
NeurAlign: Combining Word Alignments Using Neural Networks

Necip Fazil Ayan, Bonnie J. Dorr and Christof Monz
Department of Computer Science

University of Maryland
College Park, MD 20742

{nfa,bonnie,christof }@umiacs.umd.edu

Abstract

This paper presents a novel approach to
combining different word alignments. We
view word alignment as a pattern classifi-
cation problem, where alignment combi-
nation is treated as a classifier ensemble,
and alignment links are adorned with lin-
guistic features. A neural network model
is used to learn word alignments from the
individual alignment systems. We show
that our alignment combination approach
yields a significant 20-34% relative er-
ror reduction over the best-known align-
ment combination technique on English-
Spanish and English-Chinese data.

1 Introduction

Parallel texts are a valuable resource in natural lan-
guage processing and essential for projecting knowl-
edge from one language onto another. Word-level
alignment is a critical component of a wide range of
NLP applications, such as construction of bilingual
lexicons (Melamed, 2000), word sense disambigua-
tion (Diab and Resnik, 2002), projection of language
resources (Yarowsky et al., 2001), and statistical ma-
chine translation. Although word-level aligners tend
to perform well when there issufficienttraining data,
the quality decreases as the size of training data de-
creases. Even with large amounts of training data,
statistical aligners have been shown to be suscepti-
ble to mis-aligning phrasal constructions (Dorr et al.,
2002) due to many-to-many correspondences, mor-
phological language distinctions, paraphrased and

free translations, and a high percentage of function
words (about 50% of the tokens in most texts).

This paper presents a novel approach to align-
ment combination,NeurAlign, that treats each align-
ment system as a black box and merges their outputs.
We view word alignment as a pattern classification
problem and treat alignment combination as aclassi-
fier ensemble(Hansen and Salamon, 1990; Wolpert,
1992). The ensemble-based approach was devel-
oped to select the best features of different learning
algorithms, including those that may not produce a
globally optimal solution (Minsky, 1991).

We use neural networks to implement the
classifier-ensemble approach, as these have previ-
ously been shown to be effective for combining clas-
sifiers (Hansen and Salamon, 1990). Neural nets
with 2 or more layers and non-linear activation func-
tions are capable of learning any function of the
feature space with arbitrarily small error. Neural
nets have been shown to be effective with (1) high-
dimensional input vectors, (2) relatively sparse data,
and (3) noisy data with high within-class variability,
all of which apply to the word alignment problem.

The rest of the paper is organized as follows: In
Section 2, we describe previous work on improv-
ing word alignments and use of classifier ensembles
in NLP. Section 3 gives a brief overview of neu-
ral networks. In Section 4, we present a new ap-
proach,NeurAlign, that learns how to combine indi-
vidual word alignment systems. Section 5 describes
our experimental design and the results on English-
Spanish and English-Chinese. We demonstrate that
NeurAlign yields significant improvements over the
best-known alignment combination technique.

j

i

Hidden layer

Output layer

Input layer

wij

ai

Figure 1: Multilayer Perceptron Overview

2 Related Work

Previous algorithms for improving word alignments
have attempted to incorporate additional knowledge
into their modeling. For example, Liu (2005) uses
a log-linear combination of linguistic features. Ad-
ditional linguistic knowledge can be in the form of
part-of-speech tags. (Toutanova et al., 2002) or de-
pendency relations (Cherry and Lin, 2003). Other
approaches to improving alignment have combined
alignment models, e.g., using a log-linear combina-
tion (Och and Ney, 2003) or mutually independent
association clues (Tiedemann, 2003).

A simpler approach was developed by Ayan et
al. (2004), where word alignment outputs are com-
bined using a linear combination of feature weights
assigned to the individual aligners. Our method is
more general in that it uses a neural network model
that is capable of learning nonlinear functions.

Classifier ensembles are used in several NLP ap-
plications. Some NLP applications for classifier en-
sembles are POS tagging (Brill and Wu, 1998; Ab-
ney et al., 1999), PP attachment (Abney et al., 1999),
word sense disambiguation (Florian and Yarowsky,
2002), and parsing (Henderson and Brill, 2000).

The work reported in this paper is the first appli-
cation of classifier ensembles to the word-alignment
problem. We use a different methodology to com-
bine classifiers that is based onstacked general-
ization (Wolpert, 1992), i.e., learning an additional
model on the outputs of individual classifiers.

3 Neural Networks

A multi-layer perceptron (MLP) is a feed-forward
neural network that consists of several units (neu-
rons) that are connected to each other by weighted
links. As illustrated in Figure 1, an MLP consists

of one input layer, one or more hidden layers, and
one output layer. The external input is presented to
the input layer, propagated forward through the hid-
den layers and creates the output vector in the output
layer. Each uniti in the network computes its output
with respect to its net inputneti =

∑
j wijaj , where

j represents all units in the previous layer that are
connected to the uniti. The output of uniti is com-
puted by passing the net input through a non-linear
activation functionf , i.e. ai = f(neti).

The most commonly used non-linear activation
functions are the log sigmoid functionf(x) =

1
1+e−x or hyperbolic tangent sigmoid function

f(x) = 1−e−2x

1+e−2x . The latter has been shown to be
more suitable for binary classification problems.

The critical question is the computation of
weights associated with the links connecting the
neurons. In this paper, we use the resilient back-
propagation (RPROP) algorithm (Riedmiller and
Braun, 1993), which is based on the gradient descent
method, but converges faster and generalizes better.

4 NeurAlign Approach

We propose a new approach,NeurAlign, that learns
how to combine individual word alignment sys-
tems. We treat each alignment system as a classi-
fier and transform the combination problem into a
classifier ensemble problem. Before describing the
NeurAlign approach, we first introduce some termi-
nology used in the description below.

Let E = e1, . . . , et andF = f1, . . . , fs be two
sentences in two different languages. An alignment
link (i, j) corresponds to a translational equivalence
between wordsei and fj . Let Ak be an align-
ment between sentencesE andF , where each el-
ementa ∈ Ak is an alignment link(i, j). Let
A = {A1, . . . , Al} be a set of alignments between
E andF . We refer to the true alignment asT , where
eacha ∈ T is of the form(i, j). A neighborhood
of an alignment link(i, j)—denoted byN(i, j)—
consists of 8 possible alignment links in a3×3 win-
dow with (i, j) in the center of the window. Each
element ofN(i, j) is called aneighboring linkof
(i, j).

Our goal is to combine the information in
A1, . . . , Al such that the resulting alignment is
closer toT . A straightforward solution is to take the
intersection or union of the individual alignments, or

perform a majority voting for each possible align-
ment link (i, j). Here, we use an additional model
to learn how to combine outputs ofA1, . . . , Al.

We decompose the task of combining word align-
ments into two steps: (1) Extract features; and (2)
Learn a classifier from the transformed data. We de-
scribe each of these two steps in turn.

4.1 Extracting Features

Given sentencesE andF , we create a (potential)
alignment instance(i, j) for all possible word com-
binations. A crucial component of building a classi-
fier is the selection of features to represent the data.
The simplest approach is to treat each alignment-
system output as a separate feature upon which we
build a classifier. However, when only a few align-
ment systems are combined, this feature space is not
sufficient to distinguish between instances. One of
the strategies in the classification literature is to sup-
ply the input data to the set of features as well.

While combining word alignments, we use two
types of features to describe each instance(i, j):
(1) linguistic features and (2) alignment features.
Linguistic features include POS tags of both words
(ei and fj) and a dependency relation for one of
the words (ei). We generate POS tags using the
MXPOST tagger (Ratnaparkhi, 1996) for English
and Chinese, and Connexor for Spanish. Depen-
dency relations are produced using a version of the
Collins parser (Collins, 1997) that has been adapted
for building dependencies.

Alignment features consist of features that are ex-
tracted from the outputs of individual alignment sys-
tems. For each alignmentAk ∈ A, the following are
some of the alignment features that can be used to
describe an instance(i, j):

1. Whether(i, j) is an element ofAk or not
2. Translation probability p(fj |ei) computed

overAk1

3. Fertility of (i.e., number of words inF that are
aligned to)ei in Ak

4. Fertility of (i.e., number of words inE that are
aligned to)fj in Ak

5. For each neighbor(x, y) ∈ N(i, j), whether
(x, y) ∈ Ak or not (8 features in total)

6. For each neighbor(x, y) ∈ N(i, j), transla-
tion probabilityp(fy|ex) computed overAk (8
features in total)

It is also possible to use variants, or combinations,
of these features to reduce feature space.

Figure 2 shows an example of how we transform
the outputs of 2 alignment systems,A1 andA2, for
an alignment link(i, j) into data with some of the
features above. We use -1 and 1 to represent the
absence and existence of a link, respectively. The
neighboring links are presented in row-by-row order.

X

XX

X

X

X

A1

A2

ei-1

ei

ei+1

fj-1 fj fj+1

1 (for A1), 0 (for A2)fertility(fj)

2 (for A1), 1 (for A2)fertility(ei)

2 (for A1), 3 (for A2)total neighbors

1, -1, -1, 1, 1, -1, -1, 1neighbors (A1∪ A2)

1, -1, -1, -1, 1, -1, -1, 1neighbors (A2)

-1, -1, -1, 1, -1, -1, -1, 1neighbors (A1)

1 (for A1), -1 (for A2)outputs of aligners

Modifierrel(ei)

Noun, Preppos(ei) , pos(fj)

Features for the alignment link (i , j)

ei-1

ei

ei+1

fj-1 fj
fj+1

Figure 2: An Example of Transforming Alignments
into Classification Data

For each sentence pairE = e1, . . . , et andF =
f1, . . . , fs, we generates × t instances to represent
the sentence pair in the classification data.

Supervised learning requires the correct output,
which here is the true alignmentT . If an alignment
link (i, j) is an element ofT , then we set the correct
output to 1, and to−1, otherwise.

4.2 Learning A Classifier

Once we transform the alignments into a set of in-
stances with several features, the remaining task is to
learn a classifier from this data. In the case of word
alignment combination, there are important issues to
consider for choosing an appropriate classifier. First,
there is a very limited amount of manually annotated
data. This may give rise to poor generalizations be-
cause it is very likely that unseen data include lots
of cases that are not observed in the training data.

Second, the distribution of the data according to
the classes is skewed. In a preliminary study on an
English-Spanish data set, we found out that only 4%
of the all word pairs are aligned to each other by hu-
mans, among a possible 158K word pairs. More-
over, only 60% of those aligned word pairs were

1The translation probabilities can be borrowed from the ex-
isting systems, if available. Otherwise, they can be generated
from the outputs of individual alignment systems using likeli-
hood estimates.

A1 AlAi

Feature
Extraction

Classification
Data

Neural Net
Learning

Output

Truth

Enriched
Corpus

Figure 3: NeurAlign1—Alignment Combination
Using All Data At Once

also aligned by the individual alignment systems
that were tested.

Finally, given the distribution of the data, it is dif-
ficult to find the right features to distinguish between
instances. Thus, it is prudent to use as many features
as possible and let the learning algorithm filter out
the redundant features.

Below, we describe how neural nets are used at
different levels to build a good classifier.

4.2.1 NeurAlign1: Learning All At Once

Figure 3 illustrates how we combine align-
ments using all the training data at the same time
(NeurAlign1). First, the outputs of individual align-
ments systems and the original corpus (enriched
with additional linguistic features) are passed to the
feature extraction module. This module transforms
the alignment problem into a classification problem
by generating a training instance for every pair of
words between the sentences in the original corpus.
Each instance is represented by a set of features (de-
scribed in Section 4.1). The new training data is
passed to a neural net learner, which outputs whether
an alignment link exists for each training instance.

4.2.2 NeurAlign2: Multiple Neural Networks

The use of multiple neural networks (NeurAlign2)
enables the decomposition of a complex problem
into smaller problems.Local expertsare learned
for each smaller problem and these are then merged.
Following Tumer and Ghosh (1996), we apply spa-
tial partitioning of training instances using proxim-
ity of patterns in the input space to reduce the com-
plexity of the tasks assigned to individual classifiers.

We conducted a preliminary analysis on 100 ran-
domly selected English-Spanish sentence pairs from
a mixed corpus (UN + Bible + FBIS) to observe the

SPANISH
Adj Adv Comp Det Noun Prep Verb

E Adj 18 - - 82 40 96 66
N Adv - 8 - - 50 67 75
G Comp - - 12 - 46 37 96
L Det - - - 10 60 100 -
I Noun 42 77 100 94 23 98 84
S Prep - - - 93 70 22 100
H Verb 42 - - 100 66 78 43

Table 1: Error Rates according to POS Tags for
GIZA++ (E-to-S) (in percentages)

Classification
Data

Data
Partitioning

Output

Truth

Parta

Parti

Partz

NNa

NNz

NNi
NN

Combination

Figure 4: NeurAlign2—Alignment Combination
with Partitioning

distribution of errors according to POS tags in both
languages. We examined the cases in which the in-
dividual alignment and the manual annotation were
different—a total of 3,348 instances, where 1,320 of
those are misclassified by GIZA++ (E-to-S).2 We
use a standard measure of error, i.e., the percentage
of misclassified instances out of the total number of
instances. Table 1 shows error rates (by percentage)
according to POS tags for GIZA++ (E-to-S).3

Table 1 shows that the error rate is relatively low
in cases where both words have the same POS tag.
Except for verbs, the lowest error rate is obtained
when both words have the same POS tag (the er-
ror rates on the diagonal). On the other hand, the
error rates are high in several other cases, as much
as 100%, e.g., when the Spanish word is a deter-
miner or a preposition.4 This suggests that dividing
the training data according to POS tag, and training
neural networks on each subset separately might be
better than training on the entire data at once.

Figure 4 illustrates the combination approach
with neural nets after partitioning the data into dis-

2For this analysis, we ignored the cases where both systems
produced an output of -1 (i.e., the words are not aligned).

3Only POS pairs that occurred at least 10 times are shown.
4The same analysis was done for the other direction and re-

sulted in similar distribution of error rates.

joint subsets (NeurAlign2). Similar to NeurAlign1,
the outputs of individual alignment systems, as well
as the original corpus, are passed to the feature ex-
traction module. Then the training data is split into
disjoint subsets using a subset of the available fea-
tures for partitioning. We learn different neural nets
for each partition, and then merge the outputs of the
individual nets. The advantage of this is that it re-
sults in different generalizations for each partition
and that it uses different subsets of the feature space
for each net.

5 Experiments and Results

This section describes our experimental design, in-
cluding evaluation metrics, data, and settings.

5.1 Evaluation Metrics

Let A be the set of alignment links for a set of sen-
tences. We takeS to be the set of sure alignment
links andP be the set of probable alignment links
(in the gold standard) for the same set of sentences.
Precision (Pr), recall (Rc) and alignment error rate
(AER) are defined as follows:

Pr =
|A ∩ P |
|A|

Rc =
|A ∩ S|
|S|

AER = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

A manually aligned corpus is used as our gold stan-
dard. For English-Spanish data, the manual annota-
tion is done by a bilingual English-Spanish speaker.
Every link in the English-Spanish gold standard is
considered a sure alignment link (i.e.,P = S).

For English-Chinese, we used 2002 NIST MT
evaluation test set. Each sentence pair was aligned
by two native Chinese speakers, who are fluent in
English. Each alignment link appearing in both an-
notations was considered a sure link, and links ap-
pearing in only one set were judged as probable. The
annotators were not aware of the specifics of our ap-
proach.

5.2 Evaluation Data and Settings

We evaluated NeurAlign1 and NeurAlign2, using 5-
fold cross validation on two data sets:

1. A set of 199 English-Spanish sentence pairs
(nearly 5K words on each side) from a mixed
corpus (UN + Bible + FBIS).

2. A set of 491 English-Chinese sentence pairs
(nearly 13K words on each side) from 2002
NIST MT evaluation test set.

We computed precision, recall and error rate on the
entire set of sentence pairs for each data set.5

To evaluate NeurAlign, we used GIZA++ in both
directions (E-to-F andF -to-E, whereF is either
Chinese (C) or Spanish (S)) as input and arefined
alignmentapproach (Och and Ney, 2000) that uses
a heuristic combination method calledgrow-diag-
final (Koehn et al., 2003) for comparison. (We
henceforth refer to the refined-alignment approach
as “RA.”)

For the English-Spanish experiments, GIZA++
was trained on 48K sentence pairs from a mixed
corpus (UN + Bible + FBIS), with nearly 1.2M of
words on each side, using 10 iterations of Model 1,
5 iterations of HMM, and 5 iterations of Model 4.
For the English-Chinese experiments, we used 107K
sentence pairs from FBIS corpus (nearly 4.1M En-
glish and 3.3M Chinese words) to train GIZA++, us-
ing 5 iterations of Model 1, 5 iterations of HMM, 3
iterations of Model 3, and 3 iterations of Model 4.

5.3 Neural Network Settings

In our experiments, we used a multi-layer percep-
tron (MLP) consisting of 1 input layer, 1 hidden
layer, and 1 output layer. The hidden layer consists
of 10 units, and the output layer consists of 1 unit.
All units in the hidden layer are fully connected to
the units in the input layer, and the output unit is
fully connected to all the units in the hidden layer.
We used hyperbolic tangent sigmoid function as the
activation function for both layers.

One of the potential pitfalls is overfitting as the
number of iterations increases. To address this, we
used theearly stopping with validation setmethod.
In our experiments, we held out (randomly selected)
1/4 of the training set as the validation set.

Neural nets are sensitive to the initial weights. To
overcome this, we performed 5 runs of learning for
each training set. The final output for each training
is obtained by a majority voting over 5 runs.

5The number of alignment links varies over each fold.
Therefore, we chose to evaluate all data at once instead of eval-
uating on each fold and then averaging.

5.4 Results

This section describes the experiments on English-
Spanish and English-Chinese data for testing the
effects of feature selection, training on the en-
tire data (NeurAlign1) or on the partitioned data
(NeurAlign2), using two input alignments: GIZA++
(E-to-F) and GIZA++ (F -to-E). We used the fol-
lowing additional features, as well as the outputs of
individual aligners, for an instance(i, j) (set of fea-
tures 2–7 below are generated separately for each
input alignmentAk):

1. posEi, posFj , relEi: POS tags and depen-
dency relation forei andfj .

2. neigh(i, j): 8 features indicating whether a
neighboring link exists inAk.

3. f ertEi, f ertFj : 2 features indicating the fer-
tility of ei andfj in Ak.

4. NC(i, j): Total number of existing links in
N(i, j) in Ak.

5. TP (i, j): Translation probabilityp(fj |ei) in
Ak.

6. NghTP(i, j): 8 features indicating the trans-
lation probabilityp(fy|ex) for each(x, y) ∈
N(i, j) in Ak.

7. AvTP (i, j): Average translation probability
of the neighbors of(i, j) in Ak.

We performed statistical significance tests using
two-tailed paired t-tests. Unless otherwise indi-
cated, the differences between NeurAlign and other
alignment systems, as well as the differences among
NeurAlign variations themselves, were statistically
significant within the 95% confidence interval.

5.4.1 Results for English-Spanish

Table 2 summarizes the precision, recall and
alignment error rate values for each of our two
alignment system inputs plus the three alternative
alignment-combination approaches. Note that the
best performing aligner among these is the RA
method, with an AER of 21.2%. (We include this
in subsequent tables for ease of comparison.)

Feature Selection for Training All Data At Once:
NeurAlign1 Table 3 presents the results of train-
ing neural nets using the entire data (NeurAlign1)
with different subsets of the feature space. When we
used POS tags and the dependency relation as fea-
tures, NeurAlign1 performs worse than RA. Using

Alignments Pr Rc AER
E-to-S 87.0 67.0 24.3
S-to-E 88.0 67.5 23.6
Intersection 98.2 59.6 25.9
Union 80.6 74.9 22.3
RA 83.8 74.4 21.2

Table 2: Results for GIZA++ Alignments and Their
Simple Combinations

the neighboring links as the feature set gave slightly
(not significantly) better results than RA. Using POS
tags, dependency relations, and neighboring links
also resulted in better performance than RA but the
difference was not statistically significant.

When we used fertilities along with the POS tags
and dependency relations, the AER was 20.0%—a
significant relative error reduction of 5.7% over RA.
Adding the neighboring links to the previous feature
set resulted in an AER of 17.6%—a significant rela-
tive error reduction of 17% over RA.

Interestingly, when we removed POS tags and de-
pendency relations from this feature set, there was
no significant change in the AER, which indicates
that the improvement is mainly due to the neighbor-
ing links. This supports our initial claim about the
clustering of alignment links, i.e., when there is an
alignment link, usually there is another link in its
neighborhood. Finally, we tested the effects of using
translation probabilities as part of the feature set, and
found out that using translation probabilities did no
better than the case where they were not used. We
believe this happens because the translation proba-
bility p(fj |ei) has a unique value for each pair ofei
andfj ; therefore it is not useful to distinguish be-
tween alignment links with the same words.

Feature Selection for Training on Partitioned
Data: NeurAlign2 In order to train on partitioned
data (NeurAlign2), we needed to establish appropri-
ate features for partitioning the training data. Ta-
ble 4 presents the evaluation results for NeurAlign1

(i.e., no partitioning) and NeurAlign2 with different
features for partitioning (English POS tag, Spanish
POS tag, and POS tags on both sides). For training
on each partition, the feature space included POS
tags (e.g., Spanish POS tag in the case where parti-
tioning is based on English POS tag only), depen-
dency relations, neighborhood features, and fertili-
ties. We observed that partitioning based on POS
tags on one side reduced the AER to 17.4% and

Features Pr Rc AER
posEi, posFj , relEi 90.6 67.7 22.5
neigh(i, j) 91.3 69.5 21.1
posEi, posFj , relEi, 91.7 70.2 20.5
neigh(i, j)
posEi, posFj , relEi, 91.4 71.1 20.0
f ertEi, f ertFj
posEi, posFj , relEi, 89.5 76.3 17.6
neigh(i, j), NC(i, j)
f ertEi, f ertFj
neigh(i, j), NC(i, j) 89.7 75.7 17.9
f ertEi, f ertFj
posEi, posFj , relEi, 90.0 75.7 17.9
f ertEi, f ertFj ,
neigh(i, j), NC(i, j),
TP (i, j), AvTP (i, j)

RA 83.8 74.4 21.2

Table 3: Combination with Neural Networks:
NeurAlign1 (All-Data-At-Once)

17.1%, respectively. Using POS tags onboth sides
reduced the error rate to 16.9%—a significant rel-
ative error reduction of 5.6% over no partitioning.
All four methods yielded statistically significant er-
ror reductions over RA—we will examine the fourth
method in more detail below.

Alignment Pr Rc AER
NeurAlign1 89.7 75.7 17.9
NeurAlign2[posEi] 91.1 75.4 17.4
NeurAlign2[posFj] 91.2 76.0 17.1
NeurAlign2[posEi, posFj] 91.6 76.0 16.9
RA 83.8 74.4 21.2

Table 4: Effects of Feature Selection for Partitioning

Once we determined that partitioning by POS tags
on both sides brought about the biggest gain, we ran
NeurAlign2 using this partitioning, but with differ-
ent feature sets. Table 5 shows the results of this
experiment. Using dependency relations, word fer-
tilities and translation probabilities (both for the link
in question and the neighboring links) yielded a sig-
nificantly lower AER (18.6%)—a relative error re-
duction of 12.3% over RA. When the feature set
consisted of dependency relations, word fertilities,
and neighborhood links, the AER was reduced to
16.9%—a 20.3% relative error reduction over RA.
We also tested the effects of adding translation prob-
abilities to this feature set, but as in the case of
NeurAlign1, this did not improve the alignments.

In the best case, NeurAlign2 achieved substan-
tial and significant reductions in AER over the in-
put alignment systems: a 28.4% relative error re-
duction overS-to-E and a 30.5% relative error re-

Features Pr Rc AER
relEi, f ertEi, f ertFj , 91.9 73.0 18.6
TP (i, j), AvTP (i, j),
NghTP (i, j)
neigh(i, j) 90.3 74.0 18.7
relEi, f ertEi, f ertFj , 91.6 76.0 16.9
neigh(i, j), NC(i, j)
relEi, f ertEi, f ertFj , 91.4 76.1 16.9
neigh(i, j), NC(i, j),
TP (i, j), AvTP (i, j)

RA 83.8 74.4 21.2

Table 5: Combination with Neural Networks:
NeurAlign2 (Partitioned According to POS tags)

duction overE-to-S. Compared to RA, NeurAlign2
also achieved significantly better results over RA:
relative improvements of 9.3% in precision, 2.2% in
recall, and 20.3% in AER.

5.4.2 Results for English-Chinese

The results of the input alignments to NeurAlign,
i.e., GIZA++ alignments in two different directions,
NeurAlign1 (i.e., no partitioning) and variations of
NeurAlign2 with different features for partitioning
(English POS tag, Chinese POS tag, and POS tags
on both sides) are shown in Table 6. For compar-
sion, we also include the results for RA in the table.
For brevity, we include only the features resulting
in the best configurations from the English-Spanish
experiments, i.e., POS tags, dependency relations,
word fertilities, and neighborhood links (the features
in the third row of Table 5). The ground truth used
during the training phase consisted of all the align-
ment links with equal weight.

Alignments Pr Rc AER
E-to-C 70.4 68.3 30.7
C-to-E 66.0 69.8 32.2
NeurAlign1 85.0 71.4 22.2
NeurAlign2[posEi] 85.7 74.6 20.0
NeurAlign2[posFj] 85.7 73.2 20.8
NeurAlign2[posEi, posFj] 86.3 74.7 19.7
RA 61.9 82.6 29.7

Table 6: Results on English-Chinese Data

Without any partitioning, NeurAlign achieves an
alignment error rate of 22.2%—a significant relative
error reduction of 25.3% over RA. Partitioning the
data according to POS tags results in significantly
better results over no partitioning. When the data is
partitioned according to both POS tags, NeurAlign
reduces AER to 19.7%—a significant relative error
reduction of 33.7% over RA. Compared to the input

alignments, the best version of NeurAlign achieves
a relative error reduction of 35.8% and 38.8%, re-
spectively.

6 Conclusions

We presented NeurAlign, a novel approach to com-
bining the outputs of different word alignment sys-
tems. Our approach treats individual alignment sys-
tems as black boxes, and transforms the individual
alignments into a set of data with features that are
borrowed from their outputs and additional linguis-
tic features (such as POS tags and dependency re-
lations). We use neural nets to learn the true align-
ments from these transformed data.

We show that using POS tags to partition the
transformed data, and learning a different classifier
for each partition is more effective than using the en-
tire data at once. Our results indicate that NeurAlign
yields a significant 28-39% relative error reduction
over the best of the input alignment systems and
a significant 20-34% relative error reduction over
the best known alignment combination technique on
English-Spanish and English-Chinese data.

We should note that NeurAlign is not a stand-
alone word alignment system but a supervised learn-
ing approach to improve already existing alignment
systems. A drawback of our approach is that it re-
quires annotated data. However, our experiments
have shown that significant improvements can be
obtained using a small set of annotated data. We
will do additional experiments to observe the effects
of varying the size of the annotated data while learn-
ing neural nets. We are also planning to investigate
whether NeurAlign helps when the individual align-
ers are trained using more data.

We will extend our combination approach to com-
bine word alignment systems based on different
models, and investigate the effectiveness of our tech-
nique on other language pairs. We also intend to
evaluate the effectiveness of our improved alignment
approach in the context of machine translation and
cross-language projection of resources.

Acknowledgments This work has been supported in

part by ONR MURI Contract FCPO.810548265, Coopera-

tive Agreement DAAD190320020, and NSF ITR Grant IIS-

0326553.

References
Steven Abney, Robert E. Schapire, and Yoram Singer. 1999.

Boosting applied to tagging and PP attachment. InProceed-
ings of EMNLP’1999, pages 38–45.

Necip F. Ayan, Bonnie J. Dorr, and Nizar Habash. 2004. Multi-
Align: Combining linguistic and statistical techniques to
improve alignments for adaptable MT. InProceedings of
AMTA’2004, pages 17–26.

Eric Brill and Jun Wu. 1998. Classifier combination for im-
proved lexical disambiguation. InProc. of ACL’1998.

Colin Cherry and Dekang Lin. 2003. A probability model to
improve word alignment. InProceedings of ACL’2003.

Micheal Collins. 1997. Three generative lexicalized models for
statistical parsing. InProceedings of ACL’1997.

Mona Diab and Philip Resnik. 2002. An unsupervised method
for word sense tagging using parallel corpora. InProceed-
ings of ACL’2002.

Bonnie J. Dorr, Lisa Pearl, Rebecca Hwa, and Nizar Habash.
2002. DUSTer: A method for unraveling cross-language di-
vergences for statistical word–level alignment. InProceed-
ings of AMTA’2002.

Radu Florian and David Yarowsky. 2002. Modeling consensus:
Classifier combination for word sense disambiguation. In
Proceedings of EMNLP’2002, pages 25–32.

L. Hansen and P. Salamon. 1990. Neural network ensembles.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 12:993–1001.

John C. Henderson and Eric Brill. 2000. Bagging and boosting
a treebank parser. InProceedings of NAACL’2000.

Philip Koehn, Franz J. Och, and Daniel Marcu. 2003.
Statistical phrase-based translation. InProceedings of
NAACL/HLT’2003.

Yang Liu, Qun Liu, and Shouxun Lin. 2005. Log-linear models
for word alignment. InProceedings of ACL’2005.

I. Dan Melamed. 2000. Models of translational equivalence
among words.Computational Linguistics, 26(2):221–249.

Marvin Minsky. 1999. Logical Versus Analogical or Symbolic
Versus Connectionist or Neat Versus Scruffy.AI Magazine,
12:34–51.

Franz J. Och and Hermann Ney. 2000. Improved statistical
alignment models. InProceedings of ACL’2000.

Franz J. Och and Hermann Ney. 2003. A systematic compari-
son of various statistical alignment models.Computational
Linguistics, 29(1):9–51, March.

Adwait Ratnaparkhi. 1996. A maximum entropy part-of-
speech tagger. InProceedings of EMNLP’1996.

Martin Riedmiller and Heinrich Braun. 1993. A direct adaptive
method for faster backpropagation learning: The RPROP al-
gorithm. InProceedings of the IEEE Intl. Conf. on Neural
Networks, pages 586–591.

Jorg Tiedemann. 2003. Combining clues for word alignment.
In Proceedings of EACL’2003, pages 339–346.

Kristina Toutanova, H. Tolga Ilhan, and Christopher D. Man-
ning. 2002. Extensions to HMM-based statistical word
alignment models. InProceedings of EMNLP’2002.

Kagan Tumer and Joydeep Ghosh. 1996. Error correlation and
error reduction in ensemble classifiers.Connection Science,
Special Issue on Combining Artificial Neural Networks: En-
semble Approaches, 8(3–4):385–404, December.

David H. Wolpert. 1992. Stacked generalization.Neural Net-
works, 5(2):241–259.

David Yarowsky, Grace Ngai, and Richard Wicentowski. 2001.
Inducing multilingual text analysis tools via robust projec-
tion across aligned corpora. InProceedings of HLT’2001.

