
The Guarded Fragment: Ins and Outs

Carlos Areces, Christof Monz, Hans de Nivelle, and Maarten de Rijke

Abstract

In this short note we discuss several perspectives on the notion of Guarded Frag-
ments (GFs) of first-order logic first introduced by Andréka, van Benthem and Németi.
We focus on computational aspects, discussing some applications of GFs together with
issues like the design of effective decision methods for specific reasoning tasks and the
role of GFs in explaining the general good behavior of modal logics.

Contents

1 Introduction 2

2 Basic Definitions 3

3 Using the Guarded Fragment 5
3.1 Natural Language . 5
3.2 Combining Logics . 6

4 Computing in the Guarded Fragment 8

5 The Right Fragment? 9

6 The Way Forward 11

1

1 Introduction

According to a Spanish saying, “Good things in life come in small packages.”
First-order logic is beautiful, but — for some purposes — it comes in too big
a package. When we are interested in “Logic and Computation,” decidability
is obviously a first condition to be checked, and first-order logic (FO) is only
semi-decidable. It is natural to consider, instead, fragments of first-order logic
where decidability does holds.

The pursuit of decidable fragments of FO seems nearly as old as FO itself,
and many of the classics in the area are still very much worth reading, including,
for instance, Ackermann’s [1]. In this note we consider a recent addition to this
tradition: the guarded fragment (GF) as introduced by Andréka, van Benthem
and Németi [2]. We will argue that GF, and the series of variations to which it
has given rise, has some particular additional logical and computational prop-
erties which make it stand out among the large number of decidable fragments
of FO that have been introduced over the years. In addition to these logical
and computational properties, there are also some useability aspects which, in
our opinion, give GF a special status.

Put very abstractly, GF forms a basic core upon which new formalisms can
be built, addressing specific modeling or computing needs. We believe that this
“on-demand” or “engineering” approach to computational logic is a promising
one, and, in fact, that it constitutes a natural step which has already been
taken in many other fields. In different areas of knowledge representation, for
example, much is known about designing specific languages together with ad-
hoc decision methods aimed at particular reasoning tasks [9]. The basic picture
is the one presented in Figure 1 below.

GF

Figure 1: The Guarded Fragment: Ins and Outs

The ideology underlying Figure 1 is best described as follows. We view
GF as providing the basic background, while the added “modules” refine the
language in response to concrete needs. These “refinements” can take the form
of special decision methods for the whole GF, fragments or extensions (see, e.g.,
[27]), novel logical core results on interpolation, finite model property, expressive

2

power, etc. (see, e.g., [20]), applications “living inside” guarded fragments [3],
and many more.

Actually, we would like to push ideology even further: even the central
component of the picture displayed in Figure 1 is just a module and can be
exchanged by a different fragment, as far as this new fragment enjoys some of
the nice features of GF. In general, we advocate a kind of tandem thinking, at
multiple levels. The first level is that one should construct the tools for one’s
specific needs in a general background theory that provides the right perspec-
tive. The second level is that the various explorations of syntactically specified
(decidable) fragments should go hand in hand with semantic considerations
that aim at explaining the good logical and computational behavior that the
fragments may display.

The rest of this note is organized as follows. We first provide some back-
ground material and basic definitions in Section 2; in Section 3 we discuss some
uses of GF; then, Section 4 deals with computational aspects of GF. In Section 5
we discuss the role of GF as a fragment of first-order logic and especially as an
explanation of the so-called robust decidability of modal logics. We conclude
in Section 6 with some general ideas for future work on GF.

2 Basic Definitions

We start by defining the first-order language we will be dealing with.
A (first-order) relational language is a (first-order) language with equality

and without function symbols. We use Rel to denote the countable set of relation
symbols, and we assume a fixed arity n for each R ∈ Rel. For a formula ϕ, we
use Var(ϕ) and Free(ϕ) to denote the sets of variables and free variables in ϕ,
respectively. If M is a first-order model suitable for our relational language, we
write M |= ϕ(x)[a] to denote that the tuple of elements a satisfies the formula
ϕ(x) in M.

Let us quickly turn to the guarded fragment now. Intuitively, a relational
first-order formula is guarded if all its quantifiers are relativized or “guarded” by
atoms in the language. Atoms in guards function as bridges, establishing links
among the different variables involved in the formula. These bridges keep the
structure tight and will be the key tool for establishing results like decidability
and the pseudo-tree model property [15].

By specifying the architecture of these ‘bridges,’ we obtain different kinds
of guarded fragments.

Definition 1 (Guarded Formula, [2]) Let L be a relational language. The
atomic formulas (or, atoms) of L are of the usual forms: v1 = v2, for variables
v1, v2, and Rv1 . . . vn, for an n-ary relational symbol R ∈ Rel, and variables
v1, . . . , vn.

The guarded formulas of L are defined by induction as follows.

1. An atomic formula is a guarded formula.

2. If ϕ,ψ are guarded formulas, then ϕ ∧ ψ and ¬ϕ are guarded formulas.

3

3. Let v be a finite, non-empty sequence of variables, ψ a guarded formula,
and G an atom such that Free(ψ) ⊆ Free(G). Then ∃v (G∧ψ) is a guarded
formula. G is called the guard of the quantifier.

The guarded fragment (GF) is the smallest fragment of first-order logic contain-
ing all the guarded formulas.

A typical example of a guarded formula is the one expressing symmetry of
a relation:

(1) ∀v1v2 (Rv1v2 → Rv2v1).

The formula

(2) ∃v2 (Rv1v2 ∧ ψ(v2) ∧ ∀v3 [(Rv1v3 ∧Rv3v2) → ϕ(v3)]),

the standard translation of the temporal formula Until(ϕ,ψ), is non-guarded,
as the sub-formula ∀v3[(Rv1v3 ∧Rv3v2) → ϕ(v3)] is not atomic.

It is not difficult to formalize the connection between modal logics and the
guarded fragments. The Standard Translation, ST, maps modal formulas into
GF.

Definition 2 (Standard Translation) The translation ST from the modal
language into first-order logic over the signature 〈{R} ∪ {Pj | pj ∈ PROP},
{}, {x, y}〉 is defined by mutual recursion between two functions STx and STy.
Recall that ϕ[x/y] means “replace all free instances of x by y in ϕ.”

STx(pj) = Pj(x), pj ∈ PROP STy(pj) = Pj(y), pj ∈ PROP
STx(¬ϕ) = ¬STx(ϕ) STy(¬ϕ) = ¬STy(ϕ)

STx(ϕ ∧ ψ) = STx(ϕ) ∧ STx(ψ) STy(ϕ ∧ ψ) = STy(ϕ) ∧ STy(ψ)
STx(3ϕ) = ∃y (Rxy ∧ STy(ϕ)) STy(3ϕ) = ∃x (Ryx ∧ STx(ϕ))

Observe that the standard translation preserves satisfiability both ways, and
that it actually takes modal formulas to guarded formulas. Hence, GF may
truly be viewed as a generalization of the modal fragment of FO.

Furthermore, many classical modal systems can be embedded in GF (or
a variation) as the conditions characterizing their class of models are often
guarded. For example, KT (reflexivity) and KD (seriality) can be mapped
directly into GF. K4 (transitivity), on the other hand, is not characterized by
a guarded formula. And actually, transitivity poses a difficult problem for the
guarded approach; see Section 5 for further discussion.

In addition to GF, many further fragments have been introduced. We will now
briefly discuss some of them. First of all, in [6] the pairwise (or loosely) guarded
formulas were introduced by weakening the conditions on guards.

Definition 3 (Pairwise Guarded Formula) We define pairwise guarded for-
mulas by relaxing clause 3. from the definition of guarded formulas:

3’. If v is a finite non-empty sequence of variables, ψ is a pairwise guarded
formula, and G is a finite conjunction

∧
i=1,...,nGi of atoms such that every

variable v ∈ v coexists with every variable in Free(ψ)∪ v in some Gi, then
∃v (G ∧ ψ) is a pairwise guarded formula.

4

The pairwise guarded fragment (PGF) is the smallest fragment of first-order
logic containing all the pairwise guarded formulas.

Notice that the translation of Until(ϕ,ψ) in (2) is indeed pairwise guarded.
Fixed point operators can be added to classical modal logics to obtain dy-

namic logics or the µ-calculus. Similar extensions can be pursued in the guarded
framework [18].

Definition 4 (Guarded and Pairwise Guarded Fixed Point Formulas)
The guarded fixed point logics µGF and µPGF are obtained by adding to GF
and PGF, respectively, the following rule for constructing fixed point formulas.

Let ϕ be a formula, W a k-ary relation variable that occurs only positively
in ϕ, and let x = x1, . . . , xn be a k-tuple of distinct variables. Then we can
build the formulas [LFP Wx.ϕ](x) and [GFP Wx.ϕ](x).

The fixed point semantics for these operators is defined in the usual way.

As an example, the formula

(3) ∀xy (Rxy → [LFP Wx.(∀y(Ryx→Wy))](x))

is a guarded fixed point formula forcing R to be well founded.

3 Using the Guarded Fragment

In this section we briefly describe what we take to be two of the most promising
application areas of GF: natural language technology, and tools for combined
logics.

3.1 Natural Language

Several applications in the emerging field of language technology employ the-
orem proving techniques. Logical approaches to Information Retrieval [29, 30]
apply deduction methods to retrieve those documents that suit a user’s query
from a given collection. Here, the query is translated into a logical formula,
and the documents are represented as sets of logical formulas. A document d
suits a query q if the logical representation Γ of d entails the representation ϕ
of q, that is, if Γ ` ϕ. Admittedly, logical approaches to Information Retrieval
are feasible only if the collection of documents is rather small. Appropriate
problem domains are, for instance, collections of a few hundred abstracts of
papers from scientific journals, or of the technical reports of an institute. In
these cases, ‘only’ a few hundred deductions need to be carried out to retrieve
the required information.

Another inference-intensive field within language technology is computa-
tional semantics. Here, theorem proving is necessary not only to infer infor-
mation from the semantic representation of a natural language text, but to
construct the semantic representation in the first place, it is necessary to draw
hundreds of inferences, as can be seen in the DORIS implementation [7]. The
latter is mainly due to the inherent ambiguity of natural language expressions,

5

although it may be possible to disambiguate an expression by excluding some
of its readings, because they contradict with contextual information.

It is obvious that the performance (and, hence, the usefulness) of appli-
cations in both areas heavily depends on the performance of the tools being
used. Although there has been a lot of progress in the development of theo-
rem provers resulting in very fast implementations such as Bliksem [26] and
Spass [32], these provers are mainly tuned for mathematical problems. They
perform less well if they are applied to problems that require large ontologies,
as is typically the case in natural language technology.

Description Logics (DLs) are logics that are built to deal with huge ontolo-
gies. Many DLs can be embedded in GF [16, 28]. As a consequence, DLs are
less expressive than full first-order logics. McAllester and Givan [22] consider
a fragment of Montague Semantics that can be expressed in a DL. Formulas
belonging to this fragment have to be quantifier-free, meaning that they do not
contain any lambda abstractions. For instance, (4.b), which is the semantic
representation of (4.a) belongs to the fragment, but (5.b), representing (5.a),
does not.

(4) a. Mary read a book.
b. (Mary read (some book))

(5) a. Mary read a book that John bought.
b. (Mary read (some (λx (x book ∧ (John (bought x))))))

For this quantifier-free fragment, the authors of [22] provide an inference pro-
cedure which decides satisfiability of a set of formulas in polynomial time.

Of course, the examples in (4) and (5) also illustrate that, despite their
inferential advantages, the expressive power of DLs is much too weak to be used
for an exhaustive representation of natural language semantics. But often, we
need much less, and more recently, several DLs have been devised to model
richer characteristics of natural language, such as ambiguity [21] and plurality
[10]. More generally, various applications in language technology simply do not
require an in-depth analysis of natural language documents, and DLs seem to
allow us to represent the content of a document to a reasonable extent and at
the same time they allow us to query a collection of documents efficiently, cf.
[23, 24]. Indeed, an important challenge here is to automate the construction of
DL-based descriptions that provide a shallow semantic representation of natural
language documents.

3.2 Combining Logics

Combining logics for modeling purposes has become a rapidly expanding en-
terprise that is inspired mainly by concerns about modularity and the wish
to join together different kinds of information. As any interesting real world
system is a complex composite entity, decomposing its descriptive requirements
(for design, verification, or maintenance purposes) into simpler, more restricted
reasoning tasks is appealing as it is often the only plausible way forward. It
would be an exaggeration to claim that we have a thorough understanding of
‘combined methods.’ Nevertheless, a core body of notions, questions and results

6

has emerged for an important class of combined logics, and we are beginning to
understand how this core theory behaves when we try to apply it outside this
particular class.

Does the idea of combining logics actually offer anything new? Some of the
possible objections can be justified. Logical combination is a relatively new idea:
it has not yet been systematically explored, and there is no established body
of results or techniques. Nonetheless, there is a growing body of logic-oriented
work in the field, and there are explorations of their uses in AI, computational
linguistics, automated deduction, and computer science. An overly critical re-
action seems misguided.

Logicians working in the area often focus on so-called transfer issues. Let L1

and L2 be two logics — typically, these are special purpose logics with limited
expressive power, as it often does not make sense to put together logics with
universal expressive power. Let P be a property that the logics may have, say
decidability, or axiomatic completeness, and ⊕ a specific way of combining L1

and L2. The transfer problem is this: if L1 and L2 enjoy the property P, does
their combination L1 ⊕ L1 have P as well?

As a rule of thumb, in the absence of interaction between the component log-
ics, we do have transfer; here, absence of interaction means that the component
languages do not share any symbols, except maybe the booleans and atomic
symbols. Properties that do transfer in this restricted case include the finite
model property, decidability, and (under suitable restrictions on the classes of
models and the complexity class) of complexity upper bounds [19].

Does combining logics work for actual reasoning systems? That is: can ex-
isting tools for the component logics be put together to get tools for combined
logics? Obviously, the re-use of tools and procedures is one of the key motiva-
tions underlying the field. One cannot put together any proof procedures for
two logics in a uniform way. First, ‘proving’ can have different meanings in
different logics: (semi-)deciding satisfiability or validity, computing an instan-
tiation, or generating a model. Second, it is not clear where to “plug in” the
proof procedure for a logic L1 into that for a second logic L2; a proof procedure
may have different notions of valuations, or of proof goals.

So what can one do? One way out is to impose special conditions on the
calculi that one wants to combine [4]. Alternatively, [14] provide an interesting
example by combining efficient propositional decision procedures into a deci-
sion procedure for the modal logic K. But another — and far more flexible
and powerful — method in the case of modal and modal-like logics, is to use
a translation-based approach to theorem proving, by mapping all component
logics into a common background logic such as FO. As we have seen in Sec-
tion 2, many modal logics can be translated, not just into FO, but even into GF.
Hence, if the component logics that make up a combined logic can be mapped
into GF, and if, moreover, the principles expressing their interaction can be
expressed by means of GF formulas, any proof tool for GF is also a proof tool
for the combined logic. As a second step, one may, of course, wish to equip such
tools with further strategies and refinements to exploit any special features that
the combined logic may enjoy — but at least such a move will not have to start
from scratch.

7

4 Computing in the Guarded Fragment

Now that we have had a brief look at some of the areas in which GF is being
used, let us turn to concrete, computational issues: what do specialized rea-
soning tasks in GF cost in principle, and how do we perform them in practice?
Below, we review what is know about these matters to date, and we conclude
with some open issues.

Decidability of the satisfiability problems for GF and PGF was proved in
the original paper on GF [2], using a combination of unraveling and finite quasi-
models — which are reminiscent of the filtration methods known from modal
and dynamic logics. In [2] it was also shown that GF has the finite model
property, i.e., every satisfiable formula in the guarded fragment is satisfiable
in a finite model. It is still open whether PGF has the finite model property.
But it is known that µGF (and hence µPGF) lack the finite model property:
consider the formula in (2) again, and add the following conjuncts:

(6) ∃xyRxy and

(7) ∀xy (Rxy → ∃xRyx)
The combined formula forces an infinite R-path which should also be well-
founded, and hence acyclic, by (2). This conjunction is only satisfiable in an
infinite model.

Complexity results on GF and PGF were provided by Grädel [15]. The
satisfiability problems for GF and PGF are complete for deterministic double
exponential time. For the sub-fragments that have only a bounded number of
variables or only relation symbols of bounded arity, satisfiability is EXPTIME-
complete. Furthermore, by a recent result due to Grädel and Walukiewicz,
decidability is preserved when moving to the fixed point extensions of GF and
PGF; the satisfiability problems for µGF and µPGF are again complete for
2EXPTIME; see [18].

While these are interesting theoretical results, the next important question
is: what about practical algorithms for GF? An important line of attack here
is provided by studying the so-called tree model property which says that if a
formula is satisfiable, then it is satisfiable on a tree-like model. Many familiar
propositional modal logics enjoy this property, but unlike familiar propositional
modal logics, GF and PGF are not restricted to unary and binary predicate
symbols, and, hence, one needs to make precise what the appropriate notion of
tree-like model is in this setting, but this can be done using notions from graph
theory. A PGF formula with m variables is satisfiable only if it has a model of
bounded degree such that the Gaifman graph of this model has tree width at
most m+ 1 [15].

The tree model property is of crucial importance for the design of practi-
cal, tableaux-based or automata-based algorithms. A resolution-based decision
procedure for GF without equality is provided by de Nivelle and de Rijke [27];
their method uses ordered resolution, with a non-liftable ordering that is in-
complete in general, but complete for GF; to deal with PGF without equality,
a non-trivial modification of hyperresolution is needed on top of the ordering
refinement. Ganzinger and de Nivelle [13] provide a decision procedure for GF

8

plus equality which is based on ordered paramodulation with selection.

5 The Right Fragment?

The classic reference on decidable fragments of first-order logic is perhaps [1],
where the decidability of fragments like the ∀∗∃∗ or ∀∗∃∀∗ is proved. These
fragments are specified in terms of restrictions on quantifier prefixes, variables,
or the vocabulary of relation and function symbols. There is a fairly complete
understanding of the classical decision problem for such fragments, and for
almost all of them, the complexity has also been determined [8].

Modal logics provide an alternative, more “semantically driven” approach
to restricted fragments of FO; this is, perhaps, a reflection of the fact that de-
cidability results for modal logics are often proved by model theoretic means.
Moreover, modal logics usually determine fragments of first-order logic which
possess extremely nice metalogical properties (simple axiomatizations, decid-
ability with low complexity and robust decision methods, interpolation, etc.)
which are not standard for “syntactically driven” fragments of FO. So, why are
modal fragments so well-behaved? One of the main motivations for introducing
GF and PGF in the first place, was, indeed, to account for the good behavior
of modal fragments. To appreciate the contribution made by GF and PGF in
this respect, it is useful to look back at an earlier answer.

As the standard translation ST (Definition 2) shows, classical modal logic
can be mapped into FO2, the two-variable fragment of first-order logic, a fact
first pointed out by Gabbay [11]. For a while it was thought that the essentials of
modal fragments were captured by their being parts of finite variable fragments
such as FO2. This is not a satisfactory explanation of the good behavior of
modal fragments, however, as finite variable fragments share neither the good
logical properties of modal fragments, nor their computational properties. Let
us briefly describe what’s at stake here, starting with the logical aspects.

It is known that FO2, and more generally FOk, have very poor interpolation
properties, and hence in this respect, such finite variable fragments have very
limited explanatory power. What about GF? The standard tool to investigate
the model theory of modal logics is the notion of bisimulation [5]; using this
tool one can provide clean characterizations of the expressive power of the
logics involved as well as proofs for basic definability, preservation, and, indeed,
interpolation results. The appropriate notion of bisimulation for GF and PGF
can easily be defined; it closely resembles the notion of potential isomorphisms
in first-order logic.

Let Z be a finite subset of a model M; Z is called live if it is either a
singleton, or there exists a relation R and a tuple X such that Z ⊆ {x | x =
X(i)} and X ∈ RM. Z is called packed if every pair of elements of Z is live.

A guarded bisimulation is a non-empty set F of finite partial isomorphisms
between two models M and N which satisfies the following back-and-forth
conditions. Given any f : X → Y in F

1. for any live Z ⊆M there is g ∈ F with domain Z such that g and f agree
on the intersection X ∩ Z;

9

2. for any live W ⊆ N there is a g ∈ F with range W such that the inverses
g−1 and f−1 agree on Y ∩W .

Pairwise guarded bisimulations are defined in the same way as guarded bisimu-
lations but using packed sets in conditions 1. and 2. Both guarded and pairwise
guarded bisimulations can be restricted to sets of a maximum finite cardinality
k, thus obtaining respectively k-guarded and k-pairwise guarded bisimulations.

With these tools at hand the result below follows by a standard argument.

Theorem 5 (Characterizations of GF and PGF) Let ϕ be any first-order
formula. Then ϕ is invariant for (pairwise) guarded bisimulations iff it is equiv-
alent to a formula in GF (or PGF).

Returning to the main issue at stake — what about interpolation in GF and
PGF? It turns out that matters are far more subtle here than in finite variable
fragments. Let us try to give an indication of what’s going on.

First, using the notions of bisimulation just introduced, Hoogland and
Marx [20] provide a number of counterexamples for Craig interpolation, both
for GF and PGF. More precisely, they show the following:

1. There exist sentences ϕ,ψ ∈ GF using only 3 variables and predicate
symbols of arity at most 3 such that |= ϕ → ψ, for which there does not
exist an interpolant in GF (in any number of variables).

2. There exist sentences ϕ,ψ ∈ PGF using only 2 variables and predicate
symbols of arity at most 3 such that |= ϕ → ψ, for which there does not
exist an interpolant in PGF (in any number of variables).

These certainly seem to be very negative results, and they seem to leave little
hope that GF or PGF may be used to explain the good logical behavior of
modal fragments. However, a careful analysis of the proofs actually yields a
positive result. Basically, the explanation boils down to the fact that, in its full
generality, plain Craig interpolation is a property which is not “fair” to ask for
in guarded fragments. Guarded fragments share an important characteristic:
they restrain the power of classical quantifiers. But it can be argued that guards
should indeed only be constraints. That is, the language used in guards should
be disjoint from the language used elsewhere. This separation of concerns is
certainly present in usual modal languages, and if FO fragments are to explain
the good logical behavior of modal fragments, it may be appropriate to use
similar separations. The following definition implements this idea in a novel
definition of the interpolation property.

Definition 6 (Modal Interpolation Property) Let ϕ be a formula in GF
or PGF. Let Act-Rel(ϕ) be the set of relations symbols occurring in a guard in
ϕ and St-Rel(ϕ) the set of relation symbols occurring in ϕ but never in a guard
position.

We say that a logic L has the modal interpolation property if for all L-
formulas ϕ, ψ such that |= ϕ→ ψ, there exists an L-formula I such that

1. Act-Rel(I) ⊆ (Act-Rel(ϕ) ∪ Act-Rel(ψ)),

2. St-Rel(I) ⊆ (St-Rel(ϕ) ∪ St-Rel(ψ)) ∩ Rel(ϕ) ∩ Rel(ψ), and

10

3. |= ϕ→ I and |= I → ψ.

This version of the interpolation property does hold for guarded fragments, even
when restricted to relations of a given fixed arity.

Theorem 7 Let k be any natural number. The guarded fragment which uses
predicate symbols of arity at most k has the modal interpolation property. Hence,
GF has the modal interpolation property.

At present it is still open whether finite variable fragments of GF enjoy the
modal interpolation property.

Let us change tack now, and see to which extent GF explains the good compu-
tational behavior of modal fragments. First, we need to agree on what we mean
by the latter. Vardi [31] has stressed the importance of the robust decidability
of modal fragments: not only is the modal logic K decidable, but it remains de-
cidable when we add temporal constructs, fixed point operators, counting,
FO2 is decidable [25], and one might want to consider FO2 as a candidate for
explaining the good computational behavior of modal logic, but many simple
extensions of FO2 are undecidable or even highly undecidable, and, hence, FO2

certainly can’t explain robustness [17]. Moreover, modal logics using operators
of arity 2 or higher don’t live in FO2, but in one of its extensions FOk, where
k ≥ 3—but all of these are undecidable.

It is natural to attempt to explain robustness by means of the guarded
fragments which, at least intuitively, encode more of the “modal spirit” in their
definition than finite variable fragments. However, GF and PGF aren’t quite
as robust as basic modal logic: extensions with functionality or transitivity
statements immediately yield undecidability, as does the addition of counting
quantifiers [15]. In contrast,as we mentioned before, the fixed point extensions
µGF and µPGF of GF and PGF, respectively, are decidable [18].

The non-robustness results invite us to reconsider the definition of guarded
fragments. As we have seen in our discussion of interpolation, in addition to
restraining quantificational power by means of guards, we may also want to
make a distinction between action predicates and state predicates. This makes
a substantial difference for logical properties, but it remains to be determined
what its influence is on computational properties. As a first step in this di-
rection, Ganzinger, Meyer, and Veanes [12] show that GF2 (GF with only two
variables) where, in addition, binary relations may be specified as transitive,
is undecidable, but that making the strict separation between action and state
predicates and allowing transitivity statements only for action predicates, re-
stores decidability.

6 The Way Forward

In this note we have tried to sketch some of the many different aspects of the
guarded fragments. We’d like to stress our main ideology again: to us, guarded

11

fragments form a basic core upon which new formalisms can be built, address-
ing specific modeling or computing needs. We believe that this “engineering”
approach to computational logic is a promising one.

Many questions remain. One of the most urgent ones has to do with the
issue of separating action predicates and state predicates raised in Section 5—
what are the logical and computational benefits? Will we be able, for instance,
to exploit special proof strategies? Experiments seem to suggest that making
a rigid distinction along these lines would improve the performance of provers
such as Bliksem.

Another line of questions relates to the fact that GF and PGF embed many
description logics, as discussed in Section 3, but this embedding is only at
the level of concepts—what about some of the familiar reasoning tasks often
considered in the setting of description logics? What are their costs?

Finally, and in line with Figure 1, we conclude with a recommendation:
one should think of guarded fragments as a central theme from which different
soloist can improvise their own melody, or as an object in an object-oriented
library from which refined instances can been created. Guarded Fragments con-
stitute the fabric from which hand-tailored languages well suited for particular
needs can be cut out.

Acknowledgments. Christof Monz was supported by the Physical Sciences
Council with financial aid from the Netherlands Organization for Scientific Re-
search (NWO), project 612-13-001. Hans de Nivelle and Maarten de Rijke were
supported by the Spinoza Project ‘Logic in Action’ at ILLC, the University of
Amsterdam.

References

[1] W. Ackermann. Solvable Cases of the Decision Problem. North-Holland,
Amsterdam, 1954.

[2] H. Andréka, J. van Benthem, and I. Németi. Modal languages and bounded
fragments of predicate logic. Journal of Philosophical Logic, 27(3):217–274,
1998.

[3] C. Areces, W. Bouma, and M. de Rijke. Description logics and feature
interaction. To appear in Proc. DL’99. Linköping, Sweden, 1999.

[4] B. Beckert and D. Gabbay. Fibring semantic tableaux. In Proc.
Tableaux’98, pages 77–92, 1998.

[5] J. van Benthem. Modal Logic and Classical Logic. Bibliopolis, 1983.

[6] J. van Benthem. Dynamic bits and pieces. Technical Report LP-97-01,
Institute for Logic, Language and Computation, University of Amsterdam,
1997.

[7] P. Blackburn, J. Bos, M. Kohlhase, and H. de Nivelle. Inference and
computational semantics. In H. Bunt and E. Thijsse, editors, IWCS-3,
pages 5–21. Tilburg, 1999.

12

[8] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem.
Springer Verlag, 1997.

[9] F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in description
logics. In G. Brewka, editor, Principles of Knowledge Representation, pages
191–236. CSLI Publications, Stanford, 1996.

[10] E. Franconi. A treatment of plurals and plural quantifications based on a
theory of collections. Minds and Machines, 3(4):453–474, 1993.

[11] D. Gabbay. Expressive functional completeness in tense logic. In
U. Mönnich, editor, Aspects of Philosophical Logic, pages 91–117. D. Reidel
Publishing Company, 1981.

[12] H. Ganzinger, C. Meyer, and M. Veanes. The two-variable guarded frag-
ment with transitive relations. Unpublished.

[13] H. Ganzinger and H. de Nivelle. A superposition decision procedure for
the guarded fragment with equality. Proc. LICS-99, to appear, 1999.

[14] F. Giunchiglia and R. Sebastiani. Building decision procedures for modal
logics from propositional decision procedures. In Proc. CADE-13, pages
583–597, 1996.

[15] E. Grädel. On the restraining power of guards. Journal of Symbolic Logic,
to appear.

[16] E. Grädel. Description logics and guarded fragments of first order logic.
In E. Franconi, G. De Giacomo, R. MacGregor, W. Nutt, and C. Welty,
editors, Proc. DL’98, 1998.

[17] E. Grädel and M. Otto. On logics with two variables. Theoretical Computer
Science, to appear.

[18] E. Grädel and I. Walukiewicz. Guarded fixed point logic, 1999. Unpub-
lished.

[19] E. Hemaspaandra. Complexity transfer for modal logic. In Proc. LICS-94,
pages 164–173, 1994.

[20] E. Hoogland and M. Marx. Interpolation in guarded fragments. Unpub-
lished.

[21] U. Küssner. Description logic unplugged. In E. Franconi, G. De Giacomo,
R. MacGregor, W. Nutt, and C.A. Welty, editors, Proc. DL’98, 1998.

[22] D. McAllester and R. Givan. Natural language syntax and first-order in-
ference. Artificial Intelligence, 56(1):1–20, 1992.

[23] C. Meghini, F. Sebastiani, U. Straccia, and C. Thanos. A model of infor-
mation retrieval based on a terminological logic. In Proc. SIGIR-93, pages
298–307, 1993.

[24] R. Möller, V. Haarslev, and B. Neumann. Semantics-based information
retrieval. In Proc. IT & KNOWS-98, pages 48–61, 1998.

[25] M. Mortimer. On languages with two variables. Zeitschr. f. math. Logik
u. Grundlagen d. Math., 21:135–140, 1975.

13

[26] H. de Nivelle. Bliksem User Manual. Institute for Logic, Language and
Computation, University of Amsterdam, 1998.

[27] H. de Nivelle and M. de Rijke. Deciding GF and LGF by resolution.
Submitted, 1999.

[28] M. de Rijke. Modal logics and description logics. In E. Franconi, G. De Gi-
acomo, R.M. MacGregor, W. Nutt, and C.A. Welty, editors, Proc. DL’98,
pages 1–3, 1998.

[29] C. van Rijsbergen. Information Retrieval. Buttersworth, London, 2nd
edition, 1979.

[30] F. Sebastiani. On the role of logic in information retrieval. Information
Processing and Management, 34(1):1–18, 1998.

[31] M. Vardi. Why is modal logic so robustly decidable? In Descriptive
complexity and finite models (Princeton, NJ, 1996), pages 149–183. Amer.
Math. Soc., Providence, RI, 1997.

[32] C. Weidenbach, B. Gaede, and G. Rock. SPASS & FLOTTER, version
0.42. In 13th International Conference on Automated Deduction, CADE-
13, LNAI. Springer, 1996.

14

	Introduction
	Basic Definitions
	Using the Guarded Fragment
	Natural Language
	Combining Logics

	Computing in the Guarded Fragment
	The Right Fragment?
	The Way Forward

