
A Tableaux Calculus for Ambiguous Quantification
�

Christof Monz and Maarten de Rijke

ILLC, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The
Netherlands. E-mail:

�
christof, mdr � @wins.uva.nl

Abstract.

Appeared in: Harrie de Swart, editor. Automated Reasoning
with Analytic Tableaux and Related Methods,
LNAI 1489, Springer, pages 232–246, 1998.

Coping with ambiguity has recently received a lot of attention in natu-
ral language processing. Most work focuses on the semantic representation of am-
biguous expressions. In this paper we complement this work in two ways. First, we
provide an entailment relation for a language with ambiguous expressions. Sec-
ond, we give a sound and complete tableaux calculus for reasoning with state-
ments involving ambiguous quantification. The calculus interleaves partial disam-
biguation steps with steps in a traditional deductive process, so as to minimize and
postpone branching in the proof process, and thereby increases its efficiency.

1 Introduction

Natural language expressions can be highly ambiguous, and this ambiguity may have
various faces. Well-known phenomena include lexical and syntactic ambiguities. In this
paper we focus on representing and reasoning with a different source of ambiguity, namely
quantificational ambiguity, as exemplified in (1).

(1) a. Every man loves a woman.
b. Every boy doesn’t see a movie.

The different readings of (1.a) correspond to the two logical representations in

(2) a. � x � man � x ���	� y � woman � y ��
 love � x � y ���� .
b. � y � woman � y ��
�� x � man � x ��� love � x � y ���� .

We refer the reader to [KM93,DP96] for extensive discussions of these and other exam-
ples of quantificational ambiguity. All we want to observe here is this. Examples like
(1.a) have a preferred reading namely the wide-scope reading represented by (2.a)). Ad-
ditional linguistic or non-linguistic information, or the context, may overrule this prefer-
ence. For instance, if (1.a) is followed by (3), then the second reading (2.b) is preferred.
But if (1.a) occurs in isolation, then the first reading (2.a) is preferred.

(3) But she is already married.

Clearly, if we want to process a discourse from left to right and take the context of an ex-
pression into account, our semantic representation for (1.a) must initially allow for both
possibilities. And, similarly, any reasoning system for ambiguous expressions needs to�

The research in this paper was supported by the Spinoza project ‘Logic in Action’ at the Uni-
versity of Amsterdam.

be able to integrate information that helps the disambiguation process within the deduc-
tive process.

Although the problem of ambiguity and underspecification has recently enjoyed a
considerable increase in attention from computational linguists, computer scientists and
logicians (see, for instance, [DP96]), the focus has mostly been on semantic aspects, and
deductive reasoning with ambiguous sentences is still in its infancy.

The aim of this paper is to present a tableaux calculus for reasoning with expressions
involving ambiguous quantification. An important feature of our calculus is that it inte-
grates two processes: disambiguation and deductive reasoning. The calculus operates on
semantic representations of natural language expressions. These representations contain
both ambiguous and unambiguous subparts, and an important feature of our represen-
tations is that they represent all possible disambiguations of an ambiguous statement in
such a way that unambiguous subparts are shared as much as possible. As we will explain
below, compact representations of this kind will allow us to keep ambiguities ‘localized’
— a feature which has important advantages from the point of view of efficiency.

In setting up a deductive system for ambiguous quantification we have had two prin-
cipal desiderata. First, although this is not the topic of the present paper, we aim to im-
plement the calculus as part of a computational semantics work bench; this essentially
limits our options to resolution and tableaux based calculi. Second, to incorporate infor-
mation arising from the disambiguation process within a proof system, the proofs them-
selves need to be incremental in the sense that at any stage we have a ‘partial’ proof that
can easily be extended to cope with novel information. We believe that a tableaux style
calculus has clear advantages over resolution based systems in this respect.

The paper is organized as follows. A considerable amount of work goes into setting
up semantic representations and a mechanism for for recording ambiguities and disam-
biguations in such a way that it interfaces rather smoothly with traditional deductive
proof steps. This work takes up Sections 2 and 3. Then, in Section 4 we present two
tableaux calculi, one which deals with fully disambiguated representations of ambiguous
natural language expressions, and a more interesting one in which traditional tableaux
style deduction is interleaved with partial disambiguation. Section 5 contains a detailed
example, and Section 6 provides conclusions and suggestions for further work.

2 Representing Ambiguity

Lexical ambiguities can be represented pretty straightforwardly by putting the different
readings into a disjunction. (Cf. [Dee96,KR96] for further elaboration.) It is also possi-
ble to express quantificational ambiguities by a disjunction, but quite often this involves
much more structure than in the case of lexical ambiguities, because quantificational am-
biguities are not tied to a particular atomic expression. For instance, the only way to rep-
resent the ambiguity of (1.a) in a disjunctive manner is (4).

(4) � x � man � x ����� y � woman � y ��
 love � x � y ����� � y � woman � y ��
�� x � man � x ��� love � x � y ����
Obviously, there seems to be some redundancy, because some subparts appear twice. If
we put indices at the corresponding subparts, as in (5) below, we see that these subparts
are not proper expressions of first-order logic, except subpart k.

(5) � x � man � x ���
i
� y � woman � y �

j
love � x � y �

k
��� � y � woman � y �

j
� x � man � x ���

i
love � x � y �

k
���

The difference between the readings lies not in the material used, both readings are built
from the parts i, j and k, but in the order these are put together.

A reasonable way to represent improper expressions like i and k is to abstract over
those parts that are missing in order to yield a proper expression of first-order logic.
[Bos95] calls these missing parts holes. Roughly speaking, they are variables over oc-
currences of first-order formulas. To distinguish the occurrence of an expression from
its logical content, it is necessary to supplement first-order formulas with labels. Holes
may be subject to constraints; for instance, the semantic representations of verbs have to
be in the scope of its arguments, because otherwise it may happen that the resulting dis-
ambiguations contain free variables. So we do not want to permit disambiguations like� x � man � x ��� love � x � y ��
�� y � woman � y ��� . These constraints are expressed by a partial
order on the labels.

Definition 1 (Underspecified Representation). For i � IN, let hi a new atomic symbol,
called a hole. A formula ϕ is an h-formula, or a formula possibly containing holes, if it is
built up from holes and atomic formulas from first-order logic using the familiar boolean
connectives and quantifiers.

Next, we specify the format of an underspecified representation UR of a natural lan-
guage expression. An underspecified representation is a quadruple � LHF, L, H, C � con-
sisting of

1. A set of labeled h-formulas LHF.
2. The set of labels L occurring in LHF.
3. The set of holes H occurring in LHF.
4. A set of order-constraints C of the form k � k � , meaning that k has to be a subex-

pression of k � , where k � k ��� L � H and C is closed under reflexivity, antisymmetry
and transitivity.

An obvious question at this point is, how does one associate a UR with a given natu-
ral language expression? We will not address this issue here, but we will assume that
there exists some mechanism for arriving at UR’s, see for example [Kön94]. For no-
tational convenience we write UR � S � for the underspecified representation, associated
with a sentence S. By way of example, we reconsider (4) and obtain the following un-
derspecified representation:

(6) � � l0 : h0 � l1 : � x � man � x ��� h1 �!� l2 : � y � woman � y ��
 h2 �"� l3 : love � x � y �$#��� l0 � l1 � l2 � l3 #%�� h0 � h1 � h2 � h3 #&�!�
closure �'� l1 � h0 � l2 � h0 � l3 � h1 � l3 � h2 #&�

There are two possible sets of instantiations, ι1 and ι2, of the holes h0, h1, h2, h3 in (6)
which obey the constraints in (6): ι1 (� h0 : (l1 � h1 : (l2 � h2 : (l3 # and ι2 (� h0 : (
l2 � h2 : (l1 � h1 : (l3 # .
It is also possible to view UR’s as upper semi-lattices, as it is done in [Rey93]:

l0 : h0

l1 : � x � man � x ��� h1 � l2 : � y � woman � y �
 h2 �
l3 : love � x � y �

For each instantiation of the holes there is a corresponding substitution σ � ι � which is
like ι but h : (ϕ � σ � ι � iff there is a l, such that l : ϕ � LHF and h : (l � ι.

The next step is to define an extension of the language of first-order logic,) , in which
both standard (unambiguous) expressions occur side by side with the above underspec-
ified representations. The resulting language of the language of underspecified logic, or) u for short, is the language in which we will perform deduction.

Definition 2 (Underspecified Logic). A formula ϕ is a formula of our underspecified
logic) u, or a u-formula, that is, a formula possibly containing underspecified represen-
tations, if it is built up from underspecified representations and the usual atomic formulas
from standard first-order logic using the familiar boolean connectives and quantifiers.

Example 3. As an example of a more complex u-formula consider the semantic repre-
sentation of if every boy didn’t sleep and John is a boy, then John didn’t sleep.

�
*++++
,

l0 : h0

l1 : - h1 l2 : � x � boy � x ��� h2 �
l3 : sleep � x �

."////
0
 boy � j �����1- sleep � j �

Definition 4 (Total Disambiguations). To define the total disambiguation δ � ϕ � of a u-
formula ϕ, we need the following notion of a join.

Given an underspecified representation � LHF, L, H, C � and k � k �2� k � �3� L � H and k � �4�
k � k �5� C then k � � is the join of k and k � , k 6 k � (k � � , only if there is no k � � �5� L � H and
k � � �7� k � k �8� C and k � � ��9 k � �7� C.

Then, by δ � ϕ � we denote the set of total disambiguations of the u-formula ϕ, where
for all d � δ � ϕ � , d ��) . For complex u-formulas δ is defined recursively:

1. δ �� LHF � L � H � C ��� (the set of LHFσ � ι � such that
(i) ι is an instantiation and σ � ι � is the corresponding substitution

(ii) Hι (L
(iii) for all l � l �3� L, if l 6 l � is defined, then l � l �4� closure � Cι � or l �4� l � closure � Cι �

2. δ �:- ϕ � (�;- d < d � δ � ϕ �=#
3. δ � ϕ > ψ � (� d > d ��< d � δ � ϕ �!� d ��� δ � ψ �?# , where >@�A�B
C� � � �D#
4. δ �E xϕ � (�FE xd < d � δ � ϕ �?# , where and EG�H�"�=�I�5# .

If l � l �7J� C and l �4� l J� C, then it does not have to be case that there is a scope ambiguity
between quantifiers belonging to l and l � . For instance, if l and l � belong to different
conjuncts, they are not ordered to each other. The restriction that l 6 l � has to be defined
excludes this.

Example 5. To illustrate the purpose of this restriction see the underspecified represen-
tation for every man who doesn’t have a car rides a bike

l0 : h0

l1 : � x ��� man � x ��
 h1 ��� h2 � l2 : � y � car � y ��
 h3 � l3 : � z � bike � z ��
 h4 �
l4 : - h5

l5 : have � x � y � l6 : ride � x � z �
Although l3 and l4 are not related to each other, it cannot happen that l3 is in the scope of
l4, because the negation must be a subformula of the antecedent of l1, whereas l3 might
have scope over l1 as a whole or might be in the scope of the succedent of l1. More gen-
erally, this is due to the fact that l3 and l4 do not have to share a subformula, i.e., l3 6 l4
is not defined.

3 Semantics of Underspecified Formulas

In the previous section we introduced a formalism that allows for a compact semantic
representation of ambiguous expressions. Now we want to see what the validity condi-
tions of these underspecified representations are, and how they interact with the classical
logical connectives.

If an ambiguous sentence S with δ � UR � S �� (� d1 � d2 # is uttered, and we want to
check, whether S is valid, we simply have to see whether all of its disambiguations are
valid. That is, it must be the case that < (d1 and < (d2. If, on the other hand, an ambiguous
sentence S with δ � UR � S ��� (� d1 � d2 # is claimed to be false, things are different. Here it
is not sufficient that either J< (d1 or J< (d2; one has to be sure that all disambiguations are
false, i.e., J< (d1 and J< (d2. To model this distribution of falsity, van Eijck and Jaspars
[EJ96] use the notions of a countermodel and a falsification relation (< . Roughly, if only
unambiguous expressions appear as premises or consequences (< corresponds to J< (, but
if at least one underspecified expression appears as premise or consequence, we have to
define the (counter-) consequence relation appropriately.

Definition 6. We define the underspecified consequence relation < (u and underspecified
falsification relation (< u for) u and an arbitrary model M.

1. M < (u ϕ iff M < (ϕ, if ϕ is an unambiguous expression.
M (< u ϕ iff M J< (ϕ, if ϕ is an unambiguous expression.

2. M < (uUR iff M < (d, for all d � δ � UR � .
M (< uUR iff M J< (d, for all d � δ � UR � .

3. M < (u - ϕ iff M (< u ϕ
M (< u - ϕ iff M < (u ϕ

4. M < (u ϕ
 ψ iff M < (u ϕ and M < (u ψ
M (< u ϕ
 ψ iff M (< u ϕ or M (< u ψ

5. M < (u ϕ � ψ iff M < (u ϕ or M < (u ψ
M (< u ϕ � ψ iff M (< u ϕ and M (< u ψ

6. M < (u ϕ � ψ iff M (< u ϕ or M < (u ψ
M (< u ϕ � ψ iff M < (u ϕ and M (< u ψ

7. M < (u � xϕ iff M < (u ϕ K a L , for all a � D � M � .
M (< u � xϕ iff M (< u ϕ K a L , for some a � D � M � .

8. M < (u � xϕ iff M < (u ϕ K a L , for some a � D � M � .
M (< u � xϕ iff M (< u ϕ K a L , for all a � D � M � .

Example 7. We now give an example demonstrating the convenience of having the fal-
sification relation.

In our setting of ambiguous expressions, some familiar classical tautologies are no
longer valid. For instance, if A is ambiguous and B unambiguous we do not want � A

B �M� A because the two occurrences of A may be disambiguated in different ways. For
instance, if δ � A � (� d1 � d2 # , then < (u � A
 B �5� A iff < (u � d1
 B ��� d1, < (u � d1
 B ���
d2, < (u � d2
 B ��� d1 and < (u � d2
 B ��� d2. If we were to model falsity by J< (, applying
the definitions would yield:

< (u � A
 B �M� A iff J< (u A
 B or < (u A

iff J< (u A or J< (B or < (u A

iff J< (d1 or J< (d2 or J< (B or ��< (d1 and < (d2 �!N
The latter is classically valid, and it would therefore make the classical tautology valid.
On the other hand, if we model falsity by (< u we manage to avoid this, as (< u distributes
over disambiguations of A, whereas J< (does not:< (u � A
 B �M� A iff (< u A
 B or < (u A

iff (< u A or (< B or < (u A

iff �"J< (d1 and J< (d2 � or (< B or ��< (d1 and < (d2 �!N
Definition 8. Let ϕ1 �N�NNO� ϕn � ψ be) u-formulas, possibly containing underspecified rep-
resentations. We define relation of underspecified consequence < (u as follows:

ϕ1 ��NN�N�� ϕn < (u ψ iff

for all d1 � δ � ϕ1 �"�N�NNO� dn � δ � ϕn �
and for all d ��� δ � ψ � it holds that

d1 �N�NNO� dn < (d � .
The underlying intuition is that if someone utters a statement of the form if S then

S � , where S and S � are ambiguous sentences with δ � UR � S �� (� d1 � d2 # , δ � UR � S �P�� (� d �1 � d �2 # , then we do not know exactly what the speaker had in mind by uttering this.
So to be sure that this was a valid utterance, one has to check whether it is valid for ev-
ery possible combination of disambiguations, i.e., whether each of d1 < (d �1, d1 < (d �2,
d2 < (d �1, and d2 < (d �2 is a valid classical consequence.

Unfortunately, this definition of entailment is not a conservative extension of classi-
cal logic. Even the reflexivity principle A < (A fails. For instance, if we take δ � UR � S �� (� d1 � d2 # , then UR � S �Q< (u UR � S � iff d1 < (d1 � d1 < (d2 � d2 < (d1 � and d2 < (d2, i.e. iff < (
d1 R d2. As we will show below, this has some clear consequences for our calculus,
especially the closure conditions. We refer the reader to [Dee96,Jas97] for alternative
definitions of the ambiguous entailment relation.

4 An Underspecified Tableaux Calculus

The differentiation between consequence and falsification can be nicely modeled in a
labeled tableaux calculus, where the nodes in the tableaux tree are of the form T : ϕ or
F : ϕ, meaning that we want to construct a model or countermodel for ϕ, respectively.
Tableaux calculi are especially well suited, because the notion of a countermodel is im-
plicit in the notion of an open tableaux tree, where one constructs a countermodel for a
formula.

But what does it mean, if we not only allow first-order formulas to appear in a tableaux
proof but as also u-formulas? According to the semantic definitions in Section 3, a proof
for a u-formula is simply a proof for each of its disambiguations (in a classical tableaux
calculus SUT). In the following two subsections we first introduce a calculus SVT u which
integrates the mechanism of disambiguation in its deduction rules, and thereby allows
one to postpone the disambiguation until it is really needed. SUT u nicely shows how am-
biguity and branching of tableaux trees correspond to each other. But SVT u still makes no
use of the compact representation of underspecified representations, introduced in Sec-
tion 2. Therefore, we give a modified version of SVT u, called SUT up, which also allows
us to reason within an underspecified representation.

Our tableaux calculi are based on the labeled free-variable tableaux calculus, see for
instance [Fit96] for a general introduction to tableaux calculi.

4.1 Reasoning with Total Disambiguations

The definitions of the logical connectives in section 3 allow us to treat logical connec-
tives occurring in u-formulas in the same way as in a tableaux calculus for classical logicSUT , as long as they do not occur inside of a UR. Here it is necessary to disambiguate the
UR first, and then apply the rules in the normal way.

Example 9. If we try to deduce � A
 B ��� A, with δ � A � (� d1 � d2 # and B unambiguous,
we have to prove each of W8X�YU� d1
 B �M� d1, W8X�YU� d1
 B �M� d2, W8X�YU� d2
 B �M� d1 andW8XY�� d2
 B �M� d2. This leads to the following classical labeled tableaux proof trees.

(a)
F : Z d1 [B \8] d1

T : d1 [B

F : d1

T : d1

T : B

(b)
F : Z d1 [B \8] d2

T : d1 [B

F : d2

T : d1

T : B

(c)
F : Z d2 [B \7] d1

T : d2 [B

F : d1

T : d2

T : B

(d)
F : Z d2 [B \7] d2

T : d2 [B

F : d2

T : d2

T : B

At least structurally, the above proof trees are the same. It does not matter whether they
contain underspecified representations. This suggests a natural strategy: to postpone dis-
ambiguation and merge those parts of the trees that are similar.

Z 1 \ F : Z A [B \7] A

Z 2 \ T : A [B

Z 3 \ F : A

Z 4 \ T : A

Z 5 \ T : B

Z 6 \ F : d1 Z 7 \ F : d2

Z 8 \ T : d1 Z 9 \ T : d2 Z 10 \ T : d1 Z 11 \ T : d2

This is a much more compact representation. Again, since A is ambiguous, (3) and (4)
do not allow one to close the branch, because reflexivity is not a valid principle in our
ambiguous setting.

The deduction rules for our underspecified tableaux calculus for totally disambiguated
expressions SVT u are given in Table 1. Besides the last two rules � Tu :UR � and � Fu :UR � ,
all rules are stated in a standard way and need no further explanation. The purpose of
the last two rules is to disambiguate UR’s and to start a new branch for each of its dis-
ambiguations. This implements the idea of postponing disambiguation, because disam-
biguation applies now only to UR’s and not to any u-formula.

Theorem 10. Let ϕ �^) u. Then W8X�Y u ϕ iff W�XY d, for all d � δ � ϕ � .
Corollary 11. Let ϕ �_) u. Then W X�Y u ϕ iff < (u ϕ.

4.2 Reasoning with Partial Disambiguations

From a computational point of view � Tu : UR � and � Fu : UR � are not optimal, since they
cause a lot of branchings of the tableaux tree. Also, total disambiguation is not the appro-
priate means for underspecified reasoning, because the advantage of the compact repre-
sentation, namely avoiding redundancy, gets lost. So SVT u is appropriate for dealing with
formulas containing UR’s but not for reasoning inside the UR’s themselves.

Sometimes it is not necessary to compute all disambiguations, because there exists
a strongest (weakest) partial disambiguation. If such a strongest (weakest) disambigua-
tion does exist, it suffices to verify (falsify) this one, because it entails (is entailed by) all
other disambiguations. But what are the circumstances under which a strongest (weak-
est) disambiguation exists?

Before we can determine a strongest (weakest) reading, we have to resolve the rel-
ative position of negative contexts and quantifiers. To this end we define positive and
negative contexts (see also [TS96]).

Definition 12. A u-formula ϕ is a positive context for a subformula ξ of ϕ, notation:
con `a� ϕ � ξ � , iff

ϕ :: (ξ < ψ
 χ K ξ L5< χ K ξ Lb
 ψ < ψ � χ K ξ Lc< χ K ξ L � ψ < ψ � χ K ξ L5<�� xχ K ξ L5<d� xχ K ξ L

Table 1. Deduction rules of the underspecified tableaux calculus e?f u

Tu : ϕ [ψ
Tu : ϕ
Tu : ψ

Z Tu : [\ Fu : ϕ [ψ
Fu : ϕ Fu : ψ

Z Fu : [\
Tu : ϕ g ψ

Tu : ϕ Tu : ψ
Z Tu : g�\ Fu : ϕ g ψ

Fu : ϕ
Fu : ψ

Z Fu : g�\
Tu : ϕ] ψ

Fu : ϕ Tu : ψ
Z Tu :]h\ Fu : ϕ] ψ

Tu : ϕ
Fu : ψ

Z Fu :]h\
Tu : i ϕ
Fu : ϕ Z Tu : i�\ Fu : i ϕ

Tu : ϕ Z Fu : i�\
Tu : j xϕ

Tu : ϕ k x l X m Z Tu : j7\ Fu : j xϕ
Fu : ϕ k x l f Z X1 nIopopopn Xn \qm Z Fu : j7\ †

Tu : r xϕ
Tu : ϕ k x l f Z X1 npopoIopn Xn \qm Z Tu : r3\ † Fu : r xϕ

Fu : ϕ k x l X m Z Fu : r%\
Tu :UR

Tu : d1 opopo Tu : dn
Z Tu :UR \ ‡ Fu :UR

Fu : d1 oIopo Fu : dn
Z Fu :UR \ ‡

†Where X1 npoIopopn Xn are the free variables in ϕ.
‡Where d1 npopopopn dn s δ Z UR \ .

where ξ occurs in χ and con `a� χ � ξ � holds, or ϕ :: (- χ K ξ L�< χ K ξ L�� ψ, where ξ occurs in
χ and con t=� χ � ξ � holds.

A u-formula ϕ is a negative context for a subformula ξ of ϕ, con t � ϕ � ξ � , iff

ϕ :: (ψ
 χ K ξ L5< χ K ξ Lb
 ψ < ψ � χ K ξ Lc< χ K ξ L � ψ < ψ � χ K ξ L5<�� xχ K ξ L5<"� xχ K ξ LI�
where ξ occurs in χ and con t � χ � ξ � holds, or ϕ :: (- χ K ξ L�< χ K ξ L�� ψ, where ξ occurs in
χ and con `a� χ � ξ � holds.

To apply the tableaux rules to a formula ψ it is necessary to know whether ψ occurs
positively in a superformula ϕ — then we have to apply a T-rule —, or negatively —
then we have to apply an F-rule. In an underspecified representation it may happen that
a formula occurs positively in one disambiguation and negatively in another. We call
formulas of this kind indefinite, and in this case we cannot apply a tableaux rule.

Definition 13. Given an underspecified representation � LHF,C, L, H � , a labeled h-formula
l : ϕ K h Lc� LHF is definite if for every l � : ψ K h � L�� LHF, such that con t � ψ � h �u� holds and
h 6 h � defined, then it holds that l � h �%� C or l ��� h � C. It is called indefinite otherwise.

Why do we consider definite formulas? Intuitively, we need to know which quanti-
fier we are actually dealing with when we are trying to find a strongest (weakest) read-
ing. Formulas can be made more definite by using the rules for partial negation resolu-
tion given in Table 2. Roughly, we obtain more definite h-formulas within a given un-
derspecified representation by adding further constraints which let indefinite h-formulas
become definite by using one of the rules of partial negation resolution as specified in
Table 2, which are generalizations of the method of partial disambiguation in [KR96].
These rules reduce the number of indefinite h-formulas occurring in an underspecified
representation by creating partial disambiguations in which the indefinite h-formula has
scope over (or is in the scope of one of) the h-formulas inducing the indefiniteness; in
Table 2 this is lm : ϕm K hn L , where con t � ϕm � hn � holds and hk 6 hn is defined. Solid lines
between two labels or holes, k, k � , indicate immediate scope relation, dashed lines are
the transitive closure of solid lines. For instance, let ϕ j (� x � ϕ � and ϕm (- hn, we do
not know, whether � x binds x universally or existentially, because it can appear above
or under the negation. Applying (Tu : π) yields the two possible cases, namely � x � ϕ �
occurring above (left branch) or under (right branch) the negation.

To put it differently, suppose that lm : ϕm K hn L is the only h-formula, which causes
indefiniteness of l j : ϕ j in an application of (Tu : π), then the rule for left partial disam-
biguation labels l j : ϕ j with Tu, because now it has scope over the negative context, and
the rule for right partial disambiguation labels l j : ϕ j with Fu, because it is in the scope
of the negative context.

Our complete set of deduction rules for underspecified representations is given by
combining Tables 2 and 3. This set defines our tableaux calculus, SVT up.

Observe that there are three sets of rules in Table 3. The first set deals with ordi-
nary logical connectives only. The second group are so-called interface rules; roughly
speaking, they control the flow of information between traditional tableaux reasoning
and disambiguation. Reasoning within an underspecified representation starts at its top-
hole and compares all its daughters, i.e., those formulas that appear immediately in its
scope. A similar interface is needed for h-formulas. The logical connectives in complex
h-formulas are also treated with the T/F-rules, but for treating holes we need to know
what material goes into them. For holes having only one daughter, it is possible to apply
the normal tableaux rules to this daughter, see (Tu : v) and (Fu : v).

As to the rules in the third group, these are designed to partially construct the weakest
or strongest readings of u-formulas, respectively. Both (Tu : �) and (Fu : �) presuppose
that l j : � xϕ K hl L or l j : � xϕ K hl L occurs definite, otherwise we would not be able to tell
what the quantificational force of l j : � xϕ or l j : � xϕ is. So, before applying the rules it
may be necessary to apply partial negation resolution as presented in Table 2 first so as
to make l j : � xϕ K hl L definite. There is an important restriction on the applicability of the
rules (Tu : �) and (Fu : �): to guarantee soundness of the rules, the formulas � xϕ K h L and� xφ K h L in l j should be special. Here � xϕ K h L is special if it is of the form � x � χ1 � h � or� x � χ1
 h � χ2 � , while � xϕ K h L is special if it is of the form � x � χ1
 h � .

To conclude this section, we briefly turn to soundness and completeness. First, now
that our tableaux may have different kinds of labelings (there are T w F-nodes and Tu w Fu-
nodes), we need to specify what it means for a tableaux to close. We say that a branch b
closes if there are two nodes T : ϕ and F : ψ belonging to b, such that ϕ and ψ are atomic

Table 2. Tableaux rules for partial negation resolution

Tu :hi

l j: ϕ j k hk m opopo ll : ϕl

lm: ϕm k hn m
Tu :hi

l j : ϕ j k hk m opopo ll : ϕl

lm: ϕm k hn m
Tu :hi

opoIo ll : ϕl

lm: ϕm k hn m
l j: ϕ j k hk m

Z Tu : π \

Fu :hi

l j: ϕ j k hk m opopo ll : ϕl

lm: ϕm k hn m
Fu :hi

l j : ϕ j k hk m opoIo ll : ϕl

lm: ϕm k hn m
Fu :hi

opoIo ll : ϕl

lm: ϕm k hn m
l j: ϕ j k hk m

Z Fu : π \

formulas of) and ϕ and ψ are unifiable. In particular, it is not possible to close a tableau
with two nodes T : ϕ and F : ψ containing holes or underspecified representations.

Next, what do soundness and completeness mean in our ambiguous setting? Sound
and complete with respect to which semantics or system? We have opted to state sound-
ness and completeness with respect to tableaux provability of all total disambiguations.

Theorem 14 (Soundness and Completeness). Let ϕ �x) u. Then W�y%z up ϕ if, and only
if, for all d � δ � ϕ �{W�y%z d

Proof (Sketch). The soundness part (‘only if’) boils down to a proof that the Tu w Fu rules
do not introduce any information that would not have been available by totally disam-
biguating first. The restrictions on the rules (Tu : �) and (Fu : �) that were discussed above
allow us to establish this.

Proving completeness (‘if’) is in some way easier: any open branch in a (completely
developed) tableau for SVT up corresponds to a (completely developed) open branch in a
tableau proof for SVT u. See [MR98] for the details.

Table 3. Set of deduction and interface rules of e?f up

T : ϕ [ψ
T : ϕ
T : ψ

Z T : [\ F : ϕ [ψ
F : ϕ F : ψ

Z F : [\
T : ϕ g ψ

T : ϕ T : ψ
Z T : g�\ F : ϕ g ψ

F : ϕ
F : ψ

Z F : g�\
T : ϕ] ψ

F : ϕ T : ψ
Z T :]h\ F : ϕ] ψ

T : ϕ
F : ψ

Z F :]h\
T : i ϕ
F : ϕ Z T : i�\ F : i ϕ

T : ϕ Z F : i�\
T : j xϕ

T : ϕ k x l X m Z T : j8\ F : j xϕ
F : ϕ k x l f Z X1 npopoIopn Xn \qm Z F : j8\ †

T : r xϕ
T : ϕ k x l f Z X1 npoIopopn Xn \qm Z T : r3\ † F : r xϕ

F : ϕ k x l X m Z F : r3\
T :UR
Tu :h0

li: ϕi oIopo ln: ϕn

Z T : UR \ F :UR
Fu :h0

li: ϕi opoIo ln: ϕn

Z F : UR \

T : hi

Tu :hi

li: ϕi opopo ln: ϕn

Z T : h \ F : hi

Fu :hi

li: ϕi opopo ln: ϕn

Z F : h \

Tu :hi

l j: ϕ
T : ϕ Z Tu : |&\

Fu :hi

l j: ϕ
F : ϕ Z Fu : |4\

Tu :hi

l j: j xϕ k hl m lk: } yψ oIopo ln: ϕn

Tu :hi

l j: j xϕ k hl m opopo ln: ϕn

lk: } yψ

Z Tu : j7\ ‡
Fu :hi

l j: r xϕ k hl m lk: } yψ oIopo ln: ϕn

Fu :hi

l j: r xϕ k hl m opopo ln: ϕn

lk: } yψ

Z Fu : r3\ ‡

†Where X1 npopoIopn Xn are the free variables in ϕ.
‡Where } s � j n r�� , l j is definite, and j xϕ k h m and r xϕ k h m are special (see below).

5 An Example

Consider the sentence every boy doesn’t see a movie appearing as a premise in a tableau.
Because displaying derivations in our calculus is very space-consuming, we can only
give the beginning of one of its branches, which is given in Figure 1. Each box corre-
sponds to a node in a tableau tree. Because in (1) l1 : � x � boy � x ��� h1 � occurs indefinite,
it is necessary to apply partial negation resolution first. The total disambiguation of the
left branching would be

�d� x � boy � x ����� y � movie � y ��
�- see � x � y ����!�� x � boy � x ����-~� y � movie � y ��
 see � x � y ����!�� y � movie � y ��
�� x � boy � x ���1- see � x � y ����$#��
That is, formulas in which the universal quantifier has scope over the negation, disre-
garding the existential quantifier. Now (Tu : �) is applicable and the universal quantifier
is given wide scope in (4), corresponding to the readings � x � boy � x �~��� y � movie � y �7
- see � x � y ���� and � x � boy � x ���G-~� y � movie � y �&
 see � x � y ���� . Because h0 has only one daugh-
ter, the normal tableaux rules for logical connectives can be applied to it. So we instanti-
ate x with a free variable X and apply � T : ��� , which causes a branching of the proof tree,
where (7) is a nonambiguous literal with which we can try to close a tableaux branch.
In (8) h1 is the top-node to which the underspecified tableaux rules can be applied.

6 Conclusion

In this paper we have presented a tableaux calculus for reasoning with ambiguous quan-
tification. We have set up a representation formalism that allows for a smooth interleav-
ing of traditional deduction steps with disambiguation steps.

Our ongoing work focuses on two aspects. First, we are adding rules for coping with
additional forms of ambiguity to the calculus, such as ambiguity of binary connectives.
Second, we are in the process of implementing the calculus SVT up; as part of this work
new and interesting theoretical issues arise, such as ‘proof optimization’: for reasons of
efficiency it pays to postpone disambiguations as long as possible, but to be able to apply
some of the rules expressions need to be definite and for this reason early disambiguation
may be required. What is the best way of reconciling these two demands?

References

[Bos95] J. Bos. Predicate logic unplugged. In P. Dekker and M. Stokhof, editors, Proc. 10th
Amsterdam Colloquium. ILLC, University of Amsterdam, 1995.

[Dee96] K. van Deemter. Towards a logic of ambiguous expressions. In Peters and Deemter
[DP96].

[DP96] K. van Deemter and S. Peters, editors. Semantic Ambiguity and Underspecification. CSLI
Publications, 1996.

[EJ96] J. van Eijck and J. Jaspars. Ambiguity and reasoning. Technical Report CS-R9616, Cen-
trum voor Wiskunde en Informatica, Amsterdam, 1996.

Fig. 1. Part of a proof in e?f up

(1) Tu :h0

l1 :j x Z boy Z x \�] h1) l2 : r y Z movie Z y \ [h2) l3 : i h3)

l4 :see Z x n y \
(2) Tu :h0

l1 : j x Z boy Z x \c] h1) l2 : r y Z movie Z y \ [h2)

l3 : i h3)

l4 :see Z x n y \

(3) Tu :h0

l3 : i h3) l2 : r y Z movie Z y \ [h2)

l1 :j x Z boy Z x \�] h1)

l4 :see Z x n y \
(4) Tu :h0

l1 : j x Z boy Z x \c] h1)

l2 : r y Z movie Z y \ [h2) l3 : i h3)

l4 :see Z x n y \

...

(5) T : j x Z boy Z x \�] h1)

l2 : r y Z movie Z y \ [h2) l3 : i h3)

l4 :see Z x n y \
(6) T : boy Z X \8] h1

l2 : r y Z movie Z y \ [h2) l3 : i h3)

l4 :see Z X n y \
(7) F : boy Z X \ (8) Tu : h1

l2 : r y Z movie Z y \ [h2) l3 : i h3)

l4 :see Z X n y \
...

[Fit96] M. Fitting. First-Order Logic and Automated Theorem Proving. Springer-Verlag New
York, 2nd edition, 1996.

[Jas97] J. Jaspars. Minimal logics for reasoning with ambiguous expressions. CLAUS-
Report 94, University of Saarbrücken, 1997.

[KM93] H. S. Kurtzman and M. C. MacDonald. Resolution of quantifier scope ambiguities. Cog-
nition, 48:243–279, 1993.

[Kön94] E. König. A study in grammar design. Arbeitspapier des Sonderforschungsbereich 340
no. 54, Institut für Maschinelle Sprachverarbeitung, 1994.

[KR96] E. König and U. Reyle. A general reasoning scheme for underspecified representations.
In H.-J. Ohlbach and U. Reyle, editors, Logic and Its Applications. Festschrift for Dov
Gabbay. Kluwer Academic Publishers, 1996.

[MR98] C. Monz and M. de Rijke. Reasoning with ambiguous expressions. Unpublished
manuscript, 1998.

[Rey93] U. Reyle. Dealing with ambiguities by underspecification: Construction, representation,
and deduction. Journal of Semantics, 10(2):123–179, 1993.

[TS96] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge University Press,
1996.

