocabulary, which is transformed via a softmax operation into a probability distribution
yi. The problem of predicting a sequence is thus formulated as a sequential element-wise
classification problem. To connect this model to the SMT formulation of translation,
the sequence-to-sequence model can be described as:

p(E|F ) =
nY

i=1

p(ei|decoder(e<i, encoder(f1, ..., fm))), (2.12)

where the conditioning decoder(e<i, encoder(f1, ..., fm)) is the hidden state of the
RNN after processing the preceding words w1...wi�1. The hidden state of the decoder
is initialized with a representation output by the encoder, encoder(f1, ..., fm).

A second major development within NMT was the introduction of an attention
mechanism (Bahdanau et al., 2015). Attention is a network that, conditioned on a
hidden state of the decoder at each time step i, computes a probability distribution
over the input sequence. This distribution is used to compute a weighted sum over
representations of the input words (typically, the hidden states of the encoder RNN).
The resulting context vector is incorporated into the decoder as another hidden state
and the output distribution is produced in the same way as described above. In formal
notation, the decoding step consists of the following major steps:

yi = softmax(Wy
ehi) (2.13)

ehi = tanh(Wc[ci; ht
i]) (2.14)

ci =
Pm

j=1 ↵i[j] · h
s
j (2.15)

↵i = softmax(score(ht
i, H

s
, ci�1)) (2.16)

where [j] denotes the operation of indexing a vector at position j, h
t
i is the output of the

decoder RNN, ehi is the final hidden layer after the basic recurrent transformation h
t
i is

done, yi is the target probability distribution at time step i, and context representation ci

is computed, and score is the function that computes the distribution over the source
sequence, given the tensor H

s which is a concatenation of the source sentence’s hidden
states h

s
1, ..., h

s
m, corresponding to the input sequence f1, ..., fm. A number of variants

for the score function have been proposed. The classic one (Bahdanau et al., 2015) is
a recurrent network. Non-recurrent attention functions (that do not depend on ci�1 in

7By default, sequences consist of words, but subword units (Sennrich et al., 2015) or characters (Ling
et al., 2015) are also a popular choice.
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Equation 2.15) show comparable performance, while still somewhat underperforming
with respect to a recurrently defined attention (Luong et al., 2015b).

The attention mechanism in (Bahdanau et al., 2015) was inspired by word alignments
in SMT (Section 2.1). Although NMT is defined as an end-to-end task, still intuitively
at each decoding step the predicted word corresponds to a specific subset of the input
sequence. The attention mechanism defines the distribution of inclusion into this subset.
From a computational perspective, even the most advanced recurrent units may not be
effective enough to carry over the necessary information until the end of the predicted
sequence. The attention mechanism allows one to look back to the original conditioning
source sequence at every prediction step. A recent model (Vaswani et al., 2017) pushes
this idea even further by abandoning recurrent units altogether and only rely on attention.

A sequence-to-sequence model with attention is usually used as a baseline system,
and therefore is also our baseline model of choice in Chapter 7. The current research
in NMT architecture revolves around alternative ways of encoding (Ling et al., 2015;
Eriguchi et al., 2016; Bastings et al., 2017), modifying the iterative decoder (Vaswani
et al., 2017), and integrating additional ‘remembering’ states into the decoder (Tu et al.,
2016; Chen et al., 2017).

Since a decoder is a recurrent model, decoding is implemented as a beam search.
So far, most effort in NMT is put into translation modeling and optimization, however,
some recent work addresses decoding as well (Wiseman and Rush, 2016; Gu et al.,
2017).

2.2.2 Optimization

The most common optimization objective is the negative log-likelihood of the probability
distribution defined by the encoder-decoder network (Equation 2.12) estimated over the
reference target sequences:

NLL = �
X

hE,F i

log(p(E|F )) (2.17)

= �
X

hE,F i

log(
nY

i=1

p(wi|decoder(w<i))) (2.18)

= �
X

hE,F i

nX

i=1

log(p(wi|decoder(w<i))) (2.19)

This factorization allows us to update the parameters of the network for each predicted
word in a sequence via stochastic gradient descent (SGD). In practice, gradients are
grouped by mini-batches, and often more advanced optimizers are used than simple
SGD (Kingma and Ba, 2015).

The described optimization procedure is simple and effective, however it does not
target what an NMT system is designed for. Negative log-likelihood measures how
‘surprised’ the network is by the correct translation sequence. However, a NMT system
is intended for generating sequences, without any (target) input. One approach to
directly target this goal is by optimizing the objective that the reference translation
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should be generated by the decoder RNN in a beam search (Wiseman and Rush, 2016).
Another approach is to directly optimize the network with respect to some translation
quality network, such as BLEU (Papineni et al., 2002) by sampling (Ranzato et al.,
2015). Despite these considerations, maximum likelihood estimation with NLL remains
the most common method in NMT optimization.

2.3 Evaluation

2.3.1 Evaluation metrics and tools
Evaluation of translation output quality is an active research area, and new automatic
metrics are regularly proposed and evaluated (Bojar et al., 2016). However, in our work
we only use established MT metrics. In addition to that, we use a more specialized
metric LRscore, which is designed to evaluate reordering (Chapter 4).

Typically, an MT evaluation metric takes as input the translation output and the
human reference translation. Some metrics, such as the LRscore, also require precom-
puted word alignments between source and reference and between source and translation
output. Below we describe each of the metrics and refer to the tools that we used to
compute them.

BLEU (Papineni et al., 2002) is the most popular automatic metric in MT. It is based
on the idea of non-positional matching of parts of the system output and a reference.
The matching units are n-grams, contiguous sequences of n words in a sentence. In a
nutshell, an n-gram in a translation output sentence matches if this n-gram also occurs
in the corresponding reference sentence. BLEU allows us to use multiple references,
in which case the definition of matching is modified (this is called clipped counts, see
Equation 2.22).

The matching counts are used to define the n-gram precisions (for each n separately),
which itself can be used as a separate metric and which we define formally below. The
final formula is a product of n precisions multiplied by a brevity penalty, designed as an
approximation of recall:

BLEU-n = bp ·
nY

i=1

preci (2.20)

bp =

# candidate
sentencesX

j=1

min
✓

1,
length (outputj)

length (refj)

◆
(2.21)

where ref is the reference sentence (from ref 1j ,...,refmj ) with the closest length to the
translation output sequence.8

In our experiments we use an in-house implementation of BLEU-4 and refer to it
simply as BLEU.

precn (n-order ngram precision). This metric is a component of BLEU, but it can
also be used independently as a simple metric of word order accuracy. Of course, this is
a crude metric, since it does not abstract away from lexical identity of words, although

8In some implementations the shortest reference is picked
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this is partially alleviated by allowing for multiple references. In our experiments we
use prec4.

precn =

# candidate
sentencesP
j=1

P
n-gram

countclip(n-gram, outputj , ref1j , ..., refmj )

P
# candidate
sentences

P
n-gram

count(n-gram, outputj)
(2.22)

where countclip(n-gram, output, ref1, ..., refm) outputs the minimum number of occur-
rences of n-gram among output, ref 1,...,refm.

METEOR (Lavie and Denkowski, 2009) computes alignments between the words
of the translation output and the reference by iteratively deciding which words match
together. Matching is defined as exact matching, stem-based matching, and synonym
matching amongst others. The concrete model can vary, but the high-level formula is:

METEOR = (1 � Pen) · P · R

↵P + (1 � ↵)R
(2.23)

Pen = � · frag�
, (2.24)

where P and R are precision and recall, respectively, of the translation matching the
reference, given the established one-to-one alignment. frag is a fragmentation measure.
The values of P , R, frag are aggregated over the whole test set and then combined into
the formula in Equation 2.23. In the case of multiple references, for each sentence, the
reference producing the highest score gets chosen. The hyperparameters ↵, �, � are
tuned on a held-out set against human-generated labels.

We use version 1.4 of the METEOR software (Denkowski and Lavie, 2011),9 and
in particular the metric tuned on the HTER task. We run the METEOR system with the
HTER task setting.

TER (Translation Error Rate (Snover et al., 2006)) measures the number of edits
required to rewrite a system output into a reference. Specifically, it is designed to
compute the minimum number of the following edit operations: insertion, deletion,
substitution, and shift. The number of edits is computed by greedy search, and is based
on exact lexical matching between words. Since the goal is to find the minimum edit
distance, for the case of multiple references ref 1,...,refm, the one with the smallest
number of edits is chosen for each translation output sentence:

TER =

# candidate
sentencesP
j=1

mink #edits(outputj , refkj )

# candidate
sentencesP
j=1

P
k

length(refkj )

m

(2.25)

9
http://www.cs.cmu.edu/ealavie/METEOR/download/meteor-1.4.tgz
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We use the implementation provided by the authors.10

LRscore (Birch and Osborne, 2010) is designed to evaluate reordering. The basic
idea behind this metric is to interpret the alignment between the source sentence and
the target sentence as a permutation of the source sentence. Then, the permutation of
the source (the input sentence) with respect to the reference and the permutation with
respect to the translation output are compared via common ordering metrics: Hamming
distance and Kendall‘s Tau. The final formula is:

LRscore = ↵(d · bp) + (1 � ↵)BLEU, (2.26)

where d is the distance between the two permutations (Hamming or Kendall, or their
weighted mean). bp is a brevity penalty. Both d and bp are estimated for each sentence
separately and then averaged over the test set.

We use the implementation provided by the authors of the LRscore.11 The imple-
mentation does not come come with pre-tuned hyper-parameters, and besides the paper
shows that different settings work better for different language pairs (Birch and Osborne,
2010). Having no conclusive argument in favour of a specific hyper-parameter setting,
we set d to the uniform average of the two distance metrics, and ↵ is set to 1, thus giving
BLEU 0 weight, as we use it separately anyway in our experiments. In order to compute
alignments for the test sets, which are needed to compute the score, we concatenated
the parallel text with an additional 250K lines of parallel text from the training data (see
Section 3.5.3) to ensure better generalization of the alignment algorithm (implemented
in GIZA++ (Och and Ney, 2003a)).

2.3.2 Statistical significance testing
Approximate randomization (Noreen, 1989; Riezler and Maxwell, 2005) is used to
detect statistically significant differences between outputs of different systems. Riezler
and Maxwell (2005) have shown that approximate randomization is less sensitive
to Type-I errors than bootstrap resampling (Koehn, 2004) in the context of machine
translation.

We use our in-house implementation to run approximate randomization tests for
BLEU and TER and MultEval (Clark et al., 2014)12 for METEOR.

10TER COMpute Java code, version 0.7.25, http://www.cs.umd.edu/esnover/tercom/.
11
http://homepages.inf.ed.ac.uk/abmayne/code/lrscore.tar.gz

12
https://github.com/jhclark/multeval
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3
Background: Concepts, Related Work,

Baseline

The purpose of this chapter is to provide the background relevant to Chapters 4 and 5 of
Part I of the thesis. Namely, both chapters propose syntax-based language models, there-
fore we introduce the basics of the corresponding syntactic formalisms (Section 3.1) and
provide an overview of syntax-based methods in SMT from the literature (Section 3.2).
Additionally, we give some background on the bilingual language models (BiLMs
(Niehues et al., 2011)) which we extend with syntactic representations in Chapter 4
(Section 3.3), and introduce the structured language models (SLMs (Chelba and Jelinek,
2000)) which we integrate into phrase-based SMT in Chapter 5 (Section 3.4). Finally,
we provide a specification of the data and training setup of the phrase-based SMT
system used in the experiments of Chapters 4 and 5 (Section 3.5).

3.1 Constituency and dependency formalisms
One of the fundamental propositions of linguistics is that sentences in a natural language
have a latent structure that is more complex than the observed linear sequence of words.
The study of this latent structure is called syntax. A syntactic formalism is a formal
language that describes the latent structure of sentences. A formal grammar specifies
the mapping between natural language sentences and their representations in a specific
formalism. Good syntactic formalisms and grammars are the ones that accept well-
formed sentences in a language and prohibit non-well-formed sentences.

The study of syntactic formalisms is an active research field in linguistics and many
formalisms have been proposed (Chomsky, 2002; Lucien, 1959; Moot and Retoré, 2012;
Bresnan et al., 2001). However, the most common formalisms used in natural language
processing are the most basic ones: the constituency formalism (Chomsky, 2002) and
the dependency formalism (Lucien, 1959). Both of them are based on the idea that
sentences have a hierarchical latent structure. Constituents and dependencies formalize
these hierarchical relations in different ways.

We start with an example: The president is meeting the press. It can be argued that
the form of the word is in this sentence is determined by the fact that it is preceded
by the word president (a phenomenon called agreement). From the point of view of
meaning, we can say that this sentence expresses an event of a meeting between one
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The new president is meeting the press now

(a) A dependency parse. The source of an arrow designates the head.

The new president is meeting the press now

(b) A constituency parse. Non-terminal nodes are substituted with dots. An arc connecting two nodes is
a constituent.

The new president is meeting the press now

1-order

2-order
1-order

2-order

3-order

1-order

1-order

(c) A labeled dependency parse representing the constituency parse from Figure 3.1(b).

Figure 3.1: Examples of parses in different syntactic formalisms. The example does not
necessarily represent a ‘correct’ annotation scheme, but is only intended to illustrate the
idea behind the formalism.

specific entity president and another specific entity press. We can expand the sentence
to The new president is meeting the press now, by adding two more words. First of all,
the agreement between president and is does not get affected by the insertion of new.
Intuitively, this word just modifies president, but does not affect its relations with other
words. The addition of the two words also does not change the core semantics of the
sentence. It just adds a few details (how long the president has had his status and when
exactly the meeting is happening), but does not change what the ‘more important’ words
already express. Linguistics provides us with a lot more arguments supporting the view
that words and larger units in a sentence are related to each other hierarchically.

The dependency formalism sees a sentence as a directed acyclic graph, where the
words are the nodes. A directed edge, also referred to as arc, between two words
represents an asymmetric dependency relation. A dominant word is said to be the head
and the dominated word is the modifier. In the example above, president is the head and
new is the modifier. The hierarchical relations in a sentence discussed in the previous
paragraph derive from this basic dependency relation. We should point out that there
are multiple conventions in the field of how to graphically represent a dependency
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3.1. Constituency and dependency formalisms

0 1 2
(a)

0 1 2
(b)

0 1 2 3
(c)

0 1 2 3
(d)

Figure 3.2: Examples of projective and non-projective parses. (a-b): projective (a)
and non-projective (b) parses corresponding to isomorphic dependency trees. (b) is
non-projective because node 1 is not a descendant of either 0 or 2 (it is the parent of
2). (c-d): projective (c) and non-projective (d) parses corresponding to isomorphic
dependency trees. Node 2 in (d) is placed between its sibling (node 1) and the child of
its sibling (node 3), neither of which is its ancestor.

arc. Some researchers interpret the source of the directed edge as the head and the
target as modifier, and some do the opposite. Here, we adopt the former convention. A
dependency-parsed example can be found in Figure 3.1(a).

The constituency formalism groups continuous strings of words1 in a sentence into
constituents, which behave like a unit, i.e., they can be meaningfully substituted by
another constituent or can be used as a building block in another sentence. In each
constituent one element is marked as dominant. A constituent can be an element
in a larger constituent. For instance, in the example above, president is a singleton
constituent, which is included in a constituent new president. A constituency structure
can be represented as an undirected tree with terminal nodes (words) and non-terminal
nodes (labels of constituents). Figure 3.1(b) provides an example of a constituency-
parsed sentence.

The two formal definitions impose different constraints on the class of possible
hierarchical structures. Constituency is a stricter formalism, since it requires two units
related to each other by an immediate constituency relation to be adjacent in a sentence.
Dependency relations, on the other hand, do not change with the linear order of words
and therefore can provide a characterization of a word’s syntactic class that is invariant
under word ordering. In fact, every constituency tree can be formulated as a dependency
tree with additional labeling (designating how deeply a word is nested in a constituency
structure), but not vice versa (see example in Figure 3.1(c)). However, in practice, a
projectivity constraint is assumed, which prohibits linear orders inconsistent with the
hierarchical structure. Formally, if we denote a sentence as W and its dependency
structure as D, where D(wi, wj) means that wi is the head and wj the modifier, then
D is a projective structure if: For every word pair wi, wj 2 W so that D(wi, wj)

1In the common version of the formalism, a constient is a group of two adjacent words, thus being a binary
constituency formalism.
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it holds that every wk 2 W so that i < k < j or j < k < i is a descendant of
wi, i.e., D

⇤(wi, wk).2 Figure 3.2 provides examples of projective and non-projective
dependency structures.

3.2 Syntax in statistical machine translation
In this section we provide an overview of methods grounded in syntactic formalisms
used in machine translation. It is by no means an exhaustive overview. Our goal is to
outline types of approaches, with a specific focus on methods relevant to Chapters 4
and 5.

As we explained in Section 3.1, syntactic formalisms express hierarchical relations
between the elements of a sentence. These hierarchical relations comprise a part of what
is expressed by the sentence. Therefore, it is relevant to machine translation which aims
to translate what is expressed by a sentence in one language into another language. In
Section 5.2 of the chapter on strunctured languaged models applied to SMT, we discuss
the underpinnings of this idea in more detail. This idea can be exploited in machine
translation in a number of ways, as discussed below.

First of all, syntactic correspondence can be used to constrain or even derive trans-
lation correspondence. Eisner (2003) start with a parallel unaligned corpus of parsed
sentences and derive sub-sentential translation correspondents from it. Lavie et al.
(2008) start from a word-aligned parsed parallel corpus and then iteratively refine trans-
lation correspondence on a sub-sentential level. Different syntax-based SMT models
(Yamada and Knight, 2001; Liu et al., 2006; Huang et al., 2006; Marton and Resnik,
2008; Shen et al., 2008) extract translation rules only if they correspond to well-formed
syntactic structures and comply to word alignments.

Instead of having syntax determine the translational units of the model, one can
integrate syntax as an additional feature function in the log-linear scoring function, see
Equation 2.3 in Section 2.1, to constrain the translation correspondence at decoding
time. For example, Ge (2010) defines binary features characterizing what parts of a
source parse tree have been translated or are currently being translated. Cherry (2008);
Bach et al. (2009) formulate a cohesive constraint that fires when some subtree of a
source parse tree has been partially but not fully translated and the current source words
to be translated are not inside this subtree, see also Section 5.2 for more details on
this model. Some syntax-based features are probabilistic models in their own right,
modeling a specific aspect of translation such as reordering (Chang and Toutanova,
2007; Lerner and Petrov, 2013). Our approach in Chapter 5 falls into this category.

Another line of research in SMT directly relates translation correspondence and
hierarchical structure of sentences to each other, but does not rely on external language-
specific parses at all. Instead, this kind of approach derives the structure from the word
alignments and makes it part of the model (Wu, 1997b; Chiang, 2007; Stanojevic, 2015).

Finally, since syntactic structure comprises part of what a sentence expresses, it
can be used as a way to provide richer representations of predefined translation units
(Zollmann and Vogel, 2011; Li et al., 2012; de Buy Wenniger and Sima’an, 2013). Our
contribution in Chapter 4 falls into this category.

2D⇤(w, v) if D(w, v) or if 9u so that D(w, u) ^D⇤(u, v).
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Motivated by the same ideas about the relation between the structure of a sentence
and the translation correspondence, there has also been research on integrating syntax
in neural machine translation. So far, most of the methods propose a way to encode
source syntactic structure in order to obtain a more informative representation of the
input (Eriguchi et al., 2016; Bastings et al., 2017).

3.3 Bilingual language models

The phrase bilingual language model can in principle denote any language model
involving elements from both the source and the target sentence, including, for instance,
the bilingual structured language models from Chapter 5. However, in this thesis we
use it as a term for a specific class of language models, namely, the models used in
Chapter 4. Specifically, a bilingual language model (BiLM) is an n-gram model, see the
definition in Equation 2.9, with elements consisting of positions from the source and
target sentences related to each other by word alignment.

We distinguish between bilingual tokens and their representations. A bilingual
token is a tuple of source and target sentence positions related by word alignment in a
particular way. A representation of a bilingual token is a way in which one chooses to
represent the positions inside a token. A definition of a BiLM thus consists of a choice
of segmentation (into tokens) and representation, given a source and target sentence and
a word alignment between them.

A number of segmentation algorithms have been proposed in the literature, most
of which are guided by a subset of the following properties: exhaustive, monotonic,
and minimal. By exhaustive segmentation we understand a segmentation that produces
tokens such that for every position inside of it all of its aligned positions are inside the
same token. Monotonic segmentation is such that in a resulting sequence of tokens
t1...tn, for every consecutive ti, ti+1, every source position3

f
0 2 ti linearly precedes

in F every source position f
00 2 ti+1, and likewise for target positions. Minimal

segmentation produces a sequence of tokens none of which can be further decomposed
into well-formed tokens. Requiring a segmentation to be monotonic or exhaustive
increases the size of the resulting vocabulary of tokens, thus potentially causing model
sparseness, but may capture important data patterns. Requiring a segmentation to be
minimal eliminates the ambiguity of segmentation at the inference stage. Segmentation
into phrases, see Section 2.1.2, is exhaustive, but not monotonic and not minimal.
Marino et al. (2006); Durrani et al. (2011) propose segmentations that satisfy all of
the three properties. Crego et al. (2005); Niehues et al. (2011) propose segmentations
that are minimal, exhaustive, but not monotonic. In Chapter 4 we work with a BiLM
segmentation proposed in (Niehues et al., 2011), see Equation 4.1 for the full formal
definition.

Various representations have been proposed in the literature as well. While the
choice of a segmentation determines what one chooses as a basic operational unit when
modeling source-target correspondence, a representation determines on what aspect of
the correspondence the model focuses. The default choice of representation is lexical:

3We use the same notation for f for a source word and a source position.
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using surface word forms corresponding to the positions. However, lexical representa-
tion may result in an extremely large token vocabulary, especially for languages with
large word vocabularies, thus failing to generalize well. A common choice of a more
abstract representation is syntax-based annotation, such as part of speech (Niehues et al.,
2011), class-based annotation (Durrani et al., 2013), rich syntactic and morphological
annotation (Crego and Mariño, 2006; Crego and Habash, 2008). In Chapter 4 we
propose representations derived from source dependency parses.

3.4 Structured language models

N-gram language models (Section 2.1.4) are the most common type of language models
used in natural language processing and specifically machine translation. However,
their major shortcoming is that by design they model relations between elements of a
sequence at a short distance by being restricted to the span of n elements. In Section 3.1
(on syntactic formalisms for natural language) we introduced the idea that words and
larger elements in a sentence are related hierarchically. Consequently, some words or
phrases in a sentence are high in the hierarchy derived from the structure of a sentence
and it is important to model their mutual relations correctly. Moreover, the modifiers of
these dominant words can be arbitrarily large which can result in the actual distance
between the dominant words to be too large to be captured by an n-gram model. This
phenomenon is commonly referred to as long-distance dependencies. Consider the
sentences “A man walked in” and “A man who bought a house walked in”): the words
man and walked arguably represent the core of what the sentence expresses. However,
an n-gram model with insufficiently large order would not be able to condition walked
on man. If the order of the model was large, then it would be hard to reliably estimate it.

Structured language models (SLMs (Chelba and Jelinek, 2000; Charniak, 2001;
Roark, 2001; Pauls and Klein, 2012; Gubbins and Vlachos, 2013)) are designed to
address this shortcoming of n-gram models. The linguistic intuition behind SLMs is that
the modifiers of a word do not essentially change its distributional properties but just
provide additional specification. In Figure 3.3(a) the word president has two modifiers:
the and former and it follows yesterday and precedes met. If instead its modifier was
a or an entire relative clause, the placement and the semantics (in the context of the
sentence) yesterday and met stay the same. To capture this observation, SLMs model
the generation of a sentence as simultaneously building up of a sequence of words and
the hierarchical structure that characterizes them.

In this thesis we concentrate on incremental (left-to-right) SLMs (Chelba and Jelinek,
2000; Charniak, 2001; Gubbins and Vlachos, 2013). In Chapter 5, we work with an
adaption of the model from (Chelba and Jelinek, 2000) that we describe here. Most
other incremental SLMs follow the same logic. Chelba and Jelinek (2000) model an
incremental (left-to-right) generation of a parsed sentence as a sequential prediction of a
word wi conditioned on the partial sequence Wi�i and its corresponding parse TreeWi�1,
followed by a prediction step resulting in extending the partial parse to TreeWi . Chelba
and Jelinek (2000) use constituency parses where the terminal nodes (i.e., the surface
words) are directly dominated by nodes with the corresponding part of speech (POS)
tags. Therefore, they decompose the step of producing TreeWi conditioned on TreeWi�1
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and wi into first predicting the POS tag ti of wi and then deciding how to incorporate
(wi, ti) into TreeWi�1:

pSLM(W, TreeW ) =

|W |Y

i=1

p(wi|Wi�1, TreeWi�1)

· p(ti|wi, Wi�1, TreeWi�1)

· p(TreeWi |wi, ti, Wi�1, TreeWi�1)

(3.1)

We first briefly describe the parsing model p(TreeWi |wi, ti, Wi�1, TreeWi�1). This
will help us to explain how pSLM manages to capture the structural relations between
words that we talked about at the beginning of the section, without running into sparsity
issues due to long-distance dependencies.

In order to model p(TreeWi |wi, pi, Wi�1, TreeWi�1), Chelba and Jelinek (2000) use a
shift-reduce parsing algorithm. At a high level, a shift-reduce parsing procedure consists
in scanning a sequence from left to right, while having an auxiliary stack structure that
keeps track of the partial parse (constructed up to the current step). Each next element
wi in a sequence is added to a stack as a singleton tree (an isolated node), a parsing
operation called shift. After this the parser predicts a sequence of reduce operations
until it predicts the null action, after which the next element in a sequence is scanned. A
reduce-left operation combines the topmost element ei in a stack with the subsequent
element ei�1 into a common structure (a constituent or a dependency arc), so that the ei

is the dominant element. Reduce-right does the same operation, but with the element
ei�1 becoming the dominant element of the resulting structure. For more details on the
parsing procedure, refer to (Aho et al., 1986; Chelba and Jelinek, 2000). This formal
procedure entails that each time a word is scanned, a stack contains a sequence of
disjoint tree structures each of which has a dominant element. The term TreeWi�1 above
denotes this sequence of subtrees.

The definition of the parsing procedure directly entails how the hierarchical relations
between words are captured by SLMs. Given a subsequence Wi�1 and its associated
parse TreeWi�1, the roots of all the disconnected subtrees in TreeWi�1 are called exposed
heads (Chelba and Jelinek, 2000). Consider Figure 3.3(a) again. In a left-to-right
scenario, when met is generated, a regular n-gram LM conditions it on yesterday the
former president, while an SLM conditions it on yesterday president, since these two
words are the exposed heads with respect to met (Figure 3.3(b)). The words the and
former are modifiers of president and they are filtered out. Thus we obtain a less specific
conditioning history, which may lead to the resulting model being less sparse. Another
benefit is that SLMs can capture long-distance relations. If president had as its modifier
a relative clause (Figure 3.3(c)) then a simple n-gram LM would be conditioned on days
before (assuming n = 3), while an SLM would condition met on yesterday president.

Similar to an n-gram model, one can restrict the conditioning history to the topmost
n � 1 tree roots on a stack. Thus, the word prediction model can be expressed as:

p(wi|Wi�1, TreeWi�1) = Expos(Wi�1, TreeWi�1), (3.2)

where Expos(Wi�1, TreeWi�1) are the words corresponding to the exposed heads on the
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stack (or n topmost exposed heads).
The POS tag prediction model can be expressed likewise, where we designate the

POS labels of the exposed heads on the stack as ExposPOS(Wi�1, TreeWi�1):

p(ti|wi, Wi�1, TreeWi�1) = ExposPOS(Wi�1, TreeWi�1) (3.3)

In Chapter 5 we work with a dependency variant of Chelba and Jelinek (2000)’s
SLM (similar to (Gubbins and Vlachos, 2013)). We omit the step of generating the POS
tags of words and thus the overall formula becomes:

pSLM(W, TreeW ) =

|W |Y

i=1

p(wi|Expos(Wi�1, TreeWi�1))

· p(TreeWi |wi, Expos(Wi�1, TreeWi�1)),

(3.4)

3.5 PBSMT baseline and experimental setup

In this section we provide a specification of the phrase-based SMT baseline system used
in our experiments in Chapters 4 and 5. Here we only specify the choice of models, data,
and hyperparameters. For more background on phrase-based SMT, consult Section 2.1
and the references provided there.

We specify the choice and statistics of the training and testing data sets in Sec-
tion 3.5.1, the data preprocessing steps in Section 3.5.2, and the details of the training
and decoding algorithm in Section 3.5.3.

3.5.1 Data
In both Chapters 4 and 5 we perform experiments on the Arabic-English and Chinese-
English language pairs. We use the standard publicly available training data and testing
benchmarks.

The following Arabic-English corpora are used: LDC2006E25, LDC2004T18,
LDC2004T17, LDC2005E46, LDC2007T08, LDC2004E13. The following Chinese-
English parallel corpora were used: LDC2002E18, LDC2002L27, LDC2003E07,
LDC2003E14, LDC2005T06, LDC2005T10, LDC2005T34, and several Gale cor-
pora. Statistics about the preprocessed training dataset for both language pairs are
summarized in Tables 3.1 and 3.2 for Arabic-English and Chinese-English, respectively.
Since both Chapters 4 and 5 involve models where source-side parses are used, we also
provide statistics about the parsed subset (see Section 3.5.2 for information about the
parsers).

For testing, we use the test benchmarks provided by OpenMT4. We use the following
test sets for Arabic-English: MT02, MT03, MT05, MT06nist5, MT08 and MT09. We
used the following for Arabic, and MT02, MT03, MT05, MT06nist5 and MT08 for

4
https://catalog.ldc.upenn.edu/LDC2013T07

5We refer to it as MT06. in the next two chapters.
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the former

president

the

pressyesterday

met

(a)

the former

president metyesterday

(b)

the
arrived

president metyesterday

who … in London two days before
(c)

Figure 3.3: A fully parsed sentence (a) and its partial parse (b) during sequential
generation. The partial parse in (b) has two disconnected subtrees with roots yesterday
and president. These roots are the exposed heads for met. (c) is an alternative sentence
with a similar structure: president is still a root of a subtree, and thus and an exposed
head.

Chinese. For feature weight tuning, see Section 2.1.7, we use OpenMT’s MT04 for both
language pairs.

The target-side n-gram language model, see Section 2.1.4, is trained on the English
Gigaword corpus (LDC2003T05).

3.5.2 Data preprocessing and labeling
The general preprocessing steps are, in the following order: tokenization, lowercasing,
and deduplication. For both Arabic and Chinese, we use the Stanford CoreNLP tokeniz-
ers (Monroe et al., 2014; Tseng et al., 2005) with the Penn Arabic Treebank tokenization
standard and the Chinese Penn Treebank tokenization standard. For English we use a
simple in-house tokenizer.

Our models in Chapters 4 and 5 involve dependency grammar6 analyses of the

6See Section 3.1 for the basics of the dependency formalism.
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Table 3.1: Training data for Arabic-English experiments in Part I of the thesis. In our
experiments we use the parses of the source sentence, therefore only the parsed subset
of the source training set can be used. The parsed subset is smaller than the full training
set because the parser failed to compute a well-formed parse for some sentences. The
type/token statistics is computed after data preprocessing (Section 3.5.2).

Training set N. of lines N. of word tokens N. of word types

source target source target

full training set 4,376,320 148M 146.1M 0.5M 0.3M
source-parsed subset 941,171 29M 29.8M 0.2M 0.2M

Table 3.2: Training data for the Chinese-English experiments in Part I of the thesis. In
our experiments we use the parses of the source sentence, therefore only the parsed
subset of the source training set can be used. The parsed subset is smaller than the full
training set because the parser failed to compute a well-formed parse for some sentences.
The type/token statistics is computed after data preprocessing (Section 3.5.2).

Training set N. of lines N. of word tokens N. of word types

source target source target

full training set 2,104,652 20.2M 28.2M 1.7M 0.9M
source-parsed subset 867,861 18.2M 26.1M 1.1M 0.13M

source side, and part-of-speech analyses (POS) of the target side. For parsing of the
Arabic side, we use a constituency parser from the Stanford CoreNLP package (Green
and Manning, 2010), since a dependency parser was not available. We extract the
dependency structures from the computed constituency structures based on the rules
in (Collins, 1999). For Chinese, we use the Stanford dependency parser (Chang et al.,
2009). For POS-tagging of the English target side, we use the POS-tagger from the
Stanford CoreNLP package (Toutanova et al., 2003).

3.5.3 Model training and testing
A structured description of a PBSMT pipeline that we use as a baseline is provided
in Section 2.1.3. Here we only report the hyper-parameter settings and the choice of
software.

Word alignments, see Section 2.1.1, are computed with GIZA++ (Och and Ney,
2003a). Phrase pairs are extracted with maximum length of 7 on both source and target
sides. The translation models (see Section 2.1.3) are estimated with relative counts
using the Moses7 phrase-table building script (Koehn et al., 2007). A 5-gram target

7
http://www.statmt.org/moses/
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3.5. PBSMT baseline and experimental setup

language model, see Section 2.1.4, is trained using SRILM8 (Stolcke et al., 2011) with
modified Kneser-Ney smoothing and interpolation (Chen and Goodman, 1996). We use
an in-house implementation by Christof Monz of the lexicalized distortion models, see
Section 2.1.5.

For tuning and decoding we use in-house implementation by Christof Monz of a
PBSMT system similar to Moses (Koehn et al., 2007). We use the following decoding
settings (see Section 2.1.6): the distortion limit is set to 5, the stack size is 100, the
beam width is 0.1, and the maximum number of expansions is 30 per partial hypothesis
in a stack.

The feature weights are tuned by using pairwise ranking optimization (PRO (Hop-
kins and May, 2011)) with an in-house implementation (see Section 2.1.7). During
tuning, 14 PRO parameter estimation runs are performed in parallel on different samples
of the n-best list after each decoder iteration. The weights of the individual PRO runs
are then averaged and passed on to the next decoding iteration. Performing weight
estimation independently for a number of samples corrects for some of the instability
that can be caused by individual samples.

8
http://www.speech.sri.com/projects/srilm/
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4
Dependency-Based Bilingual Language

Models for Reordering in Statistical
Machine Translation

4.1 Introduction
In this chapter we focus on models based on the syntactic representations of parallel
sentences and designed to improve reordering. In Chapter 3 we reviewed some previous
approaches to reordering in SMT based on syntactic representation of sentences. We
focused on approaches that model the generation of translation and have reordering
as a side-effect. This class of models can be contrasted to methods that either focus
on mutual order of words or phrases or characterize some aspects of reordering (such
as length of a jump). Namely, we reviewed two approaches that we combine in this
work. The first class of approaches is bilingual language models (BiLMs) (Marino
et al., 2006; Niehues et al., 2011). Instead of directly characterizing reordering, they
model sequences of elementary translation events as a Markov process. The original
works on BiLMs (Marino et al., 2006; Niehues et al., 2011) have mostly used lexical
information to represent elementary bilingual tokens, although Crego and Yvon (2010a)
and Crego and Yvon (2010b) label bilingual tokens with a rich set of POS tags. A second
class of approaches we reviewed was various syntactic methods whereby reordering is
characterized in terms of restructuring of the source syntactic parse tree. Tree-based
approaches in SMT incorporate syntactic information in the representation of the source
sentence (Liu et al., 2006; Huang et al., 2006; Marton and Resnik, 2008), target sentence
(Shen et al., 2008), or both (Chiang, 2007, 2010). Such a representation allows one to
have a more detailed definition of translation events and to redefine decoding as parsing.
Reordering is thus a result of a given parse derivation. A top-down derivation captures
better the global structure of the sentence than a simple PBSMT decoding algorithm,
and therefore is more likely to provide a more accurate model of translation. At the
same time, parsing-based approaches are a lot more complex and require more intricate
optimization and estimation techniques, see (Huang and Mi, 2010).

The idea behind this chapter is to explore the trade-off between global syntax-aware
modeling of a translation process and simpler models with fixed sized context. We
would like to keep the simplicity of PBSMT but move towards the expressiveness typical
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4. Dependency-Based Bilingual Language Models for Reordering

of tree-based models. We propose to incrementally build up the syntactic representation
of a translation during decoding by adding precomputed fragments from the source
parse tree. We mostly use source syntactic information to characterize reordering, since
during decoding we have access to the entire source sentence. This allows us to obtain
a better syntactic analysis for it (than for a partial sentence) and to precompute the
units that our model operates with. This idea to combine the merits of the two SMT
paradigms has been proposed before, where Huang and Mi (2010) introduce incremental
decoding for a tree-based model. On a general level, our approach is similar to theirs in
that it keeps track of a sequence of source syntactic subtrees that are being translated at
consecutive decoding steps. An important difference is that they keep track of whether
the visited subtrees have been fully translated, while in our approach, once a syntactic
structural unit has been added to the history, it is not updated anymore.

This brings us back to RQ1 of this thesis, which we repeat in its entirety here:

RQ1 Can we improve reordering by modeling sequences of syntactic structures repre-
senting basic operational units of translation?

RQ1.a. Can the representations only include the local syntactic information of a
node in a syntactic parse? What is the minimum context that the local
representation should incorporate?

RQ1.b. How do local syntactic representations compare to representations including
explicit lexical information of the basic translational units?

RQ1.c. What kind of reordering phenomena are captured by such models?

In this chapter we focus on the “lower bound” aspect of this research question:
we aim to show that local syntactic representations are better or complementary as
compared to local lexical information (i.e., representing tokens as words). We do not
experimentally compare our proposed model to a more sophisticated model of syntactic
restructuring.

The contributions of this work can be summarized as follows:

1. We adopt the definition of a bilingual token from BiLMs as proposed by Niehues
et al. (2011) (Section 3.3) and propose a novel token representation to better
capture the reordering process (Section 4.2). We represent bilingual tokens as
local syntactic contexts of the source and target positions included in a bilingual
token (Section 4.3).

2. We investigate different degrees of syntactic locality that are necessary and/or
sufficient to capture the reordering process (Section 4.3).

3. We experimentally evaluate the methods on language pairs characterized by
complex reordering patters: Chinese-English (Wang et al., 2007), Arabic-English
(Elming and Habash, 2009; Carpuat et al., 2010) (Section 4.4).

4. We evaluate our models against the baseline1 and two systems consisting of a
baseline and a BiLM from the literature. The purpose of a comparison to the

1See Section 3.5.3 for the baseline specifications.
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4.2. Choosing a BiLM to model reordering

former is to validate the necessity for complex contextual representations (and
thus partially answer RQ1.a), and the purpose of the latter is to answer RQ1.b.

5. We evaluate the effect of the models on MT performance with general-purpose
metrics. Additionally, we analyze the effect on reordering specifically, by looking
into reordering-sensitive metrics and by decoding in an extended search space
that allows for more long distance reordering (Section 4.4).

4.2 Choosing a BiLM to model reordering

In the background chapter (Section 3.3) we distinguish between the notions of a bilin-
gual token and its representation. A bilingual token is defined as a tuple of source and
target positions constrained by the given sentence-internal word alignment. One can
choose different ways to represent the positions inside a token. A typical representation
is lexical, however, part of speech based representations and representations based on
detailed morphological annotation have also been proposed (Crego and Yvon, 2010b;
Niehues et al., 2011). In this section we motivate our bilingual token definition of
choice (based on Niehues et al. (2011)), and discuss the pros and cons of the different
representations in the context of modeling reordering in MT. The main claim of this
section is that lexical and simple syntactic representations are empirically often not
expressive enough to differentiate between alternative reorderings. This leads to the sub-
sequent section, where we devise a syntactic representation devoid of the disadvantages
discussed here.

We should first note that the most commonly used n-gram model to distinguish
between reorderings is a target language model, which does not take translation corre-
spondence into account and just models target-side fluency. Al-Onaizan and Papineni
(2006) experimentally show that target language models by themselves are not sufficient
to correctly characterize reordering.

We will complement our argument below with an example of a word-aligned
sentence pair in Figure 4.1.a.2 It demonstrates a common Arabic-English reordering,
whereby the main verb is sentence-initial, followed by the subject and then the object
(the so-called VSO order, see Carpuat et al. (2010)).

4.2.1 Choosing the definition of a bilingual token

We choose to use the definition of a bilingual token from (Niehues et al., 2011). Given
the source sentence F = hf1, ..., fni, target sentence E = he1, ..., emi, and the word
alignment between them which we choose to formalize as a mapping from the target
words to the powerset of source words A : E ! P(F ), we can extract a sequence of
bilingual tokens ht1, ..., tmi as follows:

ti = hei, {f |f 2 A(ei)}i, (4.1)

2We used Buckwalter transliteration for Arabic words. We thank Arianna Bisazza for help with the
transliteration.
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4. Dependency-Based Bilingual Language Models for Reordering

the minister attributed the increase of oil prices

w ArjE Alwzyr ArtfAE AsEAr Albtrwl

(a) An Arabic-English translation pair illustrating a typical reordering pattern for this language
pair.

the

Alwzyr

minister

Alwzyr

attributed

ArjE

the

ArtfAE

increase 

ArtfAE

of 

empty

oil

Albtrwl

prices

AsEAr

(b) Lexicalized bilingual tokens extracted from sentence (a), as defined by Niehues et al. (2011).

empty

w

of oil

Albtrwl

prices

AsEAr

the minister

Alwzyr ArjE

the the increase 

ArtfAE

(c) Lexicalized bilingual tokens extracted from sentence (a), as defined by Durrani et al. (2011)
(MTUs).

Figure 4.1: Arabic-English parallel sentence, automatically word-aligned. The bilingual
token sequences are produced according to two alternative definitions of a bilingual
token.

With this definition we would decompose our running example in Figure 4.1.a into
a sequence in Figure 4.1.b (we use lexicalized representation of tokens in this example,
but it need not be).

In our choice of a segmentation definition we are guided by the fact that with this
definition we can unambinguously extract a sequence of bilingual tokens. This implies
that there is no hidden segmentation variable and thus ensures simpler learning and
inference. On the contrary, a definition of a phrase (as in phrase-based translation) is
an example of an ambiguous segmentation. The non-ambiguity of our BiLM model
of choice has two attractive consequences. The first one is minimal vocabulary size
(given a fixed representation) as compared to an ambiguous segmentation model. The
second one is unambiguous representation of reordering. For example, two different
segmentations of ba into [ba] and [b][a] still represent the same permutation of the
sequence ab.

Another popular method for unambiguous bilingual segmentation into tokens would
be the minimal translation units (MTUs) by Durrani et al. (2011). Figure 4.1.c demon-
strates the tokenization extracted with the MTU defintion. Since Niehues et al. (2011)
have shown their model to work successfully as an additional feature in combination
with commonly used standard phrase-based features, we use their approach as the main
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4.2. Choosing a BiLM to model reordering

point of reference and base our approach on their segmentation method. In the rest of
the chapter, we use bilingual token to talk about the tokens from (Niehues et al., 2011).
At the same time, we do not see any specific obstacles for combining our work with
MTUs.

4.2.2 Suitability of lexicalized BiLM representation to model re-
ordering

As proposed in the introduction, lexical information is not very well-suited to capture
reordering regularities. Consider Figure 4.2.a. The extracted sequence of bilingual
tokens is produced by aligning source words with respect to target words (so that they
are in the same order), as demonstrated by the shaded part of the picture. In Figure 4.2.a,
if we substituted the Arabic translation of Egyptian for the Arabic translation of Israeli
in the fourth token, the reordering should remain the same. What matters for reordering
is the syntactic role or context of a word. By using unnecessarily fine-grained categories
we risk running into sparsity issues.

Niehues et al. (2011) also described an alternative variant of the original BiLM,
where words are substituted by their POS tags (Figure 4.2.a, shaded part). Also,
however, POS information by itself may be insufficiently expressive to separate correct
and incorrect reorderings, see Figure 4.2.b. Although the corresponding sequence of
POS-tag-substituted bilingual tokens is different from the correct sequence (Figure 4.2.b,
shaded part), it still is a likely sequence. To illustrate this point, we computed the log-
probabilities of the two sequences with respect to a 4-gram BiLM model.3 The result
is that the incorrect reordering gets a higher probability of �10.25 for the incorrect
reordering than the correct one (�10.39).

Since fully lexicalized bilingual tokens suffer from data sparsity and POS-based
bilingual tokens are insufficiently expressive, the question is which level of syntactic
information strikes the right balance between expressiveness and generality.

4.2.3 BiLMs with syntactic representation
Dependency grammar is commonly used in NLP to formalize role-based relations be-
tween words. The intuitive notion of syntactic modification is captured by the primitive
binary relation of dependence (see Section 3.1 on details about the dependency formal-
ism). Dependency relations do not change with the linear order of words (Figure 4.2)
and therefore can provide a characterization of a word’s syntactic class that is invariant
under word ordering in a single language and under reordering for a pair of languages.
Being simpler than the constituency formalism, it is also easier to adapt to the task of
token labeling.

If we incorporate dependency relations into the representation of bilingual tokens,
the incorrect reordering in Figure 4.2.b will produce a highly unlikely sequence. For
example, we can substitute each source word with its POS tag and its parent’s POS
tag (Figure 4.3). Again, we computed 4-gram log-probabilities for the corresponding
sequences: the correct reordering results in a substantially higher probability of �10.58

3Sections 3.5.3 and 4.3.3 contains details about data and software setup.
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4. Dependency-Based Bilingual Language Models for Reordering

than the incorrect one (�13.48). We may consider situations where more fine-grained
distinctions are required. In the next section, we explore different representations based
on source dependency trees.

4.3 Dependency-based BiLM
In this section, we introduce our model which combines the BiLM from (Niehues et al.,
2011) with source dependency information, dependency-based BiLMs (Sections 4.3.1
and 4.3.2). We refer to them as depBiLMs for short. We give further details on how the
proposed models are trained (Section 4.3.3) and integrated into a phrase-based decoder
(Section 4.3.4).

4.3.1 The general framework
In the previous section we outlined our framework as composed of two steps: First,
a parallel sentence is tokenized according to the BiLM model (Niehues et al., 2011).
Next, words in the bilingual tokens are substituted with their contextual representations.
It is thus convenient to use the following generalized definition for a token sequence
t1...tn in our framework:

ti = hContE (ei), {ContF (f)|f 2 A(ei)}i, (4.2)

where ei is the i-th target word, A : E ! P(F ) is an alignment function, F and E are
source and target sentences, and ContE and ContF are target and source contextual
functions, respectively. A contextual function returns a word’s contextual representation,
based on its sentential context (source or target). See Figure 4.4 for an example of
a sequence of BiLM tokens with a ContF defined as returning the POS tag of the
source word combined with the POS tags of its parent, grandparent and siblings, and
ContE defined as an identity function; see Section 4.3.2 for a detailed explanation of
the functions and notation.

In this work we focus on source contextual functions (ContF ). The main reason
is the full availability of the source syntactic parse before translation. We also exploit
some very simple target contextual functions, but do not go into an in-depth exploration;
see (Shen et al., 2008) for an approach relying on rich target-syntactic information.

4.3.2 Dependency-based contextual functions
As discussed in the background chapter (Section 3.2), for NLP approaches exploiting
dependency structure, two kinds of relations are of special importance: the parent-child
relation and the sibling relation. Based on previous work, we propose to characterize
contextual syntactic roles of a word in terms of POS tags of the words themselves
and their relatives in a dependency tree. It is straightforward to incorporate parent
information since each node has a unique parent. As for siblings information, we
incorporate POS tags of the closest sibling to the left and the closest to the right. We do
not include all of the siblings to avoid overfitting. In addition to these basic syntactic
relations, we consider the grandparent relation.
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4.3. Dependency-based BiLM

The following list is a summary of the source contextual functions that we use. We
describe a function with respect to the kind of contextual property of a word it returns:

(i) the word itself (Lex);

(ii) POS label of the word (Pos);

(iii) POS label of the word’s parent; (Pos!( · ));

(iv) POS of a word’s sibling immediately to the left, concatenated with the POS tag
of the sibling immediately to the right (( · )+sibl );

(v) the POS label of the word’s grandparent (Pos!!( · )).

We consider target-side contextual functions returning: (i) an empty string, (ii) POS
of the word, (iii) the word itself. However, in our experiments we keep ContF fixed,
namely: the lexicalized BiLM has the word itself as the target contextual function, and
all the syntax-based functions (including depBiLMs) have POS of the target word as
ContE.
Notation. Each of the contextual functions above by itself is not likely to be sufficient
to be a good representation of a token for reordering purposes. Therefore we use combi-
nations of these functions. We use the following notation for function combinations:

• “•” horizontally connects source (on the left) and target (on the right) contex-
tual functions for a given model. For example, Lex•Lex refers to the original
(lexicalized) BiLM.

• We use arrows (!) to designate parental information (the arrow goes from parent
to child). For example, Pos!Pos refers to a combination of a function returning
the POS of a word and the POS of its parent (as in Figure 4.3). Pos!Pos!Pos is
a combination of the previous with the function returning the grandparent’s POS.

• We use +sibl to indicate the use of the sibling function described above: For
example, Pos!Pos+sibl is a source function that returns the word’s POS, its
parent’s POS and the POS labels of the closest siblings to left and right. In case
there is no sibling on one of the sides, ✏ (empty word) is returned.

Finally, we use a contextual function Pos!Pos!Pos+sibl•Lex as an example that
combines most of the primitive functions described above. Figure 4.4 represents the
sentence from Figure 4.2 during decoding with the corresponding depBiLM integrated
into the scoring function. It shows a sequence of produced bilingual tokens and cor-
responding labels in the introduced notation. The described dependency relations are
extracted for a word mSr (‘Egyptian’) from our example in Figure 4.2.

4.3.3 Training
Training of dependency-based BiLMs consists of a sequence of extraction steps: Af-
ter having produced word-alignments for a bitext (see Section 3.5.3), sentences are
segmented according to Equation 4.2. We produce a dependency parse of a source
sentence and a POS-tag labeling of a target sentence. For Chinese, we use the Stanford
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Egyptian exports

trAjEt SAdrAt mSr l Aldwl AlErbyp

VBD NNS NNP IN DTNN DTJJ

JJ NNS TO

to

Egyptian

VBD NNS NNP IN

to

VBD NNS NNP IN

exports

VBD NNS

…

Figure 4.4: Sequence of bilingual tokens produced by a Pos!Pos!Pos+sibl•Lex
after translating three words of the source sentence: VBD!NNS!✏+NNS+IN•Egyptian,
ROOT!VBD! ✏+NNS+✏•exports, VBD!NNS!NNP+IN+✏•to (if there is no sibling on
either of the sides, ✏ is returned).

dependency parser (Chang et al., 2009). For Arabic, a dependency parser is not available
for public use, so we produce a constituency parse with the Stanford parser (Green and
Manning, 2010) and extract dependencies based on the rules in (Collins, 1999). For
English, POS-tagging, we use the Stanford POS-tagger (Toutanova et al., 2003). After
having produced a labeled sequence of tokens, we learn a 5-gram model using SRILM
(Stolcke et al., 2011). Kneyser-Ney smoothing is used for all model variations except
for Pos•Pos where Witten-Bell smoothing is used due to zero count-of-counts.

4.3.4 Decoder integration

Dependency-based BiLMs are integrated into our phrase-based SMT decoder as follows:
Before translating a sentence, we produce its dependency parse. Phrase-internal word-
alignments, needed to segment the translation hypothesis into tokens, are stored in the
phrase table, based on the most frequent internal alignment observed during training.
Likewise, we store the most likely target-side POS-labeling for each phrase pair.

The decoding algorithm is augmented with one additional feature function and
one additional, corresponding feature weight. At each step of the derivation, as a new
phrase pair is added to the partial translation hypothesis, this function segments the new
phrase into bilingual tokens (given the internal alignment information) and substitutes
the words in the phrase pair with syntactic labels (given the source parse and the target
POS labeling associated with the phrase). The new syntactified bilingual tokens are
added to the stack of preceding n � 1 tokens, and the feature function computes the
weighted updated model probability. During decoding, the probabilities of the BiLMs
are computed in a stream-based fashion, with bilingual tokens as string tokens, and
not in a class-based fashion, with syntactic source-side representations emitting the
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corresponding target words (Bisazza and Monz, 2014).

4.4 Experiments

To evaluate the effectiveness of the proposed representations for BiLM tokens, we
conduct a series of translation experiments. In each experimental run, we tune a
model consisting of baseline features (see Section 3.5.3) and one of the dependency-
based BiLM feature functions specified in Section 4.3.2. We compare the translation
performance to a baseline PBSMT system and to a number of comparison systems
that include BiLMs from (Niehues et al., 2011). The baseline features and the training,
decoding and evaluation setups are described in Section 3.5.3. Throughout this chapter,
we will use the name of a BiLM to refer to a translation system consisting of baseline
features and this BiLM feature.

As comparison systems, we use BiLMs with two kinds of representations: lexical
(Lex•Lex) and simple syntactic (Pos•Pos). The motivation behind the first one is to
validate the assumption that local syntactic information is useful for SMT. If depBiLMs
indeed show to outperform Lex•Lex, it will demonstrate that in such a constrained
scenario whereby tokens are defined based on word positions syntax still helps to
define meaningful models of translation. Specifically, this approach will help us answer
RQ1.c: How do local syntactic representations compare to lexicalized representations?
Comparing depBiLMs to Pos•Pos will help answer the question how much of the original
syntactic representation should be incorporated into bilingual tokens. Pos•Pos represents
the minimal amount of syntactic information. This will help us partially answer RQ1.b:
How elaborate should the local representations be?

We must note the following imperfection in our experimental design: DepBiLMs
can only be trained on the portion of a parallel corpus for which the source sentences
have been parsed (an off-the-shelf parser may not find a well-structured parse for every
input sentence). Lex•Lex training data does not require any annotation data, and Pos•Pos
requires POS-tag annotation, which is a much simpler task than parsing. To account for
this imbalance, one could only take the parsed portion of the training set also for training
Lex•Lex and Pos•Pos. However, we did not do that. Tables 3.1 and 3.2 (Section 3.5.3)
demonstrate the sizes of the used training corpora, as well as the sizes of the parsed
subcorpora. We can conclude from it that depBiLM features were trained on a corpus
more than 4.5 times smaller than the comparison BiLM features for Arabic-English,
and almost 2.5 times for Chinese-English. Obviously, the disadvantage of this setting is
that the comparison between the two features will not be totally fair. On the other hand,
conceptually, this situation can be seen as “strengthened baselines”, and if our proposed
model manages to outperform the baseline and the comparison systems, it could provide
stronger validation of the method’s effectiveness. Another argument in favor is that
lexicalized BiLM is likely to require more training data for good generalization, since
its vocabulary is much larger. Thus, we could say we compensate for this asymmetry by
differences in training data, and thus can compare the expressivity of the models (what
kind of phenomena they capture) fairly. From a practical perspective, our experimental
setup represents a realistic and very likely situation, where complex annotation such as
parsing is often the bottleneck.

47



4. Dependency-Based Bilingual Language Models for Reordering

Just comparing lexical and POS-based BiLMs and depBiLMs with respect to a
general-purpose metric will give a minimal answer to our main research question, which
is whether depBiLMs improve reordering. In addition to that we would like to shed light
as to whether depBiLMs help improve word-order related aspects of translation. Given
our prior understanding of the models, Lex•Lex is likely to capture more local aspects
of translation, while we expect the syntactically represented BiLMs to indeed improve
reordering. Thus, we expect both models to provide complementary improvements.
One way of verifying it is by combining them both in one system.

In the following subsections we discuss the general results for Arabic-English
(Section 4.4.1) and Chinese-English (Section 4.4.2), where we use case-insensitive
BLEU (Papineni et al., 2002), METEOR (Lavie and Denkowski, 2009), and TER
(Snover et al., 2006) as evaluation metrics. This is followed by a focused analysis of the
models with respect to their reordering quality. The latter experiments include:

• evaluation with respect to reordering-sensitive metrics: n-gram precision with n

of a high value, LRscore (Birch and Osborne, 2010) (Section 4.4.3);

• translation with an increased distortion limit (Section 4.4.4).

4.4.1 Arabic-English translation experiments
We present results of translation experiments in two formats: score evaluated on the
concatenation of all of the available test sets (Table 4.1) and separate scores for each
individual test set (Table 4.2 for BLEU, Table 4.4 for TER, Table 4.3 for METEOR).4
Note that for each of the considered metrics the score on the concatenated set is not a
linear function of the scores of the component sets. A bigger test set typically serves
towards better estimation of the given metric and allows us to draw conclusions between
systems with more confidence. We include separate scores for each test benchmark to
allow for comparison with results in the literature.

We include results of randomization significance tests in the result tables. As
explained in the preamble to Section 4.4, our points of comparison are the baseline,
a system with Pos•Pos and a system with Lex•Lex. Statistical significance notation is
explained in the caption of Table 4.1.

Overview. We first start with Table 4.1. From Table 4.1.a–b we can see that Lex•Lex
generally yields significant improvements over the baseline, while Pos•Pos does not.
This suggests that just the POS information of the words involved in reordering is
too general to provide additional improvements. DepBiLM systems in Table 4.1.c-e
significanly outperform the baseline (and Pos•Pos, which performs at the baseline level).
This provides an indication that there needs to be a certain level of specificity in the
representation of tokens in reordering. At the same time, we see that none of the
depBiLM systems really outperforms Lex•Lex, except with respect to TER. We cannot
take the result on TER to be a strong indication that depBiLM has better effect on
translation, since the two other metrics with a diverse set of expertise5 do not provide
this indication.

4The test sets are: MT02, MT03, MT05, MT06, MT08, MT9. See Section 3.5.1 for more details.
5An exact matching BLEU and a semantic similarity matching METEOR, as opposed to just exact

matching TER.
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Table 4.1: BLEU, METEOR and TER scores for Arabic-English experiments evaluated
on a concatination of all the test benchmarks (MT02, MT03, MT05, MT06, MT08,
MT09). Note that since TER is an error rate, lower scores are better. Statistical

significance notation: improvements are marked N at the p < .01 level and M at the
p < .05 level. Vertically reversed symbols (H and O) indicate statistically significant
deterioration. stands for no significant difference. For the systems in (b), we only
mark the difference with respect to the baseline (a). For each of the rest of the systems
(c–f), the three symbols indicate, in this order: difference from baseline, Pos•Pos and
Lex•Lex. If there is no improvement w.r.t. any of the comparison systems, we omit the
annotation for this number.

Configuration
Arabic-English

MT02-MT09 concatenated

BLEU METEOR TER

a PBSMT baseline 51.54 70.82 43.30

b
Pos•Pos 51.55 70.81 43.22 M

Lex•Lex 52.07 N 71.04 43.19 M

c Pos!Pos•Pos 52.03 NN 71.11 NN
42.92

NNN

d Pos!Pos�sibl•Pos 51.95 NN 70.94 MM 43.33 O

e Pos!Pos!Pos•Pos 52.03 NN 71.10 NN 42.97 NNN

f
Lex•Lex +
Pos!Pos!Pos•Pos

52.42
NNN

71.25
NNN 43.05 NMM

Lex•Lex vs depBiLMs. Our motivation for depBiLMs was based one the necessity
of representations more general than lexical forms to capture word order phenomena.
DepBiLMs do not outperform Lex•Lex on general-purpose metrics, and there are likely
to be a few reasons for that. First, the baseline performance by itself is quite good and
both kinds of BiLMs can further improve translation only by a small margin. Another
reason is that the relatively dramatic difference in training data sizes does not allow
depBiLM to achive the same degree of generalization. We ran an experiment whereby
we added both the Lex•Lex and Pos!Pos!Pos•Pos6 features into the system (Table 4.1.f).
It demonstrates a significant improvement over all the comparison systems, which
suggests that the two features yield complementary improvements. In Section 4.4.3 we
take a closer look at what kind of aspects are improved.

Comparison between different depBiLMs. First of all, we can see that additional
grandparent annotation does not appear to have an advantage over Pos!Pos•Pos (Table
4.1.c and .e). On the other hand, this additional grandparent specification does not lead
to and deterioration (due to sparsity) and thus is a meaningful characterization of the

6We chose Pos!Pos!Pos•Pos since it gave the better improvements among depBiLMs and has a
more complex representation than Pos!Pos•Pos, thus having better potential for learning more complex
reordering patterns. See also the paragraph below.

49



4. Dependency-Based Bilingual Language Models for Reordering

Table 4.2: BLEU scores for Arabic-English experiments. Statistical significance nota-
tion is explain in the caption of Table 4.1.

Configuration MT02 MT03 MT05 MT06 MT08 MT09

PBSMT baseline 64.09 53.46 56.80 46.42 45.84 48.66
Pos•Pos 64.08 53.44 56.70 46.36 45.66 48.82
Lex•Lex 64.61 M 54.05 M 56.93 47.01 N 46.19 N 49.72 N

Pos!Pos•Pos 64.80 NN 54.01 MM 57.10 M 46.82 MN 46.03 M 49.48 NN

Pos!Pos�sibl•Pos 64.44 53.95 N 57.00 46.55 O 45.85 49.12 M H

Pos!Pos!Pos•Pos 64.78 NN 54.19 MM 56.96 46.88 NN 45.93 49.37 NN

Lex•Lex +
Pos!Pos!Pos•Pos

65.23
NNN

54.50
NN

57.31
MNM

47.36
NNM

46.28
MN

50.08
NNM

Table 4.3: METEOR scores for Arabic-English experiments. Statistical significance
notation is explained in the caption of Table 4.1.

Configuration MT02 MT03 MT05 MT06 MT08 MT09

PBSMT baseline 75.72 74.27 75.95 67.37 67.24 69.62
Pos•Pos 75.61 74.27 75.99 67.41 67.10 69.71
Lex•Lex 75.82 74.32 76.01 67.64 N 67.51 N 69.99 N

Pos!Pos•Pos 76.0 MN 74.49 76.24 NM 67.61 M 67.49 MN 70.07 NN

Pos!Pos�sibl•Pos 75.67 74.28 76.12 67.49 67.27 69.82
Pos!Pos!Pos•Pos 75.97 MN 74.39 76.19 M 67.74 NN 67.45 N 70.01 NM

Lex•Lex +
Pos!Pos!Pos•Pos

76.09
NNM

74.54 76.35
NNN

67.78
NN

67.65
NN

70.22
NNM

Table 4.4: TER scores for Arabic-English experiments. Statistical significance notation
is explained in the caption of Table 4.1.

Configuration MT02 MT03 MT05 MT06 MT08 MT09

PBSMT baseline 37.45 41.74 38.56 46.20 47.23 43.93
Pos•Pos 37.45 41.64 38.40 46.10 47.26 43.75 M

Lex•Lex 37.36 41.63 38.61 46.14 47.21 43.54 N

Pos!Pos•Pos 36.82
NNN

41.25
M

38.35 45.95 M
46.99 43.35 NN

Pos!Pos�sibl•Pos 37.63 41.87 38.60 46.26 47.26 43.79
Pos!Pos!Pos•Pos 37.04 MM

41.25
M 38.38 45.88

M M 47.12 43.37 NM

Lex•Lex +
Pos!Pos!Pos•Pos

37.04 MMM 41.30 38.42 46.11 47.22 43.34
NN
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reordering processes. At the same time, the sibling annotation (Table 4.1.d) does lead
to a slight deterioration: the vocabulary of the generalization power provided by sibling
information is not enough to salvage the sparsity issue resulting from the increased
vocabulary.

Analysis of individual test sets’ scores. We now look at the performance on
individual test benchmarks (Tables 4.2–4.3). Lex•Lex yields significant improvements
over the baseline for MT06-MT09, but not for MT02-MT05, and it is rather consistent
across the metrics. This could be explained by our earlier suggestion that the baseline is
already quite strong on in-domain data and is not easily improved. Table 4.5 contains
information about genre distribution in the test sets. MT02-05 is entirely newswire
data, a “native” genre for the Arabic-English trained system. However, the rest are a
mixture of a few genres, where newswire is around 50 %. This observation suggests that
Lex•Lex is able to capture patterns common across genres, giving up to 1 BLEU, 0.4 TER
and 2 METEOR improvement over an individual test set. The picture for depBiLMs
is less clear cut (with the exception of Pos!Pos�sibl•Pos, which demonstrates poor
performance). We see improvements both for some (but not all) newswire-dominated
sets and for some other genres as well, yielding up to 0.9 BLEU, 0.6 TER, 2 METEOR
improvement over individual baseline scores. When Lex•Lex and Pos!Pos!Pos•Pos
are combined together, the improvement is strongly statistically significant for almost
all test sets/scores.

To summarize: The experiments demostrated that in general lexicalized BiLM
Lex•Lex and (some) depBiLMs show comparable performance. There are some in-
dications that they in fact give complementary contributions to translation quality,
indiscernible by general purpose metrics. We also hypothesize that the baseline is
already rather strong, thus also making it hard to compare performance of the two
kinds of models. On top of it, Pos!Pos•Pos and Pos!Pos!Pos•Pos show very similar
performance across test sets and metrics. In one of the subsequent sections we evaluate
the models in a more unconstrainded search scenario (increasing the distortion limit),
where the stronger expressive power of Pos!Pos!Pos•Pos can be tested.

Table 4.5: Distribution of genres across test benchmarks for Arabic-English. Genre
labels are obtained from NIST documentation.

genre MT02 MT03 MT05 MT06 MT08 MT09

newswire 100 % 100 % 100 % 42.5 % 60 % 44.5 %
broadcast - - - 15 % - -
newsgroup - - - 42.5 % - -
web - - - - 40 % 55.5 %

4.4.2 Chinese-English translation experiments
Like with the Arabic-English results, we present the systems’ scores on a concatenated
dataset (Table 4.6) and separately per test set (Tables 4.7–4.9). Also as before, we
perform statistical significance testing of the Pos•Pos and Lex•Lex systems with respect
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to the baseline, and of the depBiLM systems with respect to the baseline, Pos•Pos and
Lex•Lex.

Table 4.6: BLEU, METEOR and TER scores for Chinese-English experiments evaluated
on a concatenation of all the test benchmarks (MT02, MT03, MT05, MT06, MT08).
Statistical significance notation is explained in the caption of Table 4.1.

Configuration
Chinese-English

MT02-MT08 concatenated

BLEU METEOR TER

a PBSMT baseline 31.68 59.14 58.76

b
Pos•Pos 31.89 N 59.22 M 58.73
Lex•Lex 32.28 N 59.30 N 58.42 N

c Pos!Pos•Pos 32.14 NN 59.43 NNM
57.96

NNN

d Pos!Pos�sibl•Pos 32.0 N H 59.39 NN 58.07 NNN

e Pos!Pos!Pos•Pos 32.72 NNN
59.61

NNN 58.15 NNN

f
Lex•Lex +
Pos!Pos!Pos•Pos

32.77
NNN 59.58 NNN 58.36 NN

Overview. First of all, we see that all of the BiLM variants improve the baseline.
In general, the picture is quite different from the one for Arabic-English, as elaborated
below. We connect this difference to the difference in baseline quality (the Arabic-
English training set is much larger) and the relative differences between the full training
set and the depBiLM training set. For Arabic-English, the training set is 4.5 times
larger, while for Chinese-English it is 2.5. Consequently, the relative effect of depBiLM
is larger for the latter. Unfortunately, the given experimental setup does not allow
us to connect the observed differences to typological differences between Arabic and
Chinese.

Lex•Lex vs depBiLMs. Again in contrast to the results for Arabic-English, dep-
BiLMs produce statistically significant improvements over the strongest comparison
system Lex•Lex. As discussed before (Section 4.4), the relative differences in training
sizes for depBiLMs and Lex•Lex is smaller for this language pair than for Arabic-
English. Thus, when the respective training sizes are close, depBiLMs are shown
to have a stronger impact on translation quality. The question still remains whether
the two models capture different translation phenomena, or depBiLM just subsumes
the expressive power of Lex•Lex. The combined system in Table 4.6.f suggests that
the ‘expertises’ of the two models are different, since it gives no improvements over
Pos!Pos!Pos•Pos.

Comparison between different depBiLMs. The depBiLM feature with sibling
annotation (Table 4.6.d) demonstrates the worst performance, like for Arabic-English.
Grandparent annotation improves translation, as demonstrated in Table 4.6.c and .e.
We hypothesize that reordering dependencies are characterized by longer spans for
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Table 4.7: BLEU scores for Chinese-English PBSMT baseline and BiLM pipelines.
Statistical significance notation is explained in the caption of Table 4.1.

Configuration MT02 MT03 MT05 MT06 MT08

PBSMT baseline 33.31 33.55 33.64 32.59 25.93
Pos•Pos 33.61 M 33.79 M 33.82 32.77 M 26.00
Lex•Lex 34.01 N 34.12 N 34.20 N 33.50 N 26.36 N

Pos!Pos•Pos 33.85 M 34.53 NNM 34.05 M 33.07 M O 26.19
Pos!Pos�sibl•Pos 33.88 M 34.65 NN 33.66 O 32.49 O 26.58 NN

Pos!Pos!Pos•Pos 34.28 NN
35.07

NNN
34.58

NNN 33.59 NN 26.77 NNM

Lex•Lex +
Pos!Pos!Pos•Pos

34.37
NN 34.98 NNN 34.38 NN

33.74
NN

27.03
NNN

Table 4.8: METEOR scores for Chinese-English PBSMT baseline and BiLM pipelines.
Statistical significance notation is explained in the caption of Table 4.1.

Configuration MT02 MT03 MT05 MT06 MT08

PBSMT baseline 60.71 59.91 61.39 59.58 54.79
Pos•Pos 60.82 60.04 61.59 N 59.67 54.70
Lex•Lex 60.90 59.86 61.66 M 59.87 N 54.88
Pos!Pos•Pos 60.85 60.08 61.79 M 59.93 NM 55.13 MNM

Pos!Pos�sibl•Pos 60.9 60.30 M N 61.68 59.76 55.06 MM

Pos!Pos!Pos•Pos 60.85 60.56
NNN

61.86
N

60.21 55.18 NNM

Lex•Lex +
Pos!Pos!Pos•Pos

60.89 60.30 N N 61.76 M 60.18 NNN
55.32

NNN

Table 4.9: TER scores for Chinese-English PBSMT baseline and BiLM pipelines.
Statistical significance notation is explained in the caption of Table 4.1.

Configuration MT02 MT03 MT05 MT06 MT08

PBSMT baseline 59.50 58.72 59.09 57.03 60.04
Pos•Pos 59.46 58.60 58.95 57.03 60.13
Lex•Lex 58.97 N 58.28 M 58.73 M 56.81 59.77 M

Pos!Pos•Pos 58.92 MM
57.88

NNM
58.02

NNN
56.33

NNN 59.24 NNN

Pos!Pos�sibl•Pos 58.71
NN 57.96 NN 58.39 NM 56.54 NN

56.21
NNN

Pos!Pos!Pos•Pos 59.35 58.04 NN 58.55 NMM 56.28 NNN 59.27 NNN

Lex•Lex +
Pos!Pos!Pos•Pos

59.80 H 58.11 NM 58.75 56.7 MM
59.21

NNN
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Table 4.10: Distribution of genres across test benchmarks for Chinese-English. Genre
labels are obtained from NIST documentation.

genre MT02 MT03 MT05 MT06 MT08

newswire 38 % 100 % 100 % 37 % 51 %
broadcast - - - 34 % -
newsgroup - - - 29 % -
web - - - - 49 %
speech 62 % - - -

Chinese-English than for Arabic-English, and this may partially explain why grandpar-
ent specification is necessary for the former language pair.

Analysis of individual test sets’ scores. Also for each individual test set most of
the considered BiLMs outperform the baseline. However, we observe a somewhat non-
uniform performance of Pos!Pos!Pos•Pos vs Lex•Lex. For MT03 and MT05, which
fully consist of newswire (Table 4.10), depBiLMs outperforms Lex•Lex. Additionally,
the combination of the two features deteriorates the performance of Pos!Pos!Pos•Pos
alone. On the other “mixed genre” test sets, the advantage of depBiLM is much
less pronounced, and the combination of the two features tends to give additional
improvements. We think that a likely explanation is that on a new domain the baseline
performs worse and the additional expertise of the lexicalized BiLM is necessary.

To summarize, we observed that for Chinese-English all of the BiLM systems that
we ran outperform the system. Pos!Pos!Pos•Pos demonstrates the best results among
all of the depBiLMs. It also tends to outperform BiLMs. We also saw that on partially
out-of-domain test sets both Lex• Lex and Pos!Pos!Pos•Pos actually both contribute to
an increase in quality (like for Arabic-English).

In the subsequent sections of this chapter we will look more closely at what kind
of phenomena are captured by the different models, which may provide more insights
into the results for general-purpose metrics. In Section 4.4.3 we evaluate translation
output from Sections 4.4.1 and 4.4.2 with respect to reordering-sensitive metrics. In
Section 4.4.4 we run the systems from Sections 4.4.1 and 4.4.2 in a decoding setting
with an increased distortion limit.

4.4.3 Reordering-sensitive evaluation metrics

In order to answer RQ1, whether depBiLMs improve reordering, we evaluated the
subset of better performing systems with respect to 4-gram precision and LRscore. We
present scores on the concatenated test sets (Tables 4.11 and 4.14), and on individual
test sets (Tables 4.12, 4.13, 4.15, 4.16).
4-gram precision (prec4) is a component of BLEU. It is the share of n-grams in the
translation output that matches an n-gram in the references (see Equation 2.22 in
Section 2.3.1). This metric is suitable to estimate short-distance reordering, with the
constraint of exact lexical matching. If a system scores high with prec4, it indicates

54



4.4. Experiments

Table 4.11: 4-gram precision and LRscore for Arabic-English experiments evaluated
on a concatenation of all the test benchmarks (MT02, MT03, MT05, MT06, MT08,
MT09).

Configuration
Arabic-English

MT02-MT09 concatenated

prec4 LRscore

a PBSMT baseline 32.30 0.6644
Lex•Lex 32.86 0.6636

c Pos!Pos•Pos 32.79 0.6646

e Pos!Pos!Pos•Pos 32.79 0.6644

f
Lex•Lex +
Pos!Pos!Pos•Pos

33.25 0.6642

Table 4.12: 4-gram precision for Arabic-English PBSMT baseline and BiLM pipelines.

Configuration MT02 MT03 MT05 MT06 MT08 MT09

PBSMT baseline 44.92 33.47 37.95 27.64 26.56 30.15
Pos•Pos 44.77 33.41 37.74 27.63 26.36 30.38
Lex•Lex 45.61 34.21 37.99 28.23 26.90 31.10
Pos!Pos•Pos 45.77 34.14 38.16 28.03 26.69 31.16
Pos!Pos!Pos•Pos 45.72 34.39 37.94 28.16 26.64 31.10
Lex•Lex +
Pos!Pos!Pos•Pos

46.37 34.79 38.43 28.47 26.99 31.65

Table 4.13: LR scores scores for Arabic-English PBSMT baseline and BiLM pipelines.
Statistical significance notation is explain in the caption of Table 4.1.

Configuration MT02 MT03 MT05 MT06 MT08 MT09

PBSMT baseline 0.6409 0.6636 0.6873 0.6621 0.6636 0.6688

Lex•Lex 0.642 0.6657 0.6854 0.6610 0.6619 0.6658
Pos!Pos•Pos 0.6418 0.6642 0.6874 0.6616 0.6647 0.6682
Pos!Pos!Pos•Pos 0.6411 0.666 0.6872 0.6622 0.664 0.6661
Lex•Lex +
Pos!Pos!Pos•Pos

0.6419 0.6685 0.6882 0.6592 0.6622 0.6655
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Table 4.14: 4-gram precision and LRscore for Chinese-English experiments evaluated
on a concatenation of all the test benchmarks (MT02, MT03, MT05, MT06, MT08).

Configuration
Chinese-English

MT02-MT08 concatenated

prec4 LRscore

a PBSMT baseline 14.03 0.4853
b Lex•Lex 14.52 0.4838
c Pos!Pos•Pos 14.43 0.4866

d Pos!Pos!Pos•Pos 14.79 0.4861

e
Lex•Lex +
Pos!Pos!Pos•Pos

14.88 0.4845

Table 4.15: 4-gram precision for Chinese-English PBSMT baseline and BiLM pipelines.
Statistical significance notation is explain in the caption of Table 4.1.

Configuration MT02 MT03 MT05 MT06 MT08

PBSMT baseline 13.96 15.00 15.34 14.79 11.06
Pos•Pos 14.19 15.18 15.41 14.79 11.06
Lex•Lex 14.63 15.49 15.65 15.37 11.47
Pos!Pos•Pos 14.52 15.95 15.34 15.10 11.38
Pos!Pos!Pos•Pos 14.80 16.18 15.88 15.50 11.69
Lex•Lex +
Pos!Pos!Pos•Pos

14.91 16.28 15.69 15.56 12.04

Table 4.16: LR scores scores for Chinese-English PBSMT baseline and BiLM pipelines.
Statistical significance notation is explain in the caption of Table 4.1.

Configuration MT02 MT03 MT05 MT06 MT08

PBSMT baseline 0.5076 0.4839 0.49 0.4825 0.4627
Lex•Lex 0.5076 0.4840 0.4860 0.4805 0.4609
Pos!Pos•Pos 0.5110 0.4861 0.4893 0.4844 0.462
Pos!Pos!Pos•Pos 0.5100 0.4869 0.4901 0.4830 0.4605
Lex•Lex +
Pos!Pos!Pos•Pos

0.5078 0.4865 0.4881 0.4817 0.4585
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that it is able get the right order of words locally, and that it is good at picking correct
lexical formulations. If a system does not fare well with prec4, then it could be that the
model actually gets the correct order, but fails to choose the right word translation. Or
it could be that the system indeed fails at local reordering (but could still do well on a
more global level.

For Arabic-English (Table 4.11), all of the BiLM systems improve prec4 of the
baseline. Lex•Lex slightly outperforms the rest of the systems, and the combined system
in Table 4.11.e gives the best results. This is the same pattern as observed for the
general-purpose metrics. We can conclude that both depBiLMs and lexicalized BiLM
improves local short-distance reordering in complementary ways. Results on individual
tests (Table 4.12) are mostly consistent with the above findings.

For Chinese-English (Table 4.14), the picture is similar to Arabic-English, except
that Pos!Pos!Pos•Pos shows the best performance in this case. The combined system
in Table 4.14.e shows the absolute best score, indicating that both kinds of BiLM
improve short distance reordering for Chinese-English. This is also consistent with
results on individual tests (Table 4.15).

LRscore was specifically designed to measure reordering quality of output translation.
Section 2.3.1 provides details on the hyperparameters and computation of this metric,
while we here we only summarize the version of the metric that we use here:

LRscore(Aref, Atrans) =
Hamming(Aref, Atrans) + (1 � KendallTau(Aref, Atrans))

2
,

(4.3)
where Aref : F ! Ref is word alignment between source and reference interpreted as
function from source sentence F into Ref, and Atrans : F ! Trans is word alignment
between source and the given translation. LRscore interprets alignments as permutations
of the source sentence and computes the average of the Hamming distance and the
inverse Kendall Tau distance for every sentence (the higher the metric value, the better).
The final metric is the average of the sentence set. As opposed to prec4, it does not
rely on exact lexical matching, and by design it characterizes any type of reordering
(of any distance). Its disadvantage is that it highly depends on the quality of the word
alignments between source and translation/reference.

For Arabic-English (Table 4.11), all of the systems, including the baseline, show
very similar performance in terms of LRscore. This result suggests that Arabic-English
does not have long-distance reordering patterns. It also could be that LRscore is too
noisy to capture more subtle differences and local reordering patterns, which we saw
for prec4.

For Chinese-English (Table 4.14), the LRscore does differentiate between the differ-
ent systems. depBiLM systems obtain the best scores, and lexicalized BiLM the worst.
The combination of grandparent annotated depBiLM and lexicalized BiLM performs
worse than the depBiLM alone.

To summarize, comparing performance of BiLMs across language pairs and reorder-
ing sensitive metrics, we can make a tentative conclusion that Lex•Lex is good at captur-
ing short-distance (local) reordering. DepBiLMs are shown to be good at both short and
long distance reordering, with the more richly annotated variant (Pos!Pos!Pos•Pos)
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showing better results. For Arabic-English, however, we did not obtain experimental
confirmation of the existence of long distance reordering: it either is not typical for this
language pair, or is already captured by the baseline, or too hard to capture by any of
the considered models.

4.4.4 Decoding with an increased distortion limit
So far, we only looked at translation output produced with a constraint that a reordering
of maximum five words is allowed during decoding. It is a very limiting assumption,
since due to the property of linguistic recursion, the reordering distances can in principle
be made very large. In this subsection we relax this constraint to 10 and 15 word jumps.
This relaxation, however, entails challenges for the translation systems: the search space
increases considerably, and the models should still be able to rank good translation
hypotheses high.

Note that we use the models tuned with a distortion limit of 5. Arguably, this could
be a limitation to the experiment, but the presented results still can be regarded as the
lower bound of the performance of the models in an extended search space scenario. The
results on a concatenated set are presented in Tables 4.17 and 4.18, and on individual
test sets in Tables 4.19-4.24.

Arabic-English systems (Table 4.17) demonstrate overall deterioration of results
with an increased distortion limit (number in brackets are the differences from the
original result with a distortion limit of 5). The most dramatic deterioration is observed
for Pos!Pos•Pos. The best results are again obtained for the combination of two BiLMs,
but still the scores are lower than for the scenario with a distortion limit of 5. We
can conclude that it is likely that Arabic-English does not typically have long distance
reordering and/or that at least the systems that we worked with cannot generalize beyond
short distance reordering.

Chinese-English systems (Table 4.18) present quite the opposite situation. All of
the systems increase their scores when the distortion limit goes up. This is a strong
indication that the (near) optimal translation hypotheses are contained in the extended
search space and that long distance reordering is typical for this language pair. The
optimum seems to be closer to the distortion limit of 10, rather than 15, as the table
demonstrates. Pos!Pos!Pos•Pos produces the best results, and the combination of
two BiLMs deteriorates them to some extent. These findings are consistent with our
observations in the previous section, where we saw that Pos!Pos!Pos•Pos is good at
long distance reordering, but not Lex•Lex.

4.5 Conclusions

In this chapter, we have introduced a simple, yet effective way to include syntactic infor-
mation into phrase-based SMT. Our method consists of enriching the representation of
units of a bilingual language model (BiLM). We argued that the very limited contextual
information used in the original bilingual models (Niehues et al., 2011) can capture
reorderings only to a limited degree and proposed a method to incorporate information
from a source dependency tree in bilingual units. In a series of translation experiments
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Table 4.19: BLEU scores for Arabic-English PBSMT baseline and BiLM pipelines.
Statistical significance notation is explain in the caption of Table 4.1.

Configuration DL MT02 MT03 MT05 MT06 MT08 MT09

PBSMT baseline 10 64.18 53.38 56.78 45.86 45.65 48.40
15 63.96 53.26 56.65 45.60 45.48 48.12

Lex•Lex 10 64.29 53.64 56.49 46.18 45.57 48.90
15 63.82 53.18 56.23 45.77 45.02 48.62

Pos!Pos•Pos 10 61.67 51.17 54.37 44.83 43.35 49.38

15 61.68 51.14 54.35 44.70 43.24 49.18
Pos!Pos!Pos•Pos 10 65.09 54.64 57.10 45.66 44.20 48.62

15 65.01 54.39 56.95 45.51 43.98 48.45
Lex•Lex +
Pos!Pos!Pos•Pos

10 64.51 53.95 56.85 46.42 45.62 49.24

15 64.16 53.55 56.40 45.79 44.74 48.70

Table 4.20: METEOR scores for Arabic-English PBSMT baseline and BiLM pipelines.
Statistical significance notation is explain in the caption of Table 4.1.

Configuration DL MT02 MT03 MT05 MT06 MT08 MT09

PBSMT baseline 10 75.8 74.25 76.02 67.21 67.2 69.61
15 75.67 74.22 75.93 67.08 67.12 69.5

Lex•Lex 10 75.82 74.25 75.95 67.34 67.31 69.79
15 75.73 74.06 75.86 67.22 67.07 69.69

Pos!Pos•Pos 10 74.77 73.34 75.15 66.85 66.48 70.1

15 74.81 73.3 75.19 66.78 66.36 70.0
Pos!Pos!Pos•Pos 10 76.12 74.48 76.17 67.21 66.8 69.79

15 76.08 74.44 76.04 67.15 66.79 69.75
Lex•Lex +
Pos!Pos!Pos•Pos

10 76.02 74.49 76.19 67.47 67.49 70.02

15 75.92 74.37 76.07 67.18 67.13 69.79
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Table 4.21: TER scores for Arabic-English PBSMT baseline and BiLM pipelines.
Statistical significance notation is explained in the caption of Table 4.1.

Configuration DL MT02 MT03 MT05 MT06 MT08 MT09

PBSMT baseline 10 37.48 41.71 38.52 46.76 47.51 44.30
15 37.82 42.06 38.83 47.17 47.87 44.68

Lex•Lex 10 37.80 42.00 38.97 46.95 47.98 44.20
15 38.41 42.47 39.37 47.72 48.99 45.05

Pos!Pos•Pos 10 39.71 43.83 40.60 48.12 49.58 43.43

15 39.84 43.95 40.70 48.44 49.94 43.83
Pos!Pos!Pos•Pos 10 36.93 40.92 38.15 46.09 47.23 43.56

15 37.13 41.27 38.42 46.41 47.56 43.92
Lex•Lex +
Pos!Pos!Pos•Pos

10 37.54 41.72 38.81 47.19 48.15 44.21

15 38.33 42.27 39.53 48.24 49.43 45.19

Table 4.22: BLEU scores for Chinese-English PBSMT baseline and BiLM pipelines.
Statistical significance notation is explained in the caption of Table 4.1.

Configuration DL MT02 MT03 MT05 MT06 MT08

PBSMT baseline 10 33.80 33.81 34.46 33.16 25.98
15 33.66 32.93 34.14 32.97 25.89

Lex•Lex 10 34.61 34.44 34.84 33.81 26.65
15 34.31 33.95 34.62 33.59 26.55

Pos!Pos•Pos 10 34.81 35.21 34.92 34.06 26.86
15 34.70 34.62 34.90 34.06 26.77

Pos!Pos!Pos•Pos 10 35.37 35.33 35.21 34.54 27.44

15 35.02 34.49 35.25 34.21 26.85
Lex•Lex +
Pos!Pos!Pos•Pos

10 35.05 35.31 34.87 34.46 26.92

15 34.84 34.52 34.71 34.10 26.78
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Table 4.23: METEOR scores for Chinese-English PBSMT baseline and BiLM pipelines.
Statistical significance notation is explained in the caption of Table 4.1.

Configuration DL MT02 MT03 MT05 MT06 MT08

PBSMT baseline 10 61.1 60.06 61.87 59.73 54.58
15 60.89 59.79 61.77 59.78 54.65

Lex•Lex 10 61.24 60.08 62.13 59.99 54.89
15 61.12 59.95 61.94 59.94 54.83

Pos!Pos•Pos 10 61.24 60.61 62.13 60.36 55.38
15 61.1 60.32 62.12 60.31 55.42

Pos!Pos!Pos•Pos 10 61.4 60.84 62.23 60.54 55.45

15 61.3 60.45 62.3 60.38 55.29
Lex•Lex +
Pos!Pos!Pos•Pos

10 61.12 60.51 62.12 60.36 55.16

15 61.07 60.05 62.06 60.21 55.13

Table 4.24: TER scores for Chinese-English PBSMT baseline and BiLM pipelines.
Statistical significance notation is explain in the caption of Table 4.1.

Configuration DL MT02 MT03 MT05 MT06 MT08

PBSMT baseline 10 59.26 59.44 58.90 57.01 60.67
15 60.44 60.44 59.46 57.66 61.38

Lex•Lex 10 59.25 58.47 58.50 56.68 60.18
15 59.95 59.51 59.10 57.34 60.52

Pos!Pos•Pos 10 58.49 57.80 57.71 55.94 59.26

15 58.95 58.41 57.97 56.06 59.62
Pos!Pos!Pos•Pos 10 59.11 58.43 58.33 56.40 59.46

15 59.78 59.35 58.63 57.08 60.30
Lex•Lex +
Pos!Pos!Pos•Pos

10 59.75 58.65 58.76 56.67 60.03

15 60.76 59.89 59.69 57.62 60.70
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we performed a thorough comparison between various syntactically-enriched BiLMs
and competing models. The results demonstrated that adding syntactic information
from a source dependency tree to the representations of bilingual tokens in an n-gram
model can yield statistically significant improvements over the competing systems.
Even though trained on a smaller sub-corpus than comparison BiLMs, depBiLMs could
achieve the same or better level of generalization. A number of additional evaluations
provided an indication for better modeling of reordering phenomena. When evaluated on
reordering-sensitive metrics, we found that depBiLMs indeed improve reordering, while
lexicalized BiLMs tend to preform better at short-distance reordering. In experiments
with an increased distortion limit, we found that all Arabic-English systems deteriorate
translation quality, but systems with both a depbiLM and lexicalized BiLM features
combined do so to a lesser extent. As for Chinese-English, the distortion limit of 10
(during testing) produced best results overall, with parent- and grandparent-annotated
BiLMs giving the best result.

We can now revisit and answer the research question RQ1 raised at the beginning
of the chapter. We will answer each of the subquestions separately:

RQ1 Can we improve reordering by modeling sequences of syntactic structures repre-
senting basic operational units of translation?

RQ1.a. Can the representations only include the local syntactic information of a
node in a syntactic parse? What is the minimum context that the local
representation should incorporate?
DepBiLMs are BiLMs with local syntactic representations, defined in terms
of the immediate vicinity of a node in a dependency tree. Our extensive
experiments showed that depBiLMs improve translation quality overall, and
reordering in particular, as demonstrated by reordering-sensitive metrics and
translation experiments with an increased distortion limit. We compared
the translation performance of depBiLMs to BiLMs with simple POS-based
representations. The latter showed some of the worst results, only barely
improving the baseline. From this we can conclude that there should be a
certain degree of specificity in the syntactic representation to improve trans-
lation. Among depBiLMs, both parent-annotated (Pos!Pos•Pos) and parent-
and grandparent-annotated (Pos!Pos!Pos•Pos) depBiLMs demonstrated
significant improvements over the baseline in general and with respect to
reordering. Sibling-annotated depBiLM showed mixed performance, not
always even outperforming the baseline. This suggests that sibling informa-
tion is too specific and does not always provide good generalization of the
token’s syntactic and reordering behavior.

RQ1.b. How do local syntactic representations compare to representations including
explicit lexical information of the basic translational units?
In general, depBiLMs produced translations at least as good as the one
produced by lexicalized BiLMs. We have found some indications that they
in fact capture complementary phenomena (at least for Arabic-English),
whereby Lex•Lex is better at more specific and short-term reordering, while
depBiLMs capture more general patterns of translation correspondence.
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We also note that even though depBiLMs were trained on a substantially
smaller training corpus, they were able to achieve the same or better level
of generalization (which is expected given the smaller and more abstract
vocabulary).

RQ1.c. What kind of reordering phenomena are captured by such models?
As we mentioned before, depBiLMs seem to be good at reordering in
general. We could find evidence of this model to perform especially well
at some specific subclass of reordering patterns. But given the abstract
definition of the depBiLM representations, it is expected that it would be a
“universal” reordering model, while more fine-grained lexicalized BiLMs
capture better reordering phenomena for specific classes of words.

While in this chapter we have shown the usefulness of local syntactic character-
ization of minimal bilingual translation units, in the following chapter we explore a
method that imposes syntactic structure on the translation sequence in a more intricate
way. Instead of just using the source syntax for labeling, it derives a new target syntactic
structure that is used in a syntactic language model.

Finally, an interesting question is, can local syntactic representations also be useful
in neural MT. A number of papers have recently shown the usefulness global syntactic
encoding in NMT (Shi et al., 2016; Eriguchi et al., 2016). Local source syntactic
information has also been recently exploited in the context of neural MT. Bastings
et al. (2017) propose to substitute the standard RNN-based encoder of the sequence-
to-sequence model with a graph-convolutional encoder. The convolution filter in their
model is applied to to sets of words determined by their vicinity in a dependency
tree. This is very much in the spirit of our depBiLM representations incorporating the
immediate siblings and parents of a word in a tree.
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5
Bilingual Structured Language Models

for Statistical Machine Translation

5.1 Introduction
In the previous chapter we used syntax to construct representations for translation units
involved in a strictly sequential, syntax-agnostic decoding process. The function of these
representations was to define a vocabulary capable of capturing important contextual
properties of the translation units. These representations were strictly constrained by
the process of translation hypothesis derivation.

In this chapter we take a step away from purely sequential models and define a
sequential model constrained by a hierarchical structure. In Chapter 3 we reviewed a
number of approaches that integrate hierarchical models into the phrase-based transla-
tion framework. One subclass of such methods define constraints on the phrase-based
translation process. For example, Cherry (2008) defines soft constraints based on the
notion of syntactic cohesion. Ge (2010) captures reordering patterns by defining soft
constraints based on the currently translated word’s POS tag and the words structurally
related to it. Defining translation constraints based on the analysis of the source sen-
tence is advantageous since the latter can be made available prior to translation. On
the other hand, target syntax is more challenging to use in PBSMT, since a target-side
syntactic model does not have access to the whole target sentence at decoding time
(Post and Gildea, 2008; Schwartz et al., 2011). Post and Gildea (2008) is one of the
few target-side syntactic approaches applicable to PBSMT, but it has been shown not
to improve translation. Their approach uses a target side parser as a language model.
One of the reasons why it fails is that a parser assumes its input to be grammatical and
chooses the most likely parse for it. A syntactic model is likely to be useful if it says
how good the translation hypothesis actually is.

This chapter is the continuation of our research on integrating source syntax into
PBSMT. In contrast to the models from the literature mentioned above that define
constraints on the translation hypothesis search, we propose a weaker model in the
sense that it does not simply impose a constraint on the translation search, but produces
structural representations of the target sentence conditioned on the translation derivation.
When constructing the model, we rely on a fundamental assumption about the nature of
the correspondence between source and target sentence structures in a parallel sentence
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pair, which is the expressed in RQ2:

RQ2 Is there a systematic mapping between source and target syntactic representations
in a parallel sentence and can it be used to improve translation?

We compare two approaches to finding and evaluating a mapping between source
and target structures. The first one is expressed by RQ2.a:

RQ2.a. Is there a universal characterization of a mapping between source and target
structure? Can this characterization be used to constrain the decoding
process to produce better translations?

We answer RQ2.a by implementing an existing constraint-based model (syntactic
cohesion). Our contribution in this chapter is another approach to discovering the
systematic mapping in question, expressed in RQ2.b:

RQ2.b. Can the mapping be defined in terms of projection constraints between
elementary parts of source and target structures? Can we fit a statistical
model over the resulting corresponding source and target structures to
characterize the overall mapping?

To address these questions, we start with a set of possible constraints on how source
substructures should be mapped to target substructures. Different constraint combina-
tions implicitly define a set of mappings. We learn a characterization of each mapping
by fitting a statistical model over pairs of source and target sentence structures derived
based on the direct correspondence assumption. The potential advantage of learning a
model over the resulting representations instead of directly imposing constraints is that
the statistical model can learn non-trivial patterns of interactions between the constraints.
Finally, we evaluate what kind of constraints are useful:

RQ2.c. What are the important mapping constraints that result in structured lan-
guage models improving translation output?

As a statistical model of parsed target sentences, we adapt an existing monolingual
model of Chelba and Jelinek (2000), namely structured language model (SLM), to the
bilingual setting. We use this model because it is simple and has been shown to work
as a characterization of parsed sentences before. We should note that SLMs have been
incorporated into a translation system before. Yamada and Knight (2001) use SLMs in
a string-to-tree SMT system where a derivation of a target-side parse tree is part of the
decoding algorithm, and target syntactic representations are obtained ‘for free’. Yu et al.
(2014) use an on-the-fly shift-reduce parser to build an incremental target parse. Our
approach is different in that our general translation framework is purely sequential and
the target parses are obtained without the need for additional probabilistic inference.
This property of our method makes it attractive from a practical point of view, allowing
for easier implementation and only a minor increase in runtime complexity.

Our contributions in this chapter can be summarized as follows:

1. We compare our approach of characterizing a correspondence between source
and target structures with a statistical language model to previous research on the
question of how systematic the correspondence is (Section 5.2).
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2. We propose a novel method to adapt monolingual structured language models by
Chelba and Jelinek (2000) (Section 3.4) to a PBSMT system (Section 5.3), which
does not require an external on-the-fly parser, but only uses the given source-side
syntactic analysis to infer structural relations between target words. We refer to
this model as bilingual structured language models (BiSLMs).

3. Building on the existing literature, we propose a set of deterministic rules that
incrementally build up a parse of a target translation hypothesis based on the
source parse (Section 5.3). We discuss a few variations of the set of rules, which
we take to be a hyperparameter of our BiSLM.

4. We evaluate our method in a series of rescoring experiments and achieve statis-
tically significant improvements in BLEU for Chinese-English, but not Arabic-
English (Section 5.4.2). We use the rescoring experiments to understand how
useful the structured language model is for translation when the word align-
ment is fixed. Additionally, based on the rescoring experiments we identify
best-performing BiSLM variants and run an experiment with the BiSLM fully in-
tegrated into the decoder (Section 5.4.3). In the latter experiments we achieve sta-
tistically significant improvements for both Arabic-English and Chinese-English,
for all the considered metrics.

5. We experimentally compare our approach to the baseline without any syntactic
knowledge incorporated and a system with syntactically defined soft constraint
features (Section 5.4.1).

5.2 Direct correspondence assumption
In this section we discuss the idea of crosslingual syntactic correspondence, which
underlies this chapter, and its different formulations proposed in the literature.

We first fix a syntactic formalism that is used throughout the chapter. Just like in
the previous chapter, we take a dependency tree TreeW to be a syntactic representation
of sentence W and reason about other syntactic assumptions and models in its terms.
A dependency tree TreeW induces a dependency relation D between words of W

(where D(w, w
0) means w is a parent of w

0). We choose a dependency structure over
a constituency structure because the former is more general, as every constituency
parse can be formalized as a projective dependency parse with labeled relations, but
not vice versa (Osborne, 2008). Moreover, also for the sake of simplicity, we assume
unlabeled dependency trees. Finally, we make a projectivity1 assumption, which is
supported by empirical data in many languages (Kuhlmann and Nivre, 2006; Havelka,
2007), and makes our model computationally less expensive. For more details about the
dependency formalism and its properties see Section 3.1.

Most NLP models that use syntactic structures to model the interaction between two
or more languages rely on some form of the direct correspondence assumption (DCA)
(Hwa et al., 2002). It makes a statement about a correspondence between the syntactic

1Dependency tree TreeW and the induced relation D are projective if 8wi, wj , wk 2 W : (D(wi, wj) ^
wk between wi and wj) ! (D(wi, wk) _D(wj , wk)).

69



5. Bilingual Structured Language Models for Statistical Machine Translation

structures of the source and target sides across parallel sentences. We first provide the
full original statement of DCA, and discuss its linguistic (empirical) motivations below.
Just like in this thesis, Hwa et al. (2002) formulate statements in terms of dependency
structures, since the choice of the most general possible formalism gives more chance of
this statement being valid empirically. The direct correspondence assumption is defined
as follows:

Given sentences E and F that are (literal) translations of each other with
respective syntactic structures TreeE and TreeF: If nodes xE and yE of
TreeE are aligned2 with nodes xF and yF of TreeF, respectively, and if
syntactic relationship D(xE , yE) holds in TreeE, then D(xF , yF ) holds in
TreeF.

This statement calls for two comments: First, we stress that it is about literal
translations. Therefore the degree of applicability of this assumption depends on the
quality of the given parallel corpus. Second, the employed concept of alignment is
not tied to a specific word alignment algorithm. Rather, it is the ideal notion of word
alignment which is something like semantic or translational equivalence between words
in two languages. In this general statement above alignment is assumed to be an injective
relation, but of course in the real linguistic world, there are no two languages for which
this property can hold fully. The whole agenda of empirical verification of DCA and its
application in NLP tasks is about bridging the discrepancy between the idealized notion
of alignment and the practically observable alignment obtained based on specific data
and software.

DCA is grounded linguistically, as literal translation equivalents are likely to express
the same set of thematic relations (Hwa et al., 2002). Since dependency relations are
supposed to be the formalization of thematic relations conveyed by the sentences, it
follows that translationally equivalent sentences also have the same set of dependency
relations. At the same time, every natural language provides its own way of formalizing
semantics (in terms of syntax), so in practice the equivalence between the sets of
dependency pairs will be approximate at best. There is ample empirical evidence
supporting the violation of DCA even in literal translation (Hwa et al., 2002). In
practice, also the degree of literariness of translation will vary, exacerbating the issue.

Hwa et al. (2002) conduct a series of experiments aimed at answering the question:
To what degree is DCA true? They also pose a second question, but do not directly
evaluate it: How useful is DCA? This chapter is an attempt to research the second
question in the context of machine translation, as our method consists in deriving
representations for a structured language model, with our starting assumption point
being DCA. The DCA has been used before in downstream NLP tasks. There are models
of cross-lingual transfer that define syntactic structure of one language by conditioning
it on the structure of semantically equivalent sentences in another language (Hwa et al.,
2005; Naseem et al., 2012). DCA has also been used in SMT. In particular, syntax-based
SMT is built implicitly around this assumption (Wu, 1997b; Yamada and Knight, 2001).
In (Quirk and Menezes, 2006) DCA is explicitly implemented by defining a translation
model in terms of treelet pairs where target-side treelets are produced by projecting

2In the sense of translation correspondence.
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0 1 2

a b c

(a)

0 1 2

a b c

(b)

0 1 2 3

a b c d

(c)

0 1 2 3

a b c d

(d)

Figure 5.1: Examples of cohesive and uncohesive translations. (a-b): cohesive (a)
and uncohesive (b) translations of the same dependency parse. (b) is uncohesive
because words a and c translate the source subtree {(1, 2)}, but the target word b does
not translate this subtree. (c-d): cohesive (c) and uncohesive (d) translations. (d) is
uncohesive because a and c translate the source subtree {(0, 1)}, but b does not translate
it.

source dependencies via word alignments. Moreover, they use the projected syntactic
parse on the target side to define syntax-based language models, very much in the spirit
of our approach here.

5.2.1 Weaker forms of DCA and their use in machine translation

DCA in its original form is a very strong assumption and therefore may not be borne
out in practice. However, the intuition behind it is linguistically motivated and weaker
forms of this assumption could be made directly useful in machine translation.

Syntactic cohesion (Fox, 2002; Cherry, 2008) is a constraint that does not allow for
non-projective reordering: Given a source parse TreeF and the induced relation DF , a
translation E is cohesive if all translated target words ei, ej do not have any word ek

between them such that there is a source subtree sub in TreeF such that some parts of
it are translated by wi and wj but not by wk (see examples in Figure 5.1). Syntactic
cohesion is a weaker assumption than DCA in the formal sense: it allows a greater
class of mutually corresponding source and target syntactic structures, of which the
ones defined by DCA is a subclass (given that we assume projectivity of syntactic
structures). Cherry (2008) and Bach et al. (2009) implement the syntactic cohesion
assumption as a set of soft constraints applied during phrase-based decoding. Their
implementation of cohesion is not strict in that they only require phrase applications,
and not necessarily individual target words, to conform to the cohesion principle. For
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example, if we imagine a situation where a subtree as in Figure 5.1(b) is translated as a
whole with one phrase application (and not word by word), then it does not violate the
cohesion principle, although it is internally uncohesive.

We use the set of features from (Bach et al., 2009) as a comparision system in
our experiments, so we summarize their model here. The feature coh1 is the original
model from (Cherry, 2008). It is a constraint that is evaluated to truth if at the current
translation step i it is the case the previous translation step i � 1 a source subtree was
translated and it is not covered by the current phrase application. coh2 is the constraint,
but it applies to all preceding phrase applications. coh3 and coh4 represent the same
constraints as coh1 and coh2, respectively, but the corresponding features are as the
number of untranslated words in the unfinished subtrees. coh5 does the same as coh4,
but only for words that have the part of speech Noun or Verb.

Research question RQ2.b suggests another weaker hypothesis in the spirit of DCA:
there exists some correspondence between source and target structures and one can fit
a model to characterize it. This is the idea behind this chapter. We learn a language
model that scores sequences obtained as a result of some mapping between source and
target trees, that we induce based on a set of simple rules. This model can then be used
at prediction time to score sequences obtained via decoding, thus implicitly evaluating
the reordering quality of obtained translation hypotheses.

5.3 Bilingual structured language models

In this section, we combine a weak form of the direct correspondence assumption
(Section 5.2.1), positing that there is some systematic correspondence between source
and target structures, and structured language models (SLMs) (Section 3.4), and define
bilingual structured language models (BiSLMs) for PBSMT.

As we said before, this is not the first time SLMs are adapted to SMT. However,
it is the first time—to the best of our knowledge—that it is applied to a syntactically
agnostic framework (PBSMT). Previous approaches (Yamada and Knight, 2001; Yu
et al., 2014; Quirk and Menezes, 2006) rely on resources that a standard PBSMT system
does not have access to by default. Phrase-based decoders do not provide us with a
parse of the target sentence, and inferring the parse of a target string with an external
parser is computationally expensive and potentially unreliable (see Section 7.1). Our
main insight is that in a bilingual setting one does not need an additional probabilistic
target parsing model.

SLM (see Section 3.4) models generation of parsed sentence as a sequence of n

steps of picking a new word to add to the sentence and then deciding how to integrate it
with the partial tree:3

3This is a simplified version of the original model, where there is an intermediate step of predicting the
POS: pSLM(W, TreeW ) =

Q|W |
i=1 p(wi|posi,Expos(Wi�1, TreeWi�1)) ·p(posi|Expos(Wi�1, TreeWi�1)) ·

p(TreeWi |wi,Expos(Wi�1, TreeWi�1)).
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pSLM(W, TreeW ) =

|W |Y

i=1

p(wi|Expos(Wi�1, TreeWi�1))

· p(TreeWi |wi, Expos(Wi�1, TreeWi�1)),

(5.1)

where Wi�i is a partial sentence w1...wi, TreeWi�1 is the subtree structure covering
Wi�i, and Expos returns a conditioning context based on the partial parse so far. The
second factor in the equation is the implicit notation for prediction of a parse operation
(shift, right-/left-reduce), by which the tree is extended.

We assume that there is systematic mapping between source and target structures,
but unlike the previous class of approaches outlined above, we do not assume that there
is a systematic mapping between source and target structures that can be characterized
with one simple property that holds universally. Rather, we propose to decompose
this mapping into elementary projection steps of basic source structures onto basic
target structures. Since we are working with unlabeled dependency trees, the basic
structure is an unlabeled dependency arc. Thus, we assume there exists a function
ProjP(TreeF , A, F, Ei) that outputs TreeEi (a subtree structure of the partial target
sentence Ei) based in source sentence TreeF , source and target pair F and E and
the alignment A between them. In this chapter we assume ProjP to be deterministic,
therefore the second factor in Equation 5.1 is not needed. Thus we obtain the formula
for a bilingual structured language model (BiSLM):4

pBiSLM(E|F, A, TreeF ) =

|E|Y

i=1

p(ei| Expos(Ei�1, ProjP(TreeF , A, F, Ei))), (5.2)

In words, at each time step i we predict the next word ei conditioned on the exposed
heads of the partial parse of Ei�1 projected from the source side. We limit Expos to
returning the four preceding exposed heads.

We start with a preliminary example in Figure 5.3 to illustrate how the model works.
Since word alignment is monotonic in Figure 5.2(a), it is straightforward to project
the source dependencies onto the target side. We aim to imitate a monolingual parser
in the way we build up our projected parse: Reduce operations should be invoked
whenever both of the subtrees involved in the operation are not expected to have any
more modifiers (Section 5.3.2). For example, when the target word likes is produced
its exposed heads are said and he (Figure 5.2(b)), since Putin is a modifier of said.
Likewise, the exposed heads for women are said likes all Russian (Figure 5.2(c)).

Now the question is, how should ProjP be defined? In an ideal scenario, we would
like to learn ProjP itself from data. The conclusion of Section 5.2 was that we would
not like to come up with and impose an ad-hoc correspondence relation, but define it as
a variable and learn its characterization. In this chapter we consider a few projection
constraints (with a few variations) inspired by previous research and treat their different

4In case ProjP was statistically parametrized, the formula would look like: pBiSLM(E|F,A, TreeF ) =
Q|E|

i=1 p(ProjP(TreeF ,A, F, Ei))p(ei| Expos(Ei�1,ProjP(TreeF ,A, F, Ei))).
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pujing shuo ta xihuan suoyou de eluosi funv

putin said he likes all russian women

(a)

pujing shuo ta xihuan

putin said he likes

(b)

pujing shuo ta xihuan suoyou de eluosi funv

putin said he likes all russian women

(c)

Figure 5.2: Chinese-English sentence pair (a) and sets of exposed heads (underlined) at
different generation (b and c) steps of a bilingual SLM.

combinations as a hyperparameter of the model. The projection strategies are evaluated
in a series of rescoring experiments (see Section 5.4.2 below). Since evaluating all
possible projection strategies is computationally prohibitive, we propose a basic set
of rules and three parameters of variation. One direction of future work would be to
evaluate these parameters during training of the BiSLM (for example, via expectation-
maximization) and not at the stage of model selection.

As opposed to projection approaches like those of Quirk and Menezes (2006), we
would like our model to project a source parse incrementally, allowing it to be used in
a PBSMT decoder. We think of ProjP as a function that computes the output in two
stages: First, it infers from the source parse the dependency relations between target
words (Section 5.3.1). This can be seen as setting constraints on how target words
should be connected via dependency relations. Second, it decides how to actually parse
the target sequence, i.e., in which order to assign these dependencies (Section 5.3.2).
This can be seen as a constraint imposed by the sequential process of target generation.

Additionally, in Section 5.3.3 we propose to use additional labeling strategies of
target words, and in Section 5.3.4 we describe estimation and implementation details.

5.3.1 Dependency graph projection

Adoption of some form of DCA (Section 5.2) allows us to build up a target dependency
tree from a source tree by projecting the latter through word alignments. The definition
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of DCA can be rephrased as requiring a one-to-one correspondence mapping between
words of a sentence pair, allowing one to unambiguously map dependencies: Given
a source parse, if t1 is the head of t2, then map(t1) is the head of map(t2). The
correspondence relation that we have in PBSMT is the word alignment align: in
the most general case, it is a many-to-many correspondence, and the straightforward
projection described above can lead to incorrect dependency structures. To overcome
these problems, we describe a simple ordered set of projection rules, based on the ones
specified by Quirk and Menezes (2006) (and we point out if otherwise).

The general idea behind this set of rules is to extract a one-to-one function align1�1

from source words to target words from align and use it to project source dependencies as
described in the paragraph above (and R1 below). The definition of align1�1 essentially
describes how to remove alignment links so that the resulting mapping is one-to-
one. Intuitively, align1�1 defines those source words which are the most important in
determining the projected target structure. We decided to prioritize left-hand alignment
links in multi-aligned sets of words, which is an arbitrary decision and alternatives
(arguably, equally arbitrary) are conceivable.5 align1�1 in the combination with rule R1

represent the idealized projection algorithm. The additional rules (R2-R4 below) are
designed to project arcs which connect source words not in align1�1 or to incorporate
target words not in align1�1.

A function can be seen as a set of pairs, and so we build up the set align1�1

incrementally, by considering each of he1, ..., eni = E one by one, from left to right.
We define a “partial” set alignparti

1�1 as follows:

alignpart0
1�1 = ? (5.3)

alignparti
1�1 =

8
>>>><

>>>>:

alignparti�1

1�1 [ {(f, ei)}, if (f, ei) 2 align
^ ¬9f

0 : (f 0
, ei) 2 align ^ f

0 � f

^ ¬9e
0 : (f, e

0) 2 alignparti�1

1�1

alignparti�1

1�1 , otherwise,

(5.4)

where f
0 � f means that f

0 linearly precedes f in a sentence. Finally, align1�1 is
defined as alignpartn

1�1 obtained at the last processing step n (which is the length of the
English sentence E). This algorithm may leave some English words unaligned with
respect to align1�1.

For example, in Figure 5.4(b) the link between f0 and e1 is not in align1�1, and in
Figure 5.4(c) the link between f1 and e0 is removed (and therefore the arc from f2 to f1

does not get projected).
The following list of rules specify what dependency structure gets assigned to a

target sequence, given the source dependency structure and the alignment. We call them
rules, as they have the form if X, then Y: however, they function as constraints in the
parsing procedure described in Section 5.3.2. They are ordered, so that the next rule can
be applied in case the rules are not satisfied. For every ei, ej :

(R1) if 9fk, fl : DF (fk, fl) ^ (fk, ei) 2 align1�1 ^ (fl, ej) 2 align1�1, then

5For example, Devlin et al. (2014) keep the middle alignment link.
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f0 f1 f2

e0 e1 e2

(a)

f0 f1 f2

e0 e2e1

f2

e3

(b)

Figure 5.3: (a): The dashed lines are the dependency arcs that would project through
word alignment, resulting in a non-projective projective (impossible under strong source-
completeness). (b): The dashed lines are the parse produced under weak source-
completeness. Under strong completeness none of the words will get connected.

DE(ei, ej)

(R2) if 9f 2 F : (f, ei) 2 align1�1 ^ (f, ej) 2 align, then DE(ei, ej)

(R3) if 9fk, fl : DF (fl, fk) ^ (fk, ei) 2 align1�1 ^ (fl, ej) 2 align ^ ei � ej ,
then DE(ej , ei)

(R4) if 9fk, fl : DF (fk, fl) ^ (fk, ei) 2 align ^ (fl, ej) 2 align1�1 ^ ei � ej ,
then DE(ei, ej)

(R5) if ¬9f : (f, ei) 2 align1�1, then we have two alternative rules:

(a) ¬9e : DE(ei, e) _ DE(e, ei)

(b) DE(e, ei), where e is the root of the preceding subtree on the stack (since
these rules are integrated into the parsing procedure specified in Sec-
tion 5.3.2)

Figure 5.4 contains examples of how align1�1 is constructed and of the applications
of the rules above. We note that some of the rules (namely, R1, R2 and R5) are applied
in different contexts, so their mutual ordering does not actually matter. However, the
mutual ordering of R1, R3, R4 matters.

5.3.2 BiSLM parsing procedure
Given an inference procedure for dependency relations between target words (Sec-
tion 5.3.1), we should further specify in which order the corresponding dependency arcs
are assigned to the target sentence as it is being generated.

We define an incremental parsing procedure in terms of three operations: shift,
left-reduce, and right-reduce (see Section 3.1 for details on incremental dependency
parsing). The operations are applied as soon as the sufficient conditions hold. We
specify the conditions using the following structural properties:
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f0 f1 f2

e0 e1 e2

(a) R1

f0 f1

e0 e1 e3

(b) R1

f0 f1 f2

e0 e1

(c) R1

f0 f1

e0 e1 e2 e3

(d) R2

f0

e0

f1 f2

e1

(e) R3

f0 f1 f2

e0 e1

(f) R4

f0 f1

e0 e1e1

(g) R5

Figure 5.4: Examples for dependency projection rules. (a): all aligned word pairs are
in align1�1, R1 applies. (b): (f0, e1 link is not in align1�1, R1 applies to e0 and e3,
as they are in align1�1. (c): (f1, e0) link is not in align1�1, rule R1 applies to (f0, e0)
and (f2, e1), which are in align1�1. (d): e1 and e2 are not in the range of align1�1,
therefore they get adjoined to e0 by R2. (e): e0 and e1 cannot be connected by R1,
but since (f2, e1) is in align, and DF (f2, f0), they get connected by R3. (f): e0 and e1

cannot be connected by R1, there is an arc from f1, which is in the domain of align, to
f2, so they get connected by R4. (g) demonstrates two versions of R5: the dashed arrow
gets ‘realized’ only if we adjoin unaligned words to the preceding head.
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A target subtree is source-complete if all the descendants of align�1
1�1(root(sub))

(source correspondent of the root of the current subtree) (Section 5.3.1)
have been translated and reduced. A target subtree is complete if it is
source-complete and all the target words that are its children through non-
projected arcs (through R2 or R4 in Section 5.3.1) have been translated and
reduced.

The bilingual parsing operations and the sufficient conditions for them are defined
as follows:

• Shift: after the word is produced it is shifted onto the stack as an elementary
subtree.

• Left-reduce: if a disconnected subtree subi and a disconnected subtree subi�1

immediately preceding it are both complete and DT (root(subi), root(subi�1)),
adjoin subi�1 to subi so that root(subi�1) is a modifier of root(subi).

• Right-reduce: analogous to left-reduce, but DT (root(subi�1), root(subi)).

Training data may contain instances of non-cohesive translations. In that case the
resulting target dependencies are non-projective. Our definition of left- and right-reduce
only produces projective parses. For a non-cohesive translation, certain subtrees will
never be source-complete and will never be reduced; see Figure 5.3(a). Note that this
is not a disadvantage of our model. Cherry (2008) simply assumes that non-cohesive
reordering should be penalized, and our model is able to account for this pattern. We
therefore consider an alternative to incorporating non-cohesive alignments by relaxing
the definition of completeness for subtrees:

A projected subtree sub is weakly source-complete if all descendants of all
source word(s) which are aligned to the root of sub have been translated
and, only if the definition of reduce applies, reduced; see Figure 5.3(b).

5.3.3 Syntactic labeling of tokens

One of the problems with SLMs in general is that at time steps i and j the sets of
exposed heads for ti and tj can differ in size, which may imply different predictive
power. To this end, we add an additional detail to our model: Each time a reduction
occurs, we label the root of the subtree to which another subtree has been adjoined, thus
making the conditioning history more specific. We use the following labelings:

• Reduction labeling: if a subtree is adjoint to sub from the left, then label
root(sub) with LR. If it is adjoint from the right, then label it with RR.

• Reduction POS-labeling: same as in simple reduction labeling, but add the POS
tag of the root of the reduced subtree to the label.
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operation resulting stackparsed parallel sentence strucLM probability 
of the stack

pujing shuo ta xihuan suoyou de eluosi funv

shift

- <s> p(<s>)

pujing shuo ta xihuan suoyou de eluosi funv

putin

<s> putin p(<s>) p(putin)

shift
pujing shuo ta xihuan suoyou de eluosi funv

putin said

<s> putin said p(<s>) p(putin) p(said|putin)

pujing shuo ta xihuan suoyou de eluosi funv

putin said

<s>

putin

said (same as above)
reduce-
left

pujing shuo ta xihuan suoyou de eluosi funv

putin said he

shift <s>

putin

said he
p(<s>) p(putin) p(said|putin)
p(he|said)

shift
pujing shuo ta xihuan suoyou de eluosi funv

putin said he likes

<s>

putin

said he likes
p(<s>) p(putin) p(said|<s> putin)

p(he|<s> said) p(likes|<s> said he)

pujing shuo ta xihuan suoyou de eluosi funv

putin said he likes

<s>

putin

said

he

likes (same as above)
reduce-
left

pujing shuo ta xihuan suoyou de eluosi funv

putin said he likes all

shift <s>

putin

said

he

likes all
p(<s>) p(putin) p(said | <s> putin)

p(he | <s> said) p(likes | <s> said he)

p(all | <s> said likes)

Figure 5.5: Example of inference with a BiSLM (with no reduction labeling). This is a
simplified example since it does not contain unaligned words or uncohesive translation.
Its purpose is to demonstrate the basic mechanism of the approach.
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5.3.4 Implementation and training
To use a BiSLM during decoding or rescoring, one needs access to phrase-internal
alignments and target POS tags. We store phrase-internal alignments and target-side
POS annotations of each phrase in the phrase table, based on the most frequent internal
alignment during training and the most likely target-side POS labeling t̂ given the
phrase pair: t̂ = arg maxt̄ p(t̄|ē, f̄) (Monz, 2011). We train a BiSLM on the parallel
training data (Section 3.5.3) and use the Stanford dependency parser Chang et al. (2009)
for Chinese and the Stanford constituency6and parser (Green and Manning, 2010) for
Arabic. POS-tagging of the training data is produced with the Stanford POS-tagger
(Toutanova et al., 2003).

We estimate BiSLM probabilities with an n-gram model with modified Kneser-Ney
smoothing using SRILM (Stolcke et al., 2011). The order is set to 5 (i.e., the number of
exposed heads returned by Expos from Equation 5.2 is 4).

To summarize, in this section we proposed a way to adapt a structured language
model to a translation setting, where the target parse is deterministically inferrable from
the source parse (Equation 5.2). We proposed a series of rules that identify elementary
dependency relations on the target side based on the source parse and word alignments
(Section 5.3.1). We propose a sequential left-to-right projection method (Section 5.3.2).
Figure 5.57 provides an example of how target structure is built up incrementally and
how probability of the partial sequence is computed.

Overall the projection method has three variation parameters:

1) how unaligned target words are incorporated into target parse (rule R4): adjoining
it to an immediately preceding head, or leaving it disconnected;

2) whether we allow for weak completeness when doing parsing reduction operation;

3) whether we employ reduction labeling – this parameter has three values: no
labeling, reduction labeling, reduction-POS labeling.

5.4 Experiments
In this section we conduct a series of experiments to answer RQ2: whether there is a
systematic relation between source and target sentence structures in parallel sentence.
We evaluate it by comparing two approaches that tentatively assume RQ2: the first
one simply predefines a relation between syntactic structures in a parallel sentence, the
second one induces a target structure based on a given source structure via a set of
elementary rules and learns a syntactic language model that characterizes the resulting
target structures. We compare the two approaches by incorporating them into a PBSMT
translation system and evaluating their effect on translation quality.

We propose the following set of experiments: First of all, we start with a baseline
translation experiment not containing any of the syntax-based features discussed in this
chapter (see Section3.5.3 for the description of our baseline PBSMT system). Further,

6We extract dependency parses from its output based on Collins (1999)
7We thank Zhaochun Ren for helping to design this example.
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we test the assumption that the notion of syntactic cohesion of translation can be
successfully used to constrain the search space and select better translation hypotheses.
We do this by including all of the five proposed features from Bach et al. (2009),
which include the original soft constraint from Bach et al. (2009); see Section 3 for a
detailed description of the features. We optimize the weights of these features during
tuning alongside the rest of the baseline features. These experiments are presented in
Section 5.4.1.

Next, we present two sets of experiments designed to test our proposed method.
In Section 5.4.2 we start with rescoring experiments where we use the BiSLM to
rerank the n-best translation list output produced by the baseline system. The rescoring
experimental setup keeps the alignments obtained as a result of translation search fixed,
thus allowing us to test the usefulness of structured language models in relative isolation.
It allows us to answer the question whether the choice of the syntactic model is good
enough as an application of (some weak form of) DCA. Moreover, we use the rescoring
experiments as a means of choosing the optimal projection strategy (see Section 5.3
for a description of projection strategies). Naturally, a rescoring experiment has its
limitations, namely a very restricted hypothesis set. Additionally in our case, it also
comes with low confidence of whether alignments inside parallel sentences are good
since we have no guarantee that the n-best hypotheses produced by the baseline system
are actually good translations.

As we will see in Section 5.4.2, the rescoring experiments demonstrate the usefulness
of some variants of BiSLM in choosing better translation hypotheses from a set with
precomputed alignments and accordingly projected source parses. Our next step is to
integrate the BiSLM as a feature into the decoder (Section 5.4.3). This way we test
whether the hypotheses preferred by our BiSLM contain more accurate alignments,
and therefore the integrated BiSLM feature will help explore hypotheses with better
reordering during translation search.

We run experiments on Arabic-English and Chinese-English. The data setup, the
baseline features, training and tuning details are provided in Section 3.5.3. Like before,
we use case-insensitive BLEU (Papineni et al., 2002), METEOR (Lavie and Denkowski,
2009) and TER (Snover et al., 2006) as evaluation metrics.

The sections are grouped by experiment types, and each contains results for both
language pairs. Section 5.4.1 contains baseline and comparison system results, Sec-
tion 5.4.2 contains rescoring experiments, Section 5.4.3 contains experiments with a
decoder-integrated BiSLM.

5.4.1 Baseline and comparison systems
In this subsection we present results of translation experiments for the baseline system
and the comparison system, which is the five syntactic-based soft constraints proposed
in Cherry (2008) and Bach et al. (2009) (see Section 3 for a detailed description of
the constraints). As in the previous chapter, we present the metrics’ scores on the
concatenated set of all the test benchmarks (Table 5.1 for Arabic-English, Table 5.5
for Chinese-English), as well as on each benchmark individually (Tables 5.2-5.4 for
Arabic-English, Tables 5.6-5.8 for Chinese-English).

As can be seen from the tables, the cohesion constraints do not provide additional
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Table 5.1: BLEU, METEOR and TER scores for Arabic-English experiments evaluated
on a concatenated of all the test benchmarks (MT02, MT03, MT05, MT06, MT08,
MT09).

MT02-MT09 concatenated

BLEU METEOR TER

PBSMT baseline 51.54 70.82 43.30
cohesion constraints 51.41 70.82 43.33

Table 5.2: BLEU scores for Arabic-English experiments.

MT02 MT03 MT05 MT06 MT08 MT09

PBSMT baseline 64.09 53.46 56.80 46.42 45.84 48.66
cohesion constrains 64.00 53.42 56.77 46.31 45.61 48.49

Table 5.3: METEOR scores for Arabic-English experiments.

MT02 MT03 MT05 MT06 MT08 MT09

PBSMT baseline 75.72 74.27 75.95 67.37 67.24 69.62
cohesion constrains 75.72 74.32 76.0 67.4 67.18 69.57

Table 5.4: TER scores for Arabic-English experiments.

MT02 MT03 MT05 MT06 MT08 MT09

PBSMT baseline 37.45 41.74 38.56 46.20 47.23 43.93
cohesion constrains 37.50 41.64 38.53 46.28 47.33 43.91

Table 5.5: BLEU, METEOR and TER scores for Chinese-English experiments evaluated
on a concatenated of all the test benchmarks (MT02, MT03, MT05, MT06, MT08).

MT02-MT08 concatenated

BLEU METEOR TER

PBSMT baseline 31.68 59.14 58.76
cohesion constraints 31.62 59.02 59.00

Table 5.6: BLEU scores for Chinese-English PBSMT baseline and BiLM pipelines.

MT02 MT03 MT05 MT06 MT08

PBSMT baseline 33.31 33.55 33.64 32.59 25.93
cohesion constraints 33.06 33.32 33.49 32.52 25.98
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Figure 5.6: Feature weights for systems tuned with baseline features and the six syntactic
cohesion features from (Bach et al., 2009). We include a subset of all the features
(phrase and word penalty are omitted). The cohesive constraints are the following: coh1

– simple binary cohesion feature, coh2 – simple count-based cohesion feature, coh3 –
exhaustive binary cohesion feature, coh4 – exhaustive count-based cohesion feature,
coh5 – exhaustive count-based noun cohesion feature, coh6 – exhaustive count-based
verb cohesion feature.

improvements over the baseline. The conclusion holds across metrics, test sets and
language pairs. This result tells us that simply imposing a syntactic constraint on the
translation search does not help find better translation hypotheses. Figure 5.6 shows
tuned feature weights for both language pairs. For Arabic-English, the cohesion feature
weights are the lowest among all the presented features. For Chinese-English, the
exhaustive count-based cohesion constraint (coh4) is approximately at the level of the
linear distortion level, but overall the cohesion weights get the lowest values. We also
note that the cohesion feature weights for both language pairs are either negative or
close to zero.

Our experimental result is different from the one in (Bach et al., 2009), where they
also evaluate on Arabic-English and Chinese-English (the size of training data being
comparable to ours) and report improvements over the baseline. We first note that
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Table 5.7: METEOR scores for Chinese-English PBSMT baseline and BiLM pipelines.

MT02 MT03 MT05 MT06 MT08

PBSMT baseline 60.71 59.91 61.39 59.58 54.79
cohesion constraints 60.48 59.74 61.32 59.45 54.78

Table 5.8: TER scores for Chinese-English PBSMT baseline and BiLM pipelines.

MT02 MT03 MT05 MT06 MT08

PBSMT baseline 59.50 58.72 59.09 57.03 60.04
cohesion constraints 59.94 58.98 59.51 57.11 60.17

they evaluate BLEU on a much smaller test set than we do, and, more importantly,
their baseline does not contain lexicalized distortion models. As Figure 5.6 suggests,
lexicalized distortion models are important features, having weights in the same range
as the core models, such as the translation models and target language model.

5.4.2 Rescoring experiments
The purpose of the rescoring experiments is to understand the usefulness of the struc-
tured language model for translation when alignments are fixed, and to select a better
projection, parsing and labeling algorithm for BiSLM. We consider the following
variations of BiSLM:

• whether to use a strong or weak definition of a complete subtree (Section 5.3.2) –
weak/strong completeness;

• whether to adjoin unaligned target words to a preceding head (Section 5.3.1) –
unalign-adjoin+/-;

• we compare several target-side labeling methods (Section 5.3.3): plain (just target
words), reduce (LR or RR) or reduce-POS (LR POS or RR POS, where POS is
the tag of the root of the reduced subtree).

The rescoring procedure is performed as follows: We extract an n-best list of
translation hypotheses produced by the baseline system. We set n = 1000. For each
translation hypothesis in the list, we extract its derivation sequence from the decoding
lattice (sequence of phrase pair applications), and for each phrase pair in the derivation
we extract its internal word alignment stored in the phrase table (see Section 5.3.4 for
more implementation details). The derivation history and phrase-internal alignments
are sufficient to reconstruct the full word alignment between the source and the target
hypothesis, and we use it to construct a projected parse of the target side. For the BiSLM
variants involving POS-reduction labeling, for each phrase pair in the derivation we
extract a sequence of corresponding target POS labels (also stored in the phrase table).
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Table 5.9: BLEU, METEOR and TER scores for Arabic-English decoding experiments
with BiSLM evaluated on a concatenated of all the test benchmarks (MT02, MT03,
MT05, MT06, MT08, MT09). Statistical significance notation: improvements are
marked N at the p < .01 level and M at the p < .05 level.

MT02-MT09 concatenated

BLEU METEOR TER

PBSMT baseline 51.54 70.82 43.30
reduce-weak-emptyAdj+ 52.06 N 71.10 N 43.05 N

For the projection strategy, we construct its own parse and score the target hypothesis
with the corresponding variant of BiSLM. We normalize the resulting BiSLM score
by the length of the target hypothesis sequence. The final score used to rank each
hypothesis is an interpolation of the original baseline system score and the normalized
BiSLM score:

� · scoreBiSLM

lengthHypothesis
+ (1 � �) · scoreBaseline (5.5)

We do not set or select the value of the interpolation weight � beforehand, but directly run
a grid search on the concatenated set of all available test sets. The results are presented
in Figures 5.8(a)-5.8(b) for Arabic-English and Figures 5.8-5.9(b) for Chinese-English.

For Arabic-English, we can see that none of the rescoring models outperform the
baseline. The overall picture is that the more we rely on BiSLM in rescoring, the
worse is the performance. Additionally, we observe that BiSLM variants where the
unalign-adj has the value + perform worse. The weak/strong cpmleteness distinction
does not appear to play a role. Finally, not applying reduction labeling appears to
have a somewhat positive effect. Even though the result of rescoring to Arabic-English
is negative, we picked one variant of BiSLM (unalign-adj +, weak completeness,
reduction labeling) to test in the decoding experiment, since it demonstrated a slight
improvement above the baseline for METEOR.

For Chinese-English, rescoring produces statistically significant improvements for
BLEU of up to 0.4 BLEU on the concatenated test set. Another finding is that the
optimal values are achieved when � (the interpolation weight) is between 0.2 and 0.4.
As for the individual hyperparameters of BiSLM, we again observe that the strong/weak
completeness distiction does not play a role. For the unalign-adj hyperparameter, on
the contrary to Arabic-English, the - value produces higher scores. Finally, no reduction
labeling (plain) or simple reduction labeling give better results than POS-reduction
labeling.

5.4.3 Decoding experiments
In this section we further test BiSLM by fully integrating it into our decoder for tuning
and testing. For each language pair, we picked a BiSM system which showed the best
results in the rescoring experiments.

For Arabic-English we tested a BiSLM variant with the hyperparameters set as:
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Figure 5.7: BLEU scores for Arabic-English rescoring experiments. The x-axis is the
weight � in the interpolation � · scoreBiSLM

lengthHypothesis
+ (1 � �) · scoreBaseline.

Table 5.10: BLEU scores for Arabic-English decoding experiments with BiSLM. Statis-
tical significance notation is explained in the caption to Table 5.9.

MT02 MT03 MT05 MT06 MT08 MT09

PBSMT baseline 64.09 53.46 56.80 46.42 45.84 48.66
reduce-weak-emptyAdj+ 64.90 N 54.32 N 57.02 46.87 N 46.21 N 49.39 N
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Figure 5.8: BLEU scores for Chinese-English rescoring experiments. The x-axis is the
weight � in the interpolation � · scoreBiSLM

lengthHypothesis
+ (1 � �) · scoreBaseline.

Table 5.11: METEOR scores for Arabic-English decoding experiments with BiSLM.
Statistical significance notation is explained in the caption to Table 5.9.

MT02 MT03 MT05 MT06 MT08 MT09

PBSMT baseline 75.72 74.27 75.95 67.37 67.24 69.62
reduce-weak-emptyAdj+ 75.94 M 74.54 76.08 67.82 N 67.44 M 69.92 N
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Table 5.12: TER scores for Arabic-English decoding experiments with BiSLM. Statisti-
cal significance notation is explained in the caption to Table 5.9.

MT02 MT03 MT05 MT06 MT08 MT09

PBSMT baseline 37.45 41.74 38.56 46.20 47.23 43.93
reduce-weak-emptyAdj+ 37.01 N 41.30 M 38.42 46.04 47.03 43.66 M

Table 5.13: BLEU, METEOR and TER scores for Chinese-English decoding exper-
iments with BiSLM evaluated on a concatenated of all the test benchmarks (MT02,
MT03, MT05, MT06, MT08). Statistical significance notation is explained in the
caption to Table 5.9.

MT02-MT08 concatenated

BLEU METEOR TER

PBSMT baseline 31.68 59.14 58.76
reduce-weak-emptyAdj- 31.97 N 59.22 58.70

Table 5.14: BLEU scores for Chinese-English decoding experiments with BiSLM.
Statistical significance notation is explained in the caption to Table 5.9.

MT02 MT03 MT05 MT06 MT08

PBSMT baseline 33.31 33.55 33.64 32.59 25.93
reduce-weak-emptyAdj- 33.95 N 33.81 33.81 32.79 26.15

Table 5.15: METEOR scores for Chinese-English decoding experiments with BiSLM.

MT02 MT03 MT05 MT06 MT08

PBSMT baseline 60.71 59.91 61.39 59.58 54.79
reduce-weak-emptyAdj- 60.90 59.79 61.56 59.77 54.76

Table 5.16: TER scores for Chinese-English decoding experiments with BiSLM.

MT02 MT03 MT05 MT06 MT08

PBSMT baseline 59.50 58.72 59.09 57.03 60.04
reduce-weak-emptyAdj- 59.29 58.74 58.96 57.00 60.03
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unalign-adj +, weak completeness, reduction labeling. The results are presented in
Tables 5.9-5.12 on a concatenated test set and individual test sets. Unlike for the
rescoring experiments, we observe significant improvements for all metrics and across
almost all test sets. This result is different from rescoring experiments which did not
demonstrate any significant improvements. It suggests that the alignments produced by
the baseline are quite different from those learnt by the BiSLM.

For Chinese-English we tested a BiSLM with hyperparameters set to unalign-adj -,
weak completeness, reduction labeling. The results are presented in Tables 5.13-5.16.
One can see that statistically significant improvements are only achieved for BLEU.
Moreover, the improvements are lower than for rescoring.

It is interesting to observe that for the two language pairs the results for rescoring and
the decoding experiments demonstrate opposite patterns. It entails that the relationship
between a high BiSLM score and good translation quality is not straightforward. Our
hypothesis was that if we have a good language model that recognizes systematic
structural correspondences between source and target sentences, then it could serve
as a feature during decoding that steers the translation process towards hypotheses
which conform to this systematic correspondence. However, for Chinese-English this
appears not to be the case completely. A possible explanation is that the empirically
correct correspondences are only a subset of those ranked highly by BiSLMs. For
Chinese-English, the n-best list could have just contained the translation hypotheses
with correct correspondences, and the model could pick them up. On the contrary for
Arabic-English, it could be that the n-best only contained correspondences that are
incorrect but ranked highly by BiSLM. We leave the investigation of this question to
future work. One possible direction is trying to control the expressivity of BiSLM by
adding more hyperparameters, in addition to the three currently used parameters.

5.5 Conclusions

In this chapter we proposed a novel way to adapt structured language models to phrase-
based SMT. Our method requires minimal changes to the PBSMT pipeline. Our
method is based on the idea that there exists some systematic correspondence between
source and target sentential structures, which can be induced by a combination of
elementary projection rules from the source structure onto the target side. We contrast
our method to a constraint-based approach to cross-lingual syntactic correspondence,
the implementation of which did not result in translation quality improvements. We
tried a number of variations of our model and evaluated them in rescoring experiments,
resulting in statistically significant improvements for Chinese-English. Based on the
rescoring experiments, we picked the best performing model variants for Arabic-English
and Chinese-English and evaluated them in the experiments where the BiSLM was fully
integrated into the decoder. We observed improvements for both language pairs. We
observed that for Arabic-English translation quality improves in decoding experiments
but not rescoring ones. For Chinese-English, we saw improvements in both experiments,
however, for rescoring they were greater. We hypothesized that this is due to the
fact that BiSLMs in their current form are too expressive and may upvote hypotheses
incorporating incorrect structural correspondence.
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Finally, we return to the research questions posed at the beginning of the chapter:

RQ2 Is there a systematic mapping between source and target syntactic representations
in a parallel sentence and can it be used to improve translation?

This is a fundamental question and we answer it (partially) by addressing the subques-
tions below.

RQ2.a. Is there a universal characterization of a mapping between source and target
structure? Can this characterization be used to constrain the decoding
process to produce better translations?
In order to answer this question, we implemented and tested a model real-
izing such an approach, namely the syntactic cohesion model. Including
it in form of soft constraint features did not result in an improvement of
translation quality for either of the language pairs.

RQ2.b. Can the mapping be defined in terms of projection constraints between
elementary parts of source and target structures? Can we fit a statistical
model over the resulting corresponding source and target structures to
characterize the overall mapping?
We proposed a simple set of rules, which projects a source structure onto
the target. We used a structured language model to learn a characterization
of target sequences parsed in this fashion. The model yielded statistically
improvements for both Arabic-English and Chinese-English in rescoring
and decoding settings. This result suggests that the BiSLM indeed captures
the systematic relation between source and target syntactic structures. This
correspondence can be used in a feature to improve translation quality, as
suggested by improvements in translation metrics. At the same time, we
have some evidence that the models in their current form are too expressive
and also accept incorrect translation pairs.

RQ2.c. What are the important mapping constraints that result in structured lan-
guage models improving translation output?
We found that the parameter regulating how to incorporate unaligned target
words had the most effect. The parameter regulating how to deal with
non-cohesive translation did not appear to have an effect, suggesting that
translations (for our given baselines) actually tend to be cohesive. This is
also a potential explanation for why the cohesive constraints from RQ2.a

did not contribute to translation quality. Finally, we experiments with a
few labeling strategies and found that no or very simple labeling produced
better metric scores. Decorating exposed head with POS information of
their children resulted in worse performance.

Syntactic correspondence between source and target sentences is a fundamental
question in SMT. The answers to the research questions we provided here are not
exhaustive and suggest a number of interesting future research directions to extend the
proposed model.
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The original paper underlying this chapter was written shortly before neural machine
translation became the focus of academic research in MT. Writing this chapter now,
we ask ourselves: can the discussed ideas and models be transferred to NMT? First
of all, the DCA is formulated using the notion of word alignment, and the concrete
models of correspondence (such as syntactic cohesion or our model) are grounded in
the word alignment computed at the beginning of the SMT pipeline. State-of-the-art
NMT (Bahdanau et al., 2015) is not grounded in word alignments, but has an internal
mechanism approximating them (attention). However, while for SMT alignment is the
central concept, for NMT it is secondary. In the light of this consideration, it is not
entirely straightforward to translate DCA from SMT to NMT from a conceptual point of
view. On the other hand, if we disregard this consideration, and assume that alignments
are the word alignments of NMT, then the models discussed in this chapter can be
reinterpreted for NMT. In fact, Chen et al. (2017) have very recently proposed a model
of a NMT decoder augmented with a source coverage mechanism8 (Tu et al., 2016)
which computes a coverage representation for each source word conditioned on the
hidden state of the decoder at step i, as well as the attention and coverage representations
of the word’s left-hand and right-hand children in a dependency tree. The attention
representation is computed by re-using the coverage representation from the previous
step. Conceptually, this model is designed to condition an attention weight of a word
based on how much it and its dominated source subtree were attended before. This is
directly related to the idea of syntactic cohesion.

As for our BiSLM, there are a number of conceivable ways in which it could be
integrated into NMT. First of all, it can be used as an additional model,9 either at a
rescoring stage or at a decoding stage (Gulcehre et al., 2017). A more interesting way
would be to implicitly incorporate the parsing procedure of the BiSLM into the decoder.
This could be done for instance by adding a hidden state h

struc
i which is a function of

this state at the previous decoding step h
struc
i�1 and the product of the current attention

distribution and some source word representations which incorporates dependency
information (for example, concatenation of a word’s vector and its parent’s vector, or a
graph convolution representation centered around the given word, as in (Bastings et al.,
2017)).

8Inspired by the coverage vector of the phrase-based SMT.
9In this case one has to convert real-valued attentions into binary alignments
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6
Background: Ensembles, System

Combinations, and Baselines

In this chapter we provide relevant background for Chapter 7, where we propose and
compare methods of multi-source ensemble combination in neural machine translation
(NMT). As we explain in Chapter 7, the sequence-to-sequence model of translation
is simple and generic enough to directly apply the general ensembling methods from
machine learning, which we review in Section 6.1. In Section 6.2 we give some
background on previous research on system combination in the context of statistical
machine translation (SMT). Finally, in Section 6.3 we report the details of how we build
the NMT system that we use in the experiments in Chapter 7.

6.1 Ensembles in machine learning
In this section we introduce the basic concepts and main algorithms used for ensemble
combination of machine learning systems. We concentrate on ensemble methods for
classification, since this is the focus of the research in the next chapter.

The general idea behind ensemble combination is to aggregate predictions (given the
same input) of various diverse prediction systems (Brown et al., 2005). On an intuitive
level, such an approach is likely to improve the overall prediction quality because in a
set of diverse predictors, some of them will make correct predictions on some subset of
inputs and make errors on the other ones, on which some other predictors are likely to
give a correct answer. On a somewhat more formal level, if for every input we aggregate
predictions in a reasonable way and under the assumption that the ensemble set is
diverse enough so that the errors that the individual predictors make are uncorrelated,
then on average (over all input instances) the errors of individual predictors will cancel
each other out due to the fact that other predictors will make correct and confident
predictions.

The discussion above entails that two things are important to obtain a well-performing
ensemble system: First, an ensemble set should consist of diverse predictors whose
distributions of errors are uncorrelated, see (Kuncheva and Whitaker, 2003) for a study
of measures of ensemble diversity. Second, the combination method should be able
to recognize the strengths and weaknesses of individual predictors to combine them
optimally. The two components can be determined independently when building an
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ensemble system, which we do in Chapter 7. Some algorithms also provide a method to
jointly create a diverse ensemble set optimized towards a particular task and combina-
tion method. Rokach (2010) terms the two approaches as independent and dependent,
respectively. For example, Boosting (Freund et al., 1996) iteratively trains a set of weak
learners, where at each iteration a new weak learner is trained on a subset of training
data on which the previously trained weak learners made more errors.

There are a few common strategies of independently inducing a diverse ensemble set
(Brown et al., 2005). One is to create a set of separate training sets from one common
training set and train separate classifiers on them. For example, Bagging (Breiman,
1996) obtains new datasets by sampling. Another method is to use different learning
algorithms on the same dataset. Finally, for learning methods depending on an initial
parameter setting, different initializations can induce diverse predictors.

Combination methods vary with respect to how much information they use to
combine the predictions and exactly what they combine. Perhaps the simplest way to
combine predictions is by doing majority voting over the predicted labels. A more
sophisticated way is to actually take the class probability distributions into account.
Uniform averaging of class distributions is a common method, and we use it as a
baseline in Chapter 7. Another method is defining a so-called belief function for
each class separately based on the predictors’ distributions (Shilen, 1990). These
kinds of methods do not take individual strengths and weaknesses of predictors into
account. A combination method can also be trainable, such that it learns the systems’
prediction behavior on a held-out data set. Stacking (Wolpert, 1992) is a method of meta-
classification: a meta-classifier is trained to take the outputs of individual predictors
to output the final prediction. Mixture of experts (Jacobs et al., 1991) is a method of
contextual combination: based on the given input, which is common to all the predictors,
a trainable mixture gating network decides what weights to assign to each individual
prediction and then aggregates them by (weighted) summing.

6.2 System combination in machine translation

In this section we provide an overview of previous work on system combination in
machine translation. Here we focus on previous research in SMT (and specifically,
phrase-based SMT) and address system combination of NMT systems (ensembling) in
the next chapter.

Combination approaches in phrase-based SMT require insights beyond the kind of
methods that we described in Section 6.1 on ensembles in machine learning. This is
because it is not easy to factorize the prediction p(E|F ) of E in phrases into smaller
components, as different features in the log-linear combination, see Equation 2.3 in
Section 2.1, capture a distribution over different kinds of units (phrases, words). More
importantly, during prediction the full distribution over the next step in a derivation
(Equation 2.6 in Section 2.1.2) is not available due to the intractability of the resulting
search. Therefore, the methods from the previous section cannot be applied in a
straightforward manner.

Another type of approach proposes a way to combine predictions produced from dif-
ferent inputs: Och and Ney (2001) perform combination at the level of complete transla-
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tion hypotheses, obtained by feeding a different input to the same pre-trained translation
system. They approximate the distribution over the whole set of translations by a set
of 1-best translations, one for each input sentence. The final translation hypothesis E

⇤

is selected based on a formula involving an aggregate score of p(F1|E⇤), ..., (FN |E⇤),
for every input sentence Fi.

Another line of research (Bangalore et al., 2001; Matusov et al., 2006; Rosti et al.,
2007) studies methods to recombine different translation hypotheses at a sub-sentential
level. This is achieved by constructing a confusion network of sub-sentential units from
the hypotheses and then choosing a path in the network via consensus translation.

Finally, Schroeder et al. (2009) combine different inputs prior to translation into
an input lattice (Xu et al., 2005; Dyer, 2009). The challenge of this approach is to
combine input sentences in different languages into one lattice structure. This approach
is motivated by the fact that different languages exhibit different word orders and orders
in lattices should be transitive. Thus this method is only applicable to languages with
approximately similar word orders.

6.3 NMT baseline and experimental setup

In this section we provide details on our NMT baseline. The general background on
NMT can be found in Section 2.2. Here we only report the choice of concrete neural
models and hyper-parameter settings and give details on the training and decoding
procedures (Section 6.3.3). We also describe the data selection (Section 6.3.1) and
preprocessing procedures (Section 6.3.2), including vocabulary selection, which is
necessary to define the output layer of the NMT system.

6.3.1 Data
In the next chapter we describe a method to combine predictions of NMT systems
for different language pairs with a common target language, which is also known as
a multi-source translation scenario. For this, we choose to experiment with German-
English and French-English. We choose these languages to introduce diversity into
ensembles (see Section 6.1 on the importance of diversity). German is structurally
substantially different from both English and French, while English and French are
structurally similar and are typically easily mutually translatable (Bojar et al., 2014).
We expect a French-English system to perform better than a German-English system.
But also, given the linguistic intuition about the structural differences between these
translation pairs, we hope that the two systems compensate for each other’s weaknesses
when combined in an ensemble.

To ensure that the only distinguishing factor between different language pairs is
the source language, we choose training data that is to a large extent parallel across all
three languages, i.e., it is a trilingual parallel text with small bilingual portions. To this
end, we train all of our systems on the TED talks data set (Cettolo et al., 2012). All
available data is split into a training and a validation set to train individual NMT systems,
a training and a validation set to train a combination function for ensembles, and a
separate test set for the final evaluation. The training data for learning the ensemble
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combination function and the test set must be fully parallel across all languages (tri-
parallel), see details in Section 7.3. Therefore, we extract our test set from the available
trilingual data and do not use the test sets provided by Cettolo et al. (2012) since they
are not parallel across all three languages. Of course, the test set does not overlap with
the training data. Table 6.1 provides some statistics of the data.

6.3.2 Data preprocessing

Prior to splitting the data into the training, validation, combination training, and testing
data sets, we perform some basic data preprocessing: tokenization (with a simple
in-house tokenizer), lowercasing, and deduplication.

In NMT, it is important to predefine the source and target vocabularies in advance,
since the former defines the dimensions of the source embedding tensor, and the latter
defines the dimensions of the target embedding tensor and the dimensions of the output
layer. This is usually done by sorting observed word types based on their frequency
and selecting the top k, while mapping the rest of the word types to hunki (Sutskever
et al., 2014). For the French and German source sides, we select the top 35,000 words.
For the target side, it is necessary to make the output vocabularies exactly the same for
both language pairs at the ensemble combination stage. To this end, we precompute
the intersection of the target vocabularies of the two language pairs and rank the word
types by their summed frequencies in order to select the top k target words. We set k to
24,000 for English, i.e., the target language.

6.3.3 NMT system: model details, training, decoding

Our baseline is a sequence-to-sequence model with attention, see Section 2.2.1. We use
the global attention mechanism with the dot score function from (Luong et al., 2015a):

score(ht
, H

s) = (ht)>h
s
, (6.1)

where score is a distribution vector over source states which is fed to a softmax function
(see Equation 2.16 in Section 2.2.1).

The source encoder is a four-layer unidirectional LSTM. The final hidden states
of the encoder are used to initialize the decoder, which is also a four-layer unidirec-
tional LSTM. We set the size of all embeddings and hidden layers to 1, 000. We use
LSTM units for the recurrent hidden states and apply dropout with a probability of 0.2
(Srivastava et al., 2014).

For network training we use the in-house NMT system Tardis implemented in
Torch.1 All parameters are initialized by randomly drawing from a uniform distribution,
except for the embeddings, which are initialized by sampling from a Gaussian with
unit variance. We optimize the network with respect to the negative log-likelihood, see
Equation 2.17 in Section 2.2.2. We use stochastic gradient descent with mini-batches
of size 20 with a learning rate of 1 and a decay rate of 0.8 after the fifth epoch. Each
translation system is trained for 20 epochs. During training we limit the lengths of

1https://github.com/ketranm/tardis
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6. Background: Ensembles, System Combinations, and Baselines

predicted sequences to 50 tokens. For each language pair we train four systems by
sampling different initial parameter values.

Decoding is done with beam search. In all of the translation experiments the beam
decoding size is set to 20. We evaluate performance with BLEU Papineni et al. (2002)
and METEOR Lavie and Denkowski (2009), see Section 2.3.1 for a description of the
metrics.
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7
Ensemble Learning for Multi-Source

Neural Machine Translation

7.1 Introduction
It has been shown for various machine learning applications that combining multiple
systems, referred to as ensembling, can substantially improve performance (Wolpert,
1992; Dietterich, 1999; Kuncheva and Whitaker, 2003; Rokach, 2010). In this chapter
we explore ensemble combinations of neural machine translation systems at decoding
time.

System combination has also been successfully applied to statistical machine trans-
lation system (SMT) (Och and Ney, 2001; Matusov et al., 2006; Schwartz, 2008;
Schroeder et al., 2009). However, system combination methods in the phrase-based
(Koehn et al., 2003, PBSMT) and hierarchical (HSMT) frameworks (Chiang, 2007)
tend to be rather complex, requiring potentially non-trivial mappings between partial
hypotheses across the search spaces of the individual systems. For this reason SMT
system combination is often limited to combining hypotheses from the n-best lists
(Och and Ney, 2001). Alternatively, SMT systems can also be combined by combining
different inputs in a single structure as is the case for multilingual system combination
(Matusov et al., 2006; Schroeder et al., 2009). Unfortunately, input sentences in differ-
ent languages may have very different structure, requiring elaborate methods to align
sentences, which means that multilingual system combination is in practice restricted to
languages with similar structures.

In contrast, the recently emerged neural machine translation (NMT) framework
offers a straightforward way to combine multiple systems. Most of the current NMT
architectures (Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014; Bahdanau et al.,
2015) formalize target sentence generation as a word sequence prediction task. At each
time step during sequence prediction, a translation system outputs a full probability
distribution over the target vocabulary. Therefore, the task of NMT system combination
can be cast as an ensemble prediction task and a variety of existing general prediction
combination methods can be applied. While this chapter focuses on word-based models,
the ensemble methods discussed in this chapter can be applied to character-based
sequential NMT models (Ling et al., 2015) in a very similar fashion.

Ensemble prediction is commonly used in NMT. It is typically used during the
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7. Ensemble Learning for Multi-Source Neural Machine Translation

decoding stage, where multiple pre-trained NMT systems are combined to make a
prediction. A commonly reported method is uniform weighting of the output layers,
i.e., distributions over the target vocabulary, produced by different trained instances
of the same NMT architecture for the same language pair (Bojar et al., 2014). We
use this method as a baseline where variations of the same system are produced by
different parameter initializations. Alternatively, it is also possible to take parameter
snapshots from different training epochs (Sennrich and Haddow, 2016). Recently, a
new type of ensemble has been introduced in NMT: multi-source ensembles (Firat et al.,
2016), which is a set of NMT systems that translate from different source languages
into the same target language. To use this ensemble method, it is necessary to have a
multi-parallel input set, whereby input parallel sentences in different languages have
the same meaning.

For any method of inducing an ensemble set, the essential criterion is to make the set
diverse (Kuncheva and Whitaker, 2003). Intuitively, this is because different predictors
are likely to produce slightly different errors for different input instances, and if their
predictions are combined, the overall error is reduced. Different random initializations
force the same training algorithm to converge to different local optima. Different source
sentences may differ quite significantly in their structure and thus present a different
training task to an NMT learning algorithm. Multi-source ensembles offer a linguistic
source of variation for translation systems, which may range from the way particular
words are translated to the way the whole sentence is structured. This is in line with the
common observation that translation systems trained on language pairs with different
source languages differ in their performance (Bojar et al., 2014).

Besides the linguistic interest, multi-source translation can be applied in practical
real-life scenarios. Examples include multi-lingual websites, where some content
has already been made available in a couple of languages (by human translators) but
needs to be further translated into other languages. Another example are parliamentary
proceedings, typically available in many languages. Furthermore, Firat et al. (2016)
study neural multi-source translation in the context of zero-resource translation, which is
a setting where no parallel resources are available for training. In their experiments they
show that multi-source pivot-based translation improves translation quality compared to
simple pivot-based translation.

In this chapter, we compare ensembles for a number of combination methods and
evaluate how much performance gain they provide in the multi-source translation setting.
Specifically, we aim to tackle the following research questions:

RQ3 Can we exploit the variation in cross-lingual correspondence and improve transla-
tion quality with multi-source NMT ensembles?

RQ3.a. To what extent does ensemble performance depend on the quality of indi-
vidual translation systems that are part of the ensemble?

RQ3.b. Is there systematicity in what a translation system for a given language pair
is good at and bad at? Can we exploit this systematicity for multi-source
translation?

RQ3.c. How do multi-source ensembles compare to ensembles of NMT systems
for single language pairs trained with different initialization seeds?
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7.1. Introduction

All previous approaches employing NMT ensembles do so by applying a simple
linear, uniform weighting of the output probability distributions. However, it seems
intuitive to assign different weights to different systems, especially in the case of multi-
source translation. Also, so far, multi-source ensembles (Firat et al., 2016) have only
been evaluated for French-English and Spanish-English. All of the three languages,
especially French and Spanish, are very similar, and for this scenario their contribution
may be close to equal. In order to explore the diversity offered by linguistic variation, we
chose to evaluate on English, German and French. German is structurally substantially
different from both English and French, while English and French are quite similar and
are typically easily mutually translatable (Bojar et al., 2014).

The inclusion of language pairs of different degrees of translation difficulty also
allows to test how much translational difficulty influences ensemble quality (RQ3.a).
Previous literature already contains a partial answer to this question. Namely, different
parameters snapshots of a model’s training are models of different degrees of generaliza-
tion (Sennrich and Haddow, 2016) and thus of different degrees of potential translation
quality. In our experiments, however, we are exploring how systems trained to achieve
their highest generalization work together.

As we mentioned above, the performance of translation systems can vary with
respect to different aspects of translation quality, such as correct reordering or lexical
translation choice. In order to combine the strengths of individual systems, we use
a held-out set to train different combination functions sensitive to specific prediction
contexts. This will help us answer RQ3.b. We consider two types of combination:
global (fixed weight for every prediction instance) and context-dependent, where weights
are estimated for every prediction step. The latter is more fine-grained and is in principle
able to capture more linguistic nuance, but may be difficult to train due to data sparsity.

The contributions of this chapter can be summarized as follows:

1. We start with a simple experiment motivating our interest in multi-source ensem-
bles and offering preliminary answers to RQ3 and its subquestions (Section 7.2).

2. We propose two learning methods of combination function learning (Section 7.3).
The combination function is designed to be learnt on a small amount of data. In
total we compare three kinds of ensemble combination:

(a) uniform combination (baseline);
(b) global combination: we learn a vector of weights to produce a weighted

sum of decoders’ outputs during decoding;
(c) context-dependent combination: we train a function that outputs combina-

tion weights for each prediction step i during decoding.

3. We evaluate uniform, global, and context-dependent combination methods for
two kinds of ensemble induction methods (Section 7.4):

(a) monolingual ensembles, obtained by different random initializations of
NMT parameter values;

(b) multi-source ensembles, obtained by using semantically equivalent source
sentences in different languages to translate into the same target language
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7. Ensemble Learning for Multi-Source Neural Machine Translation

(translation systems with different source languages but the same target
language).

Additionally, we propose a hierarchical combination method which prevents
overfitting and further improves translation quality.

Since we are in the realm of decoding-time ensembling, we do not modify the
internals of an NMT system and it can be viewed as a black box. The details of the
NMT architecture, as well as the hyper-parameter settings and training schedules, are
provided in the background chapter (Section 6.3). All models in this chapter were trained
on TED talks data. As we are working with decoding-time multi-source ensembles,
where the source sides have to be parallel, we needed to have a multi-parallel test set.
The details of the data setup are provided in Section 6.3.1. We trained German-English
and French-English NMT systems. We obtained the test set by sampling 3,000 multi-
parallel sentences from the training set (see Section 6.3 details). All translation outputs
are evaluated with respect to general purpose translation quality metrics, namely BLEU
and METEOR (see Section 2.3.1 for details about the metrics).

7.2 Decoding-time ensemble prediction in NMT and
multi-source ensembles

In this section we provide the technical details about how we apply ensembling at
decoding time. Additionally, we motivate multi-source ensembles by designing an
experiment showing that this kind of ensemble opens up possibilities for non-trivial
combination methods (Section 7.2.2).

Generally speaking, in order to specify an ensemble method, one needs to specify
how a set of predictors is induced and how they are subsequently combined to make
joint predictions (Rokach, 2010). For the construction of the set of predictors, it is
essential that they make diverse predictions in order to decrease the prediction error. Our
goal in this chapter is two-fold: First, we want to understand how different ensemble
induction methods influence the quality of translation. We consider ensembles obtained
by different random initializations of the same model prior to training (we refer to them
as monolingual ensembles) and multi-source ensembles. Second, we want to find the
optimal way to combine individual predictors into an ensemble. In the remainder of this
section we provide a detailed technical description of how we do ensemble combination,
and present experimental analysis of achievable translation improvements for different
NMT ensemble methods.

7.2.1 NMT ensemble combination during decoding
As mentioned above, we concentrate on ensembles at decoding time and do not consider
co-training of predictors in an ensemble set. In NMT, the decision of which word
to predict is based on the output layer. A standard way to achieve decoding-time
ensembling is to combine the output layers1 of individual translators to obtain an

1See definition of output layer in Equation 2.13, Section 6.3.
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7.2. Decoding-time ensemble prediction in NMT and multi-source ensembles

ensemble prediction (Equation 7.1). The word thus predicted by an ensemble is then
fed as input at the next prediction step in a sequence-to-sequence model. Figure 7.1
provides a graphical illustration of NMT ensemble prediction.

y
E = comb(y1

, ..., y
m) (7.1)

where y
1
, ..., y

m are output layers of individual NMT systems in an ensemble.
We would like our method to be applicable to situations where a trilingual parallel

corpus—needed to train a multi-source combination function—is a scarce resource,
which is a realistic assumption. Therefore we are interested in combination functions
with a small number of trainable parameters. In our approach, we concentrate on scalar
prediction combination:

comb(y1
, ...; , ym) =

mX

i=1

wiy
i
, (7.2)

where
P

i wi = 1 are scalar weights.2

7.2.2 Exploring combination weights for NMT ensembles
Both single-source ensembles with different initializations Sutskever et al. (2014) and
multi-source ensembles have been used before Firat et al. (2016). However all of the
previous approaches use simple, uniform weighting. We refer to this method as uniform
combination, as it does not assume anything about the contributions of the individual
predictors. In order to explore the bounds of achievable performance, we perform grid
search over the global combination weights hw1, w2i for a two-element ensemble (i.e.,
the weights are constant throughout the decoding run). We run the experiment for both
monolingual and multi-source ensembles.

The results of the grid search experiments are presented in Figure 7.2 and sum-
marized in Table 7.1. We observe an increase in performance for both BLEU and
METEOR for all ensembles. Moreover, we see that the metric scores are higher in the
region of 0.5, which justifies uniform ensemble combination. At the same time, none
of the graphs are completely symmetric: the highest scores are achieved with a weight
value of 0.6 or 0.7 assigned to the stronger system in an ensemble.

It is not surprising that different individual systems may have different relative
contributions to the ensemble, and it suggests to further investigate combination methods
that could distinguish between the relative contributions of the individual members
of an ensemble, as addressed by RQ3.b. We will distinguish between two kinds of
trainable combination functions: global and context-dependent. The former combines
NMT predictions in the same way for every input at every decoding time step. The latter
can combine predictions differently depending on the current context during decoding.
We describe the corresponding learning methods in more detail in Section 7.3.

2In addition to the methods described in this chapter we also considered combining the logit layers, i.e., y
prior to softmax operation. This can be seen as doing geometric mean combination. However, the resulting
ensemble system under-performed the stronger individual system of the ensemble, therefore in the rest of the
experiments we proceeded with the arithmetic mean function only.
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7.3. Combination function learning

Table 7.1: Summary of the grid search of the scalar combination weights depicted in
Figure 7.2.

best system in ensemble uniform combination best combination
ensemble BLEU METEOR BLEU METEOR BLEU METEOR

fr1,fr2!en 27.8 55.8 29.2 58.0 29.3 58.1
de1,de2!en 20.5 49.10 21.8 50.4 21.9 50.4

fr,de!en 27.8 55.8 29.5 58.3 30.2 58.9

The second major finding of our parameter sweep is that the multi-source ensemble
gives a higher upper bound performance than single-source ensembles, even though
one of the ensemble members is substantially weaker in its individual performance.
This finding reinforces the original linguistic motivation for multi-source ensembles
with which we can obtain improvements of up to 0.87 BLEU and 0.77 METEOR over
the highest single-source ensemble result. This finding gives a preliminary answer to
RQ3.a, tackling the relation between individiual quality and ensemble quality, and
RQ3.c, addressing the differences between monolingual and multi-source ensembles.

In the following sections we describe how we make use of the uncovered potential
of the two types of ensembles. We are especially interested in making full use of the
complementary strengths of systems with different source languages.

7.3 Combination function learning
Having established that individual systems do not contribute equally towards correct
predictions in single-source and multi-source ensembles, we develop an approach that
is capable of training a function that can combine them optimally. For the case of
multi-source ensembles the combination training set is a trilingual set consisting of
19, 000 lines (see Section 6.3.1 for details). We deliberately chose a small data set to
establish how applicable the method is in a low-resource scenario. We also use this
training set to train single-source ensembles. In this section we present two kinds of
combination models, as well as their training details.

First, when a scalar combination vector is fixed for every prediction step, we refer
to it as global combination. The optimized function is a vector hw1, ..., wmi, where m

is the size of the ensemble set. We train it with AdaGrad (Duchi et al., 2011) for 10
epochs with a learning rate of 0.001.

Second, we explore a more fine-grained combination method, where the contribu-
tions of individual predictors are assessed based on the decoding state. We adapt a
mixture of experts model (Jacobs et al., 1991) to learn the context-dependent combina-
tion. The original mixture of experts model works as follows: We have a set of experts
(predictors) and an input x, which is fed to each of the predictors. x is also fed to a
gating network which outputs weights for each of the experts. The resulting prediction
is a weighted sum of experts:
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7. Ensemble Learning for Multi-Source Neural Machine Translation

(a) BLEU scores for Fr, De into En ensembles.

(b) METEOR scores for Fr, De into En ensembles.

Figure 7.2: Results of a 2-ensemble parameter sweep for the two types of ensemble
induction. The x-axis represents the value of the first combination weight w1. Number-
marked points are the maximal observed scores for a given ensemble. The horizontal
gray lines represent the scores of individual NMT systems used within the ensembles.

110



7.3. Combination function learning
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7. Ensemble Learning for Multi-Source Neural Machine Translation

µ =
X

i

giµi, (7.3)

where µi is the output of the i-th expert and gi is its gating weight. Here, we realize
context dependence by making use of a parameterized gating network.

Adapting the mixture of experts model (Jacobs et al., 1991) to the NMT scenario
presents itself with a few challenges: NMT models are sequential, in the sense that the
output at time step i depends on the current input word and the previous hidden state,
which encodes the translation history for a given expert. This leads to two problems:
the input representation is specific to an expert and it is also quite complex as it is
a combination of hidden state and previously predicted word. We address the first
problem by simply concatenating vectors which are inputs to each of the translators at
time step i. There are a number of ways to address the second problem. Essentially,
we would like to think of input x as some abstract decoding state corresponding to the
context of the ensemble translation process at time step i.

In the first set of experiments, we opt for using the already available representations
for the decoding state x, rather than formulating an explicitly, linguistically-motivated
definition. Given the complex modular structure of an NMT model, there are a number
of hidden states, such as the hidden recurrent states (h), the context vector (c), or the
non-recurrent hidden state eh, which can be chosen to represent the decoder state which
is the input to the gating network; see Section 2.2 for explanation of notation. In our
approach, we use the last hidden state eh. We choose eh because it already captures a
large amount of information such as the previously predicted word, previous hidden
state, and attention distribution over the source words.3 In addition, the output layer
is more directly connected to eh than any of the states from lower layers. This is an
important consideration given that the amount of training data is severely limited.

The architecture of our context-dependent combination function is presented graphi-
cally in Figure 7.3. The ensemble output y

E is computed as in Equation 7.4, where gj

is the gating weight, x represents the abstract decoding state at step i and f
j(x) is its

expert-specific representation (for expert j), namely ehj :

y
E(xi) =

X

j

gjµj(xi) (7.4)

µj(xi) = softmax(Wyf
j(xi)) (7.5)

f
j(xi) = ehj

i (7.6)

g = softmax(Wgatehgate + bgate) (7.7)

3In our preliminary experiments, we also experimented with using other layers of the NMT model as
the decoding state x: the top-most recurrent layer of decoder, the context vector, and the embedding of the
previously predicted target word as the decoding state. However, using the non-recurrent hidden state eh
achieved the best overall results.
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7.4. Experiments

Table 7.2: Translation results for individual NMT systems. For each language pair we
trained four NMT systems with different weight parameter initializations. Decoding
beam size is equal to 20. For each pair we provide the best score and the mean score
with standard deviation.

system BLEU METEOR

de! en best 20.58 49.16
de! en mean 20.31 ± 0.34 48.88 ± 0.33
fr! en best 27.80 56.91
fr! en mean 27.03 ± 0.87 56.05 ± 0.82

hgate = tanh(Whid[f
1(x); ...; fm(x)] + bhid) (7.8)

gj is the j-th output unit of the gating network computed as in Equation 7.8. The
gating network is a feed-forward neural network with one hidden layer of size 250
and a tanh non-linear activation function. The output layer is of size m, where m is
the number of experts. Values of the output layer are normalized by applying softmax.
The mixture model allows to back-propagate errors both to the gating network and the
experts themselves. However, considering the small size of the training data and the
complexity of the experts, in terms of number of parameters, full back-propagation
is likely to result in over-fitting. Therefore, we only update the weights of the gating
network, where the weights of the NMT predictors have been pre-trained separately.

7.4 Experiments
In Section 7.2 we have shown that NMT ensembles, and in particular multi-source
ensembles, can improve translation quality. We proposed two methods to learn an
ensemble combination function from data, which is more capable of exploiting the
potential of ensembles than simple uniform weighting. In this section we validate these
methods in translation experiments.

Translation results for individual systems comprising the ensembles are summarized
in Table 7.2; see Section 6.3 for description of the data and NMT architecture. We
compare the two ensemble induction methods, which are same-source systems with
different parameter initializations and multi-source set, and apply all combination
methods. For each ensemble set type, we evaluate ensembles of size 2 and size 4. All
ensemble results are presented in Table 7.4.

As we explain in Section 6.3.2, we make sure, prior to training of the individual
systems, that the output vocabularies of the two language pairs are the same. This will
allow to do ensemble combination.

Notation. The notation below should be understood as follows: dek+l
k ! en

stands for a single-source ensemble of l German-English systems. Analogously for
French-English. de,fr ! en is a multi-source ensemble of size 2, and we use subscript
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7. Ensemble Learning for Multi-Source Neural Machine Translation

Table 7.3: Comparison of individual German-English and French-English systems,
empirical global combination upper bound (as estimated in Table 7.1), context-sensitive
combination (Equation 7.4) and random mixture of experts combination systems. The
latter result is an average over runs with different random seeds.

system BLEU METEOR

de ! en 20.5 48.9
fr ! en 27.8 56.9
fr, de ! en global upper bound 30.2 58.9
fr, de ! en context-sensitive combination 30.3 59.2
fr, de ! en random gating combination 26.6 55.7

indices if there are more than 2 systems in an ensemble covering the same source
language. We only apply context-dependent combination for ensembles of size 2 to
avoid overfitting for bigger ensembles. Note that this does not prevent the application
of our context-dependent combination method to bigger ensembles, as we can combine
systems hierarchically.

In a hierarchical ensemble the set of predictors is divided into disjoint subsets and
each of the subsets is combined separately. The resulting combination systems can
then be treated as predictors in a new ensemble, and thus can be further combined
for joint prediction. In our case the maximal number of predictors is 4, therefore
our hierarchical ensembles have 2 levels. Hierarchical ensembles allow one to make
prediction combinations multiple times which can further boost the potential of an
ensemble. Since in this chapter we only consider a low-resource scenario with a small
amount of training trilingual data, we do not train a hierarchical combination function.
Instead, we perform global or context dependent combination for ensemble sets at the
bottom level (level of individual NMT systems) and then weight their outputs uniformly
(level of combined systems). We use curly brackets to denote hierarchical combination.

One can see in Table 7.4 that multi-source ensembles generally perform better that
single-source ensembles. The largest improvements for multi-source ensembles are due
to our context-dependent combination method. This result supports the hypothesis that
the trained gating network is able to learn to differentiate between contexts where one
of the individual systems performs better than the other. However, based on this result
alone, it is not clear how much the observed improvement is due to the effectiveness of
the gating network. Since we saw in our grid search experiment (Figure 7.2), even the
most disadvantageous combination gives some improvements over individual predictors.
So even if the gating network did not learn a lot, on average we are likely to get
improvements. First of all, we note that a multi-source ensemble with contextual
combination outperforms the empirical upper bound estimated in Section 7.2.2 of global
combination, although the difference in BLEU is marginal. This suggests that the gating
network at least is able to learn the average relative performance of the systems in the
ensemble. Additionally, we ran an experiment for an ensemble of a German-English

114



7.4. Experiments
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7. Ensemble Learning for Multi-Source Neural Machine Translation

and a French-English systems whereby the gating weights were sampled uniformly
(under the constraint that they are positive and sum up to 1). The results are summarized
in Table 7.3. We can see that the randomly mixed ensemble obtains substantially lower
scores than either the global upper bound or the context-sensitive combination. The
results are also lower than the French-English system, but outperform the German-
English system. It is likely that in a subset of prediction steps the random gating weights
were “correct”, thus explaining the fact that the randomly mixed system is stronger than
the weaker system in the ensemble.

On the other hand, for single-source ensembles, context-dependent combination
(by itself) does not provide additional improvements as compared to global weighting.
This suggests that the variation found in single-source ensembles is not as systematic
as in multi-source ensembles. As future work, one could perform a more linguistically
oriented analysis to identify contexts triggering a high degree variation in ensembles.
The results of such analysis will also provide the basis for a more linguistically oriented
definition of the decoding state x as defined in Section 7.3.

Previous approaches using NMT ensembles often report performance increases
for ensembles consisting of a larger number of systems, typically 8 or 12. One could
therefore speculate that ensembles of 4 systems are not enough to significantly increase
diversity as compared to an ensemble of size 2. Of course, our result are also influenced
by several other factors such as the choice of languages, training data, etc. However, we
should point out that hierarchically combining a set of 4 systems does improve transla-
tion quality. At this point, hierarchical combination still requires further investigation,
but for the time being, it can be seen as a simple approach to further improve translation
quality.

7.5 Conclusions
In this chapter we compared existing ensemble set induction methods for NMT and
proposed two general system combination methods: global (across instances) weighting
of predictors’ outputs and context-dependent weighting. Our main goal was to answer
RQ3: that translation systems from different source languages into the same target
language have complementary strengths and weaknesses in terms of translation perfor-
mance. We also introduce an approach that can exploit the respective strengths and weak-
nesses to achieve better translation quality. In our experiments with German-English
and French-English we found that multi-source ensembles yield the best performance,
compared to the individual translation systems, as well as compared to single-source
ensembles of NMTs produced by different random initializations. This is an interesting
finding because individually the two systems differ substantially in their translation
quality. We also found that ensemble combination based on a gating network that
decides how to combine systems at every prediction step achieves better performance
as compared to a global (constant) combination function or uniform weighting in the
majority of cases.

We can now revisit RQ3:

RQ3 Can we exploit the variation in cross-lingual correspondence and improve transla-
tion quality with multi-source NMT ensembles?
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RQ3.a. How does ensemble performance depend on the quality of individual trans-
lation systems that are part of it?
Our experiments with multi-source ensembles showed that a substantially
weaker NMT system (as evaluated by BLEU and METEOR) still improves
translation quality when added to a strong NMT system. At the same
time, monolingual ensembles of strong NMT systems with approximately
the same quality actually produced lower quality translation output. This
stresses the importance of diversification in NMT ensembles. The fact
that there is no straightforward dependence between individual quality and
ensemble quality in NMT is also supported by previous literature (Sennrich
and Haddow, 2016), where ensemble combination is done over different
training snapshots of the same system.

RQ3.b. Is there systematicity in what a neural translation system for a given lan-
guage pair is good at, and what aspects of the target side it reproduces
suboptimally?
We proposed to train a context-dependent combination function for NMT
ensembles, which decides on the combination weights for each predicted
target word separately. This method increased translation output quality for
both monolingual and multi-source ensembles. Increasing metric scores
for monolingual ensembles suggests that the combination function is able
to learn even subtle distinctions in prediction behavior between models
produced by different initializations. The best results overall were obtained
by applying this combination method to multi-source ensembles. We stress
that this ensemble method produced scores higher than the weaker system
by almost 10 BLEU and 9 METEOR. This results implies that there is
substantial difference in the prediction behaviors of NMT systems for dif-
ferent source languages and our combination learning method is capable of
uncovering it.

RQ3.c. How do multi-source ensembles compare to ensembles of NMT systems
for single language pair trained with different initialization seed?
The translation experiments in this chapter demonstrated that having dif-
ferent source languages yields an NMT ensemble diversification method
which can be used to obtain improvements in translation quality. Our results
suggest that it is a better source of diversity than monolingual ensembles.
We also proposed and evaluated ensemble combination methods that can
implicitly capture the diversity and learn to differentiate between local
contexts where each individual system is likely to contribute more to on
optimal prediction. Future work could include research on how our general
knowledge about linguistic differences between some given languages relate
to multi-source ensemble performance with these source languages.

Overall, our findings about multi-source ensembles is a compelling result and it
leaves us with a number of questions for future work. First, can we characterize
linguistically what types of contexts are mores suited to be translated by a German-
English system, and which are more suited to be translated by a French-English system?
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7. Ensemble Learning for Multi-Source Neural Machine Translation

Gaining insights in that direction can help us answer another question: is there a better
way to represent the current context which is the input to the gating network? In this
chapter we used a concatenation of each system’s last hidden state eh, but a potentially
more effective and linguistically more intuitive representation may be found. Finally, it
would be interesting to see to what extent our approach can benefit from three or more
mutually different source languages.
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8
Conclusions

This is the final chapter of the thesis. In Section 8.1 we review our research questions
and the main findings of the thesis. In Section 8.2 we discuss the limitations of our
methods when answering the research questions and discuss some directions for future
work.

8.1 Main findings

The central topic of this thesis is the exploration of properties that are common across
languages and properties that differentiate them, in the context of machine translation.
The field of machine translation aims to render the content expressed in one language
into another language. Therefore, the difficulty of this task is proportional to how
different the given two languages are in expressing the same information. In the first
part of the thesis, we focus specifically on the structures that each given language uses
to express the same semantics. The core research goal of the first part of the thesis is to
validate the hypothesis that every language has a level of representation which is shared,
to some extent, by all languages. This level of representation is the syntactic structure of
a sentence, i.e., the way pieces of information are grouped together to form an utterance.
The implication of this hypothesis is that one can narrow down the search for translation
correspondences between units of any two languages, as it must to some extent be
consistent with the syntactic structure of both languages. In the second part of the thesis,
we make use of the linguistic idea that despite the observation that all natural languages
share certain ways of expressing content, there are also many features that can account
for the observed diversity of languages. We adopt the hypothesis that the differences
between languages are systematic, which implies that the task of learning the translation
correspondence for two different language pairs with one common language will be
difficult in different ways.

These are very broad ideas, which have been explored before in machine translation
and natural language processing. In this thesis we narrowed down their exploration
by proposing specific models that modify existing machine translation baselines by
incorporating these ideas about the nature of translation correspondence. We investi-
gated them in a series of research questions. Below we revisit the research questions,
explaining how we addressed these questions and what findings we obtained.
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RQ1 Can we improve reordering by modeling sequences of syntactic structures repre-
senting basic operational units of translation?

To address this question, we proposed to extend an existing model of translational
correspondence, bilingual language models (BiLMs), which model sequences of el-
ementary translational units. The concrete version of BiLMs that we worked with
defined the translational units to be minimal, i.e., non-decomposable. We proposed a
new representation for BiLM tokens, which incorporates parts of a source dependency
tree corresponding to the words in a given bilingual token. Our idea was to devise
a more abstract representation, but also to use complex syntactic annotation, which
is likely to capture word ordering regularities and is also likely to be similar across
languages (given the hypothesis discussed above) thus capturing reordering regularities.
We integrated this model as a feature in the log-linear combination in a phrase-based
SMT system.

RQ1.a. Can the representations only include the local syntactic information of a
node in a syntactic parse? What is the minimum context that the local
representation should incorporate?
DepBiLMs are BiLMs with local syntactic representations, defined in terms
of the immediate vicinity of a node in a dependency tree. Our extensive
experiments showed that depBiLMs improve translation quality overall, and
reordering in particular, as demonstrated by reordering-sensitive metrics and
translation experiments with an increased distortion limit. We compared
the translation performance of depBiLMs to BiLMs with simple POS-based
representations. The latter showed some of the worst results, only barely
improving upon the baseline. From this we can conclude that there should
be a certain degree of specificity in the syntactic representation to improve
translation.

RQ1.b. How do local syntactic representations compare to representations including
explicit lexical information of the basic translational units?
In general, depBiLMs produced translations at least as good as the one
produced by lexicalized BiLMs. We have found some indications that they
in fact capture complementary phenomena (at least for Arabic-English),
whereby Lex•Lex is better at more specific and short-term reordering, while
depBiLMs capture more general patterns of translation correspondence.
We also note that even though depBiLMs were trained on a substantially
smaller training corpus, they were able to achieve the same or better level
of generalization (which is expected given the smaller and more abstract
vocabulary).

RQ1.c. What kind of reordering phenomena are captured by such models?
As we mentioned before, depBiLMs tend to be good at reordering in general.
We could find evidence of this model to perform especially well at some
specific subclass of reordering patterns. But given the abstract definition
of the depBiLM representations, it is expected that it would be more of a
‘universal’ reordering model, while more fine-grained lexicalized BiLMs
capture better reordering phenomena for specific classes of words.
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Overall, the findings relevant to RQ1 entail that it may be sufficient to only specify
local syntactic structure of words to capture regularities about the overall word order
of a sentence. Moreover, this syntactic information is transferrable via translation
correspondence, to capture reordering patterns. The idea of using local syntactic
information to capture translational regularities has recently been reinterpreted in the
context of NMT (Bastings et al., 2017).

The next research question is not about whether syntactic structures help express
certain translational phenomena, but how similar syntactic structures for translational
equivalents are.

RQ2 Is there a systematic mapping between source and target syntactic representations
in a parallel sentence and can it be used to improve translation?

We address this very general question by assuming that there is such a mapping
and by using sub-sentential translation correspondence (word alignments) to derive
target language structures related to given source syntactic structures (obtained from a
language-specific parser). We train a syntactic language model on the derived target-side
parser and test whether this model, when incorporated as a feature in a phrase-based
system, helps improve translation quality.

RQ2.a. Is there a universal characterization of a mapping between source and target
structure? Can this characterization be used to constrain the decoding
process to produce better translations?
In order to answer this question, we implemented and tested an existing
model realizing such an approach, namely the syntactic cohesion model.
Including it in the form of soft constraint features did not result in an
improvement of translation quality for either of the language pairs. This
entails that using ad-hoc assumptions about the nature of the source-target
syntactic mapping may be too crude. Instead, we propose our own approach,
where we first separately derive a mapping with elementary projection rules
and then learn a statistical syntactic language model over it.

RQ2.b. Can the mapping be defined in terms of projection constraints between
elementary parts of source and target structures? Can we fit a statistical
model over the resulting corresponding source and target structures to
characterize the overall mapping?
We proposed a simple set of rules, which projects a source structure onto the
target. We used a structured language model to learn a characterization of
target sequences parsed in this fashion (a model called bilingual structured
language model, BiSLM). The model yielded statistically significant im-
provements for both Arabic-English and Chinese-English under rescoring
and decoding settings. This result suggests that the BiSLM indeed captures
the systematic relation between source and target syntactic structures. This
correspondence can be used as a feature to improve translation quality, as
measured by improvements in translation evaluation metrics. At the same
time, we have some evidence that the models in their current form are too
expressive and also accept incorrect translation hypotheses.
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RQ2.c. What are the important mapping constraints that result in structured lan-
guage models improving translation output?
We found that the parameter regulating how to incorporate unaligned target
words had the most effect. The parameter regulating how to deal with
non-cohesive translation did not appear to have an effect, suggesting that
translations (for our given baselines) actually tend to be cohesive. This is
also a potential explanation for why the cohesive constraints from RQ2.a

did not contribute to translation quality. Finally, we experimented with a
few labeling strategies and found that no or very simple labeling produced
better metric scores.

We must note that the idea of deriving syntactic structure of a language based on
syntactic correspondence is not entirely new and underlies (in a somewhat different
form) a particular line of research in syntax-based SMT (Wu, 1997b; Chiang, 2007;
Stanojevic, 2015). However, we showed that it is not necessary for syntax to be at the
center of a translation framework, and that it can be useful as a feature of an essentially
sequential phrase-based SMT. This finding is encouraging for other MT frameworks,
such as NMT, and in fact recently a model has been proposed that incorporates a
mechanism into a sequence-to-sequence NMT model which keeps track of how much
the source tree has been attended to during decoding (Chen et al., 2017).

The next research question is answered in the second part of the thesis, which aims
to exploit the systematic diversity among languages and language pairs.

RQ3 Can we exploit the variation in cross-lingual correspondence and improve transla-
tion quality with multi-source NMT ensembles?
We apply the assumption that systematic differences between language pairs can
induce diversity into an ensemble set of NMT systems. Diversity is a necessary
property for an ensemble set to improve the quality of individual predictions. We
assume that relatively different languages (as follows from linguistic theory) are
likely to produce systematically different kinds of translations when being used
as source sides in translation systems with a common target side.

RQ3.a. How does ensemble performance depend on the quality of individual trans-
lation systems that are part of it?
Our experiments with multi-source ensembles showed that a substantially
weaker NMT system (as evaluated by BLEU and METEOR) still improves
translation quality when added to a strong NMT system. At the same time,
monolingual ensembles of strong NMT systems with approximately the
same quality actually produced lower quality translation outputs. This
stresses the importance of diversification in NMT ensembles. The fact
that there is no straightforward dependence between individual quality and
ensemble quality in NMT is also supported by previous findings in the
literature (Sennrich and Haddow, 2016), where ensemble combination is
done over different training snapshots of the same system.

RQ3.b. Is there systematicity in what a neural translation system for a given lan-
guage pair is good at, and what aspects of the target side it reproduces
suboptimally?
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We proposed to train a context-dependent combination function for NMT
ensembles, which decides on the combination weights for each predicted
target word separately. This method increased translation output quality
for both monolingual and multi-source ensembles. Increasing the metric
scores for monolingual ensembles suggests that the combination function is
able to learn even subtle distinctions in prediction behavior between models
produced by different initializations. The best results overall were obtained
by applying this combination method to multi-source ensembles. We stress
that this ensemble method produced scores higher than the weaker system
by almost 10 BLEU and 9 METEOR. These results imply that there is
a substantial difference in the prediction behaviors of NMT systems for
different source languages and our combination learning method is capable
of exploiting it.

RQ3.c. How do multi-source ensembles compare to ensembles of NMT systems
for a single language pair trained with different initialization seeds?
The translation experiments in this chapter demonstrated that having dif-
ferent source languages yields an NMT ensemble diversification method
which can be used to obtain improvements in translation quality. Our results
suggest that it is a better source of diversity than monolingual ensembles.
We also proposed and evaluated ensemble combination methods that can
implicitly capture the diversity and learn to differentiate between local
contexts where each individual system is likely to contribute more to an
optimal prediction. Future work could include research on how our general
knowledge about linguistic differences between some given languages relate
to multi-source ensemble performance with these source languages.

The results of our multi-source ensemble experiments are encouraging and suggest a
simple way to improve translation quality, under the assumption that multi-parallel
source text is available at decoding. Moreover, this method of ensemble diversification
can be applied to other NLP tasks as well which involve extracting information from an
input text (again under the same assumption). Such tasks may include: summarization,
question answering, and sentiment analysis.

8.2 Future work
In the previous section we revisited the research questions addressed in this thesis and
summarized the findings from the experiments designed to answer those questions.
Also, we outlined some general research directions which our findings support.

However, even though we did manage to obtain useful insights regarding our
questions, the design of our experiments is by no means exhaustive in the sense that
they give complete answers to all research questions. In this section we list limitations
of our work and discuss ways to address these limitations as part of future work. We
group the limitations by what aspect of the experimental setting needs to be addressed.

Datasets. As we pointed out in Chapter 4, the different BiLM models (with different
representations) were trained on training data sets of different sizes, due to the source
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parser not producing a well-formed annotation for all of the sentences in the training set.
Even though our proposed model (depBiLM) showed comparable or better performance
in the experiments, it is also useful to compare the model when they have access to the
same amounts of data.

Note that our experimental setting in Chapter 7 did not suffer from this shortcoming
as we made sure that the training sizes for all individual NMT systems are approximately
the same. However, we worked with a relatively small training data set (see Section 6.3
(Cettolo et al., 2012)). It would also be important to see whether the benefits of our multi-
source ensembling method are helpful when individual systems use substantially larger
data sets to train on. We performed a series of experiments (not reported in Chapter 7)
with multi-source systems (German, French, Spanish into English) trained on WMT
data combined via uniform averaging, which resulted in significant improvements
for all language pair combinations. This indicates that the diversity among systems
for different language pairs is preserved also in a large data scenario and encourages
experiments with more advanced combination methods. Another limitation of Chapter 7
is that despite the fact that the chosen language pairs were relatively diverse, it would
be interesting to see the effect of ensembles for even more distant languages, such as
Chinese and French as source languages, for example.

Baselines and comparison systems. Having a stronger baseline will always pro-
vide stronger support for the effectiveness of a proposed model and its usefulness in real
word scenarios. For example, in Chapters 4 and 5 one could include more reordering
models into the baseline, such as (Galley and Manning, 2008). As for Chapter 7, we
have already mentioned above that having systems trained on a larger data set would
help to further demonstrate the effectiveness of the method. Having a more diverse
set of comparison systems, i.e., systems implementing alternative methods, would also
contribute to a stronger experimental setup. In Chapter 4 it would be interesting to study
the performance of BiLMs with rich linguistic annotations of a different kind, such as
in (Crego and Mariño, 2006), although the application of such models is limited by
the availability of the annotation resources. An interesting comparison to the BiSLM
from Chapter 5 would be to train a monolingual target-language structured model. We
have done some preliminary experiments in this direction in a rescoring scenario, and
the result was that our BiSLM achieved better results. We think it has to do with the
fact that the translation hypotheses to be parsed were not well-formed target sentences,
as a result of which the parser did not produce reasonable structural annotations. As
for Chapter 7 on multi-source ensembles, we could compare our model to additional
alternative diversification, such as Bagging or different stages of a model’s training, and
combination, such as computing a belief function for each class that can be used for
comparison; see the methods discussed in Section 6.1.

Additional experiments under the original setting. Even if we did not address
the limitations above, still additional experiments could have been run in the original
experimental setup. In Chapter 5 we use the rescoring experiments as a way to select the
models for the decoding experiments. However, in rescoring, the word alignments (with
respect to which the source parse is projected) are determined by the baseline model,
while during decoding the alignments can be influenced by the BiSLM itself. Therefore
a more exhaustive set of decoding experiments would be beneficial for understanding
the effect of the proposed model. Also, in Chapter 7 we limit the size of ensemble
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sets to four; while it would have been interesting to investigate how the effect of the
discussed ensemble methods changes with the growing size of the ensemble set.

Assumptions about what is given at input. The first two research chapters propose
models relying on precomputed parses of the source sentence. Good parsers are available
for some popular machine translation languages (English, French, German, Chinese,
Arabic), however, for many languages, parsers are of poor quality or not even available
at all. One way to address this limitation is to see investigate our proposed models
perform when the source parser is of low quality, for example, when trained on projected
annotations from another language (McDonald et al., 2011). A more extreme approach
to address this limitation would be to test whether we can still use the models where the
structural annotations are induced in an unsupervised manner, see (Klein and Manning,
2004). The major assumption necessary to apply our multi-source ensemble method
is the availability of a multi-source text at test time and a small multi-lingual data set
(including the target language) to train a combination function. We see two directions
to weaken this assumption. One direction is to train a combination function for each
language pair disjointly, by having a model of how confident a given system is at
predicting in a given context. Another direction is to adapt the method to comparable
corpora, which are available for more languages.

To summarize, in this thesis we have seen how common structural representations
among languages and systematic differences between languages and language pairs
can be used to enhance machine translation quality. With the suggestions that we have
just given, we believe there is further potential for exploiting the universal linguistic
properties and the systematic linguistic diversity to benefit machine translation.
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Summary

The central topic of this thesis is the exploration of properties that are common across
languages and properties that differentiate them, in the context of machine translation.
The field of machine translation aims to render the content expressed in one language
into another language. Therefore, the difficulty of this task is proportional to how
different the given two languages are in expressing the same information.

In the first part of the thesis, we focus on properties common across languages.
The core research goal of the first part of the thesis is to validate the hypothesis that
every language has a level of representation which is shared, to some extent, by all
languages. This level of representation is the syntactic structure of a sentence, i.e., the
way pieces of information are grouped together to form an utterance. The implication of
this hypothesis is that one can narrow down the search for translation correspondences
between units of any two languages, as it must to some extent be consistent with the
syntactic structure of both languages. We realize these ideas in the form of bilingual
syntactic language models which are used as soft constraints during the translation
process. Specifically, our first proposed model extends bilingual language models by
adding a new kind of representations of bilingual tokens, based on dependency tree
annotations of the source sentence. The experiments demonstrate that the proposed
model improves translation quality, as well as improvements in reordering. Our second
proposed model is a structured language model adapted to a bilingual scenario. We
use the idea that there exists some systematic correspondence between source and
target sentential structures and project source dependency annotations onto the target
sentences to obtain representations for a structured language model. The model provides
improvements in machine translation quality in a series of rescoring and decoding
experiments.

In the second part of the thesis, we make use of the linguistic idea that despite
the observation that all natural languages share certain ways of expressing content,
there are also many features that differentiate them. We adopt the hypothesis that the
differences between languages are systematic, which implies that the task of learning the
translation correspondence for two different language pairs with one common language
will be difficult in different ways. We make use of this idea by designing ensembles
of neural machine translation systems sharing the target language but differing in
their source languages (multi-source ensembles). The difference in source languages
introduces the level of ensemble diversity necessary to improve an individual system’s
translation performance. We perform a comparison to monolingual ensembles obtained
by initializing systems with different random seeds and observe systematically better
performance for the multi-source ensembles.
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Samenvatting

Het centrale onderwerp van dit proefschrift is het verkennen van gemeenschappelijke en
onderscheidende eigenschappen van talen, in het kader van automatisch vertalen. Het
veld van automatisch vertalen heeft als doel om de inhoud uitgedrukt in één taal in een
andere taal om te zetten. De moeilijkheid van deze taak is evenredig met de mate van
verschil tussen de twee talen.

In het eerste deel van het proefschrift richten we ons op eigenschappen die in alle
talen voorkomen. De voornaamste onderzoeksvraag van het eerste deel van het proef-
schrift is het valideren van de hypothese dat alle talen een gedeelde onderliggende
representatie hebben. Dit niveau van representatie is de syntactische structuur van
een zin, die de manier bepaald waarop zinsdelen worden samengevoegd om een zin
te vormen. Het gevolg van deze hypothese is dat men het zoeken naar vertaalcorrec-
ties tussen eenheden van twee talen kan verkleinen, aangezien het in zekere mate in
overeenstemming moet zijn met de syntactische structuur van beide talen. We imple-
menteren deze ideeën in de vorm van tweetalige syntactische taalmodellen die gebruikt
worden als zachte restricties tijdens het vertaalproces. Ons eerste voorgestelde model
breidt tweetalige taalmodellen uit door een nieuwe soort representatie van tweetalige
symbolen toe te voegen, gebaseerd op annotaties van de syntactische boom van de
bronzin. De experimenten tonen aan dat het voorgestelde model de kwaliteit van de
vertaling verbetert. Ons tweede voorgestelde model is een gestructureerd taalmodel
aangepast aan een tweetalig scenario. We baseren ons op het idee dat er een aantal
systematische overeenkomsten bestaan in de zinsstructuur tussen de bron- en de doeltaal
en we projecteren syntactische annotaties van de bronzinnen op de doelzinnen om
representaties te verkrijgen voor een gestructureerd taalmodel. Het model levert ver-
beteringen op in de kwaliteit van de automatische vertaling in een reeks rescoring- en
decoderings-experimenten.

In het tweede deel van het proefschrift steunen we op het idee uit de linguı̈stiek
dat, ondanks dat alle natuurlijke talen gedeelde eigenschappen hebben, er ook veel
eigenschappen zijn die de verschillende talen onderscheiden. We nemen de hypothese
aan dat de verschillen tussen talen systematisch zijn. Dit heeft als gevolg dat het leren
van een vertaalmodel voor twee verschillende taalparen met één gemeenschappelijke
taal, op verschillende manieren moeilijk zal zijn. We ontwerpen multi-source ensembles
van neurale automatische vertaalsystemen die de doeltaal delen, maar verschillen in
hun brontaal. Het verschil in brontalen zorgt ervoor dat de modellen verschillende
fouten maken en bijgevolg geeft de combinatie van de individuele systemen een betere
vertaling dan de individuele systemen. Een vergelijking met ééntalige ensembles die
verkregen werden door de modellen te initialiseren met andere willekeurige waarden
toont aan dat de multi-source ensembles systematisch beter presteren.
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