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Chapter 1
Introduction

The integration of information via search engines and social media necessitates quick
and accurate translation of online content. This task has revitalized the field of au-
tomated translation, which was in limbo up to the late 1990s. The (re)development
of such translation mechanisms has been done exclusively to accomodate market re-
quirements. Consequently, they are heuristic-driven and formal approaches towards an
undesrtanding of multilinguality have been disregarded. In this thesis we take a step
back and try to understand why things work.

Let S and T denote a source and target language vocabulary respectively. Machine
Translation (MT) is the process of converting a string S consisting of words from S to
a new string T consisting of words from T . Each of S and T is assumed to be a sen-
tence in a source and target natural language, respectively. As such their composition
from vocabularies S and T is determined by additional structure, namely grammar and
semantics [78]. The former dictates the ordering of words in a sentence, and such rules
differ for each language [88]. On the other hand, semantics is a more abstract notion
that confers meaning to sentences and is language independent [113]. String T is a
translation of S if the following criteria are met:

• T obeys grammatical rules from the target language.

• The semantics of T is as close as possible to the semantics of S.

For a given source string S it is possible to have multiple target strings as appropriate
translations. Depending on the extent to which the above criteria are met, it is possible
to assess the quality of possible translation strings for any S. In Statistical Machine
Translation (SMT) a candidate translation T for a given S is graded by a conditional
probability p(T |S). Translation

T ⇤ = argmax
T

p(T |S) (1.1)

is the output of this MT process. Using Bayes’ Theorem, (1.1) is rewritten as

T ⇤ = argmax
T

p(S|T )p(T ), (1.2)

1



2 Chapter 1. Introduction

which clearly reflects the semantic and grammaticality criteria mentioned above. This
correspondence of p(T ) and p(S|T ) with the above criteria predisposes (1.2) to become
the starting point of SMT. However, this is not done in practice and research in SMT
focuses on directly modeling p(T |S) in (1.1) [86].

At its core SMT fuses source and target grammatical correspondence with seman-
tics in a probabilistic setting. This is achieved by automatically constructing a phrase-
level source-to-target language dictionary with associated weights, or features, for each
entry. Informally these features reflect

• the likelihood of existence of an entry in any sentence pair (S, T ), and

• the likelihood of elementary local ordering structure of an entry in any sentence
pair (S, T ).

This dictionary is called a phrase-table [85]. It is memorized and used for translating
any source sentence S into a target sentence T : this process, which is called decoding,
breaks S into source phrases whose phrase-table entries are used to compose candidate
target sentences {T} with associated probabilities {p(T |S)}. The best translation is
found according to (1.1).

This thesis is entirely devoted to providing further insights about the phrase-table
and aspects related to it. In order to formulate our research directions we proceed with
an introductory description of the steps that lead to the formation of the phrase-table.

1.1 From word alignments to the phrase-table
A parallel corpus, or simply a bitext, is a collection of source-target sentence pairs;
each such pair (S, T ) is such that S and T are translations of each other. A bitext is the
input of most SMT systems and is used as training data from which translation rules are
learned [150]. It is typically composed from multilingual resources that were manu-
ally translated such as parliamentary proceedings, patent documents, legal proceedings
etc. Its size, i.e., the number of sentence pairs in the bitext, depends on the publicly
available resources for the language pair and is typically in the range 500K–2.5M.

The first step of the training process is the automated extraction of building blocks
of translation rules from the bitext. This is achieved by identifying the most likely
correspondences between fragments in each sentence pair. This task is known as se-
quence alignment [62] and the so-called IBM models [19] provide the necessary tools
for doing that: The bitext is treated as a bag of sentence pairs {(Si, Ti)}Ni=1 whose like-
lihood

QN
i=1 p(Ti|Si) is maximized. Each (Si, Ti) is assumed to be a bilingual word

sequence. Information about source-to-target word alignments is encoded as a latent
variable and is the output of this program. More specifically, since this variable is
treated as a random function, each word in Ti is eventually aligned with at most one
word from Si. Similarly, in order to identify target-to-source word alignments, the
likelihood

QN
i=1 p(Si|Ti) is maximized. These two outputs are then combined into a
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single word alignment using various heuristics. Throughout this thesis, the so-called
‘grow-diag-final-and’ method [84] is used. An example of typical such word-aligned
sentence pairs are shown in Figure 1.1. The types of resulting word-alignments can be
summarized as follows:
i) An alignment connects a source word to a target word and each such word is not con-
nected to any another word via another alignment. Each of these words may or may
not be in base linguistic form. This type of word alignment gives rise to a generalized
dictionary entry, which is the most basic building block of translation rules [109].
ii) If a word w from either the source or target side has more than one alignment then
each alignment of w may not necessarily reflect meaningful correspondences when
observed in isolation. In this case, the extracted translation rule that includes w is of
phrase-level, i.e., composed of multiple words in either the source or target side. More
precisely, breadth-first search from w results in two sets, one consisting of source words
and the other of target words. These sets together with the order of words in the sen-
tence pair give rise to a phrase-level building block of translation rules.
iii) Certain words can be unaligned. Although a source and target sentence may be
perfect translations of each other, it is possible to have a word, say, in the source side,
as a necessary element for maintaining grammatical coherence, without any explicit
correspondence in the target side. This is a consequence of what was mentioned in
the beginning of this section: Two different grammars form two sentences that have to
convey the same semantics.
iv) As with any Machine Learning method, training data may contain noise [24]. In
the bitext noise is inaccurate or incomplete translations, which results in erroneous
alignments in each sentence pairs. Even if the amount is small, alignment quality de-
pends on the size of the bitext. A small bitext (⇠500K sentence pairs) with at least one
morphologically rich language results in alignments with excessive unaligned words.

The breadth-first search that was mentioned in ii) above is essentially the means of
identifying all building blocks of translation rules. A type-i) building block is a special
case of type-ii) and a type-iv) building block is simply an erroneous building block.
For example, the building blocks of translation rules that are formed from the first sen-
tence pair of Figure 1.1 are:

im $ in

anschluss $ aftermath

an $ of

den 11. september $ 9 / 11 ,

gab es $ there was

jede $ a

menge $ good deal of (1.3)

and similarly for the rest. An example of a phrase pair that fails to become a building
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im anschluss an den 11. september gab es

auf der ganzen welt

jede menge

verständnis

in the aftermath of 9 / 11 , there was a good deal of

understanding around the world

das wort hat herr patten im namen der kommission

mr patten has the floor on behalf of the commission

in verhandlungen zwischen der schweiz und der europäischen union

negotiations between switzerland and the european union resulted in

für reaktionmilitärischeamerikas

for responsemilitaryamerica’s

für

spent

ausgegebenenergiesektorsumweltgerechteneinesentwicklungdie

sectorenergysustainableenvironmentallyanofdevelopmenttheon

können

can

daß,werdensicherstellensiewiesagenmirsie

thatensuretoablebewillyouhowmetellyou

,

für

as

alswichtigerreformderqualitätdieistmich

thanimportantmoreisreformofqualitythe,concernedamiasfar

Figure 1.1: Typical German-English word-aligned bitext.
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block of translation rules is

im anschluss an den $ in the aftermath of 9 (1.4)

because it ignores certain words that are spanned from breadth-first search. In fact, this
phrase pair even fails to become a (general) translation rule, i.e., it cannot be formed
by building blocks.

Before we explain how building blocks form other translation rules, we first ad-
dress the following question: Why does breadth-first search in word-aligned sentence
pairs dictate the formation of building blocks of translation rules in SMT? Other than
successful empirical evidence from following this strategy, there is actually no further
reasoning. Surely the resulting collection of phrase pairs after breadth-first search is
well-ordered; there is no formal (linguistic or mathematical) link between the output
of the process of word-aligning sentence pairs and the construction of building blocks
of translation rules in SMT. The latter is thus executed axiomatically.

The dominant method that extracts translation rules in SMT is due to Och et al. [109]
and Koehn et al. [82]. We refer to this method as the consistency method. It encom-
passes the building blocks described above and unaligned words. In particular, for any
word-aligned sentence pair of the bitext, a phrase pair is allowed to become a transla-
tion rule if and only if the following conditions hold:

1. There exists at least one word alignment in the phrase pair.

2. If a word in the source phrase is aligned to one or more words in the target
sentence, then all such target words must appear in the target phrase. Similarly
for the target phrase.

3. The words of the source phrase respect the order of appearance in the source
sentence. Similarly for the target phrase.

4. Source phrase consists of words that appear consecutively in the source sentence.
Similarly for the target phrase.

Condition 1 forbids the construction of arbitrary translation rules. Condition 2 is an
outcome of breadth-first search discussed above. Once the words from breadth-first
search are collected, the formation of phrases is not arbitrary: Condition 3 dictates
how these words are ordered in the phrase pair. Condition 4 guarantees that a phrase is
a substring of the sentence from which it is extracted. We say that a translation rule is
a phrase pair that is consistent with the alignment of the sentence pair, or consistent for
brevity. Figure 1.2 shows an example of a sentence pair with an alignment matrix to-
gether with all its consistent phrase pairs. These conditions do not confine the number
of words of a consistent phrase pair. Consequently, the largest extracted translation rule
consists of as many words as there are in the sentence pair, i.e., it is the sentence pair
itself. As mentioned above, these rules are eventually stored in the phrase-table. Since
a typical sentence consists of around 20 words, it becomes necessary to limit the length
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t
1
t
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t

3 t4 t
5
t

6
t

7

s
1

s
2

s
3

s
4

s
5
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5
, t

7
) ,

(s
1

4
, t

1

5) ,(s
5
, t

6

7) ,

(s
1

4
, t

1

6) ,
(S ,T )

P (S ,T )= { }
Figure 1.2: Left: Sentence pair (S, T ) = (s1...s5, t1...t7) with an alignment matrix. A
dot indicates the existence of alignment between source word si and target word tj .
Right: The collection of all consistent phrase pairs. s41 is a shorthand for s1s2s3s4;
similarly for all other phrases.

of consistent phrase pairs: A maximum of seven words per phrase in a translation rule
is used in practice [82].

Without Condition 4, a phrase pair may have its source phrase, or target phrase,
or both to be discontinuous. Discontinuities are replaced with wild card tokens. In
this case, in the example of Figure 1.2 a valid discontinuous translation rule is, for in-
stance, (s1 X1 s3, t1 Y1 Y2 t4 t5). Discontinuous phrase pairs are used in hierarchical
SMT [27], although only certain types of discontinuities are allowed, as determined by
bilingual parsing. Without using any linguistic information, the appropriate selection
of discontinuous phrase pairs and engineering aspects of their inclusion during decod-
ing are matters of ongoing research [54, 56, 70]. In this thesis we primarily deal with
continuous translation rules. Nonetheless, all the algorithms, techniques and notions
that are developed here can be generalized to the discontinuous case.

1.2 The log-linear model

The phrase-table is formed by all consistent phrase pairs that are extracted from all
word-aligned sentence pairs of the bitext. As mentioned above, each entry of this
phrase-level dictionary is a translation rule which is equipped with certain features. In
Chapter 2 it is explained how these features are computed. What is important here
is the fact that the phrase-table completely determines the building blocks that are
available to the system to generate a translation. The process of decoding any source
sentence S requires solving (1.1). Since the phrase-table is the only tool mapping
source phrases to target phrases, sentence S needs to be segmented into phrase-level
fragments. Each such source phrase is looked up in the phrase-table and provides
candidate target phrases. This is done for all source phrases, which results in several
candidate translations for S. The sufficiency p(T |S) of a candidate translation T of S



1.2. The log-linear model 7

is computed from a Maximum Entropy function

p(T |S) = 1

Z(S)
exp

 
X

i

�ifi(S, T )

!
, (1.5)

where fi(S, T ) is a weight produced by the ith feature of the chosen phrase-table en-
tries and �i is the corresponding Lagrange multiplier. Inserting (1.5) in (1.1) we get

T ⇤ = argmax
T

X

i

�ifi(S, T ), (1.6)

i.e., the partition function Z(S) does not have to be computed. If (S, T ) is composed
by K phrase-table entries, say {(s1, t1), ..., (sK , tK)}, then fi(S, T ) is typically given
by

fi(S, T ) =
KX

k=1

log fi(sk, tk), (1.7)

where fi(sk, tk) is the ith feature of (sk, tk). There is no definitive value for K and in
fact all segmentations of S are equally likely. Also, by taking into account that i) a typ-
ical source sentence is composed by approximately 20 words; ii) there are numerous
candidate target phrases for a source phrase, it is clearly understood that solving (1.6)
based on (1.7) is difficult. Indeed, it can be shown that it is an NP-hard problem [81]
with a reduction from the Traveling Salesman problem [162]. The beam search stack
decoding algorithm [151, 152] is one of the standard approaches for approximating
(1.6) efficiently. The phrase pairs {(s1, t⇤1), ..., (sK , t⇤K)} that eventually form (S, T ⇤)
typically consist of one to three words per source and target phrase, with unigrams
being the most common.

Although this description of the SMT framework is certainly incomplete, it is suffi-
cient for posing the research directions of this thesis. It has become apparent that SMT
breaks down a complex problem (sentence-level translation) into smaller, manageable
tasks (multiple phrase-level translations). The flaw of this framework is that these
smaller tasks are rather independent from each other. As mentioned above, the associ-
ated features of ordering structure have local impact, i.e., in the vicinity of a couple of
words from the position of the candidate target phrase. The possible counterargument
of memorizing more translation rules and wider ordering structures leads to artificial
but certainly not intelligent approaches. Besides, it has been empirically observed that
even in the presence of sufficient training data, the translation of short sentences can
be inadequate.

Given source phrase S we attempt to draw insight into the relationship between the
translation quality of T ⇤ and the current SMT framework. How does the process of
translating S on the phrase-level and with local awareness deter the resulting T ⇤ from
being a perfect translation? We have basically already ruled out S’s length as well
as engineering and hardware constraints as the essential driving forces for translation
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quality. Less obviously, S’s linguistic structural classification is also not of fundamen-
tal importance. Surely, adequate translation quality is most likely to be achieved when
S is a linguistically simple sentence, i.e., when it consists of subject and predicate only.
This holds especially in the case where both the source and target languages are from
the same linguistic family. Simple sentences enclose those elements of linearity and
independence that are required by the SMT framework to perform well. Successful
syntax-based techniques that can accommodate translation for linguistically complex
sentences, such as preordering [30, 35, 92], do not necessarily leverage from the SMT
framework; patterns between source and target language parse trees, dependency trees
etc., could possibly be even more useful, if the SMT framework was more globally-
aware.

1.3 The Principle of Compositionality
As mentioned in the beginning of this chapter, an ideal translation of S should preserve
S’s meaning. We argue that the current SMT framework fails to do so, as it disregards
the Principle of Compositionality (PoC). This principle, which is also known as Frege’s
Principle, is as follows [5]: The meaning of a complex expression is a function of the
meanings of its constituents and the operations performed on those constituents. None
of the key terms ‘meaning’, ‘constituent’ and ‘operation’ have a fixed definition. The
PoC has thus been the subject of critique [117], but has also produced fruitful results
if interpreted appropriately [68]. For our purposes we have:

• A constituent is a word of the complex expression (sentence).

• An operation is the act of grouping words in a segment. We assume that each
word belongs to a unique segment in a given segmentation. A segmentation is
thus a partition of the sentence. Furthermore, we assume that words in a segment
are ordered in a way that respects their order of appearance in the sentence. Thus,
each segment is a (possibly discontinuous) phrase.

• Meaning is viewed as an abstract function M whose domain is phrases, but no
further specifications are required. No such computations are carried out explic-
itly throughout this thesis.

Let � = {s1, s2, ..., sK} denote a segmentation of sentence S. According to the PoC,
there exists a function F such that

M(S) = F [ M(s1), M(s2), ..., M(sK) ] . (1.8)

Our key assertion is that the PoC can be satisfied for all possible operations, i.e., for
any segmentation of S: If �0 = {s01, s02, ..., s0L} is another segmentation of S, then there
exists a function F 0 such that

M(S) = F 0 [ M(s01), M(s02), ..., M
0(s0L) ] . (1.9)
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Figure 1.3 shows an example of two segmentations for the sentence Trade unions
have already expressed their concern with respect to the lack of
collaborative action. The segments of � respect grammar (but not syntax),

  

Trade unions   have   already   expressed   their   concern   with respect to   the lack of   collaborative action   .σ :

Trade   unions have   already   expressed   their concern   with   respect   to   the   lack   of   collaborative   action   .σ ' :

Figure 1.3: Two different segmentations for the same sentence. Boxes separate seg-
ments and colors facilitate visualization.

but most importantly they avoid polysemy by having univocal, unambiguous func-
tion within the sentence (in fact within any sentence). On the other hand, �0 is a rather
random segmentation. We assume that the ‘effort’ required by some F to process the
meanings of �’s segments and produce the meaning of the whole sentence should be
less than the ‘effort’ required by some F 0 to perform the same task for �0. In general,
a basic feature that can characterize the degree of ‘effort’ is whether the function is
linear or not. Naturally it is assumed that linearity of F implies less ‘effort’. If F is
linear, then (1.8) is written as

M(S) = M(s1) � M(s2) � ... � M(sK), (1.10)

where � is a semantic binary operation.1 In this thesis we are interested in finding
those segmentations of a sentence that correspond to linear functions.

For the pair (S, T ⇤) composed by the bilingual segmentation {(s1, t⇤1), ..., (sK , t⇤K)}
as generated by (1.6) and (1.7), we ideally expect

M(S) = FS,T ⇤ [ M(t⇤1), M(t⇤2), ..., M(t⇤K) ] , (1.11)

for some function FS,T ⇤ . The subscript of this function stresses that the formation of
segments and the combination of their meanings has to take into account the bilingual
setting. However, all chosen phrase pairs are equipped with only locally-aware fea-
tures. Also, the decoding process itself essentially performs independent translations
of fragments of S. If we could compute meanings during decoding, the actual resulting
meaning would be comparable with

 = M(T ⇤
1 ) � M(T ⇤

2 ) � ... � M(T ⇤
L), (1.12)

1As mentioned above, computations involving meanings are not carried out in this thesis. The details
of this binary operator are thus omitted.
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where T ⇤
l ’s are possibly overlapping translations of fragments of S. Apart from simple

cases, the equality M(S) =  cannot be expected. This thesis attempts to identify
under which conditions a bilingual segmentation could validate the statement M(S) =
 .

To make things clearer, we construct a framework for bilingual segmentations that
can potentially adapt to the locally-aware framework of SMT. It is, however, not specif-
ically tailored to SMT and other natural language processing branches, such as com-
position in distributional semantics [8, 28], could benefit from it. Using the PoC as
a starting point, this is achieved by introducing relevant notions and techniques in a
monolingual setting, which are then generalized in a bilingual setting via the phrase-
table and some empirical results from SMT. We proceed with stating our research
questions.

1.4 Research questions
The extraction of translation rules which leads to the formation of the phrase-table with
accompanying features has in fact motivated this thesis. Conditions 1–4 above provide
an algorithmic tool but no further insights can be drawn.

RQ1 How can one devise a mathematical framework that is affable to the consis-
tency method? It should be minimal in construction but sufficient for accommodating
bilingual segmentations as a generalization. If bilingual segmentations are taken into
account, then how do they affect the set of extracted translation rules? [Chapter 3]

Empirically, it has been shown that only a small proportion of the whole set of
translation rules is actually useful during decoding [74, 163]. Within our framework
that encompasses bilingual segmentations, we would like to draw further insight into
why this is happening, i.e., to identify the qualitative characteristics of the effective
subset of translation rules.

A tool that could potentially assist this identification is a phrase-level generative
model (in the spirit of the IBM models) that respects consistency. We present such
a model but do not carry out the task in full due to heavy engineering difficulties
that previous work has pointed out [37]. Instead, a key probability distribution that
is encountered in all previous work that constructs phrase-level generative models is
explored: The probability of a segmentation of a sentence. In fact, we do something
more general with a wider spectrum of applications.

Let S be a finite set and let PS denote the set of all partitions of S. A probability
distribution over PS is called exchangeable if it is invariant under every deterministic
rearrangement of places by a permutation of S [57]. For example, if S = {1, ..., 6},
then an exchangeable distribution p over PS satisfies, for instance,

p({{1, 5}, {2}, {3, 4, 6}}) = p({{⇡(1), ⇡(5)}, {⇡(2)}, {⇡(3), ⇡(4), ⇡(6)}}), (1.13)
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for every permutation ⇡ on S. In nonparametric Bayesian statistics, such distributions
are traditionally treated as exchangeable; the application of de Finetti’s Theorem gives
rise to the Dirichlet process [51], the Chinese restaurant process [119], the Pitman-Yor
process [118] and the Indian buffet process [60]. For our purposes, however, equalities
as in (1.13) are restrictive and undesirable.

RQ2 How should one construct a method for computing probabilities of
non-exchangeable random partitions? [Chapter 3]

Our search for the said qualitative characteristics essentially begins from a mono-
lingual setting. In particular, we seek conditions that satisfy (1.10).

RQ3 Given a sentence S in some language, identify what conditions a segmentation
{s1, ..., sK} of S should satisfy in order for (1.10) to hold. How can one define the
segmentation that satisfies those conditions optimally? [Chapter 4]

This optimal segmentation, which we term the natural segmentation, is expected to
have the same properties as the top segmentation of Figure 1.3 for the corresponding
sentence. Its definition is inspired by the construction of measure-theoretic entropy in
dynamical systems [77] and builds on paraphrases as in [68]. As such it is difficult to
be implemented in practice. To this end, we construct two computationally feasible
methods that could possibly simulate natural segmentations. The prominent method
builds on a heuristic, the so-called Pointwise Mutual Information (PMI), which has
empirically been found to perform well in segmentation-related tasks.

For a given sentence S, in this method we are interested in perturbing a segmen-
tation � into another segmentation �0 in the following way: Split a single segment of
� into two new segments and form segmentation �0 from these two segments together
with the ones that are intact in �. This operation of ‘refinement’ along with the set of
all possible segmentations of S, forms a particular type of partially ordered set, namely
a lattice. We focus on metrics on lattices, because they are interpreted as cost functions
for perturbing one segmentation into another.

RQ4 Given the relationship between Shannon’s entropy and metrics on lattices [138],
elaborate on the mathematical framework of PMI. Is it possible to extend PMI within
this framework for simulating natural segmentations? [Chapter 4]

The next step is to generalize the definition of natural segmentation from a mono-
lingual to a bilingual setting.

RQ5 Given a word-aligned sentence pair (S, T ), identify what conditions a bilin-
gual segmentation {(s1, t1), ..., (sK , tK)} of (S, T ) should satisfy in order to form a
bilingual natural segmentation. How can one define the bilingual segmentation that
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satisfies those conditions optimally? [Chapter 5]

Equipped with a word-aligned bitext that is naturally segmented, we proceed with
extracting translation rules.

RQ6 What is the effect of bilingual natural segmentations on SMT? [Chapter 5]

The remaining research questions deal with a particular problem in SMT. The
phrase-table is the only source of translation rules. A valid translation rule that has
not been identified as such during training will not appear in the phrase-table. The
construction of new translation rules from existing ones is thus a reasonable research
direction. It requires the formation of a new phrase pair and the computation of fea-
ture weights for the new pair. It turns out that both tasks are very error-prone and thus
hard [21, 114, 166].

Our first attempt to tackle this problem is based on paraphrases, i.e., phrase-level
synonymies: If (s, t) is a phrase-table entry and if t0 is a paraphrase of t, then (s, t0)
becomes a new phrase-table entry. We only discuss the first step of this approach, i.e.,
the identification of t0. We essentially extend the work of Kok and Brockett [87], which
harvests paraphrases from the graph representation of a phrase-table It uses a random
walk measure, the commute time between two phrases t and t0, in order to rank the
quality of (t, t0).

RQ7 How should one extend the work of Kok and Brockett [87] in order to identify
less noisy pairs of paraphrases and to develop a method that constructs artificial co-
occurrence counts for these pairs? [Chapter 6]

The second attempt suggests a promising strategy for computing ad hoc weights for
unseen phrase pairs during decoding. It relies on the compositional nature of phrase
pairs, i.e., the building blocks that were discussed in Section 1.1.

The most important weight of a phrase-table entry (s, t) is the translation probabil-
ity p(t|s) which expresses the likelihood of t being a translation of s in any sentence
pair (see Section 2.1 for details). For a pair (s, t) that is not in the phrase-table, i.e., it
is unseen, the computation of p(t|s) is a challenge: Not only does it have to reflect the
quality of such a translation for s, but its value also has to be in line with the distribution
p of the existing phrase-table entries. As mentioned in Section 1.2, the phrase-table is
the only tool that maps source phrases to target phrases. Thus, the ability to handle
unseen phrase pairs would be useful during decoding.

RQ8 Given an unseen phrase pair (s, t), how can one compute the translation prob-
ability p(t|s) based on their most likely composition of building blocks? [Chapter 7]
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1.5 Thesis overview and origins
This section provides an overview of the thesis and the publications on which each
chapter is based. For each publication we mention the role of each co-author.

Chapter 2 is an overview of basic features that are used by most SMT systems. It
also provides the baseline SMT system that is used in our experiments in the following
chapters. This chapter does not include original material.

Chapter 3 is a rigorous description of the phrase pair extraction mechanism that en-
compasses bilingual segmentations. It also includes a method for computing prob-
abilities of non-exchangeable random partitions. This chapter is based on Investi-
gating Connectivity and Consistency Criteria for Phrase Pair Extraction in Statisti-
cal Machine Translation published at MoL’13 by Martzoukos, Costa Florêncio, and
Monz [100]. Martzoukos developed the methods. All authors contributed to the text.

Chapter 4 introduces the concept of the natural segmentation of a sentence. It also
investigates the relationship between PMI and metrics on lattices that are induced by
all segmentations of a sentence. This chapter is partly based on Maximizing Com-
ponent Quality in Bilingual Word-Aligned Segmentations published at EACL’14 by
Martzoukos, Costa Florêncio, and Monz [101]. Martzoukos developed the methods
and performed the experiments. All authors contributed to the text.

Chapter 5 extends the notion of the natural segmentation to the bilingual level. It
also investigates the effect of such segmentations on SMT. This chapter is partly based
on the same publication as in Chapter 4.

Chapter 6 describes a graph-based method that harvests paraphrases and assesses the
quality of two phrases that are assumed paraphrases of each other. This chapter is based
on Power-Law Distributions for Paraphrases Extracted from Bilingual Corpora pub-
lished at EACL’12 by Martzoukos and Monz [99]. Martzoukos developed the methods
and performed the experiments. Both authors contributed to the text.

Chapter 7 describes a method for copmuting conditional probabilities of an unseen
phrase pair based on alignment information that is provided by its sub-phrase pairs.
This chapter is based on unpublished material.

Chapter 8 is a summary of our answers to the research questions that were stated
in Section 1.4 and it also includes pointers for future work.

Figure 1.4 shows the dependencies between the chapters of this thesis.
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Figure 1.4: Dependency tree for the chapters. Although Chapter 7 is self-contained, its
content is best understood if Chapter 3 has also been covered. Further insights about
Chapter 7 can be gained if Chapter 5 has been covered (dashed arrow).



Chapter 2
Baseline SMT System

The concepts, techniques and algorithms that are developed in this thesis are integrated
in an existing statistical machine translation (SMT) system. In this chapter we outline
the components of this system, which is called “Moses” [85] and is open source soft-
ware.1 Moses is one of the standard baseline systems that is commonly used in the
research literature as well as in WMT, the Workshop on Statistical Machine Transla-
tion [15].

2.1 Phrase-table
The phrase-table, which is a phrase-level dictionary, is the focus of this thesis. Each
entry is a translation rule, i.e., a phrase pair that has been extracted from aligned parallel
corpora after meeting certain criteria. As mentioned in Chapter 1, such a phrase pair
must be consistent with the alignment of the sentence pair from which it is extracted.
In Chapter 3 we elaborate on what is meant by consistency.

An entry (s, t) is equipped with four features:

• Direct phrase translation probability p(t|s).

• Inverse phrase translation probability p(s|t).

• Direct lexical weighting lex(t|s).

• Inverse lexical weighting lex(s|t).

The direct translation probability is computed as

p(t|s) =
count(s, t)P
t0 count(s, t0)

, (2.1)

1http://www.statmt.org/moses/

15
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where count(s, t) is the number of times that pair (s, t) has been extracted as a trans-
lation rule from the aligned parallel corpus. The inverse translation probability is sim-
ilarly computed.

Translation probabilities, as given by (2.1), can be unreliable for low-frequency
phrase pairs. Lexical weighting assesses the translation quality of pair (s, t) based on
correspondences between the pair’s most basic constituents, i.e., words. If (s1 . . . sn,
t1 . . . tm) denotes a sentence pair from the word-aligned parallel corpus, where each
si and tj stands for a source and target word respectively, then consider the alignment
matrix

A(i, j) =

(
1, if si and tj are aligned
0, otherwise,

(2.2)

for all i = 1, ..., n and j = 1, ...,m. Also, if a and x denote a source and target word
respectively, then consider the direct word translation probability

w(x|a) =
count(a, x)P
x0 count(a, x0)

, (2.3)

where count(a, x) is the number of times that pair (a, x) has been aligned in the parallel
corpus. The direct lexical weighting of pair (s, t) is given by

lex(t|s) =
|t|Y

j=1

1
P|s|

i=1 A(i, j)

|s|X

i=1

A(i, j)w(tj|si), (2.4)

where |u| denotes the number of words in phrase u. Note that this quantity is not a
probability as it is not guaranteed that

P
t lex(t|s) = 1. Inverse lexical weighting is

similarly computed.
Lexical weightings are heuristics. In Section 3.3 it is explained that translation

probabilities are derived via maximum likelihood estimation.

2.2 Language model
During decoding, translation rules are selected from the phrase-table and the formed
candidate target strings need to be tested for grammatical cohesion. The purpose of the
language model (LM) is to assess the fluency of translation candidates. If V denotes
the vocabulary of the target language, then an LM is a function p : V N ! [0, 1],
for some natural number N . For example, if the produced candidate target strings
are the man sleeps and the sleeps man, then an LM should ideally yield
p(the man sleeps) > p(the sleeps man).

An LM is constructed from a large monolingual corpus, which may include the
target side of the bilingual corpus that is used to train the other models of the SMT
system. The dominant approach is to view this corpus as a stochastic process: A
corpus W is a sequence of words w1, .., wN ; each word wi is an instance of random
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variable, or state, Wi that takes values from the vocabulary V of the target language.
Each state Wi is assumed to be dependent only on its n� 1 preceding states, or history
Wi�n+1, ...,Wi�1. If n = 2 then W is a Markov Chain. The quantities of interest are
the conditional probabilities

pn(wi | wi�1
i�m+1) := pn(Wi = wi | Wi�m+1 = wi�m+1, ..., Wi�1 = wi�1), (2.5)

for all 1 < m  n and 1  i  N , wherever histories exist. It is explained in
Section 4.2 that for any word w and any sequence of words h, the simplest LM that
can assess the quality of string hw is given by

p(hw) ⌘ pn(w|h) =

8
>><

>>:

count(hw)
count(h) , if |h|  n� 1

count(h̃w)

count(h̃) , otherwise,
(2.6)

where count(x) is the number of times that sequence x has been observed in corpus
W , and h̃ ⇢ h consists of h’s final n� 1 words. The value of n is fixed and the LM is
thus referred to as an n-gram LM. The typical choice for n in SMT ranges from three
to seven [16, 73, 96, 131]. In this thesis we use 4-gram LMs.

A major drawback of (2.6) is that if sequence h is not observed in corpus W , then
pn(w|h) is undefined. To overcome this problem smoothing is employed, which is
a technique for assigning probability mass for unseen events. The smoothing tech-
nique of Kneser and Ney [79] interpolates the n-gram LM with lower order m-gram
LMs (i.e., 1  m < n); it has empirically been found to perform well in SMT [18].
Throughout this thesis we thus use 4-gram interpolated LMs with Kneser-Ney smooth-
ing, which are generated by the open source software SRILM.2 For the details of this
LM we refer to [25, 148].

2.3 Reordering model
As with the language model, the reordering model also deals with fluency, but at the
bilingual level.

Suppose that word-aligned sentence pairs are read from left to right. The reordering
model is a phrase-level dictionary whose entries are exactly the same as the ones in the
phrase-table; an entry (s, t) is equipped with features that indicate how likely (s, t) is
to be ordered in a sentence pair with respect to the translation rules that precede and
follow (s, t).

Figure 2.1 shows how to identify such an order with the aid of an alignment matrix
in general. The main rectangle with end points (i, j), (i, j + m), (i + n, j) and (i +
n, j + m) stands for a consistent phrase pair, i.e., an extracted translation rule, say
(s, t) = (si...si+n, tj...tj+m). By definition of consistency (see Chapter 1), there are no

2http://www.speech.sri.com/projects/srilm/
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Figure 2.1: All possible continuous orientation types for a consistent phrase pair.

other valid translation rules to the north, south, east nor west of (s, t). Valid translation
rules may exist:

• To the northwest or northeast, i.e., immediately to the left of (s, t), and

• To the southwest or southeast, i.e., immediately to the right of (s, t).

For example, if a northwest translation rule (s0, t0) exists, then the cell (i � 1, j � 1)
should be contained in the rectangle that is formed by (s0, t0). Similarly for all other
corners of (s, t). Note that translation rules to the northwest and northeast of (s, t)
cannot exist simultaneously, because that would violate consistency. What can happen
though, is that both cells (i � 1, j � 1) and (i � 1, j + m + 1) represent absence
of alignment. This case indicates that the translation rule to the left of (s, t) is not
immediately to its left, but requires a ‘jump’ over another translation rule. Similar
arguments hold for the south orientation of (s, t).

The resulting orientations are termed monotone, swap and discontinuous. The first
two are shown in Figure 2.1 with respect to the immediately previous and immediately
next translation rule of (s, t). Let O denote the set of these three orientations. An entry
(s, t) of the reordering model is thus equipped with six features:
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• Probabilities pprev(o|s, t), for all o 2 O. Each represents the likelihood of ob-
serving orientation type o with respect to the previous translation rule.

• Probabilities pnext(o|s, t), for all o 2 O. Each represents the likelihood of ob-
serving orientation type o with respect to the next translation rule.

Let count(o, s, t; prev) denote the number of times that orientation type o with respect
to the previous translation rule of (s, t) has been observed in the word-aligned parallel
corpus. Similarly for count(o, s, t; next). Then the above probabilities are computed as

pz(o|s, t) =
count(o, s, t; z)P

o02O count(o0, s, t; z)
, (2.7)

for all o 2 O, and for all z 2 {prev, next}. In Moses, the above models are smoothed
as

pz(o|s, t) =
1/2 + count(o, s, t; z)

3/2 +
P

o02O count(o0, s, t; z)
, (2.8)

for all o 2 O, and for all z 2 {prev, next}.

2.4 Distortion cost
The reordering model operates along with the distortion cost. The latter is not a model
that is learned from training data as it operates during decoding only. At this stage, the
source sentence is segmented into source phrases.

Suppose that the segmented source sentence is read from left to right. For the
leftmost source phrase, a candidate target phrase is sought by looking up the phrase-
table. We are not restricted to seeking a translation candidate for the source phrase
immediately to the right of the leftmost source phrase. On the contrary, the decoding
process allows us to choose which source phrase should be decoded next; we can
decode a source phrase that is several phrases to the right, then move again to the left
etc. The jumps over source phrases come at a cost, the distortion cost. In Moses, a
linear distortion cost is implemented in the decoder and is defined as follows:

Suppose that source sentence S is segmented into K source phrases. Source phrases
are decoded one by one and each such phrase is labeled by an integer k 2 {1, ..., K},
which indicates its order in the decoding process. Since each source phrase is decoded
to a single target phrase, that target phrase inherits the label. Let

startk = position of the first word of the source phrase
that translates to the kth target phrase; (2.9)

endk = position of the last word of the source phrase
that translates to the kth target phrase. (2.10)
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At the end of the decoding process a target candidate translation T is formed. The
distortion cost is given by

D(S, T ) = �
KX

k=1

dk, (2.11)

with
dk = |endk�1 + 1� startk|, (2.12)

where end0 = �1. The (per phrase) distortion in (2.12) simply counts the number of
words that are jumped in order to proceed to the next phrase that is to be decoded. The
distortion cost in (2.11) is the accumulation of these jumps, i.e., the total variation of
the decoding scheme.

It has been observed that large dk results in inadequate translations [59]. Through-
out this thesis we limit the (per phrase) distortion to six. This implies that the seg-
mentation of the source sentence and the order with which source phrases are decoded
should be such that dk  6, for all k.

2.5 Word and phrase penalty
Word and phrase penalty do not explicitly depend on the output of the training stage.
They are (independent) features that control lengths of strings during decoding; their
values rely heavily on the resulting Lagrange multipliers of the tuning stage.

Word penalty As mentioned in Section 2.2, a target string T = t1...tN that is pro-
duced during decoding as a candidate translation of a given source sentence, needs to
be assessed for target-language fluency. The LM that performs this task, treats T as a
stochastic process with memory n, and the following quantity is computed

p(T ) = p(t1...tN) =
NY

i=1

pn(ti|ti�n+1 ... ti�1), (2.13)

where probabilities pn are given by smoothed versions of (2.6). What we need to note
in this section is that (2.13) is composed by N probabilities and that it is not normalized
for target string length.

A problem arises when we wish to compare the fluency of T with that of another
candidate translation T 0 = t1...tN 0 for which N 6= N 0: Even if T is a more fluent
translation than T 0, it is still more likely that p(T ) < p(T 0), if N > N 0. The decoder
thus favours shorter translation candidates. To counter this bias, the word penalty is
used, which is the feature !(T ) = eN .

Phrase penalty During decoding a source (test) sentence is segmented. These source
segments are then looked up in the phrase-table and reordering model and translations
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are scored accordingly. The phrase penalty controls the size (number of words) of
those source segments. Its value is e, i.e., its effect is completely determined by the
corresponding Lagrange multiplier.

2.6 Tuning and evaluation
During decoding, a translation candidate is scored by 14 models: Four from the phrase-
table (Section 2.1), one from the language model (Section 2.2), six from the reordering
model (Section 2.3), the distortion cost (Section 2.4), and two penalties (Section 2.5).
Each of these has its corresponding weight, which is a Lagrange multiplier in the
log-linear model of (1.5) and (1.7). Tuning is the process of setting values for those
weights. This is done with the aid of a development set, or tuning set, which is a par-
allel corpus different form the one that is used during training; it typically consists of
500–2000 sentence pairs. The process is iterative and works as follows:

1. Set random initial values for the weights.

2. Decode the source side of the tuning set with the existing weights.

3. Compare the resulting translations (output) with the target side of the tuning set
(references).

4. Perform local search for new weight values so that the difference between the
output and the references is minimal.

5. If the weights do not change much, then stop. Else, go to Step 2.

Local search is performed with Minimum Error Rate Training, or MERT [110]. The
metric that is used for comparing strings is the Bilingual Evaluation Understudy, or
BLEU [115]. BLEU is a very simple metric that is based on counting which 4-grams
of the output also appear in the references.

After the tuning stage is over, the SMT system is ready for usage, i.e., for trans-
lating unseen sentences from the source language. If changes or additions have been
made to the default models, then testing takes place. This stage requires an additional
parallel corpus, the test set, which consists of approximately 2000 sentence pairs [15];
these must not be part of the training nor tuning parallel corpora. The source sentences
of the test set are translated by both the default system, or baseline, and by the modi-
fied system. Each of the outputs is then compared with the target side of the test set.
Again BLEU can be used for this purpose. The comparison of the baseline’s BLEU
score with the modified system’s BLEU score provides feedback on whether the mod-
ified system is an adequate SMT system. Throughout this thesis we also use BLEU for
scoring the baseline and our system.





Chapter 3
Phrase Pair Extraction

In this chapter we address RQ1 and RQ2. The consistency method, as described in
Chapter 1, has been established as the standard strategy for extracting translation rules
in statistical machine translation (SMT). However, no attention has been drawn to why
this method is successful, other than empirical evidence. Using concepts from graph
theory, we identify the relation between consistency and components of graphs that
represent word-aligned sentence pairs. It can be shown that translation rules, i.e.,
phrase pairs of interest to SMT form a sigma-algebra generated by components of
such graphs. This construction is generalized by allowing segmented sentence pairs,
which a) provides the stepping stone for further understanding of the type of phrase
pairs that are useful for SMT, and b) gives rise to a phrase-based generative model. A
by-product of b) is a derivation of probability mass functions for random partitions.
These are realized as cases of constrained, biased sampling without replacement and
we provide an exact formula for the probability of a segmentation of a sentence.

3.1 Introduction
A parallel corpus, i.e., a collection of sentences in a source and a target language,
which are translations of each other, is a core ingredient of every SMT system. It
serves the purpose of training data, i.e., data from which translation rules are extracted.
In its most basic form, SMT does not require the parallel corpus to be annotated with
linguistic information, and human supervision is thus restricted to the construction of
the parallel corpus.

The extraction of translation rules is done by appropriately collecting statistics from
the training data. The pioneering work of Brown et al. [19] identified the minimum as-
sumptions that should be made in order to extract basic translation rules and developed
the relevant models that made such extractions possible.

These models, known as IBM models, are based on standard machine learning
techniques. Their output is a matrix of word alignments for each sentence pair in
the training data. These word alignments provide the input for later approaches that
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construct phrase-level translation rules which may [156, 159] or may not [95, 109] rely
on linguistic information.

The method developed by Och et al. [109], known as the consistency method, is a
simple yet effective method that has become the standard way of extracting (source,
target)-pairs of phrases as translation rules. The development of consistency has been
done entirely on empirical evidence and it has thus been termed a heuristic. This brings
us to the first research question that is addressed here:

RQ1 How can one devise a mathematical framework that is affable to the consis-
tency method? It should be minimal in construction but sufficient for accommodating
bilingual segmentations as a generalization. If bilingual segmentations are taken into
account, then how do they affect the set of extracted translation rules?

In this chapter it is shown that the method of Och et al. [109] actually encodes a
particular type of structural information induced by word alignments. A word-aligned
sentence has an obvious graph representation: Each word represents a labeled vertex
and an edge between a source type and a target type vertex exists if and only if they
are word-aligned. No source-to-source and no target-to-target edges are assumed and
the graph is thus bipartite. It is shown that the connected components of such a graph
are exactly the building blocks of translation rules in SMT. All further translation rules
emerge exactly from the graph union of connected components.

In other words, the phrase-table is constructed entirely from phrase pairs that re-
sult from connected components and the graph union of connected components. The
phrase-table must be memorized when decoding a source sentence and consequently its
number of entries and the length of each entry are forced to meet practical constraints
such as runtime behavior and memory limitations. Commonly, the upper bound for
the length of a phrase pair is chosen to be 7 words in each side. This empirical choice
provides the optimal balance between manageable phrase-table size and translation
quality.

However, existing research has shown that translation quality can be preserved by
appropriately discarding most of the phrase-table [74]. This is in fact no surprise: By
collecting all possible unions of connected components after training, we informally
create a huge warehouse of phrase pairs. Such a storage lacks qualitative criteria and
decoding is essentially reduced to a smart look-up in the pile of phrase pairs. Such
phrase-table filtering methods also use quantitative criteria. Part of this thesis is also
devoted to providing further understanding as to what makes this small subset of all
possible unions of components important. In this chapter, the stepping stone for the
search of qualitative criteria is provided.

This is achieved by allowing source-to-source and target-to-target edges in the
graph representation of the word-aligned sentence pair. More precisely same type
edges are allowed if and only if the corresponding words are consecutive in the sen-
tence. Thus, segmented sentences are considered and each such segment formalizes
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the intuitive representation of a phrase. We show that, for fixed word alignments, the
set of all phrase pairs of interest to SMT can be traced in the set of connected compo-
nents of all possible bilingual bilingual segmentations. In other words, the search for
qualitative criteria is shifted to understanding what makes such a subset of connected
components important.

Although this task is completed in Chapter 5, we describe here another process that
could in theory strengthen our thesis points. We outline a generative model in the spirit
of the IBM models that finds the most likely connected components from the most
likely segmented sentence pairs. Previous work has shown that similar phrase-based
generative models provide comparable translation quality with the IBM models. They
are, however, harder to train in practice [37, 95].

For a sentence pair (S, T ) with |S| and |T | being the number of source and tar-
get words, the IBM models seek the most likely alignments between such |S| and |T |
words. On the other hand, phrase-based models solve similar maximization problems,
but have a much bigger search space: There are 2|S|�1 possible ways to segment a
source sentence and similarly for the target side. The exponential number of possible
phrase configurations in a sentence forces one to apply various heuristics and simplifi-
cations when Expectation-Maximization is performed on millions of sentence pairs.

As mentioned above, our suggested phrase-based model would provide further ev-
idence about qualitative characteristics of the small subset of all possible phrase pairs
that is useful to SMT. However, a potential implementation of our ideas would result
in engineering difficulties, as encountered in previous work [37]. This deters us from
carrying out this task in full. Nonetheless, we do handle an important quantity quite
differently from other research: In all previous work (see Section 3.2) the probability
of a segmentation of a sentence requires the explicit modeling of the length of such
a segmentation as an additional random variable. We follow a different approach that
is closer to coalescent theory. Even within the framework of coalescent theory our
approach does not assume that segments in a segmentation are an exchangeable nor a
partially exchangeable sequence:

RQ2 How should one construct a method for computing probabilities of
non-exchangeable random segmentations and random partitions in general?

We thus distance ourselves from the more familiar Chinese Restaurant Process and
derive a probability mass function that is closer in construction to the Hyper-Dirichlet
type I distribution [43]. This is achieved by considering a sentence segmentation as an
outcome of all possible stochastic processes that lead to its formation. This assumption
is coupled with a compact graph-based encoding of all possible segmentations of a
sentence. Vertices of such graphs are all possible segments of a sentence, each of which
has its own weight. These weights are the only parameters of our model. Furthermore,
our approach can be trivially extended to modeling random partitions in general.

Another issue that is addressed in this chapter regards the associated translation
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probabilities of the extracted phrase pairs. It is not difficult to see that all extracted
phrase pairs are typically treated as a bag-of-phrase pairs in SMT. Under this assump-
tion, the empirical distribution is the natural choice for translation probabilities. We
show that this approach overlooks the richer structure induced by the compositional
nature of phrase pairs; the measure space that is formed by the set of all connected
components yields promising alternative methods for computing translation probabili-
ties. This realization provides the stepping stone for computing compositionally aware
translation probabilities, and is investigated in Chapter 7.

3.2 Related work
To the best of our knowledge, this is the first attempt to investigate formal motivations
behind the consistency method.

Several phrase-level generative models have been proposed, almost all relying on
multinomial distributions for the phrase alignments [11, 37, 41, 52, 95, 157, 165]. This
is a consequence of treating alignments as functions rather than partitions.

Word alignment and phrase extraction via Inversion Transduction Grammars [156],
is a linguistically motivated method that relies on simultaneous parsing of source and
target sentences [26, 40, 106].

The partition probabilities that will be introduced in Section 3.6.2 share the same
tree structure discussed in [43], which has found applications in Information Retrieval
[65].

3.3 Definition of consistency
In this section the definition of consistency is presented; it was introduced by Och et
al. [109], refined by Koehn et al. [82], and we follow Koehn [86] in our description.
We start with some preliminary definitions.

Let S = s1...s|S| be a source sentence, i.e., a string that consists of consecutive
source words; each word si is drawn from a source language vocabulary and i indicates
the position of the word in S. The operation of string extraction from the words of S
is defined as the construction of the string s = si1 ...sin from the words of S, with
1  i1 < ... < in  |S|. If i1, ..., in are consecutive, which implies that s is a substring
of S, then s is called a source phrase and we write s ✓ S. As a shorthand we also write
sini1 for the phrase si1 ...sin . Similar definitions apply to the target side and we denote
by T, tj and t a target sentence, word and phrase respectively.

Let (S, T ) = (s1s2...s|S|, t1t2...t|T |) be a sentence pair and let A denote the |S|⇥|T |
matrix that encodes the existence/absence of word alignments in (S, T ) as

A(i, j) =

(
1, if si and tj are aligned
0, otherwise,

(3.1)
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for all i = 1, ..., |S| and j = 1, ..., |T |. Unaligned words are allowed. A pair of strings
(s, t) = (si1 ...si|s| , tj1 ...tj|t|) that is extracted from (S, T ) is termed consistent with A,
if the following conditions are satisfied:

1. s ✓ S and t ✓ T .

2. 8k 2 {1, ..., |s|} such that A(ik, j) = 1, then j 2 {j1, ..., j|t|}.

3. 8l 2 {1, ..., |t|} such that A(i, jl) = 1, then i 2 {i1, ..., i|s|}.

4. 9k 2 {1, ..., |s|} and 9l 2 {1, ..., |t|} such that A(ik, jl) = 1.

Condition 1 guarantees that (s, t) is a phrase pair and not just a pair of potentially
discontinuous strings. Condition 2 says that if a word in s is aligned to one or more
words in T , then all such target words must appear in t. Condition 3 is the equivalent
of Condition 2 for the target words. Condition 4 guarantees the existence of at least
one word alignment in (s, t).

For a sentence pair (S, T ), the set of all consistent phrase pairs with an alignment
matrix A is denoted by P (S, T ). Figure 3.1 shows an example of a sentence pair with
an alignment matrix together with all its consistent phrase pairs.
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Figure 3.1: Left: Sentence pair with an alignment matrix. Dots indicate existence of
word alignments. Right: All consistent phrase pairs.

In SMT the extraction of each consistent pair (s, t) from (S, T ) is followed by a
statistic f(s, t;S, T ). Typically f(s, t;S, T ) counts the occurrences of (s, t) in (S, T ).
Any two sentence pairs in the training data are assumed independent, so that the quan-
tity of interest becomes

count(s, t) =
X

(S,T )

f(s, t;S, T ), (3.2)

where the sum is over all sentence pairs in the training data. The set of all consistent
pairs is thus treated as a bag of phrase pairs, i.e., a multiset in which each pair (s, t)
occurs count(s, t) times.
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The next step is to derive translation probabilities p(t|s) and p(s|t) for each pair
(s, t) in the multiset. The phrase pairs are assumed to be independent and identically
distributed. For the derivation of p(t|s), the quantity of interest is the log-likelihood
function

` =
X

(s,t)

count(s, t) log p(t|s), (3.3)

which should be maximized subject to the constraints
P

t p(t|s) = 1, for all source
phrases s in the multiset. The method of Lagrange multipliers yields the solution

p(t|s) =
count(s, t)P
t0 count(s, t0)

, for all (s, t). (3.4)

A similar process is followed in order to estimate p(s|t). Finally, the entries of the
phrase-table consist of all extracted phrase pairs, their corresponding translation prob-
abilities and other models that were discussed in Chapter 2.

3.4 Consistency and components
For a given sentence pair (S, T ) and a fixed word alignment matrix A, our aim is
to show the equivalence between consistency and connectivity properties of the graph
formed by (S, T ) and A. Moreover, it is explained that the way in which measurements
are performed is not compatible, in principle, with the underlying structure. We start
with some basic definitions from graph theory; see for example [67].

Let G = (V,E) be a graph with vertex set V and edge set E. Throughout this
chapter, vertices represent words and edges represent word alignments, but the latter
will be further generalized in Section 3.5. A subgraph H = (V 0, E 0) of G is a graph
with V 0 ✓ V , E 0 ✓ E and the property that for each edge in E 0, both its endpoints
are in V 0. A path in G is a sequence of edges which connect a sequence of distinct
vertices. Two vertices u, v 2 V are called connected if G contains a path from u to v.
G is said to be connected if every pair of vertices in G is connected.

A connected component, or simply component, of G is a maximal connected sub-
graph of G. Maximal means that it is the largest possible such subgraph: It is impossi-
ble to find another vertex or another edge anywhere in G, such that it could be added
to the subgraph and the subgraph would still be connected. G is called bipartite if V
can be partitioned in sets VS and VT , such that every edge in E connects a vertex in VS

to one in VT . The disjoint union of graphs, or simply union, is an operation on graphs
defined as follows: For n graphs with disjoint vertex sets V1, ..., Vn (and hence disjoint
edge sets), their union is the graph (

Sn
i=1 Vi,

Sn
i=1 Ei).

Consider the graph G whose vertices are the words of the source and target sen-
tences, and whose edges are induced by the non-zero entries of the matrix A. There
are no edges between any two source-type vertices nor between any two target-type
vertices. Moreover, the source and target language vocabularies are assumed to be dis-
joint and thus G is bipartite. The set of all components of G is defined as C1. Also,
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let k denote the cardinality of this set, i.e., |C1| = k. From the members of C1 sets
C2, ..., Ck are further constructed as follows: For each i, 2  i  k, any member of Ci

is formed by the union of any i distinct members of C1. In other words, any member
of Ci is a graph with i components and each such component is a member of C1. The
cardinality of Ci is clearly

�
k
i

�
, for every i, 1  i  k.

Note that Ck = {G}, since G is the union of all members of C1. Moreover, observe
that C⇤ = [k

i=1Ci is the set of graphs that can be generated by all possible unions of
G’s components. In that sense

C = {;} [ C⇤ (3.5)

is the powerset of G. Indeed we have |C| = 1 +
Pk

i=1

�
k
i

�
= 2k as required.1

Figure 3.2 shows the graph G and the associated sets Ci of (S, T ) and A in Fig-
ure 3.1. Note the bijective correspondence between consistent pairs and the phrase
pairs that can be extracted from the vertices of the members of the sets Ci. This is
a consequence of consistency Conditions 2 and 3, since they provide the sufficient
conditions for component formation.

In general, if a pair of strings (s, t) satisfies the consistency Conditions 2 and 3,
then it can be extracted from the vertices of a graph in Ci, for some i. Moreover, if
Conditions 1 and 4 are also satisfied, i.e., if (s, t) is consistent, then we can write

P (S, T ) =
k[

i=1

�
(SH , TH) : H 2 Ci, SH ✓ S, TH ✓ T

 
, (3.6)

where SH denotes the extracted string from the source-type vertices of H , and simi-
larly for TH . Having established this relationship, when referring to members of C,
we henceforth mean either consistent pairs or inconsistent pairs. The latter are pairs
(SH , TH) for some H 2 C such that at least either SH 6✓ S or TH 6✓ T .

The construction above shows that phrase pairs of interest to SMT are part of a
carefully constructed subclass of all possible string pairs that can be extracted from
(S, T ). The powerset C of G gives rise to a small, possibly minimal, set in which
consistent and inconsistent pairs can be measured. In order to explain our point some
further definitions are needed. The following standard definitions can be found in,
e.g., [50].

Let X be a set. A collection B of subsets of X is called a sigma-algebra if the
following conditions hold:

1. ; 2 B.

2. If F is in B, then so is its complement X \ F .

3. If {Fi} is a countable collection of sets in B, then so is their union
S

i Fi.

1Here we used the fact that for any set X with |X| = n, the set of all subsets of X , i.e., the powerset
of X , has cardinality

Pn
i=0

�n
i

�
= 2n.
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Figure 3.2: The graph representation of the matrix in Figure 3.1, and the sets generated
by components of the graph. Dark shading indicates consistency.

Condition 1 guarantees that B is non-empty and Conditions 2 and 3 say that B is closed
under complementation and countable unions respectively. The pair (X,B) is called a
measurable space.

A function µ : B ! [0,1) is called a measure if the following conditions hold:

1. µ(;) = 0.

2. If {Fi} is a countable collection of pairwise disjoint sets in B, then

µ

 
[

i

Fi

!
=
X

i

µ(Fi).

Condition 2 is known as sigma-additivity. The triple (X,B, µ) is called a measure
space.

In our case, since C is (by construction) a sigma-algebra, the pair (C1, C) is a
measurable space. Furthermore, one can construct a measure space (C1, C, f), with an
appropriately chosen measure f : C ! [0,1).
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Is the occurrence-counting measure f of Section 3.3 a good choice? Fix an ordering
for Ci, and let Ci,j denote the jth member of Ci, for all i, 1  i  k. Furthermore, let
�(x, y) = 1, if x = y and 0, otherwise. We argue by contradiction that the occurrence-
counting measure

f(H) =
X

{H0: H02C, H0 is consistent}
�(H,H 0), (3.7)

fails to form a measure space. Suppose that more than one component of G is consis-
tent, i.e., suppose that

1 <
kX

j=1

f(C1,j)  k. (3.8)

By construction of C, it is guaranteed that

1 = f(G) = f(Ck,1) = f

 
k[

j=1

C1,j

!
. (3.9)

The members of C1 are pairwise disjoint, because each of them is a component of G.
Thus, since f is assumed to be a measure, sigma-additivity should be satisfied, i.e., we
must have

f

 
k[

j=1

C1,j

!
=

kX

j=1

f(C1,j) > 1, (3.10)

which is a contradiction.
Note that (3.7) should not be confused with the standard counting measure. For any

measurable space (X,X ) with X countable, such a function f(A) equals the number
of elements in A, for any finite subset A of X . In our case f(H) would count the
number of components in H .

The occurrence-counting measure f of Section 3.3 operates in a different measure
space, one that overlooks the compositional nature of extracted phrase pairs. All ex-
tracted phrase pairs are treated as a bag-of-phrase pairs and the occurence counting
measure is, naturally, the empirical measure. In Chapter 7 we explain how to com-
bine (C1, C) with the bag-of-phrase pairs in order to derive a statistically elaborate
relationship between phrase pairs and their components.

3.5 Consistency, components and segmentations
In Section 3.4 the only relation that was assumed among source (target) words/vertices
was the order of appearance in the source (target) sentence. As a result, the graph rep-
resentation G of (S, T ) and A was bipartite. There are several, linguistically motivated,
ways in which a general graph can be obtained from the bipartite graph G. We explain
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that the minimal linguistic structure, namely sentence segmentations, can provide a
generalization of the construction introduced in Section 3.4.

Let X be a finite set of consecutive integers. A consecutive partition of X is a
partition of X such that each part consists of integers consecutive in X . A segmentation
� of a source sentence S is a consecutive partition of {1, ..., |S|}. A part of �, i.e., a
segment, is intuitively interpreted as a phrase in S. In the graph representation G of
(S, T ) and A, a segmentation � of S is realized by the existence of edges between
consecutive source-type vertices whose labels, i.e., word positions in S, appear in the
same segment of �. The same argument holds for a target sentence and its words; a
target segmentation is denoted by ⌧ .

Clearly, there are 2|S|�1 possible ways to segment S and, given a fixed alignment
matrix A, the number of all possible graphs that can be constructed is thus 2|S|+|T |�2.
The bipartite graph of Section 3.4 is just one possible configuration, namely the one
in which each segment of � consists of exactly one word, and similarly for ⌧ . This
segmentation pair is denoted by (�0, ⌧0).

We now turn to extracting consistent pairs in this general setting from all possible
segmentations (�, ⌧) for a sentence pair (S, T ) and a fixed alignment matrix A. As in
Section 3.4, we construct graphs G�,⌧ , associated sets C�,⌧

i , for all i, 1  i  k�,⌧ , and
C�,⌧ , for all (�, ⌧). Consistent pairs are extracted in lieu of (3.6), i.e.,

P �,⌧ (S, T ) =
k�,⌧[

i=1

�
(SH , TH) : H 2 C�,⌧

i , SH ✓ S, TH ✓ T
 
, (3.11)

and it is trivial to see that

{(S, T )} ✓ P �,⌧ (S, T ) ✓ P (S, T ), (3.12)

for all (�, ⌧). Note that P (S, T ) = P �0,⌧0(S, T ) and, depending on the details of A,
it is possible for other pairs (�, ⌧) to attain equality. Moreover, each consistent pair in
P (S, T ) can be be extracted from a member of at least one C�,⌧ .

We focus on the sets C�,⌧
1 , i.e., the components of G�,⌧ , for all (�, ⌧). In partic-

ular, we are interested in the relation between P (S, T ) and C�,⌧
1 , for all (�, ⌧). Each

consistent H 2 C�0,⌧0 can be converted into a single component by appropriately form-
ing edges between consecutive source-type vertices and/or between consecutive target-
type vertices. The resulting component will evidently be a member of C�,⌧

1 , for some
(�, ⌧). It is important to note that the conversion of a consistent H 2 C�0,⌧0 into a sin-
gle component need not be unique; see Figure 3.3 for a counterexample. Since (a) such
conversions are possible for all consistent H 2 C�0,⌧0 and (b) P (S, T ) = P �0,⌧0(S, T ),
it can be deduced that all possible consistent pairs can be traced in the sets C�,⌧

1 , for all
(�, ⌧). In other words, we have:

P (S, T ) =
[

�,⌧

�
(SH , TH) : H 2 C�,⌧

1 , SH ✓ S, TH ✓ T
 
. (3.13)
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Figure 3.3: A graph with three components (top), and four possible conversions into a
single component by forming edges between contiguous words.

The above equation says that by taking sentence segmentations into account, we can
recover all possible consistent pairs, by inspecting only the components of the under-
lying graphs.

It would be interesting to investigate the relation between measure spaces (C�,⌧
1 ,

C�,⌧ , f�,⌧ ) and different configurations for A. We leave that for future work and focus
on the advantages provided by (3.13). In Chapter 5 we show how to extract a subset
of P (S, T ) using (3.13), while providing the qualitative characteristics of this subset.
Such a subset will be shown to be the sufficient set of phrase pairs in SMT. In the next
section it is explained how to construct a phrase-based generative model that finds this
subset of P (S, T ).

3.6 Towards a phrase-level model that respects consis-
tency

The aim of this section is to exploit the relation established in (3.13) between con-
sistent pairs and components of segmented sentence pairs. We present a phrase-based
generative model in the spirit of the IBM models that extracts the most likely consistent
phrase pairs from the most likely segmented sentence pairs.

Previous work [37, 39] has highlighted the difficulty of implementing such mod-
els. As the resulting phrase-tables do not provide serious added value from the ones
generated by the IBM models, our attempt is purely for demonstration.

Our actual contribution is to derive an exact probability mass function for random
segmentations. The proposed model is fundamentally different from previous work in
SMT. In particular, the probability of a segmentation of a sentence does not require the
length of the segmentation to be explicitly modeled as an additional random variable.
We follow a different approach, one that is closer to coalescent theory [10]; even within
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this framework our approach does not assume that segments in a segmentation are an
exchangeable nor a partially exchangeable sequence.

3.6.1 Hidden variables
The segmentation of a sentence is a partition of the sentence whose parts are phrases.
The formation of components in a sentence pair admits a partition of the sentence pair
whose parts are phrase pairs coupled with word alignments. In a segmented sentence
pair (�, ⌧), the identification of components C�,⌧

1 is the key aspect that defines consis-
ntency, as (3.13) suggests. In this section, for a given sentence pair, we are interested
in inferring the most likely consistent phrase pairs from the most likely segmented
sentence pair. The expilicit identification of word alignments that forms each compo-
nent in C�,⌧

1 is not sought. To put it diffrently, we seek the most likely formation of
C�,⌧

1 without explicit word alignment information. This quantity is a partition of a seg-
mented sentence pair whose parts are consistent phrase pairs. Such a set of phrase pairs
is refferred to as a bisegmentation and is denoted by K. Thus, our aim is to identify
the most likely K for the most likely (�, ⌧) of a sentence pair.

Figure 3.4 shows three possible bisegmentations for sentence pair (s41, t61) with � =
{{1, 2}, {3}, {4}} ⌘ {x1, x2, x3} and ⌧ = {{1}, {2, 3, 4}, {5}, {6}} ⌘ {y1, y2, y3, y4}.
In each case the exact alignment information is unknown and we have:

(a) K =
n
(x1, y1), (x2, ;), (;, y2), (x3, y3y4)

o
;

(b) K =
n
(x1x2, y1y2y3), (x3, y4)

o
;

(c) K =
n
(x1, y3), (x2x3, y1y2), (;, y4)

o
.

In the proposed phrase-level generative model the random variables whose in-
stances are �, ⌧ and K are hidden variables. As with the IBM models, they are as-
sociated with the positions of words in a sentence, rather than the words themselves.
Alignment information is implicitly identified via the bisegmentation K.

Suppose we have a corpus that consists of pairs of parallel sentences, and let fS,T
denote the occurrence count of (S, T ) in the corpus. Also, let lS = |S| and lT = |T |.
The aim is to maximize the corpus log-likelihood function

` =
X

S,T

fS,T log p✓(T |S)

=
X

S,T

fS,T log
X

�,⌧,K

p✓(T, �, ⌧, K|S), (3.14)

where �, ⌧ and K are hidden variables parameterized by a vector ✓ of unknown weights,
whose values are to be determined. The expectation maximization algorithm [36] sug-
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Figure 3.4: Three possible ways to construct bisegmentations for (s41, t61) and a given
segmentation pair. Exact word alignment information is unknown. Each polygon rep-
resents a part in the bisegmentation.

gests that an iterative application of

✓n+1 = argmax
✓

X

S,T

fS,T
X

�,⌧,K

p✓n(�, ⌧, K|S, T ) log p✓(T, �, ⌧, K|S), (3.15)

provides a good approximation for the maximum value of `. As with the IBM models
we seek probability mass functions (PMFs) of the form

p✓(T, �, ⌧, K|S) = p✓(lT |S) p✓(�, ⌧, K|lT , S) p✓(T |�, ⌧, K, lT , S), (3.16)

and decompose further as

p✓(�, ⌧, K|lT , S) = p✓(�, ⌧ |lT , S) p✓(K|�, ⌧, lT , S) (3.17)

A further simplification of p✓(�, ⌧ |lT , S) = p✓(�|S)p✓(⌧ |lT ) may not be desirable, but
will help us understand the relation between ✓ and the PMFs. In particular, we give
a formal description of p✓(�|S) and then explain that p✓(K|�, ⌧, lT , S) and p✓(T |�,
⌧, K, lT , S) can be computed in a similar way.

3.6.2 Constrained, biased sampling without replacement
The probability of a segmentation given a sentence can be realised in two ways. We
first provide a descriptive approach which is more intuitive, and we use the sentence
S = s41 as an example whenever necessary. The set of all possible segments of S is
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denoted by seg(S) and trivially |seg(S)| = |S|
�
|S|+ 1

�
/2. Each segment x 2 seg(S)

has a nonnegative weight ✓(x|lS) such that
X

x2seg(S)

✓(x|lS) = 1. (3.18)

Suppose we have an urn that consists of |seg(S)| weighted balls; each ball corresponds
to a segment of S. We sample without replacement with the aim of collecting enough
balls to form a segmentation of S. When drawing a ball x we simultaneously remove
from the urn all other balls x0 such that x \ x0 6= ;. We stop when the urn is empty. In
our example, let the urn contain 10 balls and suppose that the first draw is {1, 2}. In
the next draw, we have to choose from {3}, {4} and {3, 4} only, since all other balls
contain a ‘1’ and/or a ‘2’ and are thus removed. The sequence of draws that leads to a
segmentation is thus a path in a decision tree. Since � is a set, there are |�|! different
paths that lead to its formation. The set of all possible segmentations, in all possible
ways that each segmentation can be formed, is encoded by the collection of all such
decision trees.

The second realization, which is based on the notions of cliques and neighbor-
hoods, is more constructive and will give rise to the desired PMF. A clique in a graph
is a subset U of the vertex set such that for every two vertices u, v 2 U , there exists an
edge connecting u and v. For any vertex u in a graph, the neighborhood of u is defined
as the set N(u) = {v : {u, v} is an edge}. A maximal clique is a clique U that is not
a subset of a larger clique: For each u 2 U and for each v 2 N(u) the set U [ {v} is
not a clique.

Let G be the graph whose vertices are all segments of S and whose edges satisfy
the condition that any two vertices x and x0 form an edge if and only if x \ x0 = ;;
see Figure 3.5 for an example. G essentially provides a compact representation of the
decision trees discussed above.

  

{3}

{1}

{2}

{4}

{1,2 }{3,4 }

{2,3}{2,3,4} {1,2,3 }

{1,2,3,4 }

Figure 3.5: The graph whose vertices are the segments of s41 and whose edges are
formed by non-overlapping vertices.
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It is not difficult to see that a maximal clique also forms a segmentation. Moreover,
the set of all maximal cliques in G is exactly the set of all possible segmentations for
S. Thus, p✓(�|S) should satisfy

p✓(�|S) = 0, if � is not a clique in G, (3.19)

and X

�

p✓(�|S) = 1, (3.20)

where the sum is over all maximal cliques in G. In our example p✓
�
{ {1}, {1, 2} }|S

�
=

0, because there is no edge connecting segments {1} and {1, 2} so they are not part of
any clique.

In order to derive an explicit formula for p✓(�|S) we focus on a particular type
of paths in G. A path is called clique-preserving, if every vertex in the path belongs
to the same clique. Our construction should be such that each clique-preserving path
has positive probability of occurring, and all other paths should have probability 0. We
proceed with calculating probabilities of clique-preserving paths based on the structure
of G and the constraint of (3.18).

The probability p✓(�|S) can be viewed as the probability of generating all clique-
preserving paths on the maximal clique � in G. Since � is a clique, there are |�|!
possible paths that span its vertices. Let � = {x1, ..., x|�|}, and let ⇡ denote a permuta-
tion of {1, ..., |�|}. We are interested in computing the probability q✓(x⇡(1), ..., x⇡(|�|))
of generating a clique-preserving path x⇡(1), ..., x⇡(|�|) in G. Thus,

p✓(�|S) = p✓({x1, ..., x|�|}|S)

=
X

⇡

q✓(x⇡(1), ..., x⇡(|�|))

=
X

⇡

q✓(x⇡(1)) q✓(x⇡(2)|x⇡(1))⇥ ...

...⇥ q✓(x⇡(|�|)|x⇡(1), ..., x⇡(|�|�1)). (3.21)

The probabilities q✓(·) can be explicitly calculated by taking into account the following
observation: A clique-preserving path on a clique � can be realised as a sequence of
vertices x⇡(1), ..., x⇡(i), ..., x⇡(|�|) with the following constraint: If at step i � 1 of the
path we are at vertex x⇡(i�1), then the next vertex x⇡(i) should be a neighbor of all of
x⇡(1), ..., x⇡(i�1). In other words we must have

x⇡(i) 2 N⇡,i ⌘
i�1\

l=1

N(x⇡(l)). (3.22)

Thus, the probability of choosing x⇡(i) as the next vertex of the path is given by

q✓(x⇡(i)|x⇡(1), ..., x⇡(i�1)) =
✓(x⇡(i)|lS)
P

x2N⇡,i

✓(x|lS)
, (3.23)
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if x⇡(i) 2 N⇡,i and 0, otherwise. When choosing the first vertex of the path (the root
in the decision tree) we have N⇡,1 = seg(S), which gives q✓(x⇡(1)) = ✓(x⇡(1)|lS), as
required. Therefore (3.21) can be written compactly as

p✓(�|S) =

0

@
|�|Y

i=1

✓(xi|lS)

1

A
X

⇡

1

Q✓(�, ⇡;S)
, (3.24)

where

Q✓(�, ⇡;S) =
|�|Y

i=1

X

x2N⇡,i

✓(x|lS) . (3.25)

The construction above can be generalized in order to derive a PMF for any random
variable whose values are partitions of a set. Indeed, by allowing the vertices of G to
be a subset of a powerset, and keeping the condition of edge formation the same,
probabilities of clique-preserving paths can be calculated in the same way. Figure 3.6
shows the graph G that represents all possible instances of K with (S, T ) = (s41, t

5
1),

� =
�
{1, 2}, {3}, {4}

 
and ⌧ =

�
{1}, {2, 3, 4}, {5}

 
. Again each maximal clique is
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Figure 3.6: Similar to Figure 3.5 but for bisegmentations with (S, T ) = (s41, t
5
1) and

a given segmentation pair (see text). For clarity, we show the phrases that are formed
from joining contiguous segments in each pair, rather than the segments themselves.
Also for clarity, unaligned segments are not shown.

a possible bisegmentation.
In order for this model to be complete, one should solve the maximization step

of (3.15) and calculate the posterior p✓n(�, ⌧, K|S, T ). We are not bereft of hope, as
relevant techniques have been developed (see Section 3.2).
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3.7 Discontinuous phrase pairs
In Sections 3.3–3.5 all consistent phrase pairs (s, t) satisfy the Condition s ✓ S and
t ✓ T , for a given sentence pair (S, T ). From a linguistic point of view, this is a purely
artificial condition. It does, however, constrain the total number of extracted translation
rules. Additionally, the potential inclusion of inconsistent phrase pairs in the phrase-
table makes decoding much harder. Such phrase pairs encode their discontinuities
with a wild card token. In the example of Figures 3.1 and 3.2 we have for instance
(s1Xs3, t1XXt4t5) as an extracted phrase pair from the set of components C1.

Such phrase pairs are referred to in the literature as discontinuous or gappy phrase
pairs [7, 33, 54, 56, 136]. We primarily deal with continuous phrase pairs and discon-
tinuities are further discussed in Chapter 7.

The inclusion of discontinuous phrases does not change the construction of the
PMFs for random partitions in Section 3.6.2. Figures 3.7 and 3.8 show the augmented
graphs of Figures 3.5 and 3.6 respectively. The augmentation happens due to the in-

  

{3 }

{1}

{2}

{4}

{1,2}{3,4 }

{2,3}

{2,3 ,4} {1,2 ,3}

{1,2 ,3 ,4}

{1,4}

{1,3,4} {1,2,4 }

{2,4} {1,3}

Figure 3.7: Same as Figure 3.5 but with discontinuous segments included.

clusion of vertices that represent discontinuous phrases (Figure 3.7) and discontinuous
phrase pairs (Figure 3.8).

3.8 Conclusions
In this chapter we presented a formal treatment of the dominant strategy that gener-
ates translation rules in SMT, namely consistent phrase pairs. Prior to our work, this
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Figure 3.8: Same as Figure 3.6 but with discontinuous components included.

strategy was termed a heuristic and its dominance was entirely based on successful ex-
perimental evidence. Our aim was to devise a mathematical framework that is affable
to this strategy; it should be able to articulate the links (if any) between the output of
word-aligned sentence pairs and qualitative criteria of consistent phrase pairs. Indeed
our construction provided insight which gave rise to further exploration, as discussed in
the following chapters. The following research question was addressed in this chapter:

RQ1 How can one devise a mathematical framework that is affable to the consis-
tency method? It should be minimal in construction but sufficient for accommodating
bilingual segmentations as a generalization. If bilingual segmentations are taken into
account, then how do they affect the set of extracted translation rules?

First, it was explained that a word-aligned sentence pair has a graph representa-
tion as follows: Its source and target language words can be viewed as source and
target type vertices respectively; word alignments play the role of edges that connect
source and target type vertices. Such a graph is bipartite because no source-to-source
nor target-to-target edges are assumed. Word alignments admit a natural partition for
this graph: Each part, or component, consists of words from the sentence pair and
alignments that connect source words with target words in the following way: a) it is
possible to form a path between any two words of the component via word alignments,
and b) it is impossible to form such a path between any word in the component and
any word outside the component. As mentioned above, for a given word-aligned sen-
tence pair, empirical evidence dictates that only certain types of phrase pairs generate
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translation rules. We established that a phrase pair is a translation rule if and only if
the following conditions hold: i) its words respect the order of appearance in the sen-
tence pair. ii) its words are in one-to-one correspondence with the words of a union of
components of the bipartite graph. Equivalently, a translation rule is formed by taking
an arbitrary collection of components, extracting its words and then ordering them in a
way so that the resulting phrase pair is a substring of the sentence pair.

Second, it was explained that the graph representation of a word-aligned sentence
pair is just one possible configuration of a more general system, namely the one that
allows consecutive words in a sentence to be connected via edges, for both sentences.
Under this generalized system, it was shown that the same set of translation rules can
be extracted in a different way: A phrase pair is a translation rule if and only if i) its
words respect the order of appearance in the sentence pair. ii) its words are in one-to-
one correspondence with the words of a component of a configuration. This implies
that all translation rules can be recovered by collecting components (and components
only, not arbitrary unions thereof) from all possible configurations.

The above result lead to the formation of a phrase-based generative model. In the
spirit of IBM models, this model extracted the most likely translation rules from the
most likely segmentation of sentences of a given sentence pair. Similar previous work
has highlighted engineering difficulties during implementation as well as debatable
translation quality. Thus, our attempt was purely demonstrative. However, a probabil-
ity mass function that was present in our model, and prevalent in similar phrase-based
models, was treated from a fundamentally different perspective:

RQ2 How should one construct a method for computing probabilities of
non-exchangeable random segmentations and random partitions in general?

The probability of a segmentation of a sentence was viewed as a case of con-
strained, biased sampling without replacement. We thus derived a probability mass
function that is closer in construction to the Hyper-Dirichlet type I distribution rather
than the more familiar, but less applicable, Chinese Restaurant Process. This was
achieved by considering a sentence segmentation as an outcome of all possible stochas-
tic processes that lead to its formation. This assumption was coupled with a compact
graph-based encoding of all possible segmentations of a sentence. Furthermore, our
construction can be trivially extended to modeling non-exchangeable random parti-
tions in general.

Based on the findings of this chapter, we show in Chapter 5 how to extract a par-
ticular type of bilingual segmentation of an aligned sentence pair, namely the bilingual
natural segmentation, and we investigate the effect of such a component structure on
SMT.





Chapter 4
Monolingual Segmentations

In this chapter we address RQ3 and RQ4. The aim of this chapter is to identify what
constitutes an ideal segmentation of a sentence in any language. In a bilingual setting,
i.e., for a pair of sentences that are translations of each other, the equivalent ‘ideal’
segmentation is traced in the set of components, as generated by alignments. In a
monolingual setting, this ideal segmentation, termed the natural segmentation, should
satisfy the following conditions: 1) Substitution of its segments with their paraphrases,
yields new sentences that do not deviate much semantically from the original sentence.
2) Segments meeting Condition 1) should be minimal. The formal definition of natu-
ral segmentation that is presented, stems from the definition of entropy in dynamical
system. As such, it is not easily amenable to hands-on applications, at least within the
scope of this thesis. To this end, two novel segmentation methods are developed, with
the scope of simulating the output of a natural segmentation. The first one is a gener-
alization of usual n-gram Language Models. It challenges the notion of fixed memory
in stochastic processes in a very straight-forward way. Although it is of theoretical
interest with many potential applications, its output will not be shown to simulate the
desired one. The second method is based on appropriately choosing metrics on lattices,
a particular type of partially ordered sets. For our purposes, the set of all segmentations
of a sentence, together with the operation of refinement forms a lattice. This method
is also of theoretical interest as it demonstrates previously unknown origins of the so-
called Pointwise Mutual Information. Additionally, experiments provide evidence for
its compatibility with natural segmentations.

4.1 Introduction
In Chapter 3 we showed that the set of translation rules that are useful to Statistical
Machine Translation (SMT) emerges from the set of components that is formed from
all aligned bilingual segmentations of a parallel corpus. It is also well-known that
only approximately 10% of all such translation rules have an actual impact during
decoding [74, 163]. In our search for qualitative characteristics of this small subset we

43
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turn to a monolingual setting. In order to motivate this shift we provide the conjectured
intuitive interpretation of phrase pairs that emerge from components.

Inspection of word alignments as well as the remaining phrase table after pruning
results in the following observation: Word alignments capture maximal bilingual asso-
ciations within minimal (in terms of size) bilingual chunks. In the absence of sentence
segmentations, components give rise to phrase pairs which are intuitively interpreted
as a subset of bilingual building blocks; the remaining such building blocks are given
by some unions of components.

By “bilingual building block” we vaguely mean a phrase pair that captures mini-
mal correspondences between collocations, idioms, multiword expressions and/or fun-
damental grammatical characteristics. In the presence of sentence segmentations, the
small subset of phrase pairs that is useful to SMT is entirely constructed from compo-
nents. Since these phrase pairs are the same as the ones in the unsegmented case, we
focus on identifying what makes components of certain bilingual aligned segmenta-
tions interesting. As such components are assumed to be the bilingual building blocks,
it is natural to ask whether the involved monolingual segments are the building blocks
in their respective languages.

But what does “monolingual building block” mean? It is possible to provide a
definition depending on the branch of Computational Linguistics; a universal defini-
tion appears to be indifferent. We will attempt to provide a monolingual definition for
building blocks that allows to be generalized in a multilingual setting. In other words,
we first explain which segments are the building blocks of a sentence and then show
that, in a bilingual aligned settings, these segments are generalized by components. We
do not claim that monolingual building blocks should be constructed in such a way so
that their generalizations are the ones that are useful to SMT. On the contrary, we treat
the problem of segmenting sentences as an independent one, seeking the supposedly
indifferent universal qualitative criteria for monolingual building blocks. Thus, in this
chapter we explain how to find the “components,” i.e., the natural segments of a given
sentence. As mentioned above, the identification of appropriate segments within a sen-
tence depends on the task at hand. Nonetheless, there are two main tools that have
been used by previous research, namely Language Models and Pointwise Mutual In-
formation. We also use these tools in the search for the natural segmentation of a given
sentence. The first research question that is addressed in this chapter is the following:

RQ3 Given a sentence in some language, identify what conditions a segmentation
of the sentence should satisfy, in order for linear compositionality of meaning to hold.
How can one define the segmentation that satisfies those conditions optimally?

Let S be a sentence consisting of n words in any language. As in Chapter 3, a
segmentation � of S is a consecutive partition of S. Our goal is to find the most
appropriate segmentation of S; appropriateness is determined by some function FS

with domain the set of S’s segmentations and range the real numbers. In other words
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we want to find
�⇤ = argmax

�
FS(�), (4.1)

where the search is performed over all 2n�1 possible segmentations. We primarily
show what FS should be such that (4.1) produces the most natural segmentation. Sec-
ondarily, it is explained how �⇤ can be found efficiently, regardless of the details of FS .
Before we outline the possible choices for FS , we first explain our notion of a natural
segmentation of a sentence.

In order to understand the meaning of a sentence its words should not be inspected
in isolation. The combination of the meaning of each word does not, in general, match
the meaning of a sentence as a whole. The meaning of a sentence is given by an abstract
nonlinear combination of the meaning of its words. Our assertion is that there exists
a partition of the words that produces phrases, such that the linear combination of the
meaning of these phrases is as close as possible to the meaning of the sentence. From
all possible such partitions we consider the largest one to be the one that provides the
building blocks of the sentence. For example, for the sentence S = s1...sn�1sn with
sn =“.” (the full stop), the two segments of the partition {s1...sn�1, sn} can provide the
meaning of S in an abstract linear combination. But it is very likely that s1...sn�1 can
be further decomposed into segments that retain linearity of meaning, thus producing a
larger partition. Decompositions are performed iteratively until the parts of a partition
stop providing the meaning of a sentence linearly.

We do not attempt to formalize the term “linear/nonlinear combination of mean-
ing.” It is only used as a means of providing some intuition for our notion of natural
building blocks of a sentence. However, if such a formalization is possible, then it
should be equivalent to the following more concrete construction: For a given sen-
tence S, let d(S, S 0) denote a metric of semantic relatedness between S and any other
sentence S 0. The set

D✏(S) = { S 0 : d(S, S 0) < ✏, S 6= S 0 }, (4.2)

is thus a collection of sentences whose meaning is different to S up to a tolerance of
✏. We further assume that words that compose each S 0 are as different as possible to
the ones of S, so that each S 0 is a true paraphrase of S (up to ✏), and not just a mildly
inflected version of S. As with alignments in SMT, suppose we can align S with each
S 0. The components of dominant frequency from all such S-to-S 0 alignments define
the building blocks of S. Alternatively, one could consider only

S⇤ = argmax
S02D✏(S)

L(S 0), (4.3)

for some function L that assesses a sentence according to its likelihood. Also in this
case the components of the S-to-S⇤ alignments would define the building blocks of S.
This is a more plausible and interesting approach since the abstract notion of mean-
ing is fused with “tangible” statistics from monolingual corpora, i.e., qualitative and
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quantitative criteria are combined. In both cases the function FS in (4.1) is implicitly
determined by the alignments between S and members of D✏(S).

The exact formulation of FS is very difficult as it involves a formulation for d(S, S 0),
the semantic relatedness metric between S and S 0. Instead, we try to produce a func-
tion that generates the same output as the desired FS , but without using paraphrases.
We follow two approaches.

The first method is based on Language Models (LMs). In n-gram LMs, the order n
is fixed, i.e., during training, for any word in a corpus, always its previous n� 1 words
are considered for deriving conditional probabilities. By taking segmentations into
account we consider a varied n-gram LM: For any word we consider only its history
within its segment. For example, for the sentence S = s1...s6, the likelihood of the
segmentation � = (s1)(s2s3s4)(s5s6) is

l = p(s1)⇥ p(s2)p(s3|s2)p(s4|s32)⇥ p(s5)p(s6|s5). (4.4)

In other words, we apply exactly the intuition of a segment’s role in a sentence, namely
its ability to act as a distinct component in the sentence. Consequently, we assume
varied histories tailored to segments’ lengths. Our goal is to find the most appropriate
segmentation of S. Another possible segmentation for the same sentence in the above
example is �0 = (s1)(s2)(s3s4)(s5)(s6) with likelihood

l0 = p(s1)⇥ p(s2)⇥ p(s3)p(s4|s3)⇥ p(s5)⇥ p(s6). (4.5)

We assume that if l > l0, then � is a more appropriate segmentation for S than �0.
It is then easy to show that the most likely segmentation of S is the same as the one
that minimizes S’s perplexity. This method will be shown not to be in line with the
preceding description of natural segments of a sentence. It is, however, of general
theoretical interest with potentially useful applications to other areas of SMT, such as
ranking of N -best lists of translation candidates during decoding.

The second method that attempts to generate natural segmentations is based on
two seemingly unrelated concepts, namely Pointwise Mutual Information (PMI) and
partition refinements. The associated research question is as follows:

RQ4 Given the relationship between Shannon’s entropy and metrics on lattices [138],
elaborate on the mathematical framework of Pointwise Mutual Information (PMI). Is
it possible to extend PMI within this framework for simulating natural segmentations?

Here, we are interested in assessing the cost of perturbing a segmentation � into
another �0. A perturbation is assumed to be the smallest possible change that can
be applied to � namely the operation of splitting a single segment of � into two new
segments. Then, for a given sentence, the set of all its possible segmentations equipped
with the splitting operation forms a partially ordered set, a lattice in particular. Thus,
identifying an appropriate cost function for perturbations is equivalent to identifying a
distance metric for partition refinements. We show that the most interesting choice for
such a metric is a PMI-like function � because it achieves the following goals:
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• It gives rise to the desired, most natural segmentation of a sentence. This is
achieved by constructing two scoring functions G and F based on �; G scores
segmentations and F scores segments. These two are related via a simplified
version of the Moebius Inversion Formula.

• It provides intuitions behind the successful applications of PMI-based heuristics.
It is also known that partition refinements is a valid generalized setting for Shan-
non’s entropy [32, 134]. Thus, our method highlights the previously ignored
framework of PMI.

How do we verify that segmentations produced by either varied n-gram LMs or
segmentation refinements yield the desired natural segmentations or not? As men-
tioned above, the construction of (4.2) is difficult. We approximate (4.2) by allowing
sentences from different languages to be compared to a given sentence S. In partic-
ular, we collect sentences that are translations of S, so that ✏ ⇡ 0. In practice this
is easy to achieve because bitexts are in abundance (at least when compared to, say,
English-Paraphrased English parallel corpora). From the proceedings of the European
parliament (the so-called Europarl corpus) we found 250K English sentences each of
which has translations in 15 other languages. Each such English sentence can be triv-
ially word-aligned to its translation in each of the 15 other languages. In other words,
for a sentence S its 15 translations play the role of S’s paraphrased sentences in (4.2).
The resulting collection of components gives rise to the natural segmentation �⇤ of S.
We then compare �⇤ to the ones generated by our two methods. Overall, we find that
partition refinements is the one that produces segmentations that are closer to �⇤.

A matter of secondary importance is the efficient search for �⇤ in (4.1), regardless
of the details of FS . Since we restrict ourselves to consecutive partitions of a given
sentence with n words, the search space consists of 2n�1 possible segmentations. Al-
though this problem could be tackled by using dynamic programming, we employ the
Cross-Entropy (CE) method. This is done in order to present a previously unseen link
between common problems in natural language processing and importance sampling
techniques. Additionally, the CE method can be trivially adapted to the more general
problem of extracting bilingual segmentations, which is discussed in Chapter 5.

4.2 Varied n-gram Language Models
As mentioned in Section 2.2, in language modeling a corpus is viewed as a stochastic
process: A corpus W is a sequence of words w1, .., wN ; each word wi is an instance of
random variable, or state Wi that takes values from a vocabulary of a certain language.
Each state Wi is assumed to be dependent only on its n� 1 preceding states, or history
Wi�n+1, ...,Wi�1. If n = 2 then W is a Markov Chain. The quantities of interest are
the conditional probabilities

pn(wi | wi�1
i�m+1) := pn(Wi = wi | Wi�m+1 = wi�m+1, ..., Wi�1 = wi�1), (4.6)
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for all 1 < m  n and 1  i  N , wherever histories exist. For any word w and any
observed sequence of words h, maximizing the log-likelihood of corpus W

`W (n) = log pn(w
N
1 )

=
NX

i=1

log pn(wi | wi�1
i�n+1), (4.7)

results in the estimates

pn(w|h) =

8
>><

>>:

count(hw)
count(h) , if |h|  n� 1

count(h̃w)

count(h̃) , otherwise,
(4.8)

where count(s) is the number of times that sequence s has been observed in the corpus,
and h̃ ⇢ h consists of h’s final n� 1 words. See Appendix A for a detailed derivation.

The corpus W is assumed to be universal, i.e., it consists of various topics and/or
genres of a language. The optimal choice for n, say n⇤, is done with the aid of a test
corpus. Such a corpus, say C, supposedly represents the domain of interest; it can be
either a subset of W or a different corpus. If C consists of words v1, ..., vM , then n⇤ is
typically computed as

n⇤ = argmin
n

2�
1
M

PM
i=1 log pn(vi | vi�1

i�n+1), (4.9)

where the probabilities are given by (4.8) and the search space is the positive natural
numbers. The quantity 2�

1
M `C(n) in (4.9) is known as perplexity in computational lin-

guistics and its origins lie in the Shannon-McMillan-Breiman Theorem [32]. It states
that, for almost all corpora with M words that satisfy some mild conditions, the quan-
tity � 1

M log p(vM1 ) tends to the expected number of bits per word that are required to
describe the corpus, as M ! 1. The exponentiation of � 1

M `C(n) is loosely associ-
ated with the so-called typical set [32], but is purely cosmetic. In fact, the argument
that maximizes the likelihood `C(n) yields the same n⇤. Once n⇤ is found, one would
apply this n⇤-gram LM on various corpora C 0, C 00, ... for whatever is the task in hand
(e.g., topic modeling). Since the number of words M 0, M 00, ... may differ, then average
log-likelihood and, traditionally, perplexity is the standard measure for comparisons.

If C 6⇢ W then it is possible that a sequence of words h may not have been observed
in W , i.e., h 2 C but h 62 W . In this case pn(w|h) is undefined for any w, for certain
n. As mentioned in Chapter 2, such problems are overcome with smoothing, i.e., by
employing techniques that assign probability mass for unseen sequences.

In SMT the typical choice for n is between three and five. Rather than an outcome
of (4.9), it is a range of values that has empirically been found to allow good synchro-
nization of the LM with the other models of SMT. In this section we challenge the
notion of fixed memory in LMs. Although (4.9) is also irrelevant here, perplexity still
plays a central role. We proceed with defining varied n-gram LMs.
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Suppose we allow the memory to be as large as possible, so that the maximum
likelihood estimates of (4.8) become

p(w|h) = count(hw)
count(h)

, (4.10)

for any word w and any sequence of words h that has been observed in corpus W . Let
C be another corpus. Using (4.10), for any word w in C, our goal is to find how much
memory is sufficient for w, or equivalently how much memory is indifferent when
predicting w.

We elaborate on our point with an example. Suppose that corpus C has a sequence
of words a...g. If a standard trigram LM was used, then C’s perplexity would be cal-
culated based on the subsequences of Figure 4.1(a). A rectangle indicates how much

  

... a b c d e f g ...

... a b c d e f g ...

(a)

(b)

... a b c d e f g ...

(c)

... a b c d e f g ...

(d)

Figure 4.1: (a) Standard trigram LM. (b) General varied n-gram LM. (c) Varied n-gram
LM with memory transitivity. (d) Similar to (c), but for a different configuration.

memory should be used for predicting the rightmost word in that rectangle, so that
p3(d|...abc) = p3(d|bc), etc. By considering varied memory, one possible configura-
tion of rectangles, could be as in Figure 4.1(b). Observe the lack of memory transitivity
within fragment defg : g ! f ! e and g ! d, but f 6! d and e 6! d, where an arrow
is read as “depends on.” It provides the interesting interpretation of discontinuous, or
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skipping, LMs [58, 69, 107, 127]. The joint probability for defg is given by

p(defg) = p(d)p(e)p(f |e)p(g|dX1X2), (4.11)

where X1 and X2 are wild card tokens, so that p(g|dX1X2) is read as “probability of
g given d followed by any two other words”. In order to compute probabilities like
p(g|dX1X2) one has to collect counts of discontinuous sequences from W . Since

• we do not impose any restrictions on varied memories in a configuration of C
and

• typically W consists of tens of millions of sentences,

the collection of such counts from W is impossible in practice. We thus disallow
varied n-gram configurations of C that include discontinuous memories. We simplify
even further and disallow configurations that do not respect transitivity of memory in
general, and not just within a memory rectangle. For instance, the fragment abc in
Figure 4.1(b) satisfies c ! b ! a but c 6! a. Two possible simplified configurations
of Figure 4.1(b) are shown in Figure 4.1(c) and (d). Hence the problem of finding the
most appropriate varied n-gram configuration of a corpus C is reduced to finding the
most appropriate segmentation for C. Once such a segmentation is found, recovering
the nested memory dependencies within each segment is trivial.

In general, if corpus C consists of the sequence of words v1, ..., vM , then a segmen-
tation ! of C is a relabeling of C’s words as in

v1 v2 . . . vM�1 vM
&

!11 !12 ... !1M1 !21 !22 ... !2M2 . . . !k1 !k2 ... !kMk

so that C is partitioned into k parts (segments). Each part i consists of Mi words that
are consecutive in C. Clearly, we have M =

Pk
i=1 Mi. As explained in the example

above, each segment indicates how much memory is sufficient in order to predict a
word. Our goal is to find the best possible segmentation of C using the maximum
likelihood estimates (4.10). The log-likelihood of a segmentation ! of C with k!

segments is given by

`C(!) =
k!X

i=1

M!
iX

j=1

log p
⇣
!ij| !i(j�1)

i1

⌘
, (4.12)

where the probabilities are given by (4.10) and M!
i denotes the number of words in

part i under segmentation !. We assume that the optimal segmentation !⇤ achieves the
highest value for `C(!), i.e.,

!⇤ = argmin
!

2�
1
M `C(!), (4.13)
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where the search is over all 2M�1 segmentations of C.
The above optimization problem can be simplified by considering each sentence of

the corpus individually; finding the optimal segmentation of a sentence is independent
of all other sentences. The optimal segmentation �⇤ of a single sentence S with n
words is given by

�⇤ = argmax
�

`S(�), (4.14)

where `S(�) is calculated in the same way as in (4.12) and the search is over all 2n�1

possible segmentations of S. If C consists of L sentences S1...SL, then the optimal
segmentation of the whole corpus is

!⇤ = (�⇤
1, ..., �

⇤
L), (4.15)

where �⇤
l is the optimal segmentation of sentence Sl. Finally, the perplexity of the

optimally segmented corpus is 2�
1
M `C(!⇤), where

`C(!
⇤) =

LX

l=1

`Sl
(�⇤

l ). (4.16)

In practice, we consider only 6 words as the maximum possible memory for a given
word. This implies that for the computation of (4.10) we have to collect counts form
all n-grams with n = 1, ..., 7.

In contrast with standard n-gram LMs, smoothing is not necessary for varied n-
gram LMs. If the training corpus W is large, then an unobserved sequence hw in C,
provides strong indication that hw should not appear as a segment in C. For the special
case where w 2 C but w 62 W , then the word w will appear as segment on its own
in any possible segmentation ! of C; all other configurations that include w in larger
segments are disallowed.

From the formulation of varied n-gram LMs it is not possible to determine the type
of segments that are formed in C. We leave that for Section 4.5.

4.3 PMI and segmentation refinements

In this section the connection between PMI and metrics on partial orders is established.
The set of all possible segmentations of a sentence together with the operation of “seg-
mentation refinement” is known to form a particular type of partial order, namely a
lattice. We provide the set up for the well-known formulation of metrics on lattices
based on valuations, i.e., functions that score elements of lattices. A certain choice for
valuations yields the desired link. Finally, equipped with such a metric we explain how
to simultaneously score segments and segmentations of a sentence.
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4.3.1 Metrics on lattices
A partially ordered set, or poset, is the mathematical setup that allows the examination
of order in countable sets. Formally a poset is a pair (P,), where P is a countable set
and “” is a binary relation that satisfies for all x, y, z 2 P :

• x  x (reflexivity);

• if x  y and y  x then x = y (antisymmetry);

• if x  y and y  z then x  z (transitivity).

A poset may contain pairs of elements x, y 2 P that are incomparable, i.e., neither x 
y nor y  x holds. The elements of a poset can be anything (numbers, sets,...) and the
binary relation “” is interpreted according to the poset in consideration. Nonetheless,
the intuition of “greater than” or “dominance” is carried over in all cases.

Every finite poset has a visual representation that is known as Hasse diagram. Fig-
ure 4.2 shows examples of such diagrams. The arrows on edges are used to emphasize
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Figure 4.2: Examples of posets visualized by Hasse diagrams.

how two elements of the poset are related. For instance, in the leftmost poset of Fig-
ure 4.2 we have x6  x8 and similarly for all other arrows.

An element u 2 P is an upper bound of a subset Q ✓ P if for all x 2 Q, then
x  u. An element l 2 P is a lower bound of a subset Q ✓ P if for all x 2 Q, then
l  x. Due to transitivity there may be multiple upper bounds and/or lower bounds for
some Q ✓ P ; see Figure 4.3 for an example.

Let UQ (LQ) denote the set of all upper (lower) bounds of Q. The supremum of
Q, denoted by supQ, is the upper bound of Q such that supQ  u, for all u 2 UQ.
Similarly, the infimum of Q, denoted by inf Q, is the lower bound of Q such that
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u3

u2

u1

x2

x1

l1

x3

y2

y1

l2

Q

UQ = {u1 , u2 , u3}

LQ = {l1 , l 2 , x1}

Q = {x1 , x2 , x3}

P = Q ∪ UQ ∪ LQ ∪ {y1, y2}

Figure 4.3: All upper and lower bounds of Q ⇢ P , denoted by UQ and LQ respectively.
Observe that x1 is both an element of Q and a lower bound for Q.

l  inf Q, for all l 2 LQ. Note that supQ and/or inf Q may not exist; see Figure 4.4
for a counterexample.

  

u u '

x
1 x

2

l

Q

Figure 4.4: An example of Q ✓ P for which supQ does not exist.

A lattice is a poset P such that for any two elements x, y 2 P , both sup{x, y} and
inf{x, y} exist and we define

x _ y = sup{x, y}, the join of x and y;

x ^ y = inf{x, y}, the meet of x and y.

Lattices play central role in order theory. We focus on partition refinements [142], a
lattice that is formed by the set of partitions of a set S equipped with a inclusion-based
binary relation, which is defined as follows: A partition �0 is said to be finer than a
partition �, if every part of �0 is a subset of a part of �, and we write �0  �. For
our purposes S is a sentence consisting of words and a partition of S is a grouping of
S’s words into non-overlapping, possibly discontinuous, phrases. For practical reasons
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that will be explained in Section 4.5, we focus on a subposet of partition refinements,
namely segmentation refinements [63]. In other words, we disallow partitions that
include discontinuous phrases. Figure 4.5 shows a poset of segmentation refinements
for a sentence with four words. In general, although a subposet of a lattice is not
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Figure 4.5: Hasse diagram of segmentation refinements for a sentence with four words.
Brackets are used to distinguish different segments.

necessarily a lattice, it is in this case easy to show that segmentation refinements is
also a lattice, but we omit the details.1

Finally, metrics on lattices are formulated via valuations [105]. A valuation on a
lattice P is a function v : P ! R that satisfies

v(x) + v(y) = v(x _ y) + v(x ^ y), (4.17)

for all x, y 2 P . A valuation is called isotone if, for all x, y 2 P with x  y, we have
v(x)  v(y). It is called antitone if, for all x, y 2 P with x  y, we have v(x) � v(y).
For any x, y 2 P the distance function

d(x, y) =

(
v(x _ y)� v(x ^ y), if v is isotone
v(x ^ y)� v(x _ y), if v is antitone,

(4.18)

is a metric [12].

4.3.2 Segmentation log-likelihood as a valuation
There is another more intuitive construction of segmentation refinements. By fixing a
segmentation �, we are interested in perturbing � and generating another segmentation

1The poset of segmentation refinements of a set S is isomorphic to ordering the powerset of S by
inclusion. The latter is a well-known lattice [142].
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�0. Such a perturbation is achieved by splitting a single segment of � into two new
segments, while keeping all other segments fixed. For example, for a sentence with
five words, if � : (s1s2)(s3s4s5), where brackets are used to distinguish the segments
s1s2 and s3s4s5, then � can be perturbed in three different ways:

• �0 : (s1)(s2)(s3s4s5), by splitting the first segment of �.

• �00 : (s1s2)(s3)(s4s5), by splitting at the first position of the second segment of
�.

• �000 : (s1s2)(s3s4)(s5), by splitting at the second position of the second segment
of �,

so that �0, �00 and �000 are the perturbations of �. Clearly, these resulting segmentations
can also be perturbed in the same way. It is trivial to show that the set of all segmen-
tations of a sentence equipped with this splitting operation forms indeed the poset of
segmentation refinements.

We focus on pairs of segmentations (�, �0) such that �0 is a perturbation of �. In
this case we always have

� _ �0 = � and � ^ �0 = �0, (4.19)

so that the isotone case of (4.18) is rewritten as

d(�, �0) = v(�)� v(�0), (4.20)

and similarly if v is antitone. (4.20) is interpreted as the cost of perturbing � in order
to generate �0.

Before we present some choices for valuations we first fix some notation for seg-
mentations. A segmentation � is treated as a multiset with each member of � being a
segment. If F is any function whose domain is phrases/segments then

P|�|
i=1 F (xi) =P

x2� F (x), where |�| is the number of segments in �. The multiplicity of each seg-
ment x is implicitly taken into account, because � is assumed a multiset. If �0 is a
perturbation of �, then there exists a pair of segments in �0 that resulted from a single
segment in �. We write (s, s̄) for such a pair, so that ss̄ is the unperturbed segment.

An interesting choice for v(�) in (4.20) is

v(�) =
X

x2�
log p(x), (4.21)

with

p(x) =
count(x)

P
x02W

count(x0)
, (4.22)
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where W is a corpus and count(x) is the frequency of x in W (only up to 7-grams
inclusive are considered in W ). Without worrying whether (4.21) is isotone or antitone,
if �0 is a perturbation of �, then (4.20) becomes

d(�, �0) =
X

x2�
log p(x)�

X

x2�0

log p(x)

=

0

@log p(ss̄) +
X

x2�\{ss̄}

log p(x)

1

A�

0

@log p(s) + log p(s̄) +
X

x2�0\{s,s̄}

log p(x)

1

A ,

(4.23)

where �̃ ⌘ �\{ss̄} = �0 \{s, s̄}, because the unperturbed segments of � remain intact
in �0. Thus, (4.23) becomes simply

d(�, �0) = log
p(ss̄)

p(s)p(s̄)
, (4.24)

which is the usual Pointwise Mutual Information. However, (4.24) is problematic be-
cause it is independent of �̃. Since there exist multiple pairs (�, �0) that perturb the
same segment ss̄ into s and s̄, all such pairs will have the same cost of perturbing �
into �0. This is unwanted as we wish to establish metrics between segmentations and
not just segments. This could be tackled by considering average log-likelihood as a
valuation, i.e.,

v(�) =
1

|�|
X

x2�
log p(x), (4.25)

which results in

d(�, �0) = log
p(ss̄)

1
|�|

(p(s)p(s̄))
1

|�|+1

+
1

|�|(|�|+ 1)

X

x2�̃

log p(x), (4.26)

where we used the fact that |�0| = |�| + 1. In practice both (4.24) and (4.26) were
found to be inadequate within the framework that will be described in the rest of this
chapter.

The valuation that was found to be useful in practice is given by

v(�) =
X

x2�
log p�(x), (4.27)

with
p�(x) =

count(x)
P
x02�

count(x0)
, (4.28)

where count(x) is the frequency of x in some corpus W . By letting N� =
P

x2� count(x),
we find

d(�, �0) = log
p�(ss̄)

p�0(s)p�0(s̄)
+ (|�|� 1) log

N�0

N�
. (4.29)
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In particular, the function that assesses the cost of perturbing ss̄ in � and generating s
and s̄ in �0, as defined by

�(� ! �0) = log
p�(ss̄)

p�0(s)p�0(s̄)
, (4.30)

will be shown to be useful for identifying the most natural segmentation of a sentence.
We henceforth write � ! �0 if �0 is a perturbation of �. We also write �ss̄(� ! �0)
for the left hand side of (4.30) whenever we want to emphasize the split for which the
perturbation � ! �0 is responsible.

4.3.3 Relationship between segments and segmentations
As mentioned in the previous section, the splitting of a segment ss̄ into two new seg-
ments s and s̄ can be a result of different perturbations � ! �0. For example, for the
sentence S = x3

1sx
8
4, where s is a sequence of words, we have

�1 : (x1x2x3)(s x4x5)(x6x7)(x8)

&
�0
1 : (x1x2x3)(s)(x4x5)(x6x7)(x8)

and

�2 : (x1)(x2x3)(s x4x5)(x6)(x7x8)

&
�0
2 : (x1)(x2x3)(s)(x4x5)(x6)(x7x8)

among all possible perturbations. In both cases the operation of splitting sx4x5 into
s and s̄ = x4x5 is responsible for perturbations �1 ! �0

1 and �2 ! �0
2. The costs

�(�1 ! �0
1) and �(�2 ! �0

2) will not in general be the same and depend on �̃1 and
�̃2. By inspecting all such pairs � ! �0 for which the same s and s̄ are ‘co-responsible’
we could learn whether s and s̄ should appear together as a segment in S. In fact, we
inspect all cases in which segment s appears as a conjugate in a co-responsible pair. In
the example above, we could also have

�3 : (x1)(x2x3s)(x4x5x6x7x8)

&
�0
3 : (x1)(x2x3)(s)(x4x5x6x7x8)

in which case s and s̄ = x2x3 are co-responsible for �3 ! �0
3. Since similar inspections

can be done for any segment, we can then decide which are the best segments and
finally identify the optimal segmentation �⇤ of S.
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In general, the cost function �ss̄(� ! �0) admits a measure for the segments that
are co-responsible for perturbing � into �0; we define the gain of s from the perturbation
� ! �0 as

gain�!�0(s) = ��ss̄(� ! �0). (4.31)

Segment s may be co-responsible for different perturbations, and we consider all such
perturbations. Let

R(s) = {� ! �0 : s /2 �, s 2 �0} (4.32)

denote the set of perturbations for which s is a conjugate in a co-responsible pair. Then,
the average gain of s in the sentence is given by

gain(s) =
1

|R(s)|
X

{�!�0}2R(s)

gain�!�0(s). (4.33)

Intuitively, gain(s) measures how difficult it is to break phrase s into sub-phrases.
Finally, the quality measure of a segmentation � of a sentence is given by

g(�) =
X

s2�
gain(s), (4.34)

and refer to g(�) as the surface measure of segmentation � for the given sentence. Note
that g is a real number. The relation g(�) > g(⇢) implies that � is a better segmentation
than ⇢.

The exact computation of gain(s) for each possible segment s is computationally
expensive since all possible perturbations need to be considered. In preliminary exper-
iments we found the following approximation to work well:

1. Generate a random sample of no more than 1500 segmentations.

2. Perturb each such segmentation in all possible ways.

3. Consider each segment s that is co-responsible in those perturbations and com-
pute gain(s) based on those perturbations only.

Moreover, only segments of certain length are of interest in practice: Segments that
consist of up to 7 words are considered in Step 3; the rest are ignored.

The choices for (4.30)–(4.34) are heuristics but the experiments in the following
sections, together with the existing setup, provide evidence for further formalization.
The segment-segmentation relationship of this section can be viewed as an approxi-
mated version of the Moebius Inversion Theorem. It states that, for any poset P , there
exist functions F : P ! R and G : P ! R, such that the following statements are
equivalent:

1. G(y) =
P
xy

F (x), for all y 2 P ;
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2. F (y) =
P
xy

µ(x, y) G(x), for all y 2 P ,

for some function µ : P ⇥ P ! R with the property µ(x, y) = 0, if x, y are incompa-
rable [142]. We leave such investigations for future work. Instead, given sentence S,
we focus on finding the optimal segmentation

�⇤ = argmax
�

gS(�), (4.35)

where gS is based on (4.30)–(4.34).

4.4 The Cross-Entropy method for optimal segmenta-
tions

Given a sentence that consists of n words and a performance function F that scores
segmentations of the sentence, we show how to compute

�⇤ = argmax
�

F (�)

efficiently. To this end the Cross-Entropy (CE) method for combinatorial optimization
is employed [128]. In Appendix B we provide the importance sampling techniques that
motivate the algorithm of the CE method, as well as the algorithm itself. We proceed
with explaining how to find the optimal segmentation �⇤ as determined by a scoring
function F for a given sentence.

In order to apply the CE method for our purposes, we first need to find the appro-
priate pmf from which random segmentations are drawn. This task can be carried out
easily if the following observation is taken into account. A segmentation of a given
sentence has a bit string representation in the following way: If two consecutive words
in the sentence belong to the same segment in the segmentation, then this pair of words
is encoded by ‘1’, otherwise by ‘0’. Figure 4.6 shows the bit string representations of
all segmentations of a sentence with four words.

In general, it is trivial to show that the set of all segmentations of a sentence with
n words is in one-to-one correspondence with the set of all bit strings of length n� 1.
The bijection, say B, is given by the map described above.

Given a sentence with n words, the problem of finding the optimal segmentation,
with respect to a scoring function F , is equivalent to finding the optimal bit string of
length l = n � 1, with respect to F 0 = F � B�1. For simplicity we write F for both
scoring functions, and, for the rest of this section, we do not distinguish between a
segmentation and its bit string representation.

Let X denote the set of all bit strings of length l. A pmf f(·; ✓) of X parametrized
by ✓ is defined as follows. A random bit string x is a sequence x1...xl of l independent
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Figure 4.6: All segmentations of sentence w4
1 (left) and all bit strings of length three

(right). Each row shows the correspondence between a segmentation and a bit string.

Bernoulli random variables, i.e.,

xj =

8
><

>:

1, with probability ✓j

0, with probability 1� ✓j,

(4.36)

for all j = 1, ..., l. Parameter ✓ is thus a vector of probabilities (✓1, ..., ✓l). Since the
value of a bit is assumed independent of all other bits in a bit string, the pmf is given
by

f(x; ✓) =
lY

j=1

✓
xj

j (1� ✓j)
1�xj . (4.37)

If no further information is known about X , i.e., if ✓ = (1/2, ..., 1/2), then f(x; ✓) =
1/2l = 1/|X|, for all x 2 X . This instance for ✓ will be used as the initial value ✓0 in
Step 1 of the algorithm.

In order to update ✓ at each iteration of the algorithm we need to solve the maxi-
mization problem (B.13) in Step 4. In other words, given � 2 R and positive integer
N , we want to find the argument that maximizes

J(✓) =
1

N

NX

i=1

I{F (xi)��} ln f(xi; ✓), (4.38)

where I and f are given by (B.3) and (4.37) respectively, and {x1, ..., xN} is a sample
of bit strings. We denote by xij the jth bit of the ith instance. It is easy to show, see
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for example [34], that this optimal vector of probabilities is given by

✓j =

PN
i=1 I{F (xi)��} xijPN

i=1 I{F (xi)��}
, for all j = 1, ..., l. (4.39)

In words, ✓j equals

# instances performing at least � and have ‘1’ at jth bit
# instances performing at least �

, (4.40)

because xij 2 {0, 1} for all i = 1, ..., N and j = 1, ..., l. Fix N such that N/|X| ⌧ 1
and set ⇢ = d1%Ne. Also, let ↵ 2 (0, 1) denote the smoothing parameter. The
algorithm for finding the best performing bit string under a scoring function F is as
follows.

1. Set (✓01, ..., ✓0l ) = (1/2, ..., 1/2).

2. Generate sample x1, ..., xN of bit strings, each of length l, such that xij ⇠
Bernoulli(✓t�1

j ), for all i = 1, ..., N and j = 1, ..., l. Compute scores F (x1), ..., F (xN).
Order them descendingly as F (x⇡(1)) � ... � F (x⇡(N)), where ⇡ is the associ-
ated permutation of {1, ..., N}.

3. Compute performance threshold �t = F (x⇡(⇢)).

4. Compute bit probabilities

✓tj =

PN
i=1 I{F (xi)��t} xijPN

i=1 I{F (xi)��t}
, j = 1, ..., l. (4.41)

5. Smooth bit probabilities

✓tj := ↵✓tj + (1� ↵)✓t�1
j , j = 1, ..., l. (4.42)

6. If t � 5 and �t = �t�1 = ... = �t�5, then stop. Else t := t+ 1 and go to Step 2.

Why is smoothing necessary? At each iteration t, the cut-off parameter ⇢ forces the
selection of a small subsample that eventually yields performance threshold �t. Re-
gardless of what �t is, ⇢ is small enough to prematurely yield bit probabilities ✓tj = 0
or ✓tj = 1 for certain j in (4.42). More precisely, in practice a value of ⇢ = 5 is
typical for bit strings of length ⇠ 20, i.e., when the sentence consists of ⇠ 20 words.
Even in the initial iterations of the algorithm, say for some t, it is very likely that all 5
best-performing instances of sample Ot may have a ‘0’ at the jth bit, for some j. This
results in ✓tj = 0 and, consequently, no instance of Ot+⌧ will have a ‘1’ at position j,
for all ⌧ � 1. Similar problem happens when ✓tj = 1 at an early iteration t, for some
j. Such premature convergence may lead to poor local optima. Thus at every iteration
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the new and old bit probabilities are interpolated with smoothing parameter ↵. Surely,
more mass should be assigned to new probabilities; in practice we have found ↵ = 0.7
to perform well, which is in line with the suggested value in the literature [129].

At t = t1, vector ✓t1 consists entirely of ‘0’s and ‘1’s. Ideally, �t1 = �⇤ and
✓t1 = x⇤. By setting N = 20l for the sample size we found ideal or nearly ideal
scenarios using either `S of (4.14) or gS of (4.35) as performance functions for a given
sentence S.

4.5 The natural segmentation of a sentence
In this section the natural segmentation of a sentence is defined. In order to compute
it in practice, one needs to generate paraphrases for each segment of a segmentation of
a given sentence. As this is a difficult task we turn to an approximation by focusing
on aligned bitexts. We explain that a translation T of a sentence S together with align-
ments between S and T can be used as an approximation for the natural segmentation
of S. To this end, using the Europarl corpus, the natural segmentation of approximately
250K English sentences are approximated. For these sentences optimal segmentations
as in (4.14) or (4.35) are also computed; basic comparisons provide strong indications
that optimal poset-based segmentations are closer in simulating natural segmentations.

4.5.1 Definition of natural segmentation
Let S be sentence in a language, i.e., a sequence of words that respects the syntax of a
language. Let � = {x1, ..., xm} denote a segmentation of S. That is, � is such that

• Each segment x 2 � is a sequence of words which respects the order of ap-
pearence in S, but may be discontinuous.

• There exists an ordering of all segments that produces sentence S, or O� = S for
short. Such an ordering also merges discontinuous segments with other segments
appropriately.

For any segment x let Para(x) denote the set of x’s paraphrases. For each segment xi

of � we can choose a paraphrase yij 2 Para(xi) and form the ‘paraphrased segmen-
tation’ ⇢ = {y1j1 , ..., ymjm}. Clearly there are

Qm
i=1 |Para(xi)| ways of constructing

such configurations of paraphrased segmentations.
Consider the subset of all possible configurations

P = {⇢ | 9 ordering O⇢ that produces a sentence}. (4.43)

We wish to compare S with the sentences that can be generated by P . As mentioned in
Section 4.1, the measure of comparison is some semantic relatedness metric d(S, S 0),
for any other sentence S 0. The quantity of interest is

� = max
⇢2P

d(S,O⇢), (4.44)
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i.e., the largest possible dissimilarity (worst case scenario) that can be achieved. We
write P� and �� for P and � respectively whenever emphasis is needed.

If � contains small segments then � is more likely to be large: The smaller segment
x is, the more likely that members of Para(x) will produce ambiguity in a paraphrased
sentence of S. On the other hand, if � contains larger segments then � is more likely
to be small, for similar reasons. This bias towards larger segments can be removed by
imposing restrictions on the quality of segments: Given an empirical distribution p, for
any segment x, if p(x) > ✓, for some threshold ✓, then x is allowed to be part of a
segmentation. As a shorthand we write p(�) > ✓ for p(xi) > ✓, i = 1, ..., |�|.

The natural segmentation of a sentence S in some language is defined as

�⇤ = argmin
� : p(�)>✓

max
⇢2P�

d(S,O⇢)

= argmin
� : p(�)>✓

��. (4.45)

Without the restriction p(�) > ✓, the search space is over all continuous and discon-
tinuous segmentations, i.e., partitions of S. If S consists of n words then there are Bn

such partitions, where Bn is the nth Bell number and is computed as

Bn =
nX

k=0

⇢
n

k

�
, (4.46)

where
�
n
k

 
are Stirling numbers of the second kind [31]. Even with the restriction

p(�) > ✓ obvious complications may arise when solving (4.45) in practice. For
simplicity we allow continuous segmentations only, whose full search space consists
of 2n�1 possible configurations. If a sentence consists of twenty words, then there
are approximately half a million such configurations. On the other hand, we have2

B20 > 50 · 1012, which justifies the need for this simplification.
The definition of natural segmentation is motivated by the construction of mea-

sure theoretic entropy in dynamical systems [77, 120]. A discussion on the pos-
sible connections between natural sentence segmentations and such an entropy (as
well as the more general Kolmogorov-Sinai entropy, which does not invoke a met-
ric) is beyond the scope of this thesis. We simply mention that viewing the map
Para : Phrase ! Paraphrase as a random (discrete) dynamical system may lead
to interesting research directions.

4.5.2 Heuristics
Our aim for the remaining of this chapter becomes twofold. First, introduce a heuristic
for approximating (4.45). Given sentence S we turn to a collection of sentences C
each of which is a sentence-level paraphrase of S. For each sentence S 0 2 C, if
S-to-S 0 IBM-type alignments are known, then a finer (i.e., phrase-level) paraphrase
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The ECB refused Greek bonds in

EuropeanThe rejected Greek debt asBankCentral

acceptto

securities

lendingforreturn

collateral

(a)

S :

S ' :

σ= The , ECB , refused to accept , Greek , bonds , in return for lending{ }

σ '= The , European Central Bank , rejected , Greek , debt securities , as collateral{ }
(b)

Phrase : Paraphrases

ECB : European Central Bank,...

refused to accept : rejected, ...

bonds : debt securities, ...

in return for lending : as collateral, ... (c)

Figure 4.7: (a) Word alignments between a sentence and its sentence-level paraphrase.
(b) Segmentations resulting from (a). (c) Part of the phrase-level dictionary resulting
from (a).

dictionary can be constructed: Figure 4.7(a) shows an example of word alignments
between sentence S and a possible sentence-level paraphrase S 0. As in the bilingual
case, such alignments give rise to components, i.e., they yield a partition of words in
both S and S 0; Figure 4.7(b) shows segmentations � and �0 for S and S 0 respectively,
which can can be inferred from the partition. Figure 4.7(c) shows a sample from the
phrase-paraphrase dictionary that is constructed for each segment in �: If x 2 � is
aligned with x0 2 �0, then x0 is considered a paraphrase of x. The resulting full phrase-
paraphrase dictionary is of high quality provided that a) the collection C contains high
quality sentence-level paraphrases for S, and b) accurate alignments between S and
any S 0 2 C can be obtained.

Sentence S in the example of Figure 4.7 is a simple sentence, i.e., it does not
contain a subordinate clause. This property permits a clear distinction between subject
and predicate in a sentence; further clauses that bind with the subject or the predicate
in a syntactically more complex way are absent. It is thus natural to assume that such
sentences are easier to be segmented, paraphrased, etc. Indeed, there is evidence that
documents that consist mostly of simple sentences are easier to be summarized [168].

For our purposes, if S is a simple sentence then a high quality phrase-level dictio-
2https://oeis.org/A000110
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nary is easier to be constructed (because the two conditions stated above are easier to
be met). Additionally, the resulting segmentation � of S as in Figure 4.7(b) is likely
to have little variation across the sentences of C. Since the phrase-level dictionary is
assumed to be of high quality, then we can deduce that d(S,O⇢) ⇡ 0 for most para-
phrased segmentations ⇢ 2 P . Thus, the problem of finding the natural segmentation
of S reduces to finding the most frequent segmentation of S, as determined by S’s
alignments with C’s sentences. In fact, if S is not a simple sentence, then the same ar-
gumentation holds. The only difference is that C should be sufficiently larger in order
to yield the dominant segmentation.

This systematic approach of finding the natural segmentation of a sentence masks
potentially deeper understanding of how the core constituents of a sentence are inte-
grated with the sentence itself. Also, even if the phrase-level dictionary is perfect, then
this process does not explicitly guarantee that the dominant segmentation is also the
natural segmentation, as given by (4.45). Again, without going into details, Birkhoff’s
Ergodic Theorem from dynamical systems is used as a compass to validate the above
process. However, constructing or finding a high quality sentence-level paraphrase col-
lection C is very difficult in practice. This is because existing English-to-paraphrased
English corpora are scarce and their construction is a difficult problem in itself.

To this end we turn to a further approximation. Given English sentence S, instead
of identifying a sentence-level paraphrased collection C, we seek translations of S in
various languages. Since the rest of the process remains the same, there is no technical
restriction that prevents the augmentation of the English dictionary with words from
other languages. A translation of an English sentence S can thus play the role of a
sentence-level paraphrase of S.

In practice, the European parliamentary proceedings (Europarl corpus) can provide
the desired collection C of translations for an English sentence S, together with their
alignments. Unfortunately S has to be part of Europarl as well and not just a random
English sentence. This brings us the second part of our goal: Find a method that
approximates (4.45) for any sentence in any language. We tackle this problem using
the two segmentation methods that were introduced in Sections 4.2 and 4.3. They are
both language independent and can be trained on the same monolingual corpus.

Thus, given sentence S, optimal segmentations �⇤
VLM and �⇤

REF that result from var-
ied n-gram LMs and segmentation refinements respectively can be compared fairly
with each other. If S’s natural segmentation �⇤ is also known, then all three can be
compared to each other and decide whether �⇤

VLM or �⇤
REF is closer to �⇤.

Using the approximation described above, 250K English sentences from the Eu-
roparl corpus can be naturally segmented. In the next section we provide evidence
that segmentation refinements are better than varied n-gram LMs in generating natural
segmentations.
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Family Languages
Baltic Latvian, Lithuanian 2
Finno-Ugric Estonian, Finnish, Hungarian 3
Germanic Dutch, German, Swedish 3
Greek Greek 1
Romanic French, Italian, Spanish 3
Slavic Czech, Polish, Slovak 3
Total # translations for an English sentence 15

Table 4.1: Languages and their corresponding linguistic families. An English sentence
has a translation in each of these languages.

4.5.3 Experiments
We are interested in forming a set of English sentences with each such sentence having
a sufficient number of translations. Sufficiency is determined by the ability to yield the
dominant segmentation for each sentence in the set. To this end we turn to the Europarl
corpus [83] which consists of European parliamentary proceedings: speeches of MEPs
are transcribed and translated into all official EU languages.

From release 7 of Europarl3 we extracted 264,528 English sentences and each such
sentence has a translation into 15 other European languages. Table 4.1 shows these
languages as well as their linguistic family classification. The size of the set of English
sentences and the total number of translations for each English sentence together with
the fair distribution across linguistic families, provides a potentially reliable dataset for
our experiments.

We do not directly investigate how many translations are sufficient for a linguisti-
cally simple or complex English sentence in order to generate its dominant segmen-
tation. Instead, we simply aim for major discrepancies in appropriate experimental
measurements that, in retrospect, deem this investigation unnecessary. Similarly for
the chosen distribution of languages across their linguistic families. In detail, the ex-
perimental process is as follows.

1. For each language L of Table 4.1 the corresponding EN–L Europarl parallel corpus
is used to generate word alignments with the standard SMT machinery.

2. We identify all English sentences of those corpora that have translations in all 15
languages of Table 4.1: These form a set, say S, of 264,528 English sentences; each
such sentence has a translation in each language of L = {Latvian, ..., Slovak}.

3. For any sentence S 2 S , the collection of translations {TL(S)}L2L plays the role of

3http://www.statmt.org/europarl/index.html
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the collection C that was discussed in the previous section. Equipped with the known
word alignments between any S 2 S and each translation of {TL(S)}L2L we proceed
with finding the most dominant, and thus natural, segmentation for S.

This is determined with the aid of segmentation-bitstring correspondence that was
discussed in Section 4.4, together with the heuristic of Section 4.5.2. Given sentence
with n words, say S = sn1 , we rewrite a segmentation � of S as

� = s1 b1 s2 b2 s3 ... sn�1 bn�1 sn, (4.47)

where each bi is ‘0’ or ‘1’, i.e.,

bi =

(
1, if si si+1 is part of a segment in �;

0, otherwise,
(4.48)

for all i = 1, ..., n � 1. For instance, in the example of Figure 4.7 (b) segmentation �
is rewritten as

� = The 0 ECB 0 refused 1 to 0 accept 0 Greek 0 bonds 0 in 1 return 1 for 1 lending.
(4.49)

As mentioned in Section 4.5.2, it is possible to construct a segmentation for S from
each translation in {TL(S)}L2L, i.e., we have

�L = s1 bL,1 s2 bL,2 s3 ... sn�1 bL,n�1 sn, (4.50)

with

bL,i =

(
1, if si si+1 is part of a segment in �L;

0, otherwise,
(4.51)

for all i = 1, ..., n � 1 and for all L 2 L. Finding the dominant, and thus natural
segmentation �⇤ is a matter of counting how often a ‘1’ appears at bit position i of the
15 segmentations, for all i = 1, ..., n � 1. Surely, for a given bit position, we cannot
expect the same bit to appear in all 15 segmentations. The dominance of bit ‘1’ in a bit
position is characterized by the relative frequency of ‘1’s and parametrized by some
✓ 2 [0, 1]. More precisely, for the parametrized dominant segmentation �⇤

✓ we have

�⇤
✓ = s1 b

✓
1 s2 b

✓
2 s3 ... sn�1 b

✓
n�1 sn, (4.52)

with

b✓i =

8
><

>:

1, if |{L : L 2 L, bL,i = 1}| / 15 � ✓;

0, otherwise,
(4.53)

where bL,i as in (4.51), for all i = 1, ..., n�1. I.e., ✓ tells us how tolerant we want to be
when joining two consecutive words in a segment of the dominant segmentation �⇤

✓ . If
✓ = 0, then at least one translation with bL,i = 1 at position i for some L will suffice in
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joining words si and si+1 in the same segment in �⇤
0 . On the other hand, if ✓ = 1, then

full agreement among all translations is required for the same event to occur in �⇤
1 .

In this way the parametrized dominant segmentation for all sentences in S is deter-
mined. Our ultimate goal, however, is the investigation of whether varied n-gram LMs
or refinement-based optimal segmentations are closer to generating natural segmenta-
tions. The value of ✓ will be determined based on that investigation.

4. For each S 2 S

• Varied n-gram LM optimal segmentation �⇤
VLM is determined by (4.10), (4.12)

and (4.14).

• Refinement-based optimal segmentation �⇤
REF is determined by (4.28), (4.30)-

(4.35).

For both methods the corpus from which counts are extracted and contribute to (4.10)
and (4.28) is a subset W of the fifth edition of the English Gigaword corpus.4 In
particular, W consists of the following news-related resources:

• Agence France-Presse, English service (afp_eng);

• Associated Press Worldstream, English service (apw_eng);

• Los Angeles Times/Washington Post Newswire Service (ltw_eng),

which amount to 72.8M sentences or 2.06B tokens.
As mentioned in Sections 4.2 and 4.3.3 only counts of n-grams with n = 1, ..., 7

are collected. Consequently, only segments that consist of at most 7 words may ap-
pear in �⇤

VLM and �⇤
REF. Also, each sentence of W is augmented by the beginning and

end-of-sentence tokens, which are treated as normal tokens. Both optimization prob-
lems (4.14) and (4.35) are solved with the algorithm of the Cross-Entropy method, as
described in Section 4.4.

5. For each S 2 S we determine whether �⇤
VLM or �⇤

REF is closer to �⇤
✓ using the metric

‘Precision’ from Information Retrieval. In particular, since �⇤
✓ is parametrized by ✓,

the parametrized precision for each method is given by

Prec✓(S,m) =
|�⇤

m \ �⇤
✓ |

|�⇤
✓ |

, m = VLM, REF. (4.54)

The value of ✓ for which (4.54) is maximized for each method independently, namely

✓⇤ ⌘ ✓⇤(S,m) = argmax
✓2[0,1]

Prec✓(S,m), m = VLM, REF (4.55)

4https://catalog.ldc.upenn.edu/LDC2011T07
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VLM REF
Prec 19.4% 60.7%
✓⇤ 16.1% 34.9%
PPL 1.0186 1.0218

Table 4.2: Results for Prec(m), ✓⇤(m) and PPL(m), m=VLM, REF.

gives rise to the desired metric, i.e.,

Prec(S,m) = Prec✓⇤(S,m), m = VLM, REF. (4.56)

In practice (4.55) is obtained by sweeping ✓ through [0, 1] for each method indepen-
dently. Finally, the mean precision and mean ✓⇤ over the whole set S are calculated
as

Prec(m) =
1

|S|
X

S2S

Prec(S,m), m = VLM, REF (4.57)

and
✓⇤(m) =

1

|S|
X

S2S

✓⇤(S,m), m = VLM, REF (4.58)

respectively. We are also interested in the perplexity of S under each segmentation
method. It is computed in the same way as in Section 4.2:

PPL(m) = 2�
1
M

P
S2S `S(�⇤

m), m = VLM, REF, (4.59)

where M is the total number of tokens in S and `C(!) denotes the log-likelihood of
segmentation ! of C, as computed by (4.10) and (4.12).

The results of the above experimental process are reported in Table 4.2. The first,
second and third row shows the resulting value of (4.57), (4.58) and (4.59) respec-
tively. In particular, from the first row we conclude that REF is better than VLM in
simulating natural segmentations. From the second row we deduce the following: For
VLM we have to be lenient when joining two consecutive words in a segment of a dom-
inant segmentation, with an average of only 16.1% ⇥ 15 = 2.4 translations to agree
at each bit position. This choice for ✓, i.e. 0.161, in (4.55) is required on average in
order to maximize precision; given that the resulting Prec is only 19.4% we conclude
that VLM is a much different type of segmentation method than natural segmentation.
On the other hand, REF requires an agreement of 34.9% ⇥ 15 = 5.2 translations on
average in order to yield a Prec of 60.7%. Although the results for REF are encourag-
ing, we cannot be certain whether it is a method that simulates natural segmentations;
inference could have been more robust if linguistically diverse translations (a balance
of Indo-European and other family languages) were provided. The third row shows
that perplexity under VLM is lower than under REF, which is expected. This is simply
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because VLM is based entirely on minimizing the perplexity of the corpus that is to be
segmented.

Some intuition regarding the type of segmentations that are generated by VLM and
REF can be gained by examining the output. In what follows, a sample of sentences
from the Europarl corpus is segmented using both methods. For each sentence, the first
segmentation output (prefixed by .) is computed by applying REF, and the second one
(/) by applying VLM. Two colours, black and red, are used in all outputs to distinguish
segments: Each segment is formed by consecutive words that share the same colour.

1. . as far as i am concerned , parliament is a crucial partner in this .
1. / as far as i am concerned , parliament is a crucial partner in this .

2. . bearing in mind the climate change we are facing , i support the introduction of instruments
for monitoring the environmental factors in each region separately , along with the allocation
of an adequate budget for this .
2. / bearing in mind the climate change we are facing , i support the introduction of instruments
for monitoring the environmental factors in each region separately , along with the allocation
of an adequate budget for this .

3. . canada has agreed to resolve the difference in exchange for a bilateral regulatory dialogue
on biotechnology issues .
3. / canada has agreed to resolve the difference in exchange for a bilateral regulatory dialogue
on biotechnology issues .

4. . coal - fired power plants , which have a 40 - year life span and which emit huge amounts
of co2 .
4. / coal - fired power plants , which have a 40 - year life span and which emit huge amounts
of co2 .

5. . disarmament , arms control and a possible anti - missile shield are also on the agenda .
5. / disarmament , arms control and a possible anti - missile shield are also on the agenda .

6. . everyone is fully aware that the price of energy will increase in future , and europe is
currently suffering from a lack of competitiveness in a global world .
6. / everyone is fully aware that the price of energy will increase in future , and europe is
currently suffering from a lack of competitiveness in a global world .

7. . for an industry such as the construction sector , it is imperative that the rules are clear and
i look forward to seeing the difference these particular changes will make .
7. / for an industry such as the construction sector , it is imperative that the rules are clear and
i look forward to seeing the difference these particular changes will make .

8. . freedom of short - term travel is a vital part of preparation for that .
8. / freedom of short - term travel is a vital part of preparation for that .
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9. . he was a vice - president and director of us investment bank goldman sachs , where his
responsibilities included europe and contact with the national governments there .
9. / he was a vice - president and director of us investment bank goldman sachs , where his
responsibilities included europe and contact with the national governments there .

10. . hence , i welcome the comments made by the united nations secretary - general , ban ki -
moon , who stated that he will convene a high - level meeting in vienna on 24 june .
10. / hence , i welcome the comments made by the united nations secretary - general , ban ki -
moon , who stated that he will convene a high - level meeting in vienna on 24 june .

11. . hiv / aids infections are a global phenomenon and are nothing to do with either so - called
risk groups or specific regions .
11. / hiv / aids infections are a global phenomenon and are nothing to do with either so - called
risk groups or specific regions .

12. . however , during and after the olympic games , we , unfortunately , had to admit that
there was no improvement , but rather a worsening of the human rights situation .
12. / however , during and after the olympic games , we , unfortunately , had to admit that
there was no improvement , but rather a worsening of the human rights situation .

13. . i am pleased that among the first to come forward with voluntary offers of assistance to
the affected citizens were rescue specialists and volunteer firemen from slovakia .
13. / i am pleased that among the first to come forward with voluntary offers of assistance to
the affected citizens were rescue specialists and volunteer firemen from slovakia .

14. . i really do not understand why on the one hand we have to charge full speed ahead with-
out worrying about the impact , whereas on the other hand we move slowly and take the time
to think , while , in the meantime , the people are paying the price .
14. / i really do not understand why on the one hand we have to charge full speed ahead with-
out worrying about the impact , whereas on the other hand we move slowly and take the time
to think , while , in the meantime , the people are paying the price .

15. . in spite of this , whether or not we want to , we must deal with russia as a partner .
15. / in spite of this , whether or not we want to , we must deal with russia as a partner .

16. . in view of the fact that combating climate change affects competitiveness , our resolution
calls for all industrial sectors to be made aware of the danger of carbon leakage and for an end
to subsidies on fossil fuels , particularly tax exemptions for the aviation industry .
16. / in view of the fact that combating climate change affects competitiveness , our resolution
calls for all industrial sectors to be made aware of the danger of carbon leakage and for an end
to subsidies on fossil fuels , particularly tax exemptions for the aviation industry .

17. . it is alarming that the eu has been caught by surprise when massive popular demonstra-
tions against the previous authoritarian regime started .
17. / it is alarming that the eu has been caught by surprise when massive popular demonstra-
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tions against the previous authoritarian regime started .

18. . it is also necessary to stimulate investment in small and medium - sized airports to pro-
vide increasing interconnections between the different european regions and cities .
18. / it is also necessary to stimulate investment in small and medium - sized airports to pro-
vide increasing interconnections between the different european regions and cities .

19. . it should be the member states that decide the extent of mother tongue teaching .
19. / it should be the member states that decide the extent of mother tongue teaching .

20. . let us also hope that the usa and china play an important role in the nuclear disarmament
of the korean peninsula .
20. / let us also hope that the usa and china play an important role in the nuclear disarmament
of the korean peninsula .

21. . let me take the opportunity to explain why i voted against the greens and their amendment
.
21. / let me take the opportunity to explain why i voted against the greens and their amendment
.

22. . let us not forget that foot - and - mouth disease is still a serious problem in brazil .
22. / let us not forget that foot - and - mouth disease is still a serious problem in brazil .

23. . marking this 20th anniversary of the release of nelson mandela from prison , jerzy buzek
, the president of the european parliament , said :
23. / marking this 20th anniversary of the release of nelson mandela from prison , jerzy buzek
, the president of the european parliament , said :

24. . millions of people in europe are afraid of losing their jobs and , frankly , i do not under-
stand the position of the french president in opposing the summit :
24. / millions of people in europe are afraid of losing their jobs and , frankly , i do not under-
stand the position of the french president in opposing the summit :

25. . moreover , the commission should follow up on the trade agreements with the eu ’s part-
ner countries by carrying out , prior to and after the signing of a trade agreement , sustainability
impact assessment studies , taking into account vulnerable sectors in particular .
25. / moreover , the commission should follow up on the trade agreements with the eu ’s part-
ner countries by carrying out , prior to and after the signing of a trade agreement , sustainability
impact assessment studies , taking into account vulnerable sectors in particular .

26. . mortality rates while waiting for a transplant usually range from 15 % to 30 % .
26. / mortality rates while waiting for a transplant usually range from 15 % to 30 % .

27. . part of the hizbollah ’s raison d’être is the ongoing occupation by israel of the shebaa
farms .
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27. / part of the hizbollah ’s raison d’être is the ongoing occupation by israel of the shebaa
farms .

28. . peace and security in kosovo ought to be a priority for the union , since it neighbours the
former yugoslav republic of macedonia , a candidate country to the eu , and we should play a
leading role as a mediator between serbia and kosovo .
28. / peace and security in kosovo ought to be a priority for the union , since it neighbours the
former yugoslav republic of macedonia , a candidate country to the eu , and we should play a
leading role as a mediator between serbia and kosovo .

29. . similarly , we must take into account the need to recognise the specific nature of natural
disasters caused by droughts and fires in the mediterranean region and adapt our prevention ,
investigation , risk management , civil protection and solidarity mechanisms accordingly .
29. / similarly , we must take into account the need to recognise the specific nature of natural
disasters caused by droughts and fires in the mediterranean region and adapt our prevention ,
investigation , risk management , civil protection and solidarity mechanisms accordingly .

30. . some people do not like you because you are too european , and others because of ideo-
logical prejudice .
30. / some people do not like you because you are too european , and others because of ideo-
logical prejudice .

31. . the need for one single internal market is crucial for europe to take a leadership in the
global economy , with a focus on the service sector and the knowledge economy .
31. / the need for one single internal market is crucial for europe to take a leadership in the
global economy , with a focus on the service sector and the knowledge economy .

32. . the eu - russia summit coincides with a crucial time in the history of russia , namely the
end of mr putin ’s era .
32. / the eu - russia summit coincides with a crucial time in the history of russia , namely the
end of mr putin ’s era .

For the output generated by REF (.), segments generally fall under the following cat-
egories:

1. Idiom. Examples include bearing in mind (in sentence 2); in spite of (15);
caught by surprise (17); taking into account (25).

2. Adjective phrase, i.e., a phrase containing an adjective that modifies a noun
phrase. Also followed by a preposition or a conjunction. Examples include
huge amounts of (4); short - term (8); fully aware that (6); small and medium -
sized (18).

3. Prepositional verb, i.e., a verb followed by a preposition. Also preceded by an
auxiliary verb due to conjugation. Examples include has agreed to (3); deal with
(15); voted against (21); follow up on (25).
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4. Proper noun. Also preceded by a determiner. Examples include the eu (17); the
greens (21); jerzy buzek (23); former yugoslav republic of macedonia (28).

5. Noun phrase. Also preceded by a determiner, and/or followed by a preposition.
Examples include life span (4); foot - and - mouth disease (22); the signing of a
(25); nature of (29).

6. Conjunction, conjunctive adverb and subordinating conjunction. Also followed
by a comma. Examples include however , (12); on the one hand ... on the other
hand (14); whether or not (15); similarly , (29).

7. Clause or incomplete clause (lacking subject and/or object). Also followed by
a subordinating conjunction. Examples include support the introduction of (2);
it is imperative that (7); i am pleased that (13); do not understand why (14);
resolution calls for (16); to explain why (21); is crucial for (31).

Also, again for REF, the following observations can be made.

i) Segments are formed on the basis of statistics rather than syntax. I.e., segments are
“common” groups of consecutive words rather than children of the same parent
node of a parse tree.

ii) “Commonness” in i) is determined by whether REF characterizes a phrase as fre-
quent enough in the training data. Our training data (Step 4 in the experimental
process) consist entirely of news resources. This explains the coarse grained seg-
mentation of certain noun phrases. Examples include coal - fired power plants
instead of coal - fired power plants (5); korean peninsula instead of korean penin-
sula (20); serbia and kosovo instead of serbia and kosovo (28).

iii) Words are not forced to be part of large segments. In fact, segments consisting of
unigrams are prevalent in all sentences; they also fall under the categories listed
above.

iv) Segments are of joint maximal expressive power and minimal length within a given
segmented sentence. Let s and s̄ denote sequences of words; given a segmented
sentence, the operation of splitting segment x = (ss̄) into new segments (s) and
(s̄) results in the following: At least either (s) or (s̄) fails to provide succinctly its
grammatical/syntactic/semantic role in the sentence; the grouping of s and s̄ under
one segment reduces their stand-alone ambiguity. This holds regardless of how s
and s̄ are chosen within segment (ss̄), i.e., splitting segment x always results in
increasing ambiguity. On the other hand, let y denote the segment adjacent to the
left (right) of x. Then, the formation of a new segment yx (xy) does not provide
further insight into the role of x and y in the sentence.

The last observation above is equivalent to the abstract semantic decomposition that
was discussed in Section 4.1: Namely the semantic “linear combination” of mini-
mal segments that matches the meaning of the sentence. More precisely, let �⇤

REF
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= {x1, x2, ..., xk} denote a segmentation of a given sentence. If M is an abstract
operator that maps phrases to meaning, and if � is a semantic binary operation, we
have

M(x1x2...xk) = M(x1)�M(x2)� ...�M(xk), (4.60)

i.e., the meaning of the sentence is linearly composed by the meaning of the segments
generated by REF. Also, segmentation �⇤

REF is minimal in the following sense: For all
x 2 �⇤

REF and for all phrases s, s̄ such that x = (ss̄), we have

M(x) = M(ss̄) 6= M(s)�M(s̄), (4.61)

i.e., further splitting of the segments results in loss of linearity.
The above is also closely related to the formal definition of natural segmentation as

presented in (4.45). Suppose that sentence S is segmented using REF. As mentioned
in observation iv) above, the resulting segments have a stand-alone function. Thus,
for each such segment x, its paraphrases are less likely to deviate from x’s function
in S. The worst case paraphrased segmentation, say r, gives rise to the sentence-level
paraphrase Or. In its turn, Or is expected not to deviate much from S. More accurately,
it is likely that d(S,Or) will be relatively small. By taking into account observation
i) above and (4.61) we also have that segments in �⇤

REF are both frequent enough and
minimal in length. The former suggests that �⇤

REF’s segments can pass strict likelihood
tests. The latter strengthens the claim that d(S,Or) will be relatively small; any other
segmentation that passes strict likelihood tests and generates worst case sentence-level
paraphrase Or0 , is bound to satisfy d(S,Or0) > d(S,Or). Hence, we conclude that the
assertion �⇤ ⇡ �⇤

REF is valid.
Segments generated by VLM (/) also fall under the above categories, but are gener-

ally larger than REF. Observations i)–iii) above also hold for VLM, but observation iv)
does not. Therefore, it cannot be suggested that VLM simulates natural segmentations.

Throughout the experimental process, the maximum number of words that is al-
lowed to form a segment in �⇤

REF and �⇤
VLM is 7. For completeness, the same process is

repeated with the maximum such value ranging from 3 to 6. Results for Prec, ✓⇤ and
PPL are shown in Figures 4.8, 4.9 and 4.10 respectively; the results from Table 4.2 are
also included to facilitate comparisons. For both methods, these quantities are mono-
tone decreasing in maximum segment length, with the exception of ✓⇤ for VLM. The
smaller the maximum segment length, the larger the values for Prec, ✓⇤ and PPL. This
is a positive result for the following reason: It implies that segments generated by the
heuristic method for natural segmentation are smaller than the ones generated by REF,
but of similar type to the ones generated by REF. It thus strengthens the assertion that
�⇤ ⇡ �⇤

REF.

4.6 Related work
The varied n-gram LMs that were introduced in Section 4.2 do not construct models
during the training stage, which is basically the counting of all k-grams, for all k  n,
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Figure 4.8: Prec as a function of maximum segment length for methods VLM and REF.

3 4 5 6 7

0.16

0.162

0.164

0.17

0.174

0.178

0.18

Maximum segment length
3 4 5 6 7

0.348

0.35

0.352

0.354

0.36

0.363

0.365

θ∗

VLM REF 

Figure 4.9: ✓⇤ as a function of maximum segment length for methods VLM and REF.



4.6. Related work 77

3 4 5 6 7

1.0203

1.0193

1.0188

1.0187

1.0185

VLM

Maximum segment length

PPL

3 4 5 6 7

1.0223

1.022 

1.0219
1.02184

1.0218

REF

Figure 4.10: PPL as a function of maximum segment length for methods VLM and
REF.

from a large (training) corpus. Based on those counts, for a test corpus, each of its
words ‘chooses’ its own history, which essentially results in the optimal segmentation
of the test corpus. Our method should not be confused with other methods that con-
struct models of varied history at training stage, i.e., by backing off to smaller n-grams
if a likelihood-based criterion dictates so [80, 98, 124, 133, 139, 143].

For the task of query segmentation in Information Retrieval, Pointwise Mutual In-
formation is traditionally used as a baseline [64, 66, 75, 103, 125, 145]. However,
other than empirical success, the motivation behind its use is unchallenged. In [137]
Shannon’s entropy was axiomatized in the setting of partial orders that is formed by
partitions of finite sets. Taking a step forward, Simovici [138] established the relation-
ship between Shannon’s entropy and metrics on lattices that are formed by partitions.
In other words, there is sound reasoning why an entropy-like criterion (e.g., Pointwise
Mutual Information) can discern finer segmentations of a given phrase. Our work in
Section 4.3 complements those findings.

Our motivation behind the criteria of natural segmentation lie mainly in the result-
ing phrase-tables after pruning [74, 163]; to lesser extent, similar requirements have
been posed by other work in SMT that perform monolingual segmentations [13, 116].
It is imperative of future work to establish links of our definition of natural segmenta-
tion with canonical composition in formal semantics [68, 90, 147, 161].

Finally, the Cross-Entropy method was used instead of the more conventional dy-
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namic programming algorithms that are used in SMT: The Forward-Backward algo-
rithm [122] has been consistently used for obtaining high-quality alignments [38, 41,
104, 157] and the beam search stack decoding algorithm [151, 152] is one of the stan-
dard approaches for efficient searching of candidate translations.

4.7 Conclusions
The focus of this chapter was the monolingual version of the ‘component’ that was
discussed in Chapter 3. This monolingual object is simply a phrase, or segment, within
a sentence S; the identification of all S’s such segments results in a particular partition
for S, termed the natural segmentation of S:

RQ3 Given a sentence in some language, identify what conditions a segmentation
of the sentence should satisfy, in order for linear compositionality of meaning to hold.
How can one define the segmentation that satisfies those conditions optimally?

The definition of the natural segmentation of a sentence revolved around para-
phrases. In lay terms, the natural segmentation of a sentence is the smallest grouping
of its words that forms a syntactic/semantic backbone for that sentence. A segment
x of a naturally segmented sentence should be 1) Easily replaced by a paraphrase:
Substituting x with any of its paraphrases should not cause ‘much’ syntactic/semantic
ambiguity in the sentence. 2) Frequent ‘enough’ in large corpora.

The exact definition, as presented in Section 4.5.1, requires a sentence-level se-
mantic metric. This abstraction makes the formal definition difficult for applications.
To this end, we turned to novel statistical segmentation methods that would ideally
simulate the output of natural segmentations, but without invoking such metrics.

The first method, termed VLM, was a generalization of n-gram language models
(LMs), namely varied n-gram LMs. It relied on finding the sufficient memory for
predicting a word in a particular sentence. By considering the same problem for each
word in that particular sentence, the result is a segmentation of ‘minimum perplexity’.

The second method, termed REF, dealt with estimating costs for perturbing a seg-
mentation into another:

RQ4 Given the relationship between Shannon’s entropy and metrics on lattices [138],
elaborate on the mathematical framework of Pointwise Mutual Information (PMI). Is
it possible to extend PMI within this framework for simulating natural segmentations?

For a particular sentence, the set of all its segmentations together with the operation
of ‘refinement’ (splitting of a segment into two new segments) forms a particular type
of partially ordered set, namely a lattice. Choosing a metric on that lattice appropri-
ately, resulted in the formation of cost functions for segments and, consequently, seg-
mentations of that sentence. The optimal segmentation was calculated as the one that
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is the least expensive to be perturbed into. The development of this method revealed
a previously unseen theoretical link for the so-called Pointwise Mutual Information
(PMI): It was shown that PMI is a metric on the said lattice.

For a given English sentence, the experimental process required the generation of
its natural segmentation and the segmentations produced by VLM and REF. In order to
compare these three to each other, some approximations had to be done for generating
the natural segmentation. For a given phrase in the sentence, the role of its paraphrases
was played by phrase-level translations. These were found from word-aligning the sen-
tence with 15 translations, each from a different language. In general, word-alignments
yield a partition for any sentence (as well as for its translation). Thus, those 15 different
partitions were used for finding the dominant segmentation for the English sentence,
which eventually operated as the approximation of the natural segmentation.

Examination of the output showed that REF’s segmentation of a given sentence met
the desired criteria: Its segments had a minimal, unambiguous stand-alone function in
the sentence. This observation, combined with results from the experimental process,
showed that REF was found to be better than VLM in simulating natural segmentations.

Generating output of all methods discussed in this chapter required searching through
all possible segmentations of a given sentence. This was done efficiently with a novel
application of the Cross-Entropy method for combinatorial optimization. It is ex-
plained in Chapter 5 how this method can be easily adapted to the more general prob-
lem of extracting optimal bilingual segmentations.

Natural language processing branches, such as composition in distributional se-
mantics [8, 28], could benefit from the findings of this chapter. In SMT, a possible
application of natural segmentations could be via the assesment of the N -best list of
candidate translations during decoding. This means that candidate translations with
higher natural segmentation scores should also be ranked higher as potential transla-
tions. In Chapter 5 the notion of natural segmentation is extended to the bilingual level
and direct applications to SMT are investigated.





Chapter 5

Bilingual Segmentations

This chapter is devoted to answering RQ5 and RQ6. The aim of this chapter is to gen-
eralize the notion of natural segmentation from the monolingual setting of Chapter 4
into a bilingual setting. By bilingual setting we mean the consideration of a pair of
sentences which comes from a pair of languages. Furthermore, these sentences are as-
sumed to be translations of each other. By simply identifying the natural segmentation
of each sentence (in its corresponding language) independently, one would overlook
important structure, thus not achieving anything. This structure is the inherent cor-
respondence between segments of the two sentences. The algorithmic identification
of these correspondences is in fact the goal of this chapter. The following two con-
ditions are introduced in order to help us define the bilingual natural segmentation:
1) Segments in a sentence abide to natural segmentation criteria (in its corresponding
language), as described in Chapter 4. 2) Segment pairs in the sentence pair respect
basic phrase-level dictionary entries of the corresponding language pair. The bilingual
natural segmentation is defined as the one that meets these two conditions optimally.
The dictionary entries of Condition 2 are assumed to be the word alignments that result
from the training stage of Statistical Machine Translation. As described in Chapter 3,
each bilingual word-aligned segmentation of a sentence pair has a graph representa-
tion. Thus, the identification of the bilingual natural segmentation reduces to forming
a partition of connected components of the sentence pair that meets optimally the above
conditions. For Condition 1, the quantitative criteria that were introduced in Chapter 4
are carried over intact. The appropriate graph-based interpretation of Condition 2, re-
lates to the degree of difficulty of perturbing components into disconnected graphs. In
our experiments, we use the phrase pairs that emerge from connected components of
bilingual natural segmentations in order to form the phrase-table. Results show that
such phrase pairs form the core of the effective set of translation rules.

81
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5.1 Introduction
In this chapter we extend the notions from the monolingual setting of Chapter 4 to
a bilingual setting. It is essentially an attempt to generalize the concept of natural
segmentation from a single sentence in any language to any sentence pair with known
word alignments. For a given word-aligned sentence pair, an obvious approach for
tackling this problem would be to identify the natural segmentation of each sentence
of the pair independently. However, as it will be evident later in this chapter, the
presence of word alignments should not be ignored. Instead, additional effort should
be devoted into achieving such a bilingual natural segmentation:

RQ5 Given a word-aligned sentence pair, identify what conditions a bilingual seg-
mentation of the pair should satisfy in order to form a bilingual natural segmentation.
How can one define the bilingual segmentation that satisfies those conditions opti-
mally?
Optimally, the following conditions should hold simultaneously:

1. Segments in both source and target language sentences abide to natural segmen-
tation.

2. Source and target language segments are synchronized with each other via word
alignments.

Condition 1 is exactly what was discussed in Chapter 4: A natural segmentation of a
sentence in any language is a segmentation whose segments provide succinctly their
grammatical/syntactic/semantic role in the sentence and they do so minimally. Con-
dition 2, which is the focus of this chapter, is identified as the necessary condition
that permits the said generalization. ‘Synchronization via word alignments’ needs to
be elaborated further. This is done best by first describing another challenge that is
addressed in this chapter.

In Section 3.4 it was explained that a word-aligned sentence pair has the following
graph representation: Its source and target language words can be viewed as source
and target type vertices respectively; word alignments play the role of edges connect-
ing source and target type vertices. No source-to-source nor target-to-target vertices
are assumed and the graph is thus bipartite. The top graph of Figure 5.1 shows an
example of such a representation. Word alignments admit a partition in a sentence
pair; each part, or component, consists of words from the sentence pair and alignments
that connect source words with target words in the following way: i) It is possible to
form a path between any two words of the component via word alignments, and ii) It is
impossible to form such a path between any word in the component and any word out-
side the component. In Statistical Machine Translation, the process of word-aligning
training data, i.e., a large collection of sentence pairs, is followed by the extraction of
translation rules. For a given word-aligned sentence pair, only certain types of phrase
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Figure 5.1: Top: Graph representation of a word-aligned sentence pair (s81, t91). Bottom:
One possible bilingual segmentation of the above. Source-to-source and target-to-
target edges are shown with blue and red respectively.

pairs are allowed to become translation rules. A phrase pair is a translation rule if and
only if the following conditions hold:

• Its words respect the order of appearance in the sentence pair.

• Its words are in one-to-one correspondence with the words of a union of compo-
nents.

Equivalently, a translation rule is formed by taking an arbitrary collection of compo-
nents, extracting its words and then ordering them in a way so that the resulting phrase
pair is a substring of the sentence pair.1 Let C denote the set of components and let p
denote a phrase pair. Then the set of translation rules can be compactly written as

P =
�
p : p 2 P(C)

 
, (5.1)

where P(X) denotes the powerset of set X .
Empirically, however, it has been shown that only a small subset of all possible

extracted translation rules is actually useful during decoding [74, 163]. In other words,
considering all possible unions of components results in superfluous translation rules.
Can we identify the qualitative characteristics of the effective set of translation rules?
Is it possible to create an algorithm that generates them? In this chapter we claim
that translation rules emerging from bilingual natural segmentations is the core of the
effective set. A result from Chapter 3 that connects bilingual segmentations with the
(full) set of translation rules is useful for validating the claim above.

In Section 3.5 it was explained that the graph representation of a word-aligned
sentence pair is just one possible configuration of a more general system. Namely
the one that permits source-to-source and target-to-target edges. The bottom graph
of Figure 5.1 shows an example of such a configuration. Surely, the top graph of

1The source phrase of the phrase pair is a substring of the source sentence of the sentence pair.
Similarly for the target side.
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Figure 5.1 represents the exceptional case of this general system, namely the one with
complete absence of monolingual edges; these are basically different configurations
of bilingual word-aligned segmentations. In general, for a given sentence pair, let �
and ⌧ denote a segmentation for the source and target sentence, respectively. Suppose
that the sentence pair is word-aligned. Then let C(�, ⌧) denote the set of components
that is formed by words, word-alignments and edges induced by segmentations. It was
shown that the set of extracted translation rules from the word-aligned sentence pair is
given by

P =
[

�,⌧

�
p : p 2 C(�, ⌧)

 
, (5.2)

where the union is over all possible bilingual segmentations, i.e., configurations. The
equation above suggests that, if bilingual segmentations are taken into account, then
the effective set of translation rules can be traced in the set of components only, (and
not arbitrary unions thereof). Indeed, our task is to identify these special configurations
that give rise to the effective set of translation rules. To this end, we turn to bilingual
natural segmentations:

RQ6 What is the effect of bilingual natural segmentations on SMT?

Let (�1, ⌧1) denote the bilingual segmentation that optimally satisfies Conditions
1 and 2 above. Let {(�i, ⌧i)}Ni=2 denote N � 1 bilingual segmentations that are in the
vicinity of (�1, ⌧1). Also, let (�0, ⌧0) denote the exceptional bilingual segmentation in
which no source-to-source nor any target-to-target edges exist (as in the top graph of
Figure 5.1). In this chapter, experiments will show that the effective set of translation
rules is given by

Peff =
N[

i=0

�
p : p 2 C(�i, ⌧i)

 
, (5.3)

where N is not ‘too large’. It follows that translation rules of use to SMT have specific
structure: Basic phrase pairs, or building blocks of bilingualism (the equivalent of
words/tokens in monolingualism), together with larger phrase pairs that have stand-
alone or almost stand-alone function in sentence pairs, but are of minimal or almost
minimal size. Before we explain how bilingual segmentations are chosen in the vicinity
of the bilingual natural segmentation, we first elaborate on Condition 2 above.

The formation of components in a bilingual word-aligned segmentation is again the
focus of Condition 2, but from a purely structural point of view. Vertices are no longer
representations of words; they are treated as labelled nodes, with labels inherited by
the order of the words in the sentences. Figure 5.2 shows such a graph representation
for a word-aligned sentence pair under two different configurations. In general, we
are interested in assessing how robust, i.e., structurally stable, the components are of a
given configuration. A key aspect of components is that they are connected. By assess-
ing how ‘difficult’ it is for a component to lose its connected status, we thus assess its
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Figure 5.2: Two configurations that overlook words in their representations. Source
and target vertices are shown with circles and squares respectively. Source-to-source
and target-to-target edges are shown with blue and red respectively.

robustness; by doing so for all components in a configuration, we can draw conclusions
about the robustness of the configuration and compare with other configurations.

In this context, robustness of a component is characterized by the extent to which
word alignments can be deleted from the component without violating its component
status. Informally, the more the required deletions until disconnection, the more ro-
bust the component is. Robustness of a component can be succinctly quantified us-
ing a well-known graph-theoretic concept, namely the connected spanning subgraph
(CSSG). A CSSG of any graph G, is a subgraph H of G such that i) H spans G’s ver-
tex set, i.e., all of G’s vertices are in H , and ii) H is connected. In other words, a CSSG
of G is a subgraph of G that may lack G’s edges (but not vertices), while remaining
connected. For a particular graph there are several possible CSSGs; the problem of
finding the total number of CSSGs is #P–hard [155].

For our purposes however, it is possible to achieve good approximations in linear
time. For a given component, its approximated number of CSSGs is then appropriately
normalized in (0, 1], thus defining its robustness (with ‘1’ standing for fully robust).
High robustness of a component implies that its underlying source and target segments
are synchronized well via their word alignments. Finally, a configuration’s robustness
is given by the geometric mean of its components’ robustness. The reason why geo-
metric mean is chosen as the final quality measure is because different configurations
lead to different number of components, as in the example of Figure 5.2 (top and bot-
tom graphs have two and three components, respectively).

The extent to which Conditions 1 and 2 above are met by some configuration (�, ⌧)
with known and fixed word alignments is quantified by a monolingual surface and
bilingual structural measure respectively. We write g(�, ⌧) and f(�, ⌧) to denote the
quality of the surface and structural measure respectively. The value for f(�, ⌧) is
given by the configuration robustness measure described above. For the surface mea-
sure we set g(�, ⌧) = F [g(�), g(⌧)], where F [X, Y ] is the harmonic mean of X and
Y . We experiment with segmentation methods VLM and REF from Chapter 4; the
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value g(⇢) of segmentation ⇢ is assessed by both (5.10) and (5.34). The final measure
that evaluates the extent to which (�, ⌧) jointly meets Conditions 1 and 2 is given by
F [g(�, ⌧), f(�, ⌧)]. Thus, the aim of this chapter can be summarized as follows: Given
a word-aligned sentence pair, determine its natural bilingual segmentation, as given by

(�⇤, ⌧ ⇤) = argmax
�,⌧

F [g(�, ⌧), f(�, ⌧)], (5.4)

where the search is over all possible configurations. Moreover, investigate the effect
of (�⇤, ⌧ ⇤), as well as of other bilingual segmentations in the vicinity of (�⇤, ⌧ ⇤), on
SMT.

The surface and structural measures are incorporated in one algorithm that extracts
an N -best list of bilingual word-aligned segmentations. This algorithm, which is an
adaptation of the Cross-Entropy method [128], performs joint maximization of surface
(in both languages) and structural quality measures. Components of graph represen-
tations of the resulting N -best lists give rise to high quality translation rules. These
rules, which form a small subset of all possible (continuous) consistent phrase pairs,
are used to construct SMT models. Results on Czech–English and German–English
datasets show a 90% reduction in phrase-table sizes, which are in line with other prun-
ing techniques in SMT [74, 163]. Experiments also justify the inclusion of the struc-
tural measure: By setting f(�, ⌧) = 1, for all configurations (�, ⌧), i.e., by ignoring the
presence of word-alignments, translation quality drops. Insignificant loss in translation
quality is observed only in the case where the surface measure is powered by REF and
the structural measure is included.

5.2 Monolingual surface quality measure
Given a sentence in any language, we assess the quality of a segmentation ! of the
sentence using the methods introduced in Chapter 4: Varied n-gram language models
from Section 4.2 and segmentation refinements from Section 4.3. For brevity, the for-
mer is termed VLM and the latter is termed REF. For the purpose of extracting natural
bilingual segmentations, these methods operate in exactly the same way. For complete-
ness, we restate the necessary formulae for assessing the quality of ! based on each
method.

Both methods require a large corpus for collecting training data; if a denotes a
sequence of words, i.e., phrase, then let count(a) denote the frequency of a in the
corpus. Throughout, if a and b are phrases, then their concatenation ab is also a phrase.
Segments are phrases and if x is a segment in ! (x 2 !), then let xj denote the jth
word in the sequence of x.

Method VLM Let w be a word and let a be a phrase. Consider the probability

p(w|a) = count(aw)
count(a)

, (5.5)
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if count(a) 6= 0, and p(w|a) = 0, otherwise. Then the quality of segmentation ! is
given by its log-likelihood, i.e.,

g(!) =
X

x2!

|x|X

j=1

log p
�
xj| xj�1

1

�
, (5.6)

where |a| denotes the number of words in segment a.

Method REF Let ⇢ denote a segmentation of the sentence and let a be a segment in
⇢. Consider the probability

p⇢(a) =
count(a)P

a02⇢ count(a0)
. (5.7)

Denote by ⇢ ! ⇢0 the pair of segmentations ⇢ and ⇢0, such that ⇢0 is a refinement of
⇢. For each such ⇢ ! ⇢0 there exists unique pair of phrases (a, ā) such that aā 2 ⇢
or āa 2 ⇢ and a, ā 2 ⇢0; this pair is responsible for refining ⇢ into ⇢0, i.e., all other
segments in ⇢ remain intact in ⇢0. Let

R+(a) = { ⇢ ! ⇢0 : 9ā such that aā 2 ⇢ and a, ā 2 ⇢0 }, (5.8)

R�(a) = { ⇢ ! ⇢0 : 9ā such that āa 2 ⇢ and ā, a 2 ⇢0 }, (5.9)

denote the sets of refinements for which a appears as a refined segment. Also, let
R(a) = R+(a) [ R�(a). Consider the quantities

I+(a, ⇢ ! ⇢0) = log
p⇢0(a) p⇢0(ā)

p⇢(aā)
, (5.10)

I�(a, ⇢ ! ⇢0) = log
p⇢0(a) p⇢0(ā)

p⇢(āa)
, (5.11)

where ā is the appropriate conjugate phrase in each case. Then the quality of segmen-
tation ! is given by

g(!) =
X

x2!

1

|R(x)|

0

@
X

r2R+(x)

I+(x, r) +
X

r2R�(x)

I�(x, r)

1

A . (5.12)

5.3 Bilingual structural quality measure
Given a word-aligned sentence pair, we introduce a purely structural measure that as-
sesses the quality of its bilingual segmentations. By ‘purely structural’ it is meant that
the focus is entirely on combinatorial aspects of the bilingual segmentations and the
word alignments. For that reason we turn to a graph theoretic framework.
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5.3.1 Connected spanning subgraphs
A segment can also be viewed as a chain, i.e., a graph in which vertices are the seg-
ment’s words and an edge between two words exists if and only if these words are
consecutive. Then, a source segmentation � and a target segmentation ⌧ are graphs
that consist of source chains and target chains respectively. The graph formed by �, ⌧
and the translation edges induced by word alignments is thus a graph representation of
a bilingual word-aligned segmentation.

We focus on a particular type of subgraphs of this representation, namely its con-
nected components, or simply components. A component is a graph such that i) there
exists a path between any two of its vertices, and ii) there does not exist a path be-
tween a vertex of the component and a vertex outside the component. Condition i)
means, both technically and intuitively, that a component is connected and Condition
ii) requires connectivity to be maximal.

Components play a key role in SMT. The most widely used strategy for extract-
ing high quality phrase-level translations without linguistic information, namely the
consistency method [82, 109] is entirely based on components of word aligned unseg-
mented sentence, as explained in Chapter 3. In particular, each extracted translation is
either a component or the union of components. Since an unsegmented sentence pair
is just one possible configuration of all possible bilingual segmentations, we conse-
quently have no direct reason to investigate further than components.

In order to get an intuition of the measure that will be introduced in this section, we
begin with an example. Figure 5.3, shows two different configurations of the pair (�, ⌧)
for the same sentence pair with known and fixed word alignments. Both configurations
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Figure 5.3: Graph representations of two bilingual segmentations with fixed word
alignments. Source and target vertices are shown with circles and squares respectively.

have the same number of edges that connect source vertices (3) and the same number of
edges that connect target vertices (2). However, one would expect the top configuration
to represent a better bilingual segmentation. This is because it has more components
(4 opposed to 2 for the bottom configuration) and because it consists of components
that are of higher structural quality, i.e., more robust clusters.
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A general measure that would capture this observation requires a balance between
the number of edges of source and target chains, the number of components and the
number of translation edges, all coupled with how these edges and vertices are con-
nected. This might seem as a daunting task that can be tackled with a combination of
heuristics, but there is actually a graph-theoretic measure that can fully describe the
sought structure. We proceed with introducing this measure.

Let C denote the set of components of the graph representation of a bilingual word-
aligned segmentation. We are interested in measuring the extent to which we can delete
translation edges from c 2 C, while retaining its component status. Let ac denote
the subset of translation edges that are restricted to component c. Define the positive
integer

D(c) = number of ways of
deleting translation edges from ac,

while keeping c connected, (5.13)

where the option of deleting nothing is counted. Figure 5.4 shows an example of what
(5.13) actually counts for a component c:

• One way of deleting nothing (top row, the component itself).

• Three ways of deleting one translation edge (middle row).

• Three ways of deleting two translation edges (bottom row).
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Figure 5.4: Component c (top row) and subgraphs of c that correspond to all possible
ways of deleting translation edges without violating connectivity. Source and target
vertices are shown with circles and squares respectively.

Other possibilities result in loss of connectivity and we thus have D(c) = 7. Observe
that each possible way of performing deletions of translation edges while retaining
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connectivity, corresponds to a subgraph of c. In graph theory, this type of subgraph is
known as connected spanning subgraph (CSSG) and is the key quantity of network re-
liability [29, 154] as well as a special case of the multivariate Tutte polynomiual [140].
A CSSG of a general graph G, is a subgraph H of G such that i) H spans G’s vertex
set, i.e., all of G’s vertices are in H , and ii) H is connected. In other words, a CSSG
of G is a subgraph of G that may lack G’s edges (but not vertices), while remaining
connected. For our purposes, D(c) only counts a subset of all possible CSSGs of c,
because we prohibit deletion of segmentations’ edges.

D(c) is an absolute characteristic for component c, i.e., it doesn’t help us when
comparing the stability of components under different bilingual segmentations. We
elaborate with an example. Figure 5.5 shows two components c and c0 that satisfy
D(c) = D(c0) = 3. Both components are equally difficult to be perturbed into a
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Figure 5.5: Components c and c0 are such that D(c) = D(c0). Comparing c with c̃
yields c’s true structural quality.

disconnected state, but only superficially: c contains a weakly attached subgraph to the
right of vertex v. The actual structural quality of c is revealed when it is ‘compared’ to
component c̃ that consists of the same source and target vertices, the same translation
edges but its source vertices form exactly one chain and similarly for its target vertices;
c̃ is essentially the ‘upper bound’ of c. On the other hand, the upper bound for c0 is c0
itself, as its source and target vertices already form exactly one chain.

In general, the maximum value of D(c), with respect to a fixed set of source and
target vertices and translation edges, is attained when it consists of exactly one source
chain and exactly one target chain. In such a component c, only a single translation
edge is sufficient for keeping c connected. This translation edge can be any translation
edge from ac. Then, all combinations from P(ac) \ ; keep c connected. It follows that
the desired maximum value is always 2|ac| � 1. For any component c the structural
quality measure is thus given by

gain(c) =
D(c)

2|ac| � 1
, (5.14)

which takes values in (0, 1]. If gain(c) = 1, then c is fully robust with respect to its
translation edges ac. In the example of Figure 5.5, the structural quality of c and c0 is
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thus 3/(25 � 1) = 9.7% and 3/(22 � 1) = 100%, respectively. Intuitively, by keeping
the edges of the chains fixed the quantity gain(c) measures how difficult it is to perturb
a component from its connected state to a disconnected state.

Finally, the measure that evaluates the structural quality of a bilingual word-aligned
segmentation (�, ⌧), that forms component set C(�, ⌧), is given by

f(�, ⌧) =

0

@
Y

c2C(�,⌧)

gain(c)

1

A

1
|C(�,⌧)|

, (5.15)

which takes values in (0, 1]. We consider the geometric mean of C(�, ⌧)’s gains be-
cause we want to compare different configurations with each other (different configu-
rations lead to different sizes of components’ sets). The relation f(�, ⌧) > f(�0, ⌧ 0)
implies that (�, ⌧) is a more structurally stable bilingual segmentation than (�0, ⌧ 0).
Different configurations may lead to the same structural quality. Figure 5.6 shows an
example for which f(�, ⌧) = f(�0, ⌧ 0) = 1. Recall that our ultimate goal is to ex-
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Figure 5.6: Two fully robust configurations with one (top) and four (bottom) com-
ponents. Source and target vertices are shown with circles and squares respectively.
Source-to-source and target-to-target edges are shown with blue and red respectively.

tract the bilingual natural segmentation of a word-aligned sentence pair. Apart from
the structural measure of this section, a configuration is also assessed by the surface
measure of Section 5.2. The top configuration of Figure 5.6 results in the sentence
pair being a component as a whole, i.e., the entire source and target sentences become
segments. These will most likely get a low score from the surface measure.

Observe the similarity between surface and structural measures with ‘Precision’
and ‘Recall’ respectively from Information Retrieval. Given an aligned sentence pair,
a ‘document’ in the retrievable document collection is a component that can be found
in a configuration of the sentence pair; all components from all possible configurations
are represented in the document collection. The set of relevant documents is formed by
those components that make up the bilingual natural segmentation of the sentence pair.
Enough documents are retrieved so that all words of the sentence pair are spanned.
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If all relevant documents are found in subgraphs of the retrieved documents, we then
have total recall.

We conclude this section with a remark: A component with no translation edges,
i.e., a source or target segment whose words are all unaligned, has a contribution of
1/0 in (5.15). In practice we exclude such components from C.

5.3.2 Approximations

Finding the number of CSSGs of a general graph G, henceforth #CSSG(G), is a
known #P-hard problem [155]. In our setting, graphs have specific formation (source
and target chains connected via translation edges) and we are interested in the deletion
of translation edges only; even in this case, an algorithm that computes (5.13) in poly-
nomial time is not known. In this section, it is shown how to approximate (5.13) in
linear time. Our approach leverages from the following observations:

i) Complete subcomponents As explained in the previous section, if component
 consists of exactly one source chain and exactly one target chain, then trivially
D() = 2|a|�1. We henceforth refer to such component  as complete. For a general
component c, our aim is to investigate under which conditions c can be decomposed
into complete subcomponents so that the counting process of CSSGs is trivialized.
More precisely, is it possible to construct a set K of complete subcomponents with
c = [2K  so that D(c) =

Q
2K (2|a| � 1)?

ii) Spanning trees The example in Figure 5.4 shows that the search for CSSGs is
graded: 0) First, inspect what happens with no translation edge deletions (returning the
component itself); 1) then how many CSSGs appear if exactly one translation edge is
deleted; 2) then how many CSSGs appear if exactly two translation edges are deleted,
etc. This is in fact an iterative process, because each CSSG of step i + 1) is given by
deleting a translation edge from a CSSG in step i). Unfortunately, no polynomial-time
algorithm can perform this iteration.

We are content with the fact that this process starts from a set that contains compo-
nent c itself and, after incrementally deleting translation edges, it arrives at the set of
c’s least structurally stable spanning subgraphs; this set consists of c’s spanning trees.
In general, for a graph G = (V,E), a spanning tree T of G is a subgraph of G such that
i) T spans G’s vertex set, and ii) T is a tree. The associated quantity R = |E|� |V |+1,
which is called the redundancy of G, gives the maximum number of edges that can be
deleted from G while G remains connected. Since the deletion of an edge from any
tree results in disconnection, it follows that a) a tree has redundancy 0; b) a connected
subgraph of G with R edges deleted is a tree.

Thus, for our purposes, the depth of the iterative process can be computed simply
by computing the component’s redundancy: By simply counting the number of edges
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and vertices of the component we can deduce how many steps are needed until the set
of spanning trees is reached.

iii) Bijection with weighted bipartite graphs Any component c from a word-aligned
bilingual segmentation has a weighted bipartite representation Gc, which can be con-
structed as follows: Convert each source chain into a single black-colored vertex and
label it. Similarly, convert each target chain into a single white-colored vertex and la-
bel it. An edge between a black vertex and a white vertex exists if and only if their
corresponding chains are connected via a translation edge. If such an edge exists, then
it is assigned a weight that equals the number of translation edges between the corre-
sponding chains.

Figure 5.7 shows an example of such a conversion. Component c consists of source
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Figure 5.7: (a) Component c of a word-aligned bilingual segmentation. (b) Contracting
chains of (a) into single vertices. (c) The resulting weighted bipartite graph Gc that
represents component c. Edges’ weights count the number of translation edges between
the corresponding chains in c.

chain 012 and target chains 01, 2 and 3. These are converted into single vertices u (for
the source side) and ↵, � and � (for the target side) respectively. Since at least one
translation edge exists between source chain 012 and each of the target chains, we
have that u is connected with each of ↵, � and � via an edge. Also, since source chain
012 and target chain 01 are connected via three translation edges, the resulting weight
of their corresponding edge in Gc is three. Similarly for the other two edges of Gc.

In general, weighted bipartite graph Gc is just a compact representation of compo-
nent c; it does not provide further information about c. On the contrary, this represen-
tation omits certain structure, namely how translation edges actually connect complete
subcomponents. This is an intentional omission as such structures will be shown to be
redundant for the purpose of computing (5.13). Gc encodes all sufficient information
for inferring (5.13) with minimal structure: Gc is a factorization of c into complete
subcomponents and, as mentioned in observation i) above, the computation of (5.13)
for complete components disregards exact source-to-target chain connectivity.

How can we then compute D(c) based on Gc? It is useful to attempt to compute
#CSSG(Gc) first. In the example of Figure 5.7 observe that #CSSG(Gc) = 1, be-
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cause Gc is a tree. This implies that Gc itself (and no subgraphs thereof) can sufficiently
provide us with D(c). The weight of edge {u,↵} tells us that there are 23 � 1 ways
of deleting edges from the corresponding complete subcomponent (012, 01) without
violating its connectivity. Similarly for the other two edges, and we thus have

D(c) = (23 � 1)(21 � 1)(21 � 1) = 7, (5.16)

which recovers the same value but without exhaustive search. In general, given compo-
nent c, let e denote an edge in its weighted bipartite graph representation Gc (e 2 Gc)
and let we denote its weight. Then, we have

D(c) =
Y

e2Gc

(2we � 1), if Gc is a tree. (5.17)

What if Gc is not a tree? Figure 5.8 shows a component of more complex structure and
its corresponding weighted bipartite representation. In this case, Gc is not a tree and
we find #CSSG(Gc) = 1 + 6 + 12 = 19 by exhaustive search: There is one way of
deleting no edges from Gc (returning Gc itself); six and twelve ways of deleting one
and two edges respectively while keeping Gc connected. Observe that Gc’s redundancy
is 6 � 5 + 1 = 2 which verifies that we cannot go beyond two edge deletions without
violating connectivity. Each CSSG of Gc provides a contribution for D(c) in the same
way as in the previous example. We find D(c) = 147 + 532 + 556 = 1235, where
147 = (23 � 1)2(22 � 1)(21 � 1)3 for the case of deleting nothing, and similarly for all
other subgraphs.

In other words, if Gc is not a tree, exhaustive search still has to be done, this time
for the CSSGs of Gc. However, in general, if R(H) denotes H’s redundancy, then
it is trivial to show that R(c) � R(Gc). The advantage that we gain from our bijec-
tion is that the depth of the iterative process is smaller, thus making exhaustive search
possible, as in the example of Figure 5.8 (for which R(c) = 16� 10 + 1 = 7).

In general, let R denote the redundancy of Gc and let Gr denote the set of connected
spanning subgraphs of Gc with r edges less than Gc. Then we have

D(c) =
RX

r=0

X

H2Gr

Y

e2H

(2we � 1). (5.18)

Observe that G0 = {Gc} and if R = 0, then (5.18) reduces to (5.17).

iv) Redundancy in practice Given a word-aligned sentence pair, recall that our ul-
timate goal is to identify its bilingual natural segmentation. As such, segments in
both languages are expected to be small with components consisting of maximum two
source chains and maximum two target chains. Segments of complex components as in
Figure 5.8 are likely to be penalized by the surface measure. Indeed, preliminary exper-
iments showed that 80% of the components of bilingual segmentations in the vicinity
of the bilingual natural segmentation satisfied R(Gc) = 0. In general the larger the
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R(Gc), the smaller the surface score for c’s segments. Thus, considering only the first
couple of iterations (r = 0, 1) in (5.18) is a reasonable approximation.

Let g(e) = 2we � 1. Then, from (5.18) we have

D(c) =
Y

e2Gc

g(e) +
RX

r=1

X

H2Gr

Y

e2H

g(e). (5.19)

If e 2 Gc \H is read as ‘edge e that is in Gc but not in H’, then observe that, for any
spanning subgraph H of Gc, we have

Y

e2H

g(e) =

Q
e2Gc

g(e)

Q
e2Gc\H

g(e)
. (5.20)

Then (5.19) becomes

D(c) =
Y

e2Gc

g(e) +
RX

r=1

X

H2Gr

Q
e2Gc

g(e)

Q
e2Gc\H

g(e)

=

 
Y

e2Gc

g(e)

!
0

BB@1 +
RX

r=1

X

H2Gr

1
Q

e2Gc\H
g(e)

1

CCA . (5.21)

Let
Qr(c) =

X

H2Gr

1
Q

e2Gc\H
g(e)

(5.22)

and following observation iv) above, (5.21) is approximated as

D(c) ⇡
 
Y

e2Gc

g(e)

!
(1 + Q1(c)) . (5.23)

Recall that a graph H 2 G1 is a connected spanning subgraph of Gc that has one edge
less than Gc. Thus Gc \H contains a single edge e, namely the one that is deleted from
Gc. The fact that e can be deleted from Gc without violating connectivity implies that
e is not a bridge for Gc. Let B denote the set of bridges for Gc and let Gc \ B. denote
the set of edges that are not bridges for Gc. Then we have

Q1(c) =
X

e2Gc\B

1

g(e)
, (5.24)
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and (5.23) becomes

D(c) ⇡
 
Y

e2Gc

g(e)

!0

@1 +
X

e2Gc\B

1

g(e)

1

A . (5.25)

For a general graph G = (V,E), finding the bridges of G requires O(|V | + |E|)
time [146]. Thus, the computation of (5.25) requires linear time in the number of
vertices and edges in Gc. During exploratory data analysis we found that D(c) =Q

e2Gc
g(e) is an equally good approximation to (5.25). Hence, (5.14) becomes

gain(c) =

Q
e2Gc

(2we � 1)

2
P

e2Gc
we � 1

. (5.26)

5.4 Extracting bilingual segmentations with the Cross-
Entropy method

Equipped with the measures of Sections 5.2 and 5.3 we turn to extracting an N -best list
of bilingual segmentations for a given sentence pair. Let F [X, Y ] denote the harmonic
mean of X and Y . Given configuration (�, ⌧), let g(�, ⌧) and f(�, ⌧) denote its surface
and structural quality score respectively. The latter is given by (5.15) and the former
by g(�, ⌧) = F [g(�), g(⌧)], where g(!) can be generated by method VLM or REF of
Section 5.2. The measure that evaluates the extent to which configuration (�, ⌧) jointly
meets Conditions 1 and 2 of Section 5.1 is given by F [g(�, ⌧), f(�, ⌧)]. In this section,
we explain how to find

(�⇤, ⌧ ⇤) = argmax
�,⌧

F [g(�, ⌧), f(�, ⌧)], (5.27)

where the search is over all continuous configurations, which is exponential in the total
number of words of the sentence pair. We propose a new approach for this task, by not-
ing a direct connection with the combinatorial problems that can be solved efficiently
and effectively with the Cross-Entropy (CE) method [128].

The CE method is an iterative self-tuning sampling method that has applications
in various combinatorial and continuous global optimization problems as well as in
rare event detection [129]. A detailed account on the CE method can be found in
Appendix B. Here, we simply describe its application to our problem.

A segmentation of a sentence has a bit string representation in the following way: If
two consecutive words in the sentence belong to the same segment in the segmentation,
then this pair of words is encoded by ‘1’, otherwise by ‘0’. The bit string representation
of a bilingual segmentation of a sentence pair, is given by concatenating the bit string
representations of the two sentences. Such a representation is bijective and, thus, for
the rest of this section, we do not distinguish between a bilingual segmentation and
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its bit string representation. As in Section 4.4, the algorithm of the CE method is a
repeated application of (a) sampling bit strings from a parametrized probability mass
function, (b) scoring them and keeping only a small high-performing subsample, and
(c) updating the parameters of the probability mass function based on that subsample
only.

Samples are bit strings of length l = n+m� 2, where n and m are the number of
words in the source and target sentence respectively. The first n� 1 bits correspond to
the source segmentation and the rest to the target segmentation. As mentioned above,
the surface quality score of such a bit string is given by the harmonic mean of its source
and target surface quality scores. However, as mentioned in Section 5.2, surface quality
score g(!) of segmentation ! is a real number. At each iteration of the algorithm g(!)
is converted into a number in (0, 1] via Min-Max normalization.

No prior knowledge is assumed on the quality of bit strings, so that they are all
equally likely: Each position of a randomly chosen bit string can be either a ‘0’ or a
‘1’ with probability 1/2. The aim is to tune these position probabilities towards the
best bit string, with respect to scoring function F . A bit string in a sample is labeled
by integer i; it is denoted by xi and its jth bit is denoted by xij . Set

• M = 20l, the sample size;

• ⇢ = d1%Me and ⇤ = 5⇢, numbers indicating how many best-performing bit
strings of a sample are selected;

• ↵ = 0.7, the smoothing parameter;

• indicator function IA = 1, if event A occurs and IA = 0, otherwise.

The algorithm for finding (5.27) is as follows:

1. Set (✓01, ..., ✓0l ) = (1/2, ..., 1/2) and t = 1.

2. 2.1. Generate sample x1, ..., xM of bit strings, each of length l, such that xij ⇠
Bernoulli(✓t�1

j ), for all i = 1, ...,M and j = 1, ..., l.

2.2. Compute surface scores g(x1), ..., g(xM) of x1,...,xM .

2.3. Order them descendingly as g(x⇡(1)) � ... � g(x⇡(M)), where ⇡ is the
associated permutation of {1, ...,M}.

2.4. Compute harmonic mean scores F (x⇡(1)), ..., F (x⇡(⇤)) of x⇡(1),...,x⇡(⇤).

2.5. Order them descendingly as F (x�(1)) � ... � F (x�(⇤)), where � is the
associated permutation of {1, ...,⇤}.

3. Compute performance threshold �t = F (x�(⇢)).
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4. Compute bit probabilities

✓tj =

PM
i=1 I{F (xi)��t} xijPM

i=1 I{F (xi)��t}
, j = 1, ..., l. (5.28)

5. Smooth bit probabilities

✓tj := ↵✓tj + (1� ↵)✓t�1
j , j = 1, ..., l. (5.29)

6. If t � 5 and �t = �t�1 = ... = �t�5, then stop. Else t := t+ 1 and go to Step 2.

In Step 2.2, why do we not simply compute harmonic mean scores {F (xi)}Mi=1? The
computation of F requires the computation of structural score f , which in its turn
requires the identification of connected components of a configuration/bit string. In
practice, we found that the latter is computationally expensive when performed for all
configurations of the sample. We chose to firstly assess bit strings of the whole sample
simply by their surface quality, which is computationally cheap, and identify a g-high
performing subsample; this subsample, which consists of ⇤ bit strings, is then resorted
according to F . This is a valid approximation as bit strings with low surface score are
bound not to be included in the final F -highest performing bit strings. We thus save
computational time by not identifying connected components of poor configurations.
The subsample size of ⇤ = 5⇢, i.e., five times larger than the final optimal subset of an
iteration, was found to work well in practice.

The values for parameters M , ⇢ and ↵ reported here are in line with the ones sug-
gested in the literature [129] for combinatorial problems such as this one. After the
execution of the algorithm, the updated vector of position probabilities converges to
sequence of ‘0’s and ‘1’s, which corresponds to the best bilingual segmentation un-
der F . Finally, N -best lists are trivially generated, simply by collecting the top-N
performing accumulated samples of a maximization process.

5.5 Experiments
Given a sentence pair with known and fixed word alignments, the result of the algo-
rithm described in Section 5.4 is an N -best list of bilingual segmentations of such
a pair. The objective function provides a balance between compositional expressive
power of segments in both languages and source-target segments’ synchronization via
word alignments. Each (continuous) component of such a bilingual segmentation leads
to the extraction of a phrase pair that becomes a translation rule for SMT.

As mentioned in Section 5.1, a translation rule of phrase-based SMT is constructed
from a component or from the union of components of an unsegmented word-aligned
sentence pair. For each sentence pair, all possible (continuous) components and (con-
tinuous) unions of components give rise to the extracted (continuous) phrase pairs. In
this section we investigate the impact on SMT models and translation quality, when
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extracting phrase pairs (from the N -best lists) that correspond to components only. A
reduction in phrase-table size is guaranteed because we are essentially extracting only
a subset of all possible continuous phrase pairs. The challenge is to verify whether this
subset can provide a sufficient translation model.

Four variants of the same experiment are carried out: The surface measure is pow-
ered by either method VLM or method REF and the structural measure is either included
normally or absent. If (S, T ) denotes a word-aligned sentence pair then let CS,T de-
note the set of components of (S, T ) and let CS,T (�, ⌧) denote the set of components
of a bilingual segmentation of (S, T ). Also, for any word-aligned sentence pair, let
(�0, ⌧0) denote the exceptional segmentation for which each segment is a unigram for
both sentences, i.e, the case where (S, T ) is unsegmented and forms component set
CS,T ⌘ CS,T (�0, ⌧0). For a given word-aligned sentence pair, let {(�i, ⌧i)}Ni=1 denote
an N -best list that is generated by (5.27). By considering all word-aligned sentence
pairs in the training data, the sets of translation rules that form the phrase-tables are
given by

PN [m, f ] =
[

S,T

N[

i=0

�
p : p 2 CS,T (�i, ⌧i)

 
, (5.30)

where m = VLM, REF shows which method is used for the surface measure and f
is either given by (5.27) or f = 1 that indicates its complete absence. The set of
translation rules that forms the baseline phrase-table is given by

P =
[

S,T

�
p : p 2 P(CS,T )

 
. (5.31)

Both the baseline and our system are standard phrase-based MT systems. Bidirec-
tional word alignments are generated with GIZA++ [111] and ‘grow-diag-final-and’
heuristic. These are used to construct a phrase-table with bidirectional phrase probabil-
ities, lexical weights and a reordering model with monotone, swap and discontinuous
orientations, conditioned on both the previous and the next phrase. 4-gram interpolated
language models with Kneser-Ney smoothing are built with SRILM [144]. A distor-
tion limit of 6 and a phrase-penalty are also used. All model parameters are tuned
with MERT [110]. Decoding during tuning and testing is done with Moses [85]. Since
our system only affects which phrases are extracted, lexical weights and reordering
orientations are the same for both systems.

Datasets are from the WMT’13 translation task [14]: Translation and reordering
models are trained on Czech–English and German–English corpora (Table 5.1). Lan-
guage models and surface measures VLM and REF are trained on 35.3M Czech, 50.0M
German and 94.5M English sentences from the provided monolingual data. Tuning is
done on newstest2010 and performance is evaluated on newstest2008, newstest2009,
newstest2011 and newstest2012 with BLEU [115].

The size of an N -best list varies according to the total number of words in the
sentence pair, say w. For the purposes of phrase extraction in SMT we would ide-
ally require all local maxima to be part of an N -best list. This would guarantee the
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Cz–En De–En
Europarl (v7) 642,505 1,889,791
News Commentary (v8) 139,679 177,079
Total 782,184 2,066,870

Table 5.1: Number of filtered parallel sentences for Czech–English and German–
English.

Method Czech!English English!Czech CZ–EN
’08 ’09 ’11 ’12 ’08 ’09 ’11 ’12 PT size

P 19.6 20.6 22.6 20.6 14.8 15.6 16.6 14.9 44.6M (100%)
PN [VLM, 1] 19.2 20.1 21.8 20.0 14.2 14.7 16.3 14.3 5.8M (13.0%)
PN [REF, 1] 19.3 20.2 22.3 20.1 14.4 14.9 16.2 14.5 4.7M (10.5%)
PN [VLM, f ] 19.5 20.4 22.2 20.3 14.4 15.1 16.5 14.6 7.5M (16.8%)
PN [REF, f ] 19.6 20.5 22.6 20.7 14.6 15.4 16.8 14.7 4.6M (10.4%)

Table 5.2: BLEU scores and phrase-table (PT) sizes for Czech–English. Phrase-table
of method P , the baseline, is constructed from all consistent phrase pairs. Phrase-tables
of methods PN [m, 1], for m = VLM, REF, are constructed from consistent phrase pairs
that are extracted from components of the top-N word-aligned bilingual segmentations
and (�0, ⌧0) of each sentence pair, without taking into account the structural measure.
Similarly for PN [m, f ], for m = VLM, REF, but with the structural measure included.

extraction of all high quality phrase pairs, with (empirically) desired variations, while
keeping N small. Since the CE method performs global optimization, the resulting
members of an N -best list are in the vicinity of the global maximum. Consequently,
we cannot guarantee the inclusion of local maxima. We set N = d30%we so that at
least some variation from the global maximum is included, but this value is not large
enough to contaminate the lists with noisy bilingual segmentations. The resulting lists
have 22 bilingual segmentations on average for both language pairs. Figure 5.9 shows
typical German–English best performing bilingual segmentations for which REF was
used for the surface measure and the structural measure was included.

BLEU scores are reported in Tables 5.2 and 5.3 for Czech–English and German–
English, respectively. Methods P , PN [m, 1] and PN [m, f ], for m = VLM, REF, are
the ones described above. Phrase-table sizes are reduced in all cases as expected.
The best performing method that achieves phrase-table reduction is PN [REF, f ] and is
comparable to P , the baseline. In fact, the translation quality of this method suggests
that the set of components of the bilingual natural segmentation of a word-aligned
sentence pair is indeed the one that contributes to the effective set of translation rules.
On the other hand, if the surface measure is generated by VLM translation quality is
consistently worse. It is also evident that the inclusion of the structural measure is
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Method German!English English!German DE–EN
’08 ’09 ’11 ’12 ’08 ’09 ’11 ’12 PT size

P 21.4 20.8 21.3 22.1 15.1 15.1 16.0 16.5 102.3M (100%)
PN [VLM, 1] 21.1 20.3 20.9 21.4 14.9 14.7 15.3 16.1 11.4M (11.1%)
PN [REF, 1] 21.3 20.6 21.0 21.9 15.2 14.9 15.5 16.1 9.6M (9.4%)
PN [VLM, f ] 21.4 20.6 21.3 21.7 15.3 14.9 15.6 16.3 16.8M (16.4%)
PN [REF, f ] 21.5 20.8 21.5 22.0 15.4 15.2 15.7 16.2 9.9M (9.7%)

Table 5.3: Similar to Table 5.2, but for German–English.

imperative, regardless of how the surface measure is chosen.
We show that translation rules emerging from unsegmented word-aligned sentence

pairs are essential in forming the effective set of translation rules. Let the set

P ⇤
N [REF, f ] =

[

S,T

N[

i=1

�
p : p 2 CS,T (�i, ⌧i)

 
, (5.32)

denote all translation rules that are extracted from N -best lists only, using method REF
for the surface measure and with the structural measure included. Tables 5.4 and 5.5
show the comparison with PN [REF, f ]. It is evident that excluding translation rules
that emerge from unsegmented word-aligned sentence pairs harms translation quality.
In these tables, our best performing method, PN [REF, f ], is also compared to P↵+✏,
which is the significance pruning technique of Johnson et al. [74] with parameter ↵+✏.
Significance pruning is entirely based on statistics of phrase pairs and as such it lacks
linguistic motivation. In particular, it tests whether a source phrase and a target phrase
co-occur more frequently in a bilingual corpus than they should just by chance. To
this end, Fisher’s exact test is employed and ↵ + ✏ is the pruning threshold for the
associated p-values. Results indicate that translation quality of all three methods P ,
P↵+✏ and PN [REF, f ] is comparable.

5.6 Related work
The sizes of the resulting phrase-tables together with the type of phrase pairs that are
extracted lead to applications involving discontinuous phrase pairs. In [54] there was
evidence that discontinuous phrase pairs that are extracted from discontinuous compo-
nents of word-aligned sentence pairs can improve translation quality. As the number
of such components is much bigger than the continuous ones, Gimpel and Smith [56]
propose a Bayesian nonparametric model for finding the most probable discontinu-
ous phrase pairs. This can also be done from the N -best lists that are generated in
Section 5.4, and it would be interesting to see the effect of such phrase pairs in our
existing models.
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Method Czech!English English!Czech CZ–EN
’08 ’09 ’11 ’12 ’08 ’09 ’11 ’12 PT size

P 19.6 20.6 22.6 20.6 14.8 15.6 16.6 14.9 44.6M (100%)
P↵+✏ 19.6 20.4 22.4 20.5 14.5 15.5 16.8 14.8 3.7M (8.3%)
P ⇤
N [REF, f ] 19.7 20.4 22.4 20.3 14.4 15.2 16.3 14.3 4.4M (9.8%)

PN [REF, f ] 19.6 20.5 22.6 20.7 14.6 15.4 16.8 14.7 4.6M (10.4%)

Table 5.4: BLEU scores and phrase-table (PT) sizes for Czech–English. Phrase-table
of method P , the baseline, is constructed from all consistent phrase pairs. Phrase-
table of method P↵+✏ is constructed from pruning P using the method of Johnson et
al. (2007) with parameter ↵ + ✏. Phrase-table of method P ⇤

N [REF, f ], is constructed
from consistent phrase pairs that are extracted from components of the top-N word-
aligned bilingual segmentations of each sentence pair, for which the surface measure is
generated by method REF and by taking into account the structural measure. Similarly
for PN [REF, f ], but with translation rules from unsegmented word-aligned sentence
pairs included.

Method German!English English!German DE–EN
’08 ’09 ’11 ’12 ’08 ’09 ’11 ’12 PT size

P 21.4 20.8 21.3 22.1 15.1 15.1 16.0 16.5 102.3M (100%)
P↵+✏ 21.4 20.8 21.6 22.0 15.3 15.5 16.1 16.6 9.9M (9.7%)
P ⇤
N [REF, f ] 21.3 20.6 21.3 21.8 15.0 15.0 15.6 16.0 9.4M (9.2%)

PN [REF, f ] 21.5 20.8 21.5 22.0 15.4 15.2 15.7 16.2 9.9M (9.7%)

Table 5.5: Similar to Table 5.4, but for German–English.

As mentioned on many occasions in this thesis, the process of obtaining the most
likely alignment for a sentence pair forms a natural partition for the pair and conse-
quently a basic bilingual segmentation for the pair. In [130] this process was modified
in order to obtain an alignment that is (statistically) tailored to the source sentence of
the pair, thus constructing source-driven bilingual segmentations (SDBS). The moti-
vation lies in constructing translation rules that would be suitable for decoding: The
process of decoding requires the segmentation of an unseen source-type sentence; the
source phrases of SDBS could potentially be good matches for these segments and
the target phrases of SDBS would form a potentially more accurate translation. Al-
though phrase-tables smaller than the baseline were observed, the desired results were
not achieved. Motivated by this work, we also attempted to construct SDBS by setting
g(�, ⌧) = g(�) in (5.27), but indifferent overall results were obtained (phrase-table
sizes and translation quality were similar to the ones in Section 5.5).
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5.7 Conclusions
The purpose of this chapter has been twofold: First, to generalize the concept of natural
segmentation that was introduced Chapter 4 into a bilingual setting:

RQ5 Given a word-aligned sentence pair, identify what conditions a bilingual seg-
mentation of the pair should satisfy in order to form a bilingual natural segmentation.
How can one define the bilingual segmentation that satisfies those conditions opti-
mally?

This was achieved by stating two conditions that a natural bilingual segmentation
should satisfy.

1. Segments in both source and target language sentences abide to natural segmen-
tation.

2. Source and target language segments are synchronized with each other via word
alignments.

Condition 1 was discussed in Chapter 4: A natural segmentation of a sentence in
any language is a segmentation whose segments provide succinctly their grammati-
cal/syntactic/semantic role in the sentence and they do so minimally. In the bilingual
setting, both sentences in a sentence pair are expected to be in line with this type of
segmentation. Condition 2, which was the focus of this chapter, has been identified as
the necessary condition that permits the said generalization.

It refers to purely structural properties of a degenerate graph representation of a
given word-aligned bilingual segmentation. The lexical meaning of words is over-
looked and they are simply treated as labelled vertices. The focus has been on the set
of components of such a representation. The reason lies in the core nature of these
objects in SMT: Translation rules that form the phrase-table are extracted from com-
ponents and unions of components of word-aligned sentence pairs. Inspection of the
effective subset of all translation rules indicated the potential connection with bilingual
segments that abide to natural segmentations.

To this end, our aim was to identify what constitutes a robust component, thus
making it a candidate for a member of a bilingual natural segmentation. Surely, Con-
dition 1 already captures certain robustness criteria, but they operate independently in
the two sentences of a pair. By focusing on the structural properties of components
we assessed whether source and target segments are synchronized in a word-aligned
bilingual segmentation. Based on the notion of connecting spanning subgraph (CSSG)
from graph theory, we introduced a measure that assesses structural robustness of com-
ponents. It counts a particular type of CSSGs of a component, namely the connected
spanning subgraphs of the component from which only translation edges are allowed
to be deleted. The appropriately normalized value of this quantity essentially tells how
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difficult it is to perturb the component from its connected state into a disconnected
state.

Conditions 1 and 2 give rise to surface and structural robustness quantitative cri-
teria respectively. The former can be viewed as ‘Precision’ and the latter as ‘Recall’.
Thus, a bilingual natural segmentation was defined as a bilingual segmentation that
provides a balance between Precision and Recall, i.e., the harmonic mean of surface
and structural measures. The Cross-Entropy method that was discussed in Chapter 4
was trivially adapted to the problem of efficiently identifying the bilingual segmenta-
tion that maximizes such a harmonic mean.

The second task of this chapter was to assess the impact of bilingual natural seg-
mentations to the translation model of SMT:

RQ6 What is the effect of bilingual natural segmentations on SMT?

Phrase-tables were formed by extracting translation rules from components only
(and not unions thereof) of configurations in the vicinity of the bilingual natural seg-
mentations. Translation quality was shown to be comparable with the case where the
phrase-table is formed from extracting all valid translation rules, while being dramati-
cally smaller in size. We concluded that translation rules of use to SMT have a specific
structure: Basic phrase pairs, or building blocks of bilingualism (the equivalent of
words/tokens in monolingualism), together with larger phrase pairs that have a stand-
alone or an almost stand-alone function in sentence pairs, but are of minimal or almost
minimal size.
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Figure 5.8: Component c, its weighted bipartite representation Gc and all CSSGs of
the latter. Each number to the bottom right of a CSSG contributes to D(c).
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Chapter 6
Paraphrases from Bilingual Aligned Corpora

The aim of this chapter is to extend existing graph-based methods that extract para-
phrases from aligned bilingual corpora, as stated in RQ7. The graph under consider-
ation is the graph representation of the phrase-table that results from aligned bilingual
corpora: Source and target phrases are viewed as vertices and phrase-table entries rep-
resent edges. In line with previous work, we exploit the connectivity of such a graph
in order to find paraphrases for a given source phrase that exists in the graph and
similarly for a target phrase. Our method builds on forming a collection of sub-phrase-
tables which is mainly constructed from connected components of the phrase-table’s
graph representation. The connectivity of each sub-phrase-table is further exploited for
the purpose of creating separate source phrase and target phrase clusters. Each clus-
ter inherits a new weighted graph structure from its corresponding sub-phrase-table.
A random walk distance measure, namely the commute time between two vertices,
is then employed for finding the degree of similarity between any two phrases in a
cluster. An important distinction of this method from previous work is that a pair of
phrases may appear in multiple clusters across multiple sub-phrase-tables. This al-
lows us to compute their similarity on average, thus significantly reducing the effects
of noise. Furthermore, using a novel technique, these average distances are converted
into counts. These counts are interpreted as artificial co-occurrence counts between a
pair of source phrases in hypothetical source language-to-paraphrased source language
aligned corpora.

6.1 Introduction
In statistical machine translation the process of translating an unseen source language
sentence into a target language sentence is known as decoding. It requires the existence
of models that consist of finite and fixed source-to-target language rules. As described
in Chapters 1 and 2, these models are learned from aligned parallel corpora. Such
rules are source-to-target phrase translation rules, reordering rules and possibly syntax-
based rules. They emerge directly from the aligned parallel corpus (with associated

107
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statistics) and are restricted to it: A valid source-to-target language rule that has not
been observed in the parallel corpus, cannot be part of the models. Furthermore, the
construction of the models does not suggest a direct way of generating an unseen valid
rule.

During decoding, the source sentence is segmented in a way so that its segments
can identify potential translations via the set of rules. The larger the source segment,
the more reliable its potential translation. This is because, generally, larger source
segments capture enough context to deem them as univocal with well-defined local
reordering structure with the target side. Thus, typically, their translations are few and
are exact paraphrases of each other. However, the likelihood of finding such an entry
in the set of rules becomes smaller as the length of the source segment becomes larger.
The inability to find appropriate translation candidates, or a low-quality preliminary
translated sentence leads to gradual shortening of source segments. Clearly, for shorter
segments, the likelihood of identifying potential translations becomes larger. However,
if the segmentation contains mostly shorter segments, then the risk of forming a low-
quality translation also increases.

A way to overcome this problem is by creating new rules from the set of existing
ones. In this chapter, we focus on the first step prior to augmenting the phrase-table
with new translation rules. This involves the identification of paraphrases for a given
source phrase. Paraphrase extraction has emerged as an important problem in NLP:
There exists an abundance of methods for extracting paraphrases from monolingual,
comparable and bilingual corpora [3, 94]. We focus on the latter and specifically on
the phrase-table that is extracted from a bitext during the training stage of SMT. Ban-
nard and Callison-Burch [6] introduced the pivoting approach, which relies on a 2-step
transition from a phrase, via its translations, to a paraphrase candidate. By incorpo-
rating the syntactic structure of phrases [23], the quality of the paraphrases extracted
with pivoting can be improved: Kok and Brockett [87], henceforth KB, used a ran-
dom walk framework to determine the similarity between phrases, which was shown
to outperform pivoting with syntactic information, when multiple phrase-tables are
used. In SMT, extracted paraphrases with associated pivot-based [21, 112] and cluster-
based [89] probabilities have been found to improve the quality of translation. Pivoting
has also been employed in the extraction of syntactic paraphrases, which are a mixture
of phrases and non-terminals [55, 167]. In this chapter the following research question
is addressed:

RQ7 How should one extend the work of Kok and Brockett [87] in order to identify
less noisy pairs of paraphrases and to develop a method that constructs artificial co-
occurrence counts for these pairs?

We develop a method for extracting paraphrases from a bitext for both the source
and target languages. Emphasis is placed i) On the quality of the phrase-paraphrase
probabilities, i.e., the conditional probabilities p(u|v) and p(v|u), where u and v are
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phrases, and ii) On providing a stepping stone for extracting syntactic paraphrases with
equally reliable probabilities. In line with previous work [6, 87], our method depends
on the connectivity of the phrase-table, but the resulting construction treats each side
separately, which can potentially benefit from additional monolingual data.

The initial problem in harvesting paraphrases from a phrase-table is the identifica-
tion of the search space. Previous work has relied on breadth first search from the query
phrase with a depth of two (pivoting) and six (KB). The former can be too restrictive
and the latter can lead to excessive noise contamination when taking shallow syntac-
tic information features into account. Instead, we choose to cluster the phrase-table
into separate source and target clusters and in order to make this task computation-
ally feasible, we decompose the phrase-table into sub-phrase-tables. We propose a
novel heuristic algorithm for the decomposition of the phrase-table, and use a well-
established co-clustering algorithm for clustering each sub-phrase-table.

The underlying connectivity of the source and target clusters gives rise to a natural
graph representation for each cluster. The vertices of the graphs consist of phrases and
features with a dual smoothing/syntactic-information-carrier role. The latter allow for
(a) the redistribution of the mass for phrases with no appropriate paraphrases and (b)
the extraction of syntactic paraphrases. The proximity among vertices of a graph is
measured by means of a random walk distance measure, the commute time [2]. This
measure is known to perform well in identifying similar words on the graph of Word-
Net [123] and a related measure, the hitting time is known to perform well in harvesting
paraphrases on a graph constructed from multiple phrase-tables (KB).

Generally in NLP, power-law distributions are typically encountered in the col-
lection of counts during the training stage. Commute times between phrases on the
said graph are converted into artificial co-occurrence counts with a novel technique.
Although they need not be integers, the main challenge is the type of the underlying
distributions; it should ideally emulate the resulting count distributions from the phrase
extraction stage of a monolingual parallel corpus [46]. These counts give rise to the
desired probability distributions by means of relative frequencies.

6.2 Constructing sub-phrase-tables
For the decomposition of the phrase-table into sub-phrase-tables it is convenient to
view the phrase-table as an undirected, unweighted graph P with the vertex set being
the source and target phrases and the edge set being the phrase-table entries. For the
rest of this section, we do not distinguish between source and target phrases, i.e., both
types are treated equally as vertices of P . When referring to the size of a graph, we
mean the number of vertices it contains.

A trivial initial decomposition of P is achieved by identifying all its connected
components (components for brevity), i.e., the mutually disjoint connected subgraphs,
{P0, P1, ..., Pn}. As we shall see in Section 6.6.1, the largest component, say P0,
can be of significant size. We call P0 giant and it needs to be further decomposed.
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This is done by identifying the set of cut-vertices of the component. A cut-vertex
(or articulation point) of a component is a vertex with the following property: If this
vertex is removed (with its boundary edges) from the component, then the component
becomes disconnected. Cut-vertices of high connectivity degree are removed from the
giant component. For the remaining vertices of the giant component, new components
are identified and we proceed iteratively, while keeping track of the cut-vertices that
are removed in each iteration, until the size of the largest component is less than a
certain threshold ✓.

At each iteration, when removing cut-vertices from a giant component, the result-
ing collection of components may include graphs consisting of a single vertex. We
refer to such vertices as residues. They are excluded from the resulting collection and
are considered for separate treatment, as explained later in this section.

The cut-vertices need to be inserted appropriately back to the components: Starting
from the last iteration step, the respective cut-vertices are added to all the components
of P0 that they used to ‘glue’ together; this process is performed iteratively, until there
are no more cut-vertices to add. By ‘addition’ of a cut-vertex to a component, we mean
the re-establishment of edges between the former and other vertices of the latter. The
result is a collection of components whose total number of unique vertices is less than
the number of vertices of the initial giant component P0.

These remaining vertices are the residues. We then construct the graph R that
consists of the residues together with all their translations (even those that are included
in components of the above collection) and then identify its components {R0, ..., Rm}.
It turns out that the largest component, say R0, is giant and we repeat the decomposition
process that was performed on P0. This results in a new collection of components as
well as new residues: As we shall see in Section 6.6.1 the components need to be
pruned and the residues give rise to a new graph R0 that is constructed in the same
way as R. We proceed iteratively until the number of residues stops changing. For
each remaining residue u, its translations are identified, and for each translation v we
identify the largest component of which v is a member and add u to that component.

The final result is a collection C = D[F , where D is the collection of components
emerging from the entire iterative decomposition of P0 and R, and F = {P1, ..., Pn}.
Figure 6.1 shows an example of a decomposition of a connected graph G0; it is assumed
for simplicity that only one cut-vertex is removed at each iteration and ties are resolved
arbitrarily. In Figure 6.2 the residue graph is constructed and its two components are
identified. The iterative insertion of the cut vertices is also depicted. The resulting two
components together with those from R form the collection D for G0.

The addition of cut-vertices into multiple components, as well as the construction
method of the residue-based graph R, can yield the occurrences of a vertex in multiple
components in D. We exploit this property in two ways:

(a) In order to mitigate the risk of excessive decomposition (which implies greater
risk of good paraphrases being in different components), as well as to reduce the size
of D, a conservative merging algorithm of components is employed. Suppose that the
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Figure 6.1: The decomposition of G0 with vertices sk and tl: The cut-vertex of the ith
iteration is denoted by ci, and r collects the residues after each iteration. The task is
completed in Figure 6.2.
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Figure 6.2: Top: Residue graph with its components (no further decomposition is
required). Bottom: Adding cut-vertices back to their components.

elements of D are ranked according to size in ascending order as

D = {D1, ..., Dk, Dk+1, ..., D|D|}, where |Di|  �, (6.1)

for i = 1, ..., k and some threshold �. Each component Di with i 2 {1, ..., k} is
examined as follows: For each vertex of Di the number of its occurrences in D is
inspected. This is done in order to identify an appropriate vertex b to act as a bridge
between Di and other components of which b is a member. Note that translations of a
vertex b with smaller number of occurrences in D are less likely to capture their full
spectrum of paraphrases. We thus choose a vertex b from Di with the smallest number
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of occurrences in D , resolving ties arbitrarily, and proceed with merging Di with the
largest component, say Dj with j 2 {1, ..., |D| � 1}, of which b is also a member.
The resulting merged component Dj0 contains all vertices and edges of Di and Dj and
new edges, which are formed according to the rule: if u is a vertex of Di and v is a
vertex of Dj and {u, v} is a phrase-table entry, then (u, v) is an edge in Dj0 . As long
as no connected component has identified Di as the component with which it should
be merged, then Di is deleted from the collection D.

(b) In Information Retrieval, the inverse document frequency (idf) is a statistical
weight used for measuring the importance of a term in a collection of text docu-
ments [126, 141]. We define an idf-inspired measure for each phrase pair (x, x0) of
the same type (source or target) as

idf(x, x0) =
1

log |D| log
✓
2c(x, x0)|D|
c(x) + c(x0)

◆
, (6.2)

where c(x, x0) is the number of components in which the phrases x and x0 co-occur, and
equivalently for c(·). The purpose of this measure is for pruning paraphrase candidates
and its use is explained in Section 6.4. Note that here idf(x, x0) 2 [0, 1].

The merging process and the idf measure are irrelevant for phrases belonging to
the components of F , since the vertex set of each component of F is mutually disjoint
with the vertex set of any other component in C.

6.3 Co-clustering sub-phrase-tables
The aim of this section is to generate separate clusters for the source and target phrases
of each sub-phrase-table (component) C 2 C. For this purpose the Information-
Theoretic Co-Clustering (ITC) algorithm [44] is employed, which is a general prin-
cipled clustering algorithm that generates hard clusters (i.e., every element belongs to
exactly one cluster) of two interdependent quantities and is known to perform well on
high-dimensional and sparse data [1, 135]. In our case, the interdependent quantities
are the source and target phrases and the sparse data is the sub-phrase-table.

ITC is a search algorithm similar to K-means, in the sense that a cost function
is minimized at each iteration step and the number of clusters for both quantities are
meta-parameters. The number of clusters is set to the most conservative initialization
for both source and target phrases, namely to as many clusters as there are phrases. At
each iteration, new clusters are constructed based on the identification of the argmin of
the cost function for each phrase, which gradually reduces the number of clusters.

We observe that conservative choices for the meta-parameters often result in good
paraphrases being in different clusters. To overcome this problem, the hard clusters are
converted into soft (i.e., an element may belong to several clusters): One step before
the stopping criterion is met, we modify the algorithm so that instead of assigning a
phrase to the cluster with the smallest cost we select the bottom-X clusters ranked
by cost. Additionally, only a certain number of phrases is chosen for soft clustering.
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Both selections are done conservatively with criteria based on the properties of the cost
functions.

The formation of clusters leads to a natural refinement of the idf measure defined
in eqn. (6.2): The quantity c(x, x0) is redefined as the number of components in which
the phrases x and x0 co-occur in at least one cluster.

6.4 Monolingual graphs
We proceed with converting the clusters into directed, weighted graphs and then extract
paraphrases for both the source and target side. For brevity we explain the process
restricted to the source clusters of a sub-phrase-table, but the same method applies for
the target side and for all sub-phrase-tables in the collection C.

Each source cluster is converted into a graph G as follows: The vertex set consists
of the phrases of the cluster and an edge between s and s0 exists, if (a) s and s0 have
at least one translation from the same target cluster, and (b) idf(s, s0) is greater than
some threshold �. If two phrases that satisfy condition (b) and have translations in
more than one common target cluster, a distinct such edge is established. All edges are
bi-directional with distinct weights for both directions.

Figure 6.3 depicts an example of such a construction; a link between a phrase si
and a target cluster implies the existence of at least one translation for si in that cluster.
We are not interested in the target phrases and they are thus not shown. For simplicity
we assume that condition (b) is always satisfied and the extracted graph contains the
maximum possible edges. Observe that phrases s3 and s4 have two edges connecting
them, (due to target clusters Tc and Td) and that the target cluster Ta is irrelevant to
the construction of the graph, since s1 is the only phrase with translations in it. This
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Figure 6.3: Top: A source cluster containing phrases s1,..., s8 and the associated target
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conversion of a source cluster into a graph G results in the formation of subgraphs in
G, where each subgraph is generated by a target cluster. In general, if condition (b) is
not always satisfied, then G need not be connected and each connected component is
treated as a distinct graph.

Analogous to KB, we introduce feature vertices to G: For each phrase vertex s, its
part-of-speech (POS) tag sequence and stem sequence are identified and inserted into
G as new vertices with bi-directional weighted edges connected to s. If phrase vertices
s and s0 have the same POS tag sequence, then they are connected to the same POS
tag feature vertex. Similarly for stem feature vertices. See Figure 6.4 for an example.
Note that we do not allow edges between POS tag and stem feature vertices. The

  

ownshas

VBZ

OWN OWNHAVE

i have

I HAVE

PRP VBP

i had

PRP VBD

Figure 6.4: Adding feature vertices to the extracted graph (has) ⌦ (owns) ⌦
(i have) ⌦ (i had), where ⌦ denotes a bi-directional edge. Phrase, POS tag feature
and stem feature vertices are drawn in circles, dotted rectangles and solid rectangles
respectively. All edges are bi-directional.

purpose of the feature vertices, unlike KB, is primarily for smoothing and secondarily
for identifying paraphrases with the same syntactic information and this will become
clear in the description of the computation of weights.

The set of all phrase vertices that are adjacent to s is written as �(s), and referred to
as the neighborhood of s. Let n(s, t) denote the co-occurrence count of a phrase-table
entry (s, t). We define the strength of s in the subgraph generated by cluster T as

n(s;T ) =
X

t2T

n(s, t), (6.3)

which is simply a partial occurrence count for s. We proceed with computing weights
for all edges of G:

Phrase⌦phrase weights: Inspired by the notion of preferential attachment [160],
which is known to produce power-law weight distributions for evolving weighted net-
works [9], we set the weight of a directed edge from s to s0 to be proportional to the
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strengths of s0 in all subgraphs in which both s and s0 are members. Thus, in the ran-
dom walk framework, s is more likely to visit a stronger (more reliable) neighbor. If
Ts,s0 = {T |s and s0 coexist in subgraph generated by T}, then the weight w(s ! s0)
of the directed edge from s to s0 is given by

w(s ! s0) =
X

T2Ts,s0

n(s0;T ), (6.4)

if s0 2 �(s) and 0 otherwise.

Phrase⌦feature weights: As mentioned above, feature vertices have the dual role
of carrying syntactic information and smoothing. From eqn. (6.4) it can be deduced
that, if for a phrase s, the number of its outgoing weights is close to the number of its
incoming weights, then this is an indication that at least a significant part of its neigh-
borhood is reliable; the larger the strengths, the more certain the indication. Otherwise,
either s or a significant part of its neighborhood is unreliable. The amount of weight
from s to its feature vertices should depend on this observation and we thus let

net(s) =

������

X

s02�(s)

(w(s ! s0)� w(s0 ! s))

������
+ ✏, (6.5)

where ✏ prevents net(s) from becoming 0 (see Section 6.6.1 for an appropriate choice
for ✏). The net weight of a phrase vertex s is distributed over its feature vertices as

w(s ! fX) = < w(s ! s0) > + net(s), (6.6)

where the first summand is the average weight from s to its neighboring phrase vertices
and X = POS, STEM. If s has multiple POS tag sequences, we distribute the weight
of eqn. (6.6) relative to the co-occurrences of s with the respective POS tag feature ver-
tices. The quantity < w(s ! s0) > accounts for the basic smoothing and is augmented
by a value net(s) that measures the reliability of s’s neighborhood; the more unreliable
the neighborhood, the larger the net weight and thus larger the overall weights to the
feature vertices.

The choice for the opposite direction is trivial:

w(fX ! s) =
1

|{s0 : (fX , s0) is an edge }| , (6.7)

where X = POS, STEM. Note the effect of eqns. (6.5)–(6.7) in the case where the
neighborhood of s has unreliable strengths: In a random walk the feature vertices of s
will be preferred and the resulting similarities between s and other phrase vertices will
be small, as desired. Nonetheless, if the syntactic information is the same with any
other phrase vertex in G, then the paraphrases will be captured.
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The transition probability from any vertex u to any other vertex v in G, i.e., the
probability of hopping from u to v in one step, is given by

p(u ! v) =
w(u ! v)P
v0 w(u ! v0)

, (6.8)

where we sum over all vertices adjacent to u in G. We can thus compute the similarity
between any two vertices u and v in G by their commute time, i.e., the expected number
of steps in a round trip, in a random walk from u to v and then back to u, which is
denoted by (u, v). Since (u, v) is a distance measure, the smaller its value, the more
similar u and v are. In Section 6.6.1 a method for the computation of  is described.

6.5 Converting distances into counts
The distance (u, v) of a vertex pair u, v in a graph G is converted into a co-occurrence
count nG(u, v) with a novel technique: In order to assess the quality of pair u, v with
respect to G we compare (u, v) with (u, x) and (v, x) for all other vertices x in G.
We thus consider the average distance of u with the other vertices of G other than v, and
similarly for v. This quantity is denoted by d(u,G � v) and d(v,G � u) respectively,
and by definition it is given by

d(i, G� j) =
X

x2G
x 6=j

(i, x) pG(x|i), for i, j 2 {u, v} and i 6= j, (6.9)

where pG(x|i) ⌘ p(x|G, i) is a yet unknown probability distribution with respect to G.
The quantity (d(u,G�v)+d(v,G�u))/2 can then be viewed as the average distance
of the pair u, v to the rest of the graph G. The co-occurrence count of u and v in G is
thus defined by

nG(u, v) = ( d(u,G� v) + d(v,G� u) ) /2(u, v). (6.10)

In order to calculate the probabilities pG(·|·) we employ the following heuristic: Start-
ing with a uniform distribution p(0)G (·|·) at timestep t = 0, we iterate

d(t)(i, G� j) =
X

x2G
x 6=j

(i, x) p(t)G (x|i), for i, j 2 {u, v} and i 6= j (6.11)

n(t)
G (u, v) =

d(t)(u,G� v) + d(t)(v,G� u)

2(u, v)
(6.12)

p(t+1)
G (v|u) =

n(t)
G (u, v)

P
x2G n(t)

G (u, v)
(6.13)
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for all pairs of vertices u, v in G until convergence. Experimentally, we find that
convergence is always achieved. After the execution of this iterative process we divide
each count by the smallest count in order to achieve a lower bound of 1.

A pair u, v may appear in multiple graphs in the same sub-phrase-table C. The
total co-occurrence count of u and v in C and the associated conditional probabilities
are thus given by

nC(u, v) =
X

G2C

nG(u, v) (6.14)

pC(v|u) =
nC(u, v)P

x2C nC(u, x)
. (6.15)

A pair u, v may appear in multiple sub-phrase-tables and for the calculation of
the final count n(u, v) we need to average over the associated counts from all sub-
phrase-tables. Moreover, we have to take into account the type of the vertices: For the
simplest case where both u and v represent phrase vertices, their expected count is, by
definition, given by

n(s, s0) =
X

C

nC(s, s
0)p(C|s, s0). (6.16)

On the other hand, if at least one of u or v is a feature vertex, then we have to con-
sider the phrase vertex that generates this feature: Suppose that u is the phrase vertex
s=‘acquire’ and v the POS tag vertex f=‘NN’ and they co-occur in two sub-phrase-
tables C and C 0 with positive counts nC(s, f) and nC0(s, f) respectively; the feature
vertex f is generated by the phrase vertices ‘ownership’ in C and by ‘possession’ in
C 0. In that case, an interpolation of the counts nC(s, f) and nC0(s, f) as in eqn. (6.16)
would be incorrect and a direct sum nC(s, f)+nC0(s, f) would provide the true count.
As a result we have

n(s, f) =
X

s0

X

C

nC(s, f(s
0)) p(C|s, f(s0)), (6.17)

where the first summation is over all phrase vertices s0 such that f(s0) = f . With a
similar argument we can write

n(f, f 0) =
X

s,s0

X

C

nC(f(s), f(s
0)) p(C|f(s), f(s0)). (6.18)

For the interpolants, from standard probability we find

p(C|u, v) = pC(v|u)p(C|u)P
C0 pC0(v|u)p(C 0|u) , (6.19)

where the probabilities p(C|u) can be computed by considering the likelihood function

`(u) =
NY

i=1

p(xi|u) =
NY

i=1

X

C

pC(xi|u)p(C|u)
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and by maximizing the average log-likelihood 1
N log `(u), where N is the total number

of vertices with which u co-occurs with positive counts in all sub-phrase-tables.
Finally, the desired probability distributions are given by the relative frequencies

p(v|u) = n(u, v)P
x n(u, x)

, (6.20)

for all pairs of vertices u, v.

6.6 Experiments

6.6.1 Setup
The data for building the phrase-table P is drawn from DE-EN bitexts crawled from
www.project-syndicate.org, which is a standard resource provider for the
WMT campaigns (News Commentary bitexts, see, e.g. [22]). The bitext consists of
125K sentences; word alignment was performed running GIZA++ in both directions
and generating the symmetric alignments using the ‘grow-diag-final-and’ heuristics.
The resulting P has 7.7M entries, 30% of which are ‘1-1’, i.e., entries (s, t) that satisfy
p(s|t) = p(t|s) = 1. These entries are irrelevant for paraphrase harvesting for both the
baseline and our method, and are thus excluded from the process.

The initial giant component P0 contains 1.7M vertices (Figure 6.5), of which 30%
become residues and are used to construct R. At each iteration of the decomposition
of a giant component, we remove the top 0.5% · size cut-vertices ranked by degree
of connectivity, where size is the number of vertices of the giant component and set
✓ = 2500 as the stopping criterion. The latter choice is appropriate for the subsequent
step of co-clustering the components, for both time complexity and performance of
the ITC algorithm. In the components emerging from the decomposition of R0, we
observe an excessive number of cut-vertices. Note that vertices that consist in these
components can be of two types: i) former residues, i.e., residues that emerged from
the decomposition of P0, and ii) other vertices of P0. Cut-vertices can be of either
type. For each component, we remove cut-vertices that are not translations of the
former residues of that component. Following this pruning strategy, the degeneracy of
excessive cut-vertices does not reappear in the subsequent iterations of decomposing
components generated by new residues, but the emergence of two giant components
was observed: One consisting mostly of source type vertices and one of target type
vertices. Without going into further details, the algorithm can extend to multiple giant
components straightforwardly. For the merging process of the collection D we set
� = 5000, to avoid the emergence of a giant component. The sizes of the resulting sub-
phrase-tables are shown in Figure 6.6. For the ITC algorithm we use the smoothing
technique discussed in [45] with ↵ = 106.

For the monolingual graphs, we set � = 0.65 and discard graphs with more than
20 phrase vertices, as they contain mostly noise. Thus, the sizes of the graphs allow us
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Figure 6.5: Log-log plot of ranked components according to their size (number of
source and target phrases) for: Components extracted from P , ‘1-1’ components are
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Figure 6.6: Log-log plot of ranked sub-phrase-tables according to their size (number
of source and target phrases).

to use analytical methods to compute the commute times: For a graph G, we form the
transition matrix Q, whose entries Q(u, v) are given by eqn. (6.8), and the fundamental
matrix [17, 61]

Z = (I �Q+ 1⇡T )�1, (6.21)
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where I is the identity matrix, 1 denotes the vector of all ones and ⇡ is the vector of
stationary probabilities [2], which is such that ⇡TQ = ⇡T and ⇡T1 = 1, and can be
computed as in [71]. The commute time between any vertices u and v in G is then
given by [61]

(u, v) =
Z(v, v)� Z(u, v)

⇡(v)
+

Z(u, u)� Z(v, u)

⇡(u)
. (6.22)

For the parameter of eqn. (6.5), an appropriate choice is ✏ = |�(s)| + 1; for reliable
neighborhoods, this quantity is insignificant. POS tags and lemmata are generated with
TreeTagger.1

Figure 6.7 depicts the most basic type of graph that can be extracted from a cluster;
it includes two source phrase vertices a, b, of different syntactic information. Suppose
that both a and b are highly reliable with strengths n(a;T ) = n(b;T ) = 40, for some
target cluster T . The resulting conditional probabilities adequately represent the prox-
imity of the involved vertices. On the other hand, the range of the co-occurrence counts
is not compatible with that of the strengths. This is because i) there are no phrase ver-
tices with small strengths in the graph, and ii) eqn. (6.10) is essentially a comparison
between a pair of vertices and the rest of the graph. To overcome this problem inflation
vertices ia and ib of strength 1 with accompanying feature vertices are introduced to the
graph. Figure 6.8 depicts the new graph, where the lengths of the edges represent the
magnitude of commute times. Observe that the quality of the probabilities is preserved
but the counts are inflated, as required.

In general, if a source phrase vertex s has at least one translation t such that
n(s, t) � 3, then a triplet (is, f(is), g(is)) is added to the graph as in Figure 6.8. The
inflation vertex is establishes edges with all other phrase and inflation vertices in the
graph and weights are computed as in Section 6.4. The pipeline remains the same up
to eqn. (6.14), where all counts that include inflation vertices are ignored.

6.6.2 Results
Our method generates conditional probabilities for any pair chosen from {phrase, POS
sequence, stem sequence}, but for this evaluation we restrict ourselves to phrase pairs.
For a phrase s, the quality of a paraphrase s0 is assessed by

P (s0|s) / p(s0|s) + p(f1(s
0)|s) + p(f2(s

0)|s), (6.23)

where f1(s0) and f2(s0) denote the POS tag sequence and stem sequence of s0 respec-
tively. All three summands of eqn. (6.23) are computed from eqn. (6.20). The baseline
is given by pivoting [6],

P (s0|s) =
X

t

p(t|s)p(s0|t), (6.24)

1http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
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Figure 6.7: Top: A graph with source phrase vertices a and b, both of strength 40, with
accompanying distinct POS sequence vertices f(·) and stem sequence vertices g(·).
Bottom: The resulting co-occurrence counts and conditional probabilities for a.
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Figure 6.8: The inflated version of Figure 6.7.

where p(t|s) and p(s0|t) are the phrase-based relative frequencies of the translation
model [86].

We select 150 phrases (an equal number for unigrams, bigrams and trigrams), for
which we expect to see paraphrases, and keep the top-10 paraphrases for each phrase,
ranked by the above measures. We follow [87, 102] in the evaluation of the extracted
paraphrases: Each phrase-paraphrase pair is manually annotated with the following
options: 0) Different meaning; 1) (i) Same meaning, but potential replacement of the
phrase with the paraphrase in a sentence ruins the grammatical structure of the sen-
tence. (ii) Tokens of the paraphrase are morphological inflections of the phrase’s to-
kens. 2) Same meaning. Although useful for SMT purposes, ‘super/substrings of’ are
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annotated with 0 to achieve an objective evaluation.
Both methods are evaluated in terms of the Mean Expected Precision (MEP) at k;

the Expected Precision for each selected phrase s at rank k is computed by Es[p@k] =
1
k

Pk
i=1 pi, where pi is the proportion of positive annotations for item i. The desired

metric is thus given by MEP@k = 1
150

P
s Es[p@k]. The contribution to pi can be

restricted to perfect paraphrases only, which leads to a strict strategy for harvesting
paraphrases. Table 6.1 summarizes the results of our evaluation and we deduce that
our method can lead to improvements over the baseline.

Method Lenient MEP Strict MEP
@1 @5 @10 @1 @5 @10

Baseline .58 .47 .41 .43 .33 .28
Graphs .72 .61 .52 .53 .40 .33

Table 6.1: Mean Expected Precision (MEP) at k under lenient and strict evaluation
criteria.

An important accomplishment of our method is that the distribution of counts
n(u, v), (as given by eqns. (6.16)–(6.18)) for all vertices u and v, belongs to the power-
law family (Figure 6.9). This is evidence that the monolingual graphs can simulate the
phrase extraction process of a monolingual parallel corpus. Intuitively, we may think
of the German side of the DE–EN parallel corpus as the ‘English’ approximation to an
‘EN’–EN parallel corpus, and the monolingual graphs as the word alignment process.
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Figure 6.9: Log-log plot of ranked pairs of English vertices according to their counts
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6.7 Conclusions
In this chapter we have extended graph-based methods that extract paraphrases from
the phrase-table. For a source phrase that exists in the phrase-table, its paraphrases
together with associated probabilities have been identified by exploiting the connectiv-
ity properties of the phrase-table. More precisely, the following research question was
addressed in this chapter:

RQ7 How should one extend the work of Kok and Brockett [87] in order to identify
less noisy pairs of paraphrases and to develop a method that constructs artificial co-
occurrence counts for these pairs?

The phrase-table was decomposed into a collection of sub-phrase-tables by iden-
tifying its connected components, which represent a natural phrase pair clustering of
the phrase-table. This is because each connected component has its own attributes
regarding vocabulary, syntax and word-ordering of the parallel corpus. The largest
connected component, however, was found to be of significant size, i.e., its number of
entries were comparable to those of the initial phrase-table. This happens because very
frequent source or target phrases have a relatively huge number of translations and are
thus responsible for the formation of a giant cluster. These phrases operate as hubs
that connect unrelated parts of the giant component. Their removal thus reveals those
clusters that then form new sub-phrase-tables. This operation of hub removal was
performed iteratively until the largest emerging connected component stopped being
of significant size. All removed phrases were appropriately inserted into sub-phrase-
tables, and a conservative merging of sub-phrase-tables was performed in order to a)
mitigate the risk of good paraphrased pairs being in diffrent sub-phrase-tables, and b)
reduce the size of the total collection. An important outcome of this construction is
that a phrase may appear in multiple sub-phrase-tables.

By exploiting connectivity properties of each sub-phrase-table, separate source
phrase and target phrase clusters were generated. This was achieved with a co-clustering
algorithm that is based on Information Theory. Each cluster, of either source or tar-
get phrases, gave rise to a monolingual weighted graph, whose structure was inherited
from its corresponding sub-phrase-table graph representation. Thus, the collection of
sub-phrase-tables was transformed into two new collections: One consisting of source
phrase graphs and another consisting of target phrase graphs. The rest of the process
applies to both collections independently.

For each monolingual weighted graph the similarity between each pair of phrases
was computed based on their commute time, which is a random walk-based distance
measure. Since a pair of phrases may appear in multiple monolingual graphs we com-
puted the expected value of their commute time. The involved probability distribution
was obtained through a novel heuristic iterative method. This method also produced
the conversion of commute time distances between a pair of phrases into co-occurrence
counts of such a pair. These counts were interpreted as artificial co-occurrence counts
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between a pair of source (target) phrases in hypothetical source (target) language-to-
paraphrased source (target) language aligned corpora.



Chapter 7
Computing Compositionally Aware

Translation Probabilities

This chapter is devoted to answering RQ8. Given a phrase pair we show how to com-
pute translation probabilities based on structure provided by its known alignments.
This structure, namely bilingual chunks which partition the phrase pair, allows recur-
sive decompositions of the phrase pair into multiple sub-phrase pairs. Our methods use
basic probability theory and the assumption of a statistical form of compositionality for
aligned bitexts. This assumption generalizes monolingual statistical composition and
reveals the need for a formal distinction between a pair of strings and bilingual aligned
chunks. Apart from the theoretical interest of our derivations, experiments with the re-
sulting compositionally aware translation probabilities yield applications in estimating
translation probabilities for unseen phrase pairs.

7.1 Introduction
Given a bitext, i.e., a collection of source language sentences and their target language
translations, the first key step of SMT is the extraction of translation rules. This typ-
ically involves the identification of alignments between segments on both sides of a
sentence pair, for all pairs in the bitext. Such segments can be either at the word
level [19] or phrase level [95] and extensive research has been devoted in finding high
quality alignments. 1

The resulting aligned segments give rise to the smallest and most likely translation
rules, which form building blocks, or components, of larger translation rules. Typically,
larger translation rules are extracted from unions of components, i.e., from merging
building blocks, and are not necessarily linguistically motivated.

1For word-based models see indicatively [42, 149] for word alignment with linguistic annotation,
[20, 38] for syntax-based models, and see [4, 49, 72, 93] for discriminative word alignment. For phrase-
based models, see Section 3.2.
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Every translation rule is equipped with a probability which is typically calculated
from the empirical distribution f of all extracted translation rules. In general, if a
(source, target) phrase pair (s, t) has been identified as a translation rule, then

f(t|s) = n(s, t)P
t0 n(s, t

0)
, (7.1)

where n(s, t) is the number of times that phrase pair (s, t) has been extracted as a
translation rule from all aligned sentence pairs in the bitext. The larger the bitext, the
more indicative f(t|s) is of the translation quality, especially for smaller phrase pairs.

However, (7.1) overlooks the compositional nature of (s, t) and it is consequently
less accurate for larger, sparser and erroneous translation rules. If word-level align-
ments are known, the so-called lexical weight can to some extent counterbalance this
problem. This weight is essentially the product of all word-level translation probabili-
ties from the aligned words in (s, t) [82]. Its inclusion as an additional feature during
decoding, i.e., the process of translating a source string to a target string, is known to
improve performance. The research question that is addressed here is the following:

RQ8 Given an unseen phrase pair (s, t), how can one compute the translation prob-
ability p(t|s) based on their most likely composition of building blocks?

In this chapter we are interested in providing some further understanding into how
local structure shapes translation probabilities, and we focus on the component level.
The purpose is twofold: 1) To provide a theoretically sound framework for statistical
bilingual compositionality, with components being the constituents of composition. 2)
To derive translation probabilities p(t|s) from that framework for applications, and in
particular for estimating translation probabilities of unseen phrase pairs.

Our set up is independent of whether

• alignments are at the word or phrase level,

• phrase pair formation is linguistically motivated or not,

• phrase pairs are continuous or discontinuous.

Using basic probability theory, we show that the desired probability p(t|s) is basically a
sum over all possible ways of combining components of (s, t) that lead to the formation
of (s, t). Each such combination carries a probability that depends on the order with
which components are chosen.

7.2 Background: Phrase pair extraction
As mentioned in Section 7.1, the desired probability that combines global and local
structure of a phrase pair should be independent of how alignments are computed. We
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are only interested in the fact that a phrase pair can be recursively decomposed into
sub-phrase pairs, with each phrase pair being a legitimate translation rule. The base
case of a possible recursive decomposition is, naturally, a building block of the phrase
pair, i.e., a component. How this component is initially formed is indifferent to our
computations.

Since word-level alignments are prevalent in SMT, we build up the definition of a
translation rule from a word-aligned sentence pair. The rest of this section explains the
most widely used strategy for extracting phrase pairs and is attributed to [82, 109]. We
provide a slightly more general definition, and the description follows Chapter 3.

Given a word-aligned sentence pair, a component is a set of source and target words
such that it is either an unaligned word or 1) It is possible to form a path between any
two words of the component via word alignments, and 2) It is impossible to form such
a path between any word in the component and any word outside the component. A
component is called discontinuous if at least either its source or target words form a
discontinuous substring in the source or target sentence, respectively. A component
is called continuous if it is not discontinuous. Figure 7.1(a) shows an example of a
word-aligned sentence pair with source and target words labeled by a, ..., g and ↵, ..., ⇣ ,
respectively. Word alignments admit five components which are distinctively shown as
a set in Figure 7.1(b). The component with words a, d and ↵ is discontinuous, b and �
are unaligned and the remaining two components are continuous.
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Figure 7.1: (a) A word aligned sentence pair. (b) The set of its components. (c) All
phrase pairs that correspond to components. (d) Some phrase pairs that correspond to
unions of components.

A phrase pair is extracted from a word-aligned sentence pair as a translation rule
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if and only if its source and target words form a component or a union of compo-
nents. Thus, for a word-aligned sentence pair with n components there are 2n � 1
possible translation rules that can be extracted. Clearly, if the union of components
is discontinuous then the extracted phrase pair is also discontinuous. In the previous
example, Figure 7.1(c) shows all extracted phrase pairs that correspond to components
and Figure 7.1(d) shows 5 of the possible 26 phrase pairs that correspond to unions of
components. Token X is used to denote a single discontinuity.

There are several ways of filtering phrase pairs that are allowed to form translation
rules. A standard criterion is complete absence of alignments, so that (b, ;), (;, �) as
well as (b, �) would be disallowed. Discontinuous phrase pairs are used in hierarchical
SMT [27], although only certain types of discontinuities are allowed, as determined
by bilingual parsing. Without using any linguistic information, the appropriate selec-
tion of discontinuous phrase pairs and engineering aspects of their inclusion during
decoding are matters of ongoing research [54, 56, 70].

Regardless of the restrictions imposed on allowed translation rules, counts of ex-
tracted phrase pairs from all sentence pairs in the bitext give rise to the empirical dis-
tribution (7.1). For discontinuous phrase pairs, token X is treated as a wild card, so
that, for example,

n(aXXd,↵) =
X

u1,u2

n(au1u2d,↵),

where the sum is over all tokens u1 and u2 such that (au1u2d,↵) is an extracted phrase
pair. Consecutive gaps as in this example can be merged into a single discontinuity;
we do not follow this approach in this work and opt for the general case.

For our purposes all extracted phrase pairs are allowed, with the exception of the
(b, �)-type translation rule in the example of Figure 7.1. In the next section we show
how to compute translation probabilities of any phrase pair from set of all components
that has been constructed during the training stage.

7.3 Compositionally aware translation probabilities
Alignments in a parallel corpus admit formation of components and we show how
to exploit this structure in order to compute translation probabilities for any phrase
pair. Our key assertion is that phrase pairs obey a statistical form of compositionality,
with the constituents of composition being the components. Informally, in a monolin-
gual setting this is akin to saying that empirical counts of monolingual building blocks
(words) provide the basis for inferring knowledge about phrases. In computational lin-
guistics such sought knowledge is typically semantics. For our purposes semantics nor
any other linguistic information play any explicit role in our derivations.

As mentioned in Section 7.2, components and unions of components give rise to
phrase pairs. This method of extracting translation rules from a sentence pair masks a
seemingly innocent process. Strictly speaking, a component is a graph ignoring word
order by definition, but carrying information about word connections. On the other
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hand, a phrase pair just respects the order of the sentence pair. In other words, the
method of phrase pair extraction first identifies appropriate graphs from a sentence
pair upon which an ordering map is applied and produces a bistring. The details of the
ordering map are insignificant for our purposes. The key observation is that we have a
conversion of sets into a pair of strings. In a probabilistic setting these two quantities
are also distinguished, i.e., they are represented by different random variables.

7.3.1 Components as partitions of phrase pairs
Let (s, t) denote any phrase pair, i.e., a pair of source and target language strings;
s consists of words from of a source language corpus and similarly for t. Let (sc, tc)
denote a component of an aligned bitext, i.e., a pair of sets; sc is the set of source words
of component c and similarly for tc. Assuming significant vocabulary overlap between
the monolingual corpora and their bitext counterparts, then any phrase pair (s, t) can
be constructed from the set of all components, say C, of the aligned bitext. This is done
by identifying an appropriate subset g of C and then by applying an ordering map to g
to produce (s, t).

In particular, if g = {(s1, t1), ..., (sk, tk)} is a set of k components (with arbitrary
labeling), then we have

O(g) = O
�
(s1, t1), ..., (sk, tk)

�
= (s, t), (7.2)

for some map O that collects g’s source and target words and orders them to produce
phrase pair (s, t). We call g the structure of (s, t) and write g(s, t) whenever emphasis
is needed. The structure g is just one possible partition of the words of (s, t), or equiv-
alently, different structures can produce the same phrase pair (s, t). Denote the set of
all such partitions that eventually yield (s, t) by

G(s, t) = {g : 9O such that O(g) = (s, t)}. (7.3)

Then, for the translation probability p(t|s) we naturally have

p(t|s) =
X

g2G(s,t)

p(t, g|s). (7.4)

We proceed with simplifying this sum.
In general, the number of ways of partitioning any set of cardinality N is given by

BN , the N th Bell number (see Section 4.5.1). Here, we disallow complete absence of
alignments in a structure so that |G(s, t)| = B|s|+|t| � B|s|B|t|, where |s| denotes the
number of words in phrase s and similarly for |t|. This quantity still grows rapidly in
|s|+ |t| but is just an upper bound for all possible structures that produce (s, t).

In practice most candidate structures would be disallowed because components
of such structures would not exist in C. Empirically, a phrase pair that is extracted
from an aligned bitext typically has unique structure or multiple structures with one of
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dominant frequency. We thus assume that for the remaining allowed structures in G
only a single structure provides significant contribution to (7.4).

Although this approximation is clearly less accurate for larger |s| and |t|, it simpli-
fies our following computations immensely. As we shall also explain later the inclusion
of more than one structure is to some extent possible. Hence, for the rest of this section
we assume that

p(t|s) = p(t, g|s), (7.5)

for some ‘dominant’ structure g of (s, t).

7.3.2 Core computations
Given a set of components C, for any g ✓ C we consider the probability

p(g) = p({(s1, t1), ..., (sk, tk)})

=
kX

c=1

p(sc, tc), (7.6)

as a means of realizing the compositional nature of all phrase pairs that can be produced
by g. Assuming that C’s members satisfy p(C) = 1, then (7.6) is a legitimate probabil-
ity. In a monolingual setting this is akin to saying that the probability of a subset of a
vocabulary is given by its word probabilities; this is of course a very shallow approach
and more complicated techniques are employed for understanding monolingual com-
positionality. In our case, however, components provide at least proto-segments for
both language sides, which makes (7.6) meaningful. Here, a segment is a continuous
or discontinuous chunk that is of joint maximal expressive power and minimal length
within a given sentence. By proto-segment we refer to a chunk that does not meet this
criterion optimally.

For any phrase pair (s, t) that can be produced by g, the combination of (7.5) and
(7.6) yields

p(t|s) ⇡
kX

c=1

p(t, sc, tc|s), (7.7)

which allows us to explore the relationship between sets of words (sc and tc) and strings
(s and t). Using the chain rule we have

p(t|s) =
kX

c=1

p(t|sc, tc, s)p(sc, tc|s). (7.8)

The key probability that needs inspection is p(t|sc, tc, s) which will be approximated in
two steps. First, it is easier to overlook the set status of sc and tc and consider instead
their ordered versions s and t with order determined by s and t respectively. In this
case we have p(t|s, t, s) = p(t \ t |s, t, s), where t \ t is the remaining string from t
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when its substring t is removed. This is true because we are already provided with the
information that t is included in the string to be estimated. Also, since s contains s we
have p(t \ t |s, t, s) = p(t \ t |s, t, s \ s). Back to our unordered framework we thus
consider the approximation

p(t|sc, tc, s) ⇡ p(t \ tc|sc, tc, s \ sc), (7.9)

where t \ tc is the remaining string from t when tc’s words are removed; similarly for
s \ sc. Clearly, (7.9) is an approximation rather than equality entirely due to the lack
of order in sc and tc.

The second step of our approximation is based on qualitative aspects of alignments
in SMT and simplifies (7.9) even further. The purpose of alignments, and consequently
component formation in the first place is to identify maximal associations within the
smallest possible bilingual chunks. As a result, whatever exists in a component of
a sentence pair has supposedly been found not to have an impact on the remaining
sentence pair and vice-versa. Thus, given s \ sc, the additional knowledge of sc and tc
is of little value when estimating t \ tc. In other words, we can assume that

p(t \ tc|sc, tc, s \ sc) ⇡ p(t \ tc|s \ sc). (7.10)

This approximation is less accurate whenever each of s\sc and t\ tc is at most a proto-
segment, or equivalently, if t and s convey richer associations than s \ sc and t \ tc.
It is important to note that (7.10) is false if the aligned bitext is treated as a stochastic
process [108], but this is clearly not the case here.

Inserting (7.10) in (7.8) results in

p(t|s) =
kX

c=1

p(t \ tc|s \ sc)p(sc, tc|s), (7.11)

which is in recursive form since p(t \ tc|s \ sc) is a sub-phrase pair of (s, t) with
structure g(s \ sc, t \ tc). In other words, p(t \ tc|s \ sc) can also be written in the form
of (7.11). An iterative application of this process results in a statistically elaborate
relationship of (s, t) with its structure.

Let ⇡ denote a permutation of {0, 1, ..., k} with ⇡(0) = 0, then (7.11) can be rewrit-
ten as

p(t|s) =
X

⇡

kY

c=1

p(s⇡(c), t⇡(c)|sc⇡), (7.12)

where

sc⇡ = s \
c�1[

i=0

s⇡(i) with s0 = ; (7.13)

is the remaining substring of s at each step of a recursion. The transition from (7.11)
to (7.12) is only a matter of algebra and we leave the details for Appendix B.



132 Chapter 7. Computing Compositionally Aware Translation Probabilities

Using the chain rule we have

p(t|s) =
X

⇡

kY

c=1

p(t⇡(c)|s⇡(c), sc⇡)p(s⇡(c)|sc⇡), (7.14)

where the probability p(s⇡(c)|sc⇡) is next to be estimated. In order to get an intuition of
how this probability is interpreted, it is easier to consider a more general case. From
(7.7) it is trivial to see that

Pk
c=1 p(sc, tc|s, t) = 1. This forces p(sc, tc|s, t) to be

interpreted as the “probability of selecting component c from structure g(s, t)”. Equiv-
alently p(sc|s) is interpreted as the “probability of selecting set sc from the source sets
of structure g(s, t)”. By setting this probability to be uniform everywhere in (7.14),
basic calculations yield

p(t|s) = 1

k!

X

⇡

kY

c=1

p(t⇡(c)|s⇡(c), sc⇡). (7.15)

In general, for any component (�, ⌧), and any source string s the probability p(⌧ |�, s)
is interpreted as follows: “Given source string s whose subset of words � is known to
form the source side of some component, what is the probability of observing words ⌧
as the target side of that component in a translation of s”. This is simplified as “given
source string s, what is the probability of observing words ⌧ as the target side of some
component in a translation of s”, and write p(⌧ |s) for that approximation. This is an
abuse of notation because it is possible that p(⌧ |s) = p(⌧ 0|s) = 1 with ⌧ 6= ⌧ 0. This
happens if both ⌧ and ⌧ 0 appear always in all translations of s. Nonetheless, in order
to avoid the introduction of further notation we use this simplistic form and (7.15)
becomes

p(t|s) = 1

k!

X

⇡

kY

c=1

p(t⇡(c)|sc⇡), (7.16)

which completes the core of our computations.
In order to get a hands-on understanding of (7.16) we provide a fully worked ex-

ample. By considering unaligned words as components and denoting the empty string
(NULL) also by ;, then for phrase pair (s, t) = (abcd,↵��) with structure as in Fig-
ure 7.2 we have

p(↵��|abcd) =
1

6

⇥
p(↵|abcd) p(;|bc) p(��|c)+

p(↵|abcd) p(��|bc) p(;|b)+
p(;|abcd) p(↵|aXcd) p(��|c)+
p(;|abcd) p(��|aXcd) p(↵|aXXd)+

p(��|abcd) p(↵|abXd) p(;|b)+
p(��|abcd) p(;|abXd) p(↵|aXXd)

⇤
,
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Figure 7.2: Phrase pair (s, t) = (abcd,↵��) with structure g. The labeling of compo-
nents is arbitrary.

where permutations are considered in lexicographic order, so that the first line is (1 2 3),
the second line is (1 3 2), etc. For clarity the target side of components is written as
strings with order provided by t = ↵��. Similarly the first three summands for the
other direction are

p(abcd|↵��) =
1

6

⇥
p(aXXd|↵��) p(b|��) p(c|��)+

p(aXXd|↵��) p(c|��) p(b|;)+
p(b|↵��) p(aXXd|↵��) p(c|��) + ... ].

Simpler translation probabilities can be derived from (7.5) and (7.14) and this is
shown in the next section.

7.3.3 Further approximations

From (7.5) we also have p(t|s) = p(t|s, g)p(g|s), for which we can assume p(t|s, g) ⇡
1. This is a valid approximation because g provides all information for the target string
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to be estimated apart from the exact ordering of its words. We thus have

p(t|s) ⇡ p(g|s) =
kX

c=1

p(sc, tc|s)

=
kX

c=1

p(tc|sc, s)p(sc|s),

=
1

k

kX

c=1

p(tc|sc, s), (7.17)

where at the final step p(sc|s) was set to be uniform. For the summands of (7.17)
we can either consider p(tc|sc, s) ⇡ p(tc|s) or p(tc|sc, s) ⇡ p(tc|sc) as a further ap-
proximation. It will become evident in Section 7.4 that the former is more reliable.
However, it is of little value when computing p(t|s) for unseen phrase pairs, when the
source string in particular is unseen. We thus consider

p(t|s) = 1

k

kX

c=1

p(tc|sc). (7.18)

An equally simple translation probability can be derived from (7.14). By set-
ting p(t⇡(c)|s⇡(c), sc⇡) ⇡ p(t⇡(c)|s⇡(c)) everywhere in (7.14), and regardless of what
p(s⇡(c)|sc⇡) is, it is easy to show that

p(t|s) =
kY

c=1

p(tc|sc). (7.19)

In order to compute p(t|s) as in (7.16), (7.18) and (7.19) we need to estimate p(⌧ |s)
and p(⌧ |�) for any source string s and for any source (target) side � (⌧ ) of a component
from training data.

7.3.4 Estimating probabilities from training data
Maximum likelihood estimation for p(⌧ |s) is difficult and we thus consider a basic
counting scheme. Our training data consists of all extracted phrase pairs together with
their structures. The example of Section 7.3.2 guides us as to how counts should be
collected.

In (7.16), a phrase pair uses information from all its sub-phrase pairs, but counting
each of its (source substring, target side of component) occurrence is wrong: For the
phrase pair (abcd,↵��) in our example, suppose we count for instance the occurrence
of (aXXd, {↵}). But phrase pair (aXXd,↵) will also be extracted as a legitimate
translation rule, which would undesirably yield an additional count for (aXXd, {↵}).
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Thus, for each extracted phrase pair (s, t) with structure {(s1, t1), ..., (sk, tk)} we sim-
ply count the occurrence of each of (s, t1),..., and (s, tk) only. This guarantees cover-
age of all sought information with no duplications.

By collecting all such counts from the training data we compute

p(⌧ |s) = f(⌧ |s) = n(s, ⌧)P
t n(s, t)

, (7.20)

for any source string s and any target side ⌧ of a component. The numerator counts
how many times ⌧ has been seen in all translation of s and the denominator is the
occurrence count of s.

The estimation of p(⌧ |�) for any source (target) side � (⌧ ) of a component seems
clearer: MLEs can be computed based on the set of all components C. However,
in preliminary experiments we found that a smoother distribution was needed. Thus,
instead of C we consider the set of all extracted phrase pairs. I.e., the ordered version
of (�, ⌧) is considered and p(⌧ |�) is computed as in (7.1).

For any phrase pair (s, t), we have so far assumed a unique, dominant structure g.
In order to accommodate p(t|s) for multiple structures, we consider linear interpolation

p(t|s) =
X

g2G(s,t)

�(g)p(t, g|s), (7.21)

with �(g) = n(g)/
P

g02G(s,t) n(g
0), where n(g) is the frequency of g in the aligned

bitext. A comparison of (7.4) with (7.21) deems �(g) redundant. Without going into
details, it is a necessary remedy that balances the choice for p(sc|s) earlier, when a
single structure was assumed.

Most of our efforts in collecting counts revolved around unaligned words. Equa-
tions (7.16), (7.18) and (7.19) do not suggest special treatment for unaligned words.
In practice we found that treating an unaligned word as component was not always the
optimal case. Given structure g(s, t), let x = {x1, ..., xl} and y = {y1, ..., ym} denote
the sets of unaligned source and target words respectively. In preliminary experiments
the following two approaches were found to perform best:

NoNULL Remove all components ({xi}, ;) and (;, {yj}) from g(s, t) to get new
structure g0(s, t). Use g0(s, t) to compute (7.16) but replace each of p(⌧ |s) with p(⌧ [
y|s_x), where s_x is the substring of s with words from s and x. Similarly in (7.18)
and (7.19) replace p(⌧ |�) with p(⌧ [ y|� [ x). Consequently, ; never appears in the
probabilities.

TrgNULL Similar to NoNULL but remove only components (;, {yj}) from the
structure. Then replace p(⌧ |s) with p(⌧ [ y|s) and p(⌧ |�) with p(⌧ [ y|�) every-
where in (7.16) and (7.18), (7.19) respectively. In this case, ; appears only at the target
side.
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7.4 Experiments
For phrase pair (s, t) with structure g(s, t) = {(s1, t1), ..., (sk, tk)} we evaluate the
performance of the following translation probabilities

Permute(t|s) = 1

k!

X

⇡

kY

c=1

f(t⇡(c)|sc⇡), (7.22)

Average(t|s) = 1

k

kX

c=1

f(tc|sc), and (7.23)

Product(t|s) =
kY

c=1

f(tc|sc), (7.24)

where f(⌧ |s) and f(⌧ |�) are given by (7.20) and (7.1) respectively, and sc⇡ as defined
in (7.13). Each translation probability (for both directions) is computed for a subset
of extracted phrase pairs from the training data and (7.21) is used wherever necessary.
These three translation probabilities are compared to each other but also evaluated
against the baseline which is given by f(t|s) as in (7.1).

The decoder handles only continuous phrase pairs, i.e., phrase pairs are not allowed
to have gaps (although their constituents are allowed to be discontinuous). Both the
baseline and our system are thus standard phrase-based SMT systems [82].

Bidirectional word alignments are generated with GIZA++ [111] and ‘grow-diag-
final-and’. These are used to construct a phrase-table with translation probabilities,
lexical weights and a reordering model with monotone, swap and discontinuous ori-
entations, conditioned on both the previous and the next phrase. 4-gram interpolated
language models with Kneser-Ney smoothing are built with SRILM [144]. A distor-
tion limit of 6 and a phrase penalty are also used. All model parameters are tuned with
MERT [110]. Decoding during tuning and testing is done with Moses [85]. All tables
are significance filtered with parameter ↵ + ✏ [74].

The maximum length of each phrase in a phrase pair in the baseline is 7. For our
purposes, the quantity of interest is |g(s, t)|. By default this is also 7, which yields
7!=5040 maximum number of permutations in (7.22). To allow faster computations
we only consider phrase pairs (s, t) that satisfy |g(s, t)|  6. For fair comparisons this
further pruning is also done in all tables. No effect in the baseline’s translation quality
was observed, which is in line with the observations in [82].

Datasets are from the WMT’13 translation task [14]: Translation and reordering
models are trained on Czech–English and German–English corpora (Table 1). Lan-
guage models are trained on 35M Czech, 50M German and 94M English sentences
from Europarl Corpus and News Commentary set. Tuning is done on newstest2010
and performance is evaluated on newstest2009, newstest2011 and newstest2012 with
the metric BLEU [115].

BLEU scores are reported in Tables 7.2 and 7.3 for German–English and Czech–
English, respectively. Each entry in the column named ‘Feature’ indicates which trans-



7.5. Towards decoding with ad hoc translation probabilities 137

Cz–En De–En
Europarl (v7) 642,505 1,889,791
News Commentary (v8) 139,679 177,079
Total 782,184 2,066,870

Table 7.1: Number of filtered parallel sentences for Czech–English and German–
English.

Feature German!English English!German
’09 ’11 ’12 Loss ’09 ’11 ’12 Loss

f 20.80 21.55 22.05 � 15.45 16.10 16.55 �
Average 20.20 20.90 21.35 0.65 14.75 15.65 16.00 0.53
Product 20.25 20.85 21.60 0.57 14.80 15.60 15.85 0.62
Permute 20.70 21.25 21.80 0.22 15.30 15.90 16.45 0.15

Table 7.2: System evaluation for 9.8M German–English phrase pairs. Method
TrgNULL is used for unaligned words.

lation probability is used in the phrase-table. Column ‘Loss’ shows the average drop
in BLEU when each of our systems for a particular language direction is compared
with the baseline. The NoNULL and TrgNULL approach is used for Czech–English
and German–English respectively, as these were the approaches that performed best
for each language pair (for both directions). Systems Average and Product perform
poorly when compared to f and always worse than Permute. The results for Permute
when compared to f are encouraging and lead the way for computing translation prob-
abilities for unseen phrase pairs.

7.5 Towards decoding with ad hoc translation proba-
bilities

A method that handles unseen phrase pairs successfully during decoding is guaranteed
not only to absorb the insignificant losses of Permute in Section 7.4, but to provide
much higher translation quality. Permute can be valuable when generating new phrase
pairs with accompanying translation probabilities. Given a test sentence the following
sketch of a method is both realistic and promising.

First, segment the test sentence as there are qualitative and quantitative benefits. It
decreases the number of candidate source strings to be inspected and provides initial
information of what the source side of components should be. String s consisting of
s1...sk is a definite candidate string, if each si appears in the phrase-table. Top-n trans-
lations for each si are selected, thus producing nk possible structures. Clearly, without
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Feature Czech!English English!Czech
’09 ’11 ’12 Loss ’09 ’11 ’12 Loss

f 20.20 22.30 20.50 � 15.40 16.60 14.65 �
Average 20.00 21.70 20.20 0.37 15.00 16.30 14.40 0.32
Product 19.85 21.95 20.20 0.33 15.15 16.40 14.45 0.22
Permute 20.15 22.15 20.40 0.10 15.30 16.75 14.70 �0.03

Table 7.3: System evaluation for 3.6M Czech–English phrase pairs. Method NoNULL
is used for unaligned words.

segmenting the test sentence, the precision/recall balance will be hard to achieve.
Quick pruning can then be done using Average or Product. For the remaining

structures, it is the task of a target side language model and Permute to decide for the
best performing target string t (i.e., a mini decoding step). For the resulting phrase
pair, translation probabilities are obviously given by Permute, and lexical weights as
well as reordering orientations can be trivially recovered.

In contrast with Average and Product, Permute uses multi granular information
from a given phrase pair. If certain (source substring, target side of component) pairs
are unseen , then either simple heuristics or existing smoothing techniques should be
used. This is not necessarily a disadvantage for Permute: The more unseen such
information for a candidate phrase pair (s, t) is observed, the greater the indication
that (s, t) is erroneous or unnecessary.

Finally, all probabilities of this work, naturally perform best if: either bitext align-
ments are of phrase-level, or components of a word-aligned bitext have been post-
consolidated with some bilingual chunking method. The reason is that our key asser-
tion of statistical compositionality, namely (7.6), has to be robust. Robustness in (7.6)
warrants (7.10) to be a reasonable approximation. A bad approximation for (7.10) is
clearly more likely to appear if C is constructed from raw word-aligned components.

7.6 Related work
Exploitation of component structure is the key aspect of (bilingual) N–gram-based
SMT [97, 121]. In this setting, the sequence of components (tuples/minimal translation
units) in the order of appearance in a word-aligned sentence pair is used to construct
component-based Markov Chains as translation probabilities. To compensate for defi-
ciencies in coverage and reordering during decoding, successful hybrid phrase-based
and N–gram-based SMT approaches have been developed [47, 48, 164]. A different
application of components was considered in hierarchical SMT. In [153], components
(minimum connected subgraphs) are convoluted for successfully computing more ac-
curate phrase-level alignment probabilities.

Techniques that can directly assist the method discussed in Section 7.5 include
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smoothing translation probabilities [53, 132], segmenting sentences [13, 91, 158, 165],
and forming robust component structures as in Chapter 5.

Our work can also provide the means for paraphrase generation with accompanying
paraphrase probabilities. In this case, the equivalent p(⌧ |s) probabilities are computed
as in [6].

7.7 Conclusions
The focus of this chapter has been the following research question:

RQ8 Given an unseen phrase pair (s, t), how can one compute the translation prob-
ability p(t|s) based on their most likely composition of building blocks?

We showed how to compute translation probabilities based on structure provided
by known alignments. This structure is the set of components that is formed in aligned
sentence pairs. More accurately, the purpose was twofold: 1) To provide a theoretically
sound framework for statistical bilingual compositionality, with components being the
constituents of composition. 2) To derive translation probabilities from that framework
for applications, and in particular for estimating translation probabilities of unseen
phrase pairs.

For a given phrase pair we explained that there exists a dominant partition into
components. Then, our key assertion was that the phrase pair obeys a statistical form
of compositionality, with the constituents of composition being the components of that
partition. After a series of approximations we formed a statistically elaborate relation-
ship between translation probabilities of the phrase pair and translation probabilities of
certain sub-phrase pairs.





Chapter 8
Conclusions

In this concluding chapter we summarize our answers to the research questions as
stated in Chapter 1 and we provide pointers for future work (FW).

8.1 Looking back
RQ1 How can one devise a mathematical framework that is affable to the consis-
tency method? It should be minimal in construction but sufficient for accommodating
bilingual segmentations as a generalization. If bilingual segmentations are taken into
account, then how do they affect the set of extracted translation rules? [Chapter 3]

First, it was shown that a word-aligned sentence pair has a graph representation as
follows: Its source and target language words can be viewed as source and target type
vertices respectively; word alignments play the role of edges that connect source and
target type vertices. Such a graph is bipartite because no source-to-source nor target-
to-target edges are assumed. Word alignments admit a natural partition for this graph:
Each part is a connected component of the graph. We established that a phrase pair
is a translation rule if and only if the following conditions hold: i) Its words respect
the order of appearance in the sentence pair. ii) Its words are in one-to-one correspon-
dence with the words of a union of components of the bipartite graph. Equivalently, a
translation rule is formed by taking an arbitrary collection of components, extracting
its words and then ordering them in a way so that the resulting phrase pair is a substring
of the sentence pair.

Second, we have shown that the graph representation of a word-aligned sentence
pair is just one possible configuration of a more general system: The one that allows
consecutive words in a sentence to be connected via edges, for both sentences. Under
this generalized system, it was shown that the same set of translation rules can be
extracted in a different way: A phrase pair is a translation rule if and only if i) Its
words respect the order of appearance in the sentence pair. ii) Its words are in one-to-
one correspondence with the words of a component of a configuration. This implies
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that all translation rules can be recovered by collecting components (and components
only, not arbitrary unions thereof) from all possible configurations.

RQ2 How should one construct a method for computing probabilities of
non–exchangeable random partitions? [Chapter 3]

The probability of a partition of a finite set was viewed as a case of constrained,
biased sampling without replacement. We derived a probability mass function that is
close in construction to the Hyper-Dirichlet type I distribution. This was achieved by
considering a partition as an outcome of all possible stochastic processes that lead to
its formation. This assumption was coupled with a compact graph-based encoding of
all possible partitions of a set.

RQ3 Given a sentence in some language, identify what conditions a segmentation
of the sentence should satisfy, in order for linear compositionality of meaning to hold.
How can one define the segmentation that satisfies those conditions optimally? [Chap-
ter 4]

In order for the Principle of Compositionality to hold with the associated function
being linear, we required the following condition for the segmentation: Substitution of
its segments with their paraphrases yields new sentences which do not deviate much
in meaning from the original sentence. Additionally, if segments are required to be
minimal in size, then the segmentation that meets these two conditions is termed the
natural segmentation of the sentence.

The above is an equivalent definition for the formal definition of the natural seg-
mentation of a sentence that was presented, and stems from the definition of measure-
theoretic entropy in dynamical systems.

RQ4 Given the relationship between Shannon’s entropy and metrics on lattices [138],
elaborate on the mathematical framework of Pointwise Mutual Information (PMI). Is
it possible to extend PMI within this framework for simulating natural segmentations?
[Chapter 4]

The method that was found to simulate natural segmentations dealt with estimating
costs for perturbing a segmentation into another. For a particular sentence, the set of
all its segmentations together with the operation of ‘refinement’ (splitting of a segment
into two new segments) forms a partially ordered set (poset). Choosing a metric on
that poset appropriately, resulted in the formation of cost functions for segments and,
consequently, segmentations of that sentence. The optimal segmentation was calcu-
lated as the one that is the least expensive to be perturbed into. The development of
this method revealed the previously unseen theoretical link for PMI: It was shown that
PMI is a metric on the said poset.
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RQ5 Given a word-aligned sentence pair, identify what conditions a bilingual seg-
mentation of the pair should satisfy in order to form a bilingual natural segmentation.
How can one define the bilingual segmentation that satisfies those conditions opti-
mally? [Chapter 5]

This was achieved by identifying two necessary conditions: 1) Segments in both
source and target language sentences abide to natural segmentation. 2) Source and
target language segments are synchronized with each other via word alignments.

Condition 1 is covered by the conditions of RQ3. Condition 2 was identified as the
necessary condition that permits the generalization to the bilingual setting. It refers to
purely structural properties of the graph representation of a given word-aligned bilin-
gual segmentation, as discussed in RQ1. Its components were assessed according to
how well source and target segments are synchronized in the word-aligned bilingual
segmentation. Based on the notion of connecting spanning subgraph (CSSG) from
graph theory, we introduced a measure that assesses structural robustness of compo-
nents. This measure counts a particular type of CSSGs of a component, namely the
connected spanning subgraphs of the component from which only translation edges
are allowed to be deleted. The appropriately normalized value of this quantity essen-
tially tells how difficult it is to perturb the component from its connected state into a
disconnected state.

Conditions 1 and 2 gave rise to surface and structural robustness quantitative cri-
teria respectively. The former can be viewed as ‘Precision’ and the latter as ‘Recall’.
Thus, a bilingual natural segmentation was defined as a bilingual segmentation that
provides a balance between Precision and Recall, i.e., the harmonic mean of surface
and structural measures.

RQ6 What is the effect of bilingual natural segmentations on SMT? [Chapter 5]

Phrase-tables were formed by extracting translation rules from components only
(and not unions thereof) of configurations in the vicinity of the bilingual natural seg-
mentations. Translation probabilities were computed in a similar way to the standard
method, but counts were collected from this new set of translation rules; all other
features were the same as with the baseline (Moses). Experiments were performed
on German–English and Czech–English language pairs with strong baselines and lan-
guage models. Phrase-table sizes were 90% smaller and, most importantly, translation
quality was shown to be comparable with the baseline. The latter is a fruitful result as
it reveals the qualitative characteristics of the phrase pairs that are useful to SMT.

RQ7 How should one extend the work of Kok and Brockett [87] in order to identify
less noisy pairs of paraphrases and to develop a method that constructs artificial co-
occurrence counts for these pairs? [Chapter 6]
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Our method relied on forming a collection of sub-phrase-tables which is mainly
constructed from connected components of the phrase-table’s graph representation.
The connectivity of each sub-phrase-table was exploited for the purpose of creating
separate source phrase and target phrase clusters. Each cluster inherits a new weighted
graph structure from its corresponding sub-phrase-table. The commute time between
two vertices was then employed for finding the degree of similarity between any two
phrases in a cluster. An important distinction of this method from previous work is that
a pair of phrases may appear in multiple clusters across multiple sub-phrase-tables.
This allowed us to compute their expected similarity, thus significantly reducing the
effects of noise. The involved probability distribution was obtained through a novel
heuristic iterative method. This method also produced the conversion of expected
commute time distances between a pair of phrases into co-occurrence counts of such a
pair. These counts were interpreted as artificial co-occurrence counts between a pair of
source (target) phrases in hypothetical source (target) language-to-paraphrased source
(target) language aligned corpora.

RQ8 Given an unseen phrase pair (s, t), how can one compute the translation prob-
ability p(t|s) based on their most likely composition of building blocks? [Chapter 7]

Our key assertion was that the (any) phrase pair obeys a statistical form of linear
compositionality. The constituents of composition are the most likely building blocks
that make up the phrase pair. After a series of approximations we formed a statistically
elaborate relationship between translation probabilities of the phrase pair and transla-
tion probabilities of certain sub-phrase pairs. Experiments showed that this approach
was superior to simple heuristics.

8.2 Looking forward

FW1 In Section 3.4 we showed that the phrase-table in SMT is constructed from the
powerset of components emerging from word-aligned sentence pairs in the training
data. The experiments of Section 5.5 showed that much fewer translation rules are
actually needed. This effective set of translation rules consists mainly of components
emerging from bilingual segmentations that are in the vicinity of the bilingual natural
segmentations of the training data. The boundary of this domain was set heuristically
(parameter N in Section 5.5). Can we determine this boundary algorithmically?

FW2 Investigate the combinatorial properties of graphs induced by segmentations in
Section 3.6.2: If Gn = (Vn, En) denotes such a graph that corresponds to a sentence
with n words, then how do |Vn|, |En|, chromatic number, maximal cliques, etc. depend
on n?
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FW3 The formula for non-exchangeable random partitions that was introduced in
Section 3.6.2 is impractical for long sentences. Develop sampling techniques that make
such computations possible.

FW4 Are there any applications of the varied n-gram language models of Section
4.2 to SMT? In particular, can this method help the ranking process of candidate trans-
lations during decoding?

FW5 Is it possible to formalize the segments-segmentations relationship of Sec-
tion 4.3.3 via the Moebius Inversion Theorem?

FW6 The methods that were introduced in Chapter 4 are certainly not restricted
to applications in SMT. How can refinement-based phrase segmentations assist other
branches of computational linguistics?

FW7 Integrate the notion of natural segmentation (Section 4.5.1) with Hodges’ canon-
ical composition in formal semantics [68] and with measure theoretic entropy in dy-
namical systems [77, 120]. This is perhaps the most interesting and challenging task
that arises from this thesis, with several potential applications in computational lin-
guistics.

FW8 The method for harvesting paraphrases (Chapter 6) is admittedly too compli-
cated to be used as a whole. Nonetheless, the algorithms described terein can be used
inpependently for applications. Of particular interest is the algorithm that converts
distances into probabilities (Section 6.5) and should be explored further.

FW9 Chapter 7 provides a clear distinction between strings, sets of words, and or-
dering of words in strings, all with associated random variables. The notions that result
in method Permute also encompass both basic heuristics (average and product of the
most likely bilingual chunks). Does this method provide a stepping stone for ad-hoc
translations?





Appendix A
Maximum Likelihood Estimation of Language
Model Probabilities

Let a corpus be the sequence of words w1, ..., wN . The likelihood of the corpus is given
by

p(wN
1 ) =

NY

i=1

p(wi| wi�1
1 ) ⇡

NY

i=1

pn(wi| wi�1
i�n+1), (A.1)

where the approximation happens because we consider fixed memory of n� 1 preced-
ing words, for each word in the corpus. The goal is to find the conditional probabilities
of the n-gram LM. The log-likelihood of (A.1) is

`n =
NX

i=1

log pn(wi| wi�1
i�n+1), (A.2)

which should be maximized subject to the constraints
X

v

pn(v|y) = 1, for all sequences y. (A.3)

The objective function is thus

F = `n �
X

y

�y

X

v

pn(v|y), (A.4)

where �y’s are the Lagrange multipliers. Extrema are given by the roots of @F/@pn(w|h) =
0, or

NX

i=1

�(w,wi) �(h, w
i�1
i�n+1)

pn(w|h)
�

X

y

�y �(h, y) = 0, (A.5)

where �(a, b) = 1, if a = b and �(a, b) = 0, if a 6= b. The solution of (A.5) is given by

pn(w|h) =
PN

i=1 �(w,wi) �(h, w
i�1
i�n+1)P

y �y �(h, y)
, (A.6)
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where the numerator counts how many times the sequence hw has been observed in the
corpus, or count(hw) for short. From the constraints we must have

P
v pn(v|h) = 1,

or
X

v

count(hv) =
X

y

�y �(h, y) ,

count(h) =
X

y

�y �(h, y). (A.7)

But we also have count(h) =
P

y �(h, y), so that we can set �y = 1, for all sequences
y. Thus, (A.6) becomes

pn(w|h) =
count(hw)
count(h)

, for any sequence hw. (A.8)

It is also trivial to show that @2F/@pn(w|h)2 is negative when evaluated at (A.8), so
that (A.8) indeed maximize the likelihood of the corpus.



Appendix B
Combinatorial Optimization and the

Cross-Entropy Method

Let X be a finite set and let F : X ! R denote a deterministic function that evalu-
ates the performance of X’s elements. We assume that X is large enough so that the
problem

�⇤ = F (x⇤) = max
x2X

F (x) (B.1)

is difficult to solve, even if F (x) is computed in linear time, for any x. Typically, each
x 2 X is a vector representing a configuration of a system, so that X is the set of all
possible configurations.

The CE method is an efficient way for obtaining the best performing configuration
x⇤. It requires the conversion of (B.1) into a stochastic problem which gives rise to
an iterative algorithm. At each iteration t of the algorithm, a small random sample Ot

is drawn from a probability mass function (pmf) with parameter ✓ that is associated
with X . Thus, all instances of the random set Ot are elements of X , but Ot is such
that |Ot|/|X| ⌧ 1. The aim is to appropriately update ✓ at every iteration so that, as
t increases, the instances of Ot tend to focus around the region of X that includes x⇤.
After enough iterations, say at t = t1, ✓ should be a particular kind of pmf, namely
a Dirac measure: Its mass is entirely allocated to a single point and, for our purposes,
this point should ideally be the argument that maximizes F . It follows that all instances
of the random sample at t1 are x⇤, which would provide the solution to (B.1).

In more detail, the stochastic problem that is associated with (B.1) requires each
x 2 X to be drawn with probability f(x; ✓), where ✓ is a possibly multidimensional
parameter. The pmf f(·; ✓) is assumed known (e.g. via the Maximum Entropy method)
and is a member of the family of pmfs {f(·;�)}�. The exact value of ✓ does not play
any role in the CE method for combinatorial optimization.

For a given value of ✓ the quantity of interest is

`(�) = P✓(F (y) � �), with y ⇠ f(·; ✓), (B.2)

so that `(�) is the probability that configurations drawn from f(·; ✓) perform at least �.
If � > �⇤, then we have `(�) = 0. This is because F is assumed deterministic and no
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configuration performs better than �⇤, regardless of the details of f(·; ✓). On the other
hand, no immediate conclusions can be drawn for `(�) when �  �⇤. The aim is to
find ✓ such that ˜̀(�⇤) = 1, for a renormalized version ˜̀of `.

For a given value of � 2 R, let

I{F (x)��} =

8
><

>:

1, if F (x) � �

0, otherwise,
(B.3)

denote the indicator function on X . Then (B.2) can be rewritten as

`(�) =
X

x2X

I{F (x)��} f(x; ✓), (B.4)

so that `(�) is the expected value of I{F (y)��} under f(·; ✓). An unbiased estimator of
(B.4) is

ˆ̀(�) =
1

|O|
X

x2O

I{F (x)��}, with O ⇠ f(·; ✓). (B.5)

In words, O is a random sample, i.e., a set of random instances, and each such instance
is drawn from f(·; ✓). Quantity ˆ̀(�) measures how many of those instances perform at
least � on average. (B.5) is not directly useful for our purposes. Instead, we consider a
new pmf h for X and rewrite (B.4) as

`(�) =
X

x2X

I{F (x)��}
f(x; ✓)

h(x)
h(x), (B.6)

so that `(�) is the expected value of I{F (y)��} f(y; ✓)/h(y) under h. Similarly, an
unbiased estimator of (B.6) is

ˆ̀(�) =
1

|O|
X

x2O

I{F (x)��}
f(x; ✓)

h(x)
, with O ⇠ h. (B.7)

Pmf h is called the importance sampling and operates as a surrogate pmf; it will be
constructed in a way so that

h(x) =

8
><

>:

1, if x = x⇤

0, otherwise,
(B.8)

which would then imply ˆ̀(�) = 0, whenever � 6= �⇤.
It is known [76] that the most appropriate choice for h is

h⇤(x) =
I{F (x)��} f(x; ✓)

P
x02X

I{F (x0)��} f(x0; ✓)
=

I{F (x)��} f(x; ✓)

`(�)
, (B.9)
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which is seemingly useless as it depends on `(�). For simplicity we require h to be a
pmf from the family of pmfs {f(·;�)}�, i.e., h = f(·;�⇤), for some �⇤ that needs to be
determined. The key step of the CE method requires �⇤ to be such that the Kullback–
Leibler divergence of f(·;�⇤) from h⇤ is minimal. In other words, we require

�⇤ = argmin
�

D(h⇤||f(·;�)) = argmin
�

X

x2X

h⇤(x) ln
h⇤(x)

f(x;�)

= argmin
�

(
X

x2X

h⇤(x) lnh⇤(x)�
X

x2X

h⇤(x) ln f(x;�)

)

= argmax
�

X

x2X

h⇤(x) ln f(x;�). (B.10)

Inserting (B.9) in (B.10) results in

�⇤ = argmax
�

X

x2X

I{F (x)��} f(x; ✓)

`(�)
ln f(x;�). (B.11)

According to (B.4) `(�) is independent of � and (B.11) becomes

�⇤ = argmax
�

X

x2X

I{F (x)��} f(x; ✓) ln f(x;�), (B.12)

which can be approximated as

�⇤ = argmax
�

1

|A|
X

x2A

I{F (x)��} ln f(x;�), with A ⇠ f(·; ✓). (B.13)

In many cases it is even possible to find �⇤ analytically and (B.7) becomes

ˆ̀(�) =
1

|O|
X

x2O

I{F (x)��}
f(x; ✓)

f(x;�⇤)
, with O ⇠ f(·;�⇤). (B.14)

If the true ✓ of f(·; ✓) is known, then the purpose of constructing f(·;�⇤) is for reallo-
cating most probability mass around the subset of X of our desire. Since (B.14) is the
same as (B.5), no direct gains can be earned from (B.14). The quantity that character-
izes how f(·;�⇤) reshapes the probability with which a sample performs at least � on
average is given by

˜̀(�) =
1

|O|
X

x2O

I{F (x)��}, with O ⇠ f(·;�⇤), (B.15)

which concludes the involvement of importance sampling techniques in the CE method.
Clearly, if f(·;�⇤) is of the form (B.8), then ˜̀(�⇤) = 1. All equations that involve pmfs
in this section are of no practical use if a single sample for each of O and A is drawn.
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The algorithm of the CE method requires an iterative application of (B.13) and (B.15)
in order to construct the surrogate pmf of (B.8).

In particular, for the iterative algorithm of the CE method, quantities �, O and ✓ are
denoted at each iteration t by �t, Ot and ✓t respectively. Let N be a positive integer
with N/|X| ⌧ 1 and set ⇢ = d1%Ne = dN/100e. The algorithm is as follows.

1. Set some arbitrary value ✓0, such that the pmf of the associated stochastic prob-
lem to (B.1) is f(·; ✓0). Also, set t = 1, the level counter of the iterative process.

2. Draw a random sample Ot ⇠ f(·; ✓t�1) with |Ot| = N . Compute scores
F (x1),...,F (xN), where xi 2 Ot, i = 1, ..., N . Order them descendingly, i.e.,
find permutation ⇡ of {1, ..., N} such that F (x⇡(1)) � ... � F (x⇡(N)).

3. Focus on the best performing subsample of Ot: Compute performance threshold
�t = F (x⇡(⇢)).

4. Compute

✓t = argmax
�

1

N

X

x2Ot

I{F (x)��t} ln f(x;�), (B.16)

where Ot is the same sample as in Step 2.

5. If for some t � d, say d = 5, we have �t = �t�1 = ... = �t�d, then stop. Else,
set t := t+ 1 and go to Step 2.

Observe that probability ˜̀(�t) of (B.15) is not computed explicitly. At every iteration,
integer ⇢ provides the cut-off for the best performing subsample of Ot, which gives
rise to threshold �t. Then, from (B.16) a new pmf f(·; ✓t) is constructed which assigns
higher probability than f(·; ✓t�1) to configurations that perform in the vicinity of �t.
Typically �t � �t�1 and after enough iterations, �t gets close to the highest perfor-
mance �⇤. Once �t = �⇤, it is then (ideally) a matter of a few more iterations, say at
t = t1, until the Dirac measure f(x⇤; ✓t1) = 1 is constructed. This also implies that
Ot1 = {x⇤, ..., x⇤} and ˜̀(�⇤) = 1.



Appendix C
A Statistically Elaborate Relationship Between
a Phrase Pair and Its Structure

Given phrase pair (s, t) with structure g(s, t) = {(s1, t1), ..., (sk, tk)}, we sketch the
proof for

p(t|s) =
kX

c=1

p(t \ tc|s \ sc)p(sc, tc|s) (C.1)

=
X

⇡

kY

c=1

p(s⇡(c), t⇡(c)|s \
c�1[

i=0

s⇡(c)), (C.2)

where the sum in (C.2) is over all permutations of {0, 1, ..., k} with ⇡(0) = 0.
Choose any of the summands of (C.1), say

p(t \ tc1 |s \ sc1)⇥ p(sc1 , tc1 |s), (C.3)

with c1 2 {1, ..., k}. But p(t \ tc1 |s \ sc1) is a source string-to-target string probability
for phrase pair (s \ sc1 , t \ tc1) with structure g1(s, t) = g(s, t) \ {(sc1 , tc1)}, and can
thus be written in the form of (C.1) as well. This yields a new sum from which we
can choose a new degenerate summand indexed by, say c2, and whose corresponding
phrase pair has structure g2(s, t) = g1(s, t) \ {(sc2 , tc2)}. We repeat this process until
there are no more components to delete; the base case of this iterative process is

p(t \ {tc1 , ..., tck} | s \ {sc1 , ..., sck})⇥ p(sck , tck | s \ {sc1 , ..., sck�1
}), (C.4)

for which we have ci 6= cj , 8i 6= j. Since there are k such indices it must be that
the sequence c1, ..., ck is a permutation of {1, ..., k}. Also, the source string-to-target
string probability of the base case becomes p(;|;) = 1. This sequence of choices that
we made in the iterative process yields the product

kY

c=1

p(s⇡(c), t⇡(c)|s \
c�1[

i=0

s⇡(c)),

and by considering all possible choices we get (C.2) as required.
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Samenvatting

Het onderwerp van dit proefschrift zijn de bouwstenen van Statistich Automatisch Ver-
talen (Statistical Machine Translation, SMT). Er wordt aangetoond dat deze bouw-
stenen, zinsdelen die verkregen zijn uit tweetalige aligned corpora, een rijkere struc-
tuur hebben dan algemeen verondersteld. Een grondige verklaring van het extractie-
mechanisme toont aan dat de verzameling bouwstenen die het oplevert zich leent voor
wiskundige analyse, wat de mogelijkheid biedt tot het ontwikkelen van nieuwe SMT
tools en benaderingen. Met dit doel zijn verbanden tussen graaftheorie en waarschijn-
lijkheidsleer onderzocht om kansfuncties af te leiden voor het opdelen van zinnen in
zinsdelen, en voor vertaal-regels. Wat deze regels betreft ondersteunen experimentele
resultaten het idee van een statistisch principe van compositionaliteit van vertalingen,
wat in de toekomst het onderszoek naar het genereren van data kan bevorderen. Boven-
dien, aangezien de bestanddelen van compositionaliteit de oorspronkelijke bouwstenen
van vertaling (verkregen dmv het trainingsproces) vormen, onderzoeken we of ze een-
talige bouwstenen (frasen) generaliseren, en zo ja, welke. Dit leidt tot de identifi-
catie van de rol van puntsgewijs wederzijdse informatie (pointwise mutual informa-
tion, PMI) als de afstands-metriek over segmentatie-verfijningen. Experimenten tonen
aan dat deze gedeeltelijk geordende benadering meer geschikt is dan een standaard
taalmodel-benadering voor het vinden van de ‘natuurlijke’ bouwstenen van eentalige
corpora.
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Abstract

The subject of investigation of this thesis is the building blocks of translation in Statis-
tical Machine Translation (SMT). We find that these building blocks, namely phrase-
level dictionary entries, which are extracted from bilingual aligned corpora (training
data), admit richer structure than previously known. A rigorous explanation of the
extraction mechanism shows that the resulting set of building blocks is amenable to
mathematical investigation with the potential of developing tools and new frameworks
for translation. To this end we bridge previously unseen gaps between graph theory
and probability theory within SMT in order to derive probability mass functions for
phrase-level sentence segmentations and rules of translation. For the latter, experimen-
tal results support the claim of a statistical (principle of) compositionality of translation
rules which fosters future work on data generation. In addition, since the constituents
of composition are the original building blocks of translation, as extracted from the
training process, we investigate whether they generalize monolingual building blocks
(phrases), and if so, of what type. This leads to identifying the role of pointwise mutual
information as the distance metric on segmentation refinements. Experiments show
that such a partially ordered framework is more appropriate than a standard language
model approach for finding the ‘natural’ building blocks of monolingual corpora.
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