
A Resolution Calculus for Dynamic Semantics

Christof Monz and Maarten de Rijke

ILLC, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The
Netherlands. E-mail:

�
christof, mdr � @wins.uva.nl

Abstract.

Appeared in: Dix, J., del Cerro, F. L., and Furbach, U., editors,
Logics in Artificial Intelligence (JELIA’98),
Lecture Notes in Artificial Intelligence 1489,
Springer, pages 184–198, 1998.

This paper applies resolution theorem proving to natural language se-
mantics. The aim is to circumvent the computational complexity triggered by nat-
ural language ambiguities like pronoun binding, by interleaving pronoun binding
with resolution deduction. To this end, disambiguation is only applied to expres-
sions that actually occur during derivations. Given a set of premises and a con-
clusion, our resolution method only delivers pronoun bindings that are needed to
derive the conclusion.

1 Introduction

Natural language processing (NLP), has a long tradition in Artificial Intelligence, but it
still remains to be one of the hardest problems in the area. Research areas such as se-
mantic representation and theorem proving with natural language have to deal with a
problem that is characteristic of natural languages, namely ambiguity. There are several
kinds of ambiguity, see for instance [RN95] for an overview. In the present paper, we
focus on pronoun binding,1 a certain instance of ambiguity, as exemplified by (1) be-
low.

(1) A man sees a boy. He whistles.

Often, there are lots of possibilities to bind a pronoun and it is not clear which one to
choose. The pronoun he in the short discourse in (1) can be bound in two ways as given
in (2), where co-indexation indicates referential identity.

(2) a. A mani sees a boy. Hei whistles.
b. A man sees a boyi. Hei whistles.

For some cases heuristics are applicable which prefer certain bindings to others, but at
present there is no approach making use of heuristics which is general enough to cover
all problems.

Dynamic semantics [Kam81,GS91] allows to give a perspicuous solution to some
problems involving pronoun binding. Since we are interested in binding occurrences of
pronouns to expressions mentioned earlier in a discourse, we take a slight modification
of Dynamic Predicate Logic (DPL) [GS91], where it is not presupposed that pronouns

1 Throughout this paper we use the term binding to express the referential identification of a pro-
noun and another referential expression occurring in the discourse. Common terms are also co-
indexation or pronoun resolution. We especially did not use pronoun resolution to avoid con-
fusion with resolution as a deduction principle.

are already co-indexed. Actually, pronoun binding falls into the realm of constructing
semantic representations of natural language discourses, and one of the main purposes
of constructing these representations is to reason with them. Now, the question arises
which form the input of the theorem prover should have. Should a theorem prover work
only on totally disambiguated expressions? Total disambiguation results in an explosion
of readings, because of the multiplicative behavior of ambiguity. On the other hand, to
prove a conclusion ϕ from a set of premises Γ it may be enough to use only premises from
a small subset ∆ of Γ, and it may be sufficient, and much more efficient, to disambiguate
only ∆ instead of the whole set of premises Γ. In general, we do not know in advance
which subset of premises might be enough to derive a certain conclusion, but during
a derivation often certain (safe) strategies may be applied that prevent some premises
from being used since they cannot lead to the conclusion, anyway. Common strategies
to constrain the search space in resolution deduction are e.g., the set-of-support strategy
and ordered resolution. Our goal is to constrain the set of premises that have to be dis-
ambiguated by interleaving deduction and disambiguation. Roughly speaking, premises
are only disambiguated if they are used by a deduction rule.

The rest of the paper is structured as follows. Section 2 provides some rudimentary
background in dynamic semantics and explains what kind of structural information is
necessary to restrict pronoun binding. In addition, the basics of resolution deduction
are introduced. Section 3 discusses some of the problems of the (standard) resolution
method when applied to natural language. The method of labeled unification and res-
olution is presented to overcome these problems. Section 4 briefly relates our work to
some other approaches to pronoun binding. Section 5 provides some conclusions and
prospects for further work.

2 Background

Before we turn to our method of labeled resolution deduction and its applications to dis-
course semantics, we briefly present the idea of dynamic semantics. The second subsec-
tion shortly explains the classic resolution method for (static) first-order logic.

2.1 Dynamic Reasoning

Dynamic reasoning differs from classical reasoning to the extent that sequences of for-
mulas are considered instead of sets of formulas. To model discourse relations like pro-
noun binding it is important to take the order of sentences into account because two se-
quences which have the same members, but differ in order, may have a different mean-
ing. (Compare ‘A man walks in the park. He whistles.’ and ‘He whistles. A man walks
in the park.’)

DPL is a semantic framework which works on sequences of formulas and it allows
to represent pronoun binding, where the antecedent of the pronoun and the pronoun it-
self may occur in different formulas. This is accomplished by assigning the existential
quantifier flexible binding. In (3.b) a DPL representation of the short discourse in (3.a)
is given.

(3) a. A mani sees a boy. Hei whistles.

b. � x � man � x ����� y � boy � y ��� see � x � y �	�	�
� whistle � x �
The pronoun he is represented by the variable x which is the same as the one bound by
the existential quantifier, but it occurs outside of its scope. To bind x in whistle � x � it is
necessary to give the existential quantifier flexible scope.

One of the advantages of dynamic approaches like DPL is that they allow for a for-
mal definition of possible antecedents for a pronoun. Without giving too many details,
we just note that negations function as barriers for flexible binding. Therefore, an exis-
tential quantifier occurring in the scope of a negation cannot bind a pronoun that occurs
outside of the negation, as shown by (4).

(4) *John doesn’t own a cari. Iti is in front of his house.

The three properties (a) existential quantifiers can bind variables occurring to the
right-hand side of their traditional scope, (b) conjunctions preserve the flexible scope,
and (c) negations are barriers for dynamic binding, allow us to define the properties of
the other logical connectives � , � and . � �	��� � is a function that assigns to each formula
its semantic value.

(5) � � ϕ � ψ � ����� � ����� ϕ ��� ψ ��� �
� � ϕ � ψ � ����� � ��� ϕ ��� ψ ��� �
� � xϕ � ����� � �
� x � ϕ � �

Given these definitions, we see that disjunction is a barrier both internally and exter-
nally, implication is a barrier externally but internally it allows for flexible binding, and
universal quantification does not allow for external binding.

We differ in two respects from DPL. First, we do not allow two or more occurrences
of � x within a single text. The problem is that the second occurrence of � x resets the
value of x, and thereby previous restrictions on x are lost. We assume for simplicity that
all bound variables are disjoint. This is not a severe restriction and an algorithm for con-
structing semantic representations for natural language sentences can easily accomplish
this. The second difference with DPL is that we do not assume co-indexation of quanti-
fiers and the pronouns which they bind. In (3) the variable for he is already assumed to be
x and in DPL the question of pronoun binding is pushed to some kind of preprocessing.
But finding the right binding is far from being an easy task and it is very complex from a
computational point of view. The pronoun in (3) could also be represented by y, indicat-
ing that that he refers to a boy. E.g., a discourse containing twenty indefinites followed
by a sentence with two pronouns, has 20 � 20 � 400 possible bindings, disregarding any
linguistic constraints which rule out some of the bindings.

To this end, we postpone pronoun binding and represent pronouns in the semantic
representation by free variables. Variables for pronouns are displayed in boldface and are
of a different kind than regular variables. Pronoun variables are bound by the ?-operator.
It differs from � and , because it only binds its argument, but does not quantify over
it. Actually, it is not necessary to have a special operator for pronouns, and we only in-
troduced it here for the sake of convenience to identify the position where the pronoun
is introduced. Our representation of (1), repeated as (6.a) below, is given in (6.b). As
mentioned before, co-indexation of pronouns and antecedents is not carried out.

(6) a. A man sees a boy. He whistles.
b. � x � man � x ����� y � boy � y ��� see � x � y �	�	��� ?uwhistle � u �

The task whether u has to be substituted by x or by y is postponed to the deduction com-
ponent, as motivated in Section 1.

Unlike the existential quantifier, the ?-operator does not have the property of flexible
binding. We get the following equivalence:

� � � ?uϕ � ����� � ?u � ϕ � �
To define accessibility we can now say that a variable x is accessible from a pronoun

u if no barrier occurs between the quantifier introducing x and ?u. A formal definition
of accessibility is given in the next section. The equations in (5) show that � , � and
 introduce barriers because of the way they are defined in terms of negation. This is
exemplified by (7) below.

(7) *Every farmer owns a donkeyi. Iti is grey.

Dispensing with the presupposition that pronouns and antecedents are already co-
indexed re-introduces the concept of ambiguity to our framework. This makes it neces-
sary to give a definition of the semantics of ambiguous formulas. It is common to define
their semantics in terms of their possible disambiguations, see [Rey93], and here we fol-
low the same approach. A total disambiguation is a mapping δ from ambiguous dynamic
formulas to classical first-order formulas. Disambiguation encompasses two steps. First,
we have to find a proper antecedent for a pronoun. To define proper antecedents, we
use the notion of accessibility. Second, we have to map unambiguous dynamic formulas
to classical formulas. This means that we have to turn flexible quantification into static
quantification, and this involves re-bracketing and quantifier movement. [GS91] give an
algorithm that computes for each DPL-formula ϕ a formula ϕ � which is in normal bind-
ing form, i.e., all pronouns are quantified over in the classical sense, and which is valid
in first-order logic iff ϕ is valid in DPL. For instance, the normal binding form of (8.b)
is (9).

(8) a. If a farmeri owns a donkey j, then hei beats it j.
b. � x � f � x ����� y � d � y ��� o � x � y ���	� � b � x � y �

(9) x y � f � x ��� d � y ��� o � x � y ��� b � x � y ���
To define the validity of ambiguous formulas, we say that an ambiguous formula ϕ

is valid, i.e., for all models M it holds that M ! � a ϕ, if there is a disambiguation δ, such
that M ! � δ � ϕ � , for all models M. In words: ϕ is valid iff there exists a disambiguation
which is valid in first-order logic.

Unfortunately we do not have enough space to give a more detailed account of dy-
namic semantics, but we refer the reader to [Kam81,GS91].

2.2 The Resolution Method

The resolution method [Rob65] has become quite popular in automated theorem prov-
ing, because it is very efficient and it is easily augmentable by lots of strategies which

restrict the search space, see e.g., [Lov78]. On the other hand, the resolution method has
the disadvantage of presupposing that its input has to be in clause form, which is a set of
clauses, interpreted as a conjunction. A clause is a set of literals, interpreted as a disjunc-
tion. Probably the most attractive feature of resolution is that it has only one inference
rule, the resolution rule:

C "$#%� P1 ��&	&	&'��� Pn (D ")# Q1 �	&	&�&�� Qm (
� C " Dπ � σ � res �

where * Q1 ��&	&	&'� Qm are atomic
* π is a substitution such that C "$#%� P1 �	&�&	&'��� Pn (and

Dπ ")# Q1π ��&	&�&�� Qmπ (are variable disjoint
* σ is the most general unifier of # P1 �	&	&�&	� Pn � Q1π �	&	&�&	� Qmπ (

To prove that Γ ! � ϕ holds we transform �,+ Γ �-�.� ϕ in clause form and try to derive a
contradiction (the empty clause) from it by using the resolution rule.

For a comprehensive introduction to resolution see for instance [Lov78].

3 Dynamic Resolution

Applying the classical resolution method to a dynamic semantics causes problems. Be-
low we will first discuss some of them and then see how we have to design our dynamic
resolution method to overcome these problems.

3.1 Adapting the Resolution Method

There are two problems that we have to find a solution for. First, transforming formulas
to clause form causes a loss of structural information. Therefore, it is sometimes impos-
sible to distinguish between variables that can serve as antecedents for a pronoun and
variables than can not. The second problem concerns the duplication of literals which
may occur during clause from transformation and the assumption of the resolution method
that clauses are variable disjoint. Although the same pronoun may have two occurrences
in different clauses, we do not want them to be bound by different antecedents.

Turning to the first problem, in (10) the pronoun u cannot be bound by the existential
quantifier, whereas the pronoun z can be bound by it.

(10)a. Every farmer who owns a donkey beats it. It suffers.
b. x � f � x ����� y � d � y ��� o � x � y �	�/� ?zb � x � z ���	�	� ?us � u �

(11) #0#%� f � x �1��� d � y �2��� o � x � y �1� b � x � z � (��# s � u � (0(
How can we tell which identifications are allowed by looking at the corresponding clause
form in (11)? How do we know whether a term is accessible?

We use labels to carry the information about accessible variables. Each pronoun vari-
able is annotated with a label that indicates the set of accessible variables. Besides the set
of first-order or proper variables (VAR), first-order formulas (FORM), and pronoun vari-
ables (PVAR), we are going to introduce the sets of labeled pronoun variables (LPVAR)

and labeled formulas (LFORM). Labeled pronoun variables are of the form V :u, where
V 3 VAR and u is a pronoun variable. LFORM is the set of first-order formulas plus
formulas containing labeled pronoun variables. To be able to recognize the antecedents
later on, each variable is annotated with its name, (xx � yy �	&�&	&), and during skolemization
only the variable is changed, but the label remains unchanged.

To see which variables inside of a formula ϕ can serve as antecedents for pronouns,
[GS91] introduce the function AQV which returns the set of actively quantifying vari-
ables when applied to ϕ.

Definition 1. Let FORM be the set of classical first-order formulas and VAR the set of
first-order variables. The function 4
576 : FORM � POW � VAR � is defined recursively:

48596:� R � x1 &	&	& xn ���;� /0
48596:��� ϕ �;� /0

48596:� ϕ � ψ �<� 48596:� ϕ ��"=48596>� ψ �
4
576>� ϕ � ψ �<� /0
48596:� ϕ � ψ �<� /0
4
596?�@ xϕ �A� /0
4
596?�,� xϕ �<� 48596:� ϕ ��")# x (4
596?� ?uϕ �;� 48596:� ϕ �

Using the above definition we define the notion of accessible variables.

Definition 2 (Annotation with Accessible Variables). To annotate u in ?uψ, we drop
the binding operator ?u and substitute all occurrences of the pronoun variable in ψ by
its annotated counterpart. The annotation function B�C�CEDGF : VAR H FORM � LFORM is
defined recursively, where V 3 VAR:

B�CIC%DJF2� V � R � x1 &	&�& xn ���<� R � x1 &�&	& xn �B�CIC%DJF2� V ��� ϕ �<� �0B�C�C%DJF2� V � ϕ �
B�CIC%DJF2� V � ϕ � ψ �A� B�C�C%DJF2� V � ϕ ����B�CIC%DJF1� V "=48596>� ϕ �1� ψ �
B�C�C%DJF2� V � ϕ � ψ �<� B�C�C%DJF2� V � ϕ �/��B�C�CEDGF1� V "=48596?� ϕ �1� ψ �
B�CIC%DJF2� V � ϕ � ψ �A� B�C�C%DJF2� V � ϕ ����B�CIC%DJF1� V � ψ �
B�C�CEDGF1� V �K xϕ �A� x B�C�CEDGF2� V "$# x (� ϕ �B�C�CEDGF1� V ��� xϕ �<� � x B�C�CEDGF2� V "$# x (� ϕ �B�C�CEDGF2� V � ?uϕ �A� B�C�C%DJF2� V � ϕ � u L V :u ���

The actual annotation takes place in the last case, where the pronoun is substituted. The
other cases thread the actively quantifying variables through the formula. To annotate
a whole discourse ϕ1 �M�	���1� ϕn, the variable parameter of annot is initialized with /0,
B�CIC%DJF2� /0 � ϕ1 �$�	����� ϕn � . A term tx is accessible from a pronoun u iff x is element of the
set of the accessible variables of u.

Reconsider the last example, every farmer who owns a donkey beats it. It suffers.
Applying annotation yields:2

B�CIC%DJFN� /0 �K x � f � x ����� y � d � y ��� o � x � y �	��� ?zb � x � z ���	� ?us � u �	�
�O x � f � x ����� y � d � y ��� o � x � y �	�/� b � x �P# x � y (:z �	����� s � /0 :u �

2 For simplicity, we neglect the fact that pronouns and their antecedents have to agree in gender,
number, etc.

Applying clause form transformation to the annotated formulas yields:

(12) #0#%� f � x �2��� d � y �1��� o � x � y �1� b � x �P# x � y (:z � (�P# s � /0 :u � (0(
We can also see that (10.a) is not well-formed because there are no accessible pronouns
for the second pronoun it, i.e., the label of u is the empty set.

Now we turn to the second problem: how do we make sure that the same pronoun,
occurring in different clauses, is bound to the same antecedent? As we said earlier, we do
not want to assume pronouns to be bound in a set of premises when we apply resolution.
The reason is that pronoun binding is highly ambiguous and often it is not necessary to
bind all pronouns in a set of premises to derive a certain conclusion from it. Another
issue, which we briefly hinted at in Section 2, is that pronouns should be treated as free
variables of a special kind, not to be dealt with in the same manner as universally quanti-
fied variables (which also happen to be represented by free variables). This is illustrated
by the following example, which shows an invalid entailment.

(13)a. � x � y �	� A � x ��� A � y �	���Q� ?zA � z �/�R� B � C �	���)S! � a B � C
b. #0# A � f x �2� A � gy � (�I#%� A � z �2� B (�G#T� A � z �1� C (��#%� B (�G#T� C (0(

The transformation in (13) causes a duplication of the literal � A � z � , and we have to make
sure that the pronoun is instantiated the same way in both cases.

(14) # A � f x �1� A � gy � (#T� A � z �1� B (#%� A � z �2� C (#T� B (#%� C (
A � gy �1� B (

B � C (
C (

U

In (14) z is instantiated with f x in the first resolution step and then with gy in the second.
The resolution rule as it was stated in the preceding section assumes that clauses to be
resolved are variable disjoint. We have to modify the resolution rule such that the same
pronoun variable is allowed to occur in both clauses. Additionally, the instantiation of a
pronoun variable for constructing the most general unifier in a resolution step is applied
globally, i.e., to all clauses.

(15) # A � f x �1� A � gy � (#T� A � z �1� B (#%� A � z �2� C (#T� B (#%� C (
A � gy �1� B (# A � f x �1� C (

A � gy � (# A � f x � (
Global instantiation correctly prevents us from deriving a contradiction in (15).

3.2 Labeled Resolution

Unification is a fundamental technique in the resolution method. Since we are also deal-
ing with labeled variables, we have to think how the unification mechanism has to be
adapted. In the course of this subsection, it will turn out that pronoun binding can be
reduced to unification.

Labeled Unification. We use the unification algorithm of Martelli and Montanari [MM82]
as a basis and adapt it in such a way that it can deal with labeled pronoun variables.

What does it mean to unify a set of equations E �V# s1 W t1 �	&�&	&'� sn W tn (, where si or
ti can also be a labeled pronoun variable? We have to distinguish three possible cases:
(i) neither si nor ti is a labeled pronoun variable, then labeled unification and normal
unification are the same thing, (ii) one of them is a pronoun and the other is not, and (iii)
both are pronouns. Case (ii) is the normal pronoun binding, where one tries to identify a
pronoun with a proper variable. Case (iii) is not an instance of pronoun binding, but an
identification of two pronouns, i.e., whatever is the antecedent of the first pronoun, it is
also the antecedent of the other one.

Definition 3 (Labeled Unifier). We call a substitution σ a labeled unifier or unifier X of
a set of equations E �Y# s1 W t1 �	&�&	&'� sn W tn (iff

1. s1σ � t1σ �	&�&	&'� snσ � tnσ
2. if � V :u � σ � tx, then x Z V
3. if � V :u � σ � V � :v then V � 3 V

We use W to express equality in our object language, whereas � denotes equality in the
meta language.

Condition 1 is the normal condition of unifiability, namely that the terms of an equa-
tion have to be identical after substitution. The second condition says that unifiers have
to obey accessibility, for instance σ : �Y�[# x � y (:u L gz � is not a unifier of #G# x � y (:u W gz (,
because gz is not accessible from u, as z SZ\# x � y (. To ensure that identification of pro-
nouns always restricts the set of accessible antecedents, we need condition 3.

Definition 4 (Most General Labeled Unifier). A labeled unifier σ of a set of equations
E �Y# s1 W t1 �	&�&	&'� sn W tn (is the most general labeled unifier or mgu X of E if

1. if θ is a unifier X of E then there is substitution τ such that θ � στ
2. if � V :u � σ � V1 :v, � V :u � θ � V2 :v, V1 � V2 3 V , and V1 � V2 S� /0

then V2 3 V1

Again, the first condition is standard in regular unification. Condition 2 says that the most
general unifier X has to restrict the set of accessible antecedents as little as possible when
identifying pronouns. To unify V1 : u and V2 : v it suffices to take any non-empty subset
of the intersection of V1 and V2, but this fact may prohibit some antecedents from being
accessible, although they are in fact accessible for both pronouns.

Definition 5 (The Labeled Unification Algorithm). First, the unification function]ICG^ _K` X
is applied to a pair of atoms, and then it tries to unify the set of corresponding argument
pairs. The algorithm terminates successfully if it did not terminate with failure and no
further equations are applicable.

1.]ICG^ _K` X � R � s1 &a&a& sn �1� R � t1 &a& tn �	��b]�CG^ _K` X �P# s1 W t1 &a&c& sn W tn (�
2.]ICG^ _K` X �d# f � s1 &c&a& sn � W f � t1 &c&a& tn � (" E �

�b]�CG^ _K` X �P# s1 W t1 &a&c& sn W tn (" E �
3.]ICG^ _K` X �d# f � s1 &c&a& sn � W g � t1 &c&a& tm � (" E � , f S� g or n S� m

� terminate with failure
4.]ICG^ _K` X �d# x W x (" E

�b]�CG^ _K` X � E �
5.]ICG^ _K` X �d# t W x (" E � , t SZ VAR

�b]�CG^ _K` X �P# x W t (" E �
6.]ICG^ _K` X �d# x W t (" E � , x S� t, t SZ LPVAR, x in t

� terminate with failure
7.]ICG^ _K` X �d# x W t (" E � , x S� t, t SZ LPVAR, x not in t, x in E

�b]�CG^ _K` X �P# x W t (" E � x L t ���
8.]ICG^ _K` X �d# V :u W tx (" E � , x Z V , V :u in E

�b]�CG^ _K` X �P# V :u W tx (" E �V :u L tx ���
9.]ICG^ _K` X �d# V1 :u W V2 :v (" E � , V1 e V2 S� /0, V1 e V2 f V2�b]�CG^ _K` X �P# V1 :u W V1 e V2 :v � V2 :v W V1 e V2 :v (" E �V1 :u L V1 e V2 :v � V2 :v L V1 e V2 :v ���

The first six equations of the algorithm are the same as in [MM82], except for additional
side conditions which make sure that t is not a labeled variable. The interesting cases are
8 and 9. In 8 a pronoun is bound to an antecedent and in 9 two pronouns are identified,
i.e., they have the same possible antecedents, namely those which are accessible for both
of them. This is accomplished by identifying the pronoun variables and substituting the
set of possible antecedents by the intersection of the possible antecedents of each pro-
noun.

Identification of pronouns underlies different constraints than binding a pronoun to a
proper antecedent. To identify two pronouns u and v, it is not required that u is accessible
from v, or the other way around. But they can only be identified if they have at least one
proper accessible antecedent in common.

(16) Buk is a poet. For every man there is a woman who hates him.
! � a There is a woman who hates him.

(17) p � b ���? x � w � x �/�g� y � w � y �	� ?u h � y � u �	���
! � a � z � w � z �	� ?v h � z � v �	�

For instance, in (16) the conclusion is only valid if the first and the second occurrence
of him are identified. In Section 2 it was said that universal quantification is a barrier for
flexible binding, and therefore the second occurrence of him cannot be bound to the first
one. On the other hand, both of them have a proper antecedent in common, namely the
constant b representing the proper name Buk. In addition, the first occurrence of him has

the variable x as an accessible antecedent, introduced by the universal quantification ev-
ery man. If one wants to identify them, one has to take the intersection of both sets of ac-
cessible antecedents and hence drop x as a possible antecedent. Observe that identifica-
tion of pronouns still leaves some space for underspecification, because the intersection
of two pronouns does not have to be a singleton. Of course, identifying two pronouns,
where more than one antecedent is accessible for both, forces them to be bound to the
same element of the intersection. Both can be bound to any element of the intersection,
but it has to be the same one for both pronouns.

If the unification algorithm terminates successfully for a pair of literals P,Q, the solved
set determines a substitution σ that is the mgu X of P,Q:

σ : �Y# s L t ! s W t Zh]ICG^ _K` X � P � Q � (.
A set of equations # s1 W t1 ��&	&�&	� sn W tn (is called solved if

1. si Z VAR " LPVAR and the si are pairwise disjoint
2. no si occurs in a term t j � 1 i i � j i n � .

Lemma 6 (Correctness of the Unification X Algorithm). Let E be a set of equations
and unify XE� E �j� E � , then

(i) E is unifiable X iff E � is unifiable X
(ii) σ is the mgu X of E iff σ is the mgu X of E �
Proof. (i) We have to show that actions 2, 4, 5, 7, 8, and 9 preserve unifiability X , when
unify X is applied to a unifiable X set E. For 2, 4, and 5, this is obvious. To show it for 7,
note that τ : �k� x L t � is a unifier X of x and t. If σ is a unifier X of # x W t (" E then σ is
of the form τρ. Because ττ � τ, it holds that σ � τρ � ττρ � τσ. Therefore σ unifies X
x W t (" E iff σ unifies X7# x W t (" E � x L t � . 8 is analogous to 7, plus the additional side
condition that x Z V . The last case is 9. If # V1 :u W V2 :v (" E is unifiable X , then it is with
a unifier X σ of the form τρ with τ : �l�V1 :u L V1 e V2 :v � V2 :u L V1 e V2 :v ��&
Again, σ � τρ � ττρ � τσ and then σ also unifies X
V1 :u W V1 e V2 :v � V2 :v W V1 e V2 :v (" E �V1 :u L V1 e V2 :v � V2 :v L V1 e V2 :v ��&

(ii) The actions 2, 4, 5, 7, and 8 turn a set of equations into an equivalent one. For σ
to be the mgu X of # V1 :u W V2 :v (" E means according to our definition that σ has to be
of the form τρ, where

τ : �m�V1 :u L V1 e V2 :v � V2 :u L V1 e V2 :v ��&
But then σ is also the mgu X of

V1 :u W V1 e V2 :v � V2 :v W V1 e V2 :v (" E �V1 :u L V1 e V2 :v � V2 :v L V1 e V2 :v ��&onp
Lemma 7 (Termination of the Unification X Algorithm). The unification X algorithm ter-
minates for each finite set of equations.

Proof. If rules 3 and 6 are applied, we are done. Otherwise, rule 7 can be applied only
once, because after application the side condition is no longer fulfilled. In 9 it is presup-
posed that V1 e V2 is a proper subset of V2; this ensures that an application of 9 really

reduces the set of possible antecedents. Because 9 can be applied only a finite number
of times, it can reintroduce a term V : u only finitely often, therefore rule 8 can also be
applied only finitely many times. Rules 1, 5, and 6 are only applied once, and the num-
ber of possible applications of rule 2 is finite as well, because terms contain only finitely
many symbols. Therefore all rules can be applied only finitely many times, and termi-
nation follows. np
Proposition 8 (Total Correctness of the Unification X Algorithm).
The unification X algorithm computes for each finite set of equations E a solved set, that
has the same mgu X as E in finitely many steps iff E is unifiable X .
Proof. The fact that the unification X algorithm preserves unifiability X and that it termi-
nates has been proven in Lemma 1 and 2, respectively. It remains to be shown that the
set of equations computed by the algorithm is a solved set. In 7, 8, and 9, the left side of
the equation is always substituted in E by the right side of the equation. If the left side
is identical to the right side, the equation is erased by rule 4. Therefore, no left side of
an equation occurs somewhere else. np

The Resolution Method. Having defined labeled unification, it is straightforward to
adapt the resolution principle. The only thing we have to change is to make sure that
variable disjointness applies only to proper variables (elements of VAR). The function
VAR returns the set of proper variables, when applied to a set of clauses ∆ : VAR � ∆ � �
x Z VAR ! x occurs in ∆ (. The resolution rule accomplishing pronoun binding (resp) is
defined as follows:

C "$#%� P1 ��&	&�&	��� Pn (D ")# Q1 �	&	&�&�� Qm (
� C " Dπ � σ � resp �

where * Q1 ��&	&	&'� Qm are atomic
* π is a substitution such that

VAR � C "$#%� P1 ��&	&�&���� Pn (� e � VAR � D ")# Q1 ��&	&	&'� Qm (�	� π � /0
* σ is the mgu X of # P1 ��&	&	&'� Pn � Q1π ��&	&	&'� Qmπ (

Definition 9 (The Proof Algorithm). Our proof algorithm prf consists of three steps:

1. annotate the conjunction of the premises and the negation of the conclusion;
2. apply clause form transformation; and
3. apply the resolution rule until a contradiction can be derived, or no new resolvents

can be generated.

An Example. We will only give a very short, and therefore very simple example of a
labeled resolution derivation. We hope that it illustrates some of the aspects of labeled
resolution mentioned before.

Consider example (16) again, here repeated as (18), where (19) is the corresponding
semantic representation.

(18) Buk is a poet. For every man there is a woman who hates him.
! � a There is a woman who hates him.

(19) p � b ���? x � w � x �/�g� y � w � y �	� ?u h � y � u �	���
! � a � z � w � z �	� ?v h � z � v �	�

Annotating (19):B�C�CEDGFN� /0 � p � b ���? x � w � x �/��� y � w � y �	� ?u h � y � u �	�������
� z � w � z �	� ?v h � z � v ���	�0�
p � b ���: x � w � x �/�q� y � w � y ��� h � y �P# b � x (:u �	�	�����
� z � w � z ��� h � z �P# b (:v �	���

Clause form transformation:�
p r bb s �%t � m r hh s �Et �Nu m r xx s t w r f y s �Et �Nu m r xx s t h r f y t � b t x � : u s �Et �Nu w r zz s t u h r zz t � b � : v s �%t where

the additional clause # m � hh � (stems from the assumption that the domain of men is nonempty.

Resolution:�
p r bb s � � m r hh s � �2u m r xx s tw r f y s � �2u m r xx s t h r f y t � b t x � :u s � �2u w r zz s t u h r zz t � b � :v s �

�
w r f y s � �Nu

m r xx s t u w r f x s �
�2u

w r f y s �
v

Actually, the only remarkable step in the derivation is resolving
#%� m � x �2� h � f �P# b � x (:u � (and #T� w � z �2��� h � z �	# b (:v � (

with #%� m � x �1��� w � f � (as the resolvent. Here, the two labeled pronoun variables can be
identified, because the intersection of their accessible antecedents is nonempty. The cor-
responding mgu X of

#%� m � xx �1� h � f y �P# b � x (:u �1��� w � zz �2��� h � zz �	# b (:v � (
is σ : �l� xx L zz � zz L f y �P# b � x (:u L�# b (:v � .

Note also, that although p � b � introduced the antecedent b, it is not used in the deriva-
tion because all information that is necessary to derive the contradiction is captured by
the labels. This is the advantage of using labels; it allows us to express non-local depen-
dency relations in our framework, which is essential for dealing with pronoun binding in
dynamic semantics where a pronoun and its antecedent can occur in different formulas.

Evaluation from a Linguistic Point of View. In general, it is not enough if one gives
just the information that there is a binding that allows to derive a conclusion, but one
also wants to know which binding. It is easy to augment our method in a way such that
it accomplishes this simply by memorizing the substitutions of pronoun variables that
occur during a derivation.

From a linguistic point of view, one is also interested in comparing different bind-
ings. If we force the proof procedure to backtrack every time it has found a binding which
allows to derive a contradiction, we can generate all possible bindings. Probably some
of the bindings are preferable to others by taking linguistic heuristics for pronoun reso-
lution into account, see for instance [GJW95], but this is beyond the scope of the present
paper.

3.3 Results

Before we prove completeness and soundness of our method, we have to explain what
these notions mean in our setting.

To show that the resolution principle is correct we have to find the right loop invari-
ant. We will show that if the parent clauses of a resolution step are strongly satisfiable,
then so is the resolvent.

Definition 10 (Strong Satisfiability). We say that a clause C is strongly satisfiable if
there is a model M and for all substitutions θ from PVAR to VAR), then there is a literal
L Z Cθ, such that M ! � L.

Lemma 11. LetC "?#T� P1 �	&�&	&'��� Pn (and D "?# Q1 ��&	&	&'� Qm (be variable disjoint and strongly
satisfiable. If σ is the mgu X of # P1 �	&	&�&�� Pn � Q1 �	&	&�&�� Qm (, then Cσ w�#%� P1σ (" Dσ w�# P1σ (
is strongly satisfiable.

Proof. The set of possible disambiguations of the resolvent is a subset of the possible
disambiguations of the parent clauses, because possible antecedents are unified, and in
case of pronoun unification only the intersection of possible antecedents has to be con-
sidered. Now, two cases have to be distinguished.

(i) M S! � Piσ. Because Piσ is an instance of Pi and D ".# Q1 ��&	&	&'� Qm (is strongly satisfi-
able, it holds that M ! � Dσ w�# P1σ (. But Dσ w�# P1σ (is a subset of the resolvent and
therefore M ! � Cσ w�#%� P1σ (" Dσ w�# P1σ (.

(ii) M ! � Piσ. Again, Piσ is an instance of Pi and C "x#%� P1 ��&	&�&	��� Pn (is strongly sat-
isfiable. Hence, it holds that M ! � Cσ w�#T� P1σ (and thereby M ! � Cσ w�#%� P1σ ("
Dσ w�# P1σ (. np

Corollary 12 (Soundness). If yJza_ (see Definition 9) produces the empty clause on input
� ϕ, then ϕ is valid.

Proof. If we can derive
U

from a set of clauses C, where C is the clause form of � ϕ,
then we can show by induction that C is not strongly satisfiable, i.e., there is no model
M such that M ! � Cθ for all possible substitutions. Hence, for all models M, there is a
disambiguation δ, such that M S! � δ �,� ϕ � , which is equivalent to M ! � a ϕ, the definition
of ϕ being valid. np
Lemma 13. Let θ be a total disambiguation of ϕ, and assume that ϕθ is unsatisfiable.
Then there is a (classical) resolution deduction of

U
from ϕθ.

Lemma 14. Let θ be a total disambiguation of ϕ. If there is a resolution deduction ofU
from ϕθ, then yJza_ generates the empty clause on input ϕ.

Proof. The idea of the proof is to turn the classical resolution proof of
U

from δ � ϕ � into
a labeled resolution proof of

U
from the original formula ϕ by repeating the resolution

steps and inserting the required substitutions (i.e., partial disambiguations) just before
any steps where they were used in the original proof.

Although the idea of this proof is simple, the details are too numerous to be included
here. np
Corollary 15 (Completeness). If ϕ is valid, then yJza_ generates the empty clause on in-
put � ϕ.

4 Related Work

Most work in the area of ambiguity and discourse semantics focuses on representational
issues, but see [vEJ96,MdR98] for calculi for quantificational ambiguities. Approaches
that deal with pronoun binding are mostly trying to bind pronouns by applying some
heuristics. The work that is closest to ours is the approach of Kohlhase and Konrad [KK98]
who deal with pronoun binding in the setting of natural language corrections by using
higher-order unification, and a higher-order tableaux method [Koh95] to reason about
possible bindings. Van Eijck [vE98] presents a sequent calculus for DPL which deals
with some of the complications we avoided in this paper; for instance multiple quantifi-
cation of the same variable. Some of the ways in which dynamic updating can restrict
possible pronoun bindings are considered in [Mon98].

5 Conclusion

In this paper we have presented a resolution calculus for reasoning with ambiguities trig-
gered by pronouns and the different ways to bind them. Deduction steps and pronoun
bindings are interleaved with the effect that only pronouns that are used during a deriva-
tion are bound to a possible antecedent. Labels allow us to capture relevant structural in-
formation of the original formula on a very local level, namely by annotating variables.
Therefore structural manipulation, a prerequisite of any efficient proof method, does no
harm.

Our ongoing work focuses on two aspects. First, we have to see how our resolution
method behaves when other strategies restricting the search space are added; e.g., set-
of-support strategy, ordered unification, or subsumption checking. Second, we are in the
process of implementing the annotation and unification X algorithms and are trying to
integrate them into a resolution theorem prover.

Acknowledgment. The research in this paper was supported by the Spinoza project
‘Logic in Action’ at ILLC, University of Amsterdam.

References

[GJW95] B. Grosz, A. Joshi, and S. Weinstein. Centering: A framework for modelling the local
coherence of discourse. Computational Linguistics, 21(2), 1995.

[GS91] J. Groenendijk and M. Stokhof. Dynamic Predicate Logic. Linguistics and Philosophy,
14:39–100, 1991.

[Kam81] H. Kamp. A theory of truth and semantic representation. In J. Groenendijk et al., editor,
Formal Methods in the Study of Language. Mathematical Centre, Amsterdam, 1981.

[KK98] M. Kohlhase and K. Konrad. Higher-order automated theorem proving for natural lan-
guage semantics. SEKI-Report SR-98-04, Universität des Saarlandes, 1998.

[Koh95] M. Kohlhase. Higher-order tableaux. In P. Baumgartner et al., editor, Theorem Proving
with Analytic Tableaux and Related Methods,TABLEAUX’95, LNAI, pages 294–309.
Springer, 1995.

[Lov78] D. W. Loveland. Automated Theorem Proving: A Logical Bases. North-Holland, Ams-
terdam, 1978.

[MdR98] C. Monz and M. de Rijke. A tableaux calculus for ambiguous quantification. In
H. de Swart, editor, Automated Reasoning with Analytic Tableaux and Related Meth-
ods,TABLEAUX’98, LNAI 1397, pages 232–246. Springer, 1998.

[MM82] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions
on Programming Languages and Systems, 4:258–282, 1982.

[Mon98] C. Monz. Dynamic semantics and underspecification. In H. Prade, editor, Proceedings
of the 13th European Conference on Artificial Intelligence (ECAI’98), pages 201–202.
John Wiley & Sons, 1998.

[Rey93] U. Reyle. Dealing with ambiguities by underspecification: Construction, representation,
and deduction. Journal of Semantics, 10(2):123–179, 1993.

[RN95] S.J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,
1995.

[Rob65] J. A. Robinson. A machine oriented logic based on the resolution principle. Journal of
the ACM, 12(1):23–41, 1965.

[vE98] J. van Eijck. A calculus for dynamic predicate logic. Unpublished manuscript, 1998.
[vEJ96] J. van Eijck and J. Jaspars. Ambiguity and reasoning. Technical Report CS-R9616,

Centrum voor Wiskunde en Informatica, Amsterdam, 1996.

