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We present a tableau calculus for reasoning in fragments of natural lan-
guage. We focus on the problem of pronoun resolution and the way in which it
complicates automated theorem proving for natural language processing. A method
for explicitly manipulating contextual information during deduction is proposed,
where pronouns are resolved against this context during deduction. As a result,
pronoun resolution and deduction can be interleaved in such a way that pronouns
are only resolved if this is licensed by a deduction rule; this helps us to avoid the
combinatorial complexity of total pronoun disambiguation.

1 Introduction

The general aim of Natural Language Processing (NLP) is to analyze and understand
human language using computational tools. In computational semantics, one of the sub-
disciplines of NLP, two specific tasks arise. First, what is the semantic value, the mean-
ing, of a natural language utterance and how can we determine it. And, second, given the
semantics of a natural language utterance, how can we use it to deduce further informa-
tion? In practice, these questions are interdependent: to properly represent an utterance,
one has to access contextual information and check what can be derived from it, and to
perform derivations in the first place we obviously need to represent our information.

It is probably fair to say that developing inference methods for natural language is
one of the most pressing tasks in computational semantics, and the present paper tries
to contribute to this area. More specifically, we develop a tableau calculus in which de-
duction and pronoun resolution are interleaved. Before diving into the details in later
sections, let us give a simple example of the natural language phenomenon that we are
focusing on. Briefly, we are dealing with so-called anaphoric expressions or anaphora;
typical examples of anaphora are pronouns such as ‘she’, ‘he,’ or ‘it’. Anaphora are re-
solved to or identified with other terms, usually occurring earlier on in an utterance or
discourse; such terms are called antecedents. Here’s an example:

(1) A woman found a cat on a playground. She liked it.

What should ‘it’ in the second sentence in (1) refer back to—‘a cat’ or ‘a playground’?
As a rule, we, the human language users, don’t have a problems resolving such ambi-
guities; in the case at hand ‘a cat’ would probably be selected as antecedent for ‘it.’ But
how can a theorem prover that receives (1) as one of its premises use it to derive con-
clusions? As long as the pronoun ‘it’ has not been resolved, this question introduces the



problem of ambiguity to the task of deduction with natural language semantics. Can we
conclude either of the following from (1)?

(2) a. � � A woman liked a cat.
b. � � A woman liked a playground.1

One way to tackle this problem is by assuming that anaphoric expressions have to be
resolved before deductive methods are applied. This assumption is common in several
approaches to the semantics of natural language, but in practice it seems to be too strong
and highly implausible, since resolution of pronouns may in fact require deductive pro-
cessing to be completed successfully [All94]. Here, we propose a different approach.
We interleave disambiguation and deduction steps, where a pronoun is resolved only if
this is needed by a deduction rule, and where deductive information is used to steer the
resolution process.

In this paper, we assume that the semantic representations for natural language sen-
tences are already given. Of course, this is not a trivial task, and it would be far beyond
the scope of this paper to discuss this. [Als92] gives an overview of the Core Language
Engine, an implementation builds (underspecified) semantic representations for natural
language discourses.

The rest of the paper is organized as follows. In Section 2 we provide further exam-
ples and some linguistic background; this section may be skipped by anyone familiar
with pronoun resolution. Then, in Section 3 we briefly introduce our formal language,
and formalize the notion of context that we will need to model pronoun resolution in-
terleaved with deduction. In Section 4 the semantics of our formal language is defined,
and in Section 5 we provide it with a tableau calculus. Finally, Section 6 summarizes our
results, and in Section 7 we draw some conclusions and formulate further challenges.

2 Some Linguistic Background

In this section we quickly review some basic facts and intuitions from natural language
semantics as they pertain to pronoun resolution. Refer to [KR93] for further details.

If a sentence contains a pronoun, the hearer has to identify it with some person or
thing that has been mentioned earlier to understand this sentence. Roughly, one can iden-
tify context with what has been said earlier. Of course, this blends out other contextual
information like world knowledge, gestures, etc., but as these non-linguistic sources of
context are hard to formalize, in general, we will restrict ourselves to the notion of con-
text as linguistic context.

Saying that a pronoun has to be resolved to something that appears in the context
does not mean that it can be identified with just anything in the context: there are some
clear constraints. To illustrate these, we give some examples (the asterisk ( � ), indicates
that a discourse is not well-formed).

The discourse in (3) below is not well-formed, because the pronoun ‘She’ and ‘a
man’, which is the only thing that could function as an antecedent, do not agree on gen-
der.
1 To keep things simple, we do not employ any preference order of the readings, although this

may be desirable in the long run.



(3) * A man sleeps. She snores.

In (4), it is not possible to bind ‘it’ to ‘a car’, because although ‘a car’ was mentioned
before, its existence has not been claimed, on the contrary, it was said that there is no
such car. In other words, ‘it’ cannot refer to something which is not existing.

(4) * Buk doesn’t have a car. It is red.

Conditionals are another interesting case. The if-clause in (5.a) introduces two antecedents
‘a linguist’ and ‘a car’ which can both serve as antecedents for pronouns in the then-
clause. But they cannot serve as antecedents for pronouns occurring in later sentences
as in (5.b). Roughly, objects that are introduced in an if-clause are just assumed to exist,
and the then-clauses expresses what has to hold, under this assumption. Clauses that fol-
low the conditional sentence are not uttered within the context of this assumption, and
therefore, their pronouns cannot access things occurring inside the assumption. One can
say, that the assumption expressed by the if-clause is a local context, which is only ac-
cessible to the then-clause.

(5) a. If a linguist has a car, then it didn’t cost much.
b. * If a linguist has a car, then it didn’t cost much. It is very old.

Universal quantification, as in (6), does not talk about particular individuals and it is not
possible to refer back to ‘every poet’ with the pronoun ‘he’. The same holds for indefinite
noun phrases that occur in the scope of the universal quantifier. As they depend on each
instantiation of the universally quantified variable, it does not mean that there has to be
a particular individual which can be referred to by a singular pronoun.

(6) Every poet who has published a book likes it.

� � He is arrogant.
� But it is really bad.

Summarizing the important points of the above examples, pronouns need to agree
with their antecedents a number of features, and some information within a discourse
may be inaccessible to pronouns that occur later in the discourse. These two points will
play an important role in our tableau calculus below.

3 Towards Context-Based Reasoning

This section provides a formal account of context and the way it is dealt with in de-
duction. It will become obvious that deduction with natural semantics is much more
structure-sensitive than for instance classical first-order logics. Here, we restrict our-
selves to those kinds of structural information that is needed in order to allow pronoun
resolution, but see [MdR98a] for a more general overview on this topic.

3.1 Formalizing Context

In the preceding section we provided some intuitions about pronoun-antecedent rela-
tions and the role structural information played in this setting. We will now formalize
the way in which contextual information flows within a discourse. As a first step we in-
troduce the formal language that we will be using.



Definition 1 (The Language � pro). Assuming that ϕ1 and ϕ2 are in � pro, we say that
ϕ is in � pro, if:

ϕ :: � R � x1g 	�
�
�
	 xng � n � ��� ϕ � ϕ1 � ϕ2 � ϕ1 � ϕ2 � ϕ1 � ϕ2 ��
xg ϕ1 ��� xg ϕ1 � ?xg ϕ1

where g 	 g ���� he 	 she 	 it � .

Thus, besides the usual logical connectives, � , � , � , � ,
�

, � , we introduce a new oper-
ator ? that binds pronoun variables.

Contrary to approaches like Dynamic Predicate Logic (DPL, [GS91]) it is not as-
sumed that pronouns are already resolved when constructing the semantic representa-
tion of a discourse. Given a formula ϕ, we say that � ϕ � is a function from subsets of VAR
(the set of variables) to subsets of VAR, where the argument is the input context and the
value denotes the output context or context contribution. The contextual contribution of
a formula ϕ is the set of variables that ϕ adds to the input context.

Definition 2 (Contextual Contribution). The contextual contribution of a formula ϕ
in � pro, � ϕ � , is defined recursively, as specified below. There, i is a subset of VAR. Note
that ��� � is partial, where � ϕ �!� i � is undefined whenever ϕ contains pronouns that cannot
be resolved against i.

� i � � R � x1g 	�
�
�
	 xng �"� �#� i � � /0
� ii � � � ϕ �#� i � � /0 	 if � ϕ �#� i � is defined
� iii � � ϕ � ψ �!� i � � � ϕ �#� i �%$ � ψ �#� i $ � ϕ �#� i ���� iv � � ϕ � ψ �#� i � � /0 	 if � ϕ �#� i � and � ψ �!� i $ � ϕ �!� i ��� are defined� v � � ϕ � ψ �!� i � � /0 	 if � ϕ �#� i � and � ψ �!� i � are defined
� vi � � � xg ϕ �#� i � � � xg � $ � ϕ �#� i $ � xg � �� vii � � � xg ϕ �&� /0 	 if � ϕ �#� i $ � xg � � is defined

� viii � � ?xg ϕ �#� i � � � ϕ �#� i � 	 if � yg � i

Here g, g �%�'� she 	 he 	 it � , and � ϕ �#� i � is undefined, i.e., there is no o such that � ϕ �#� i � � o,
if the condition on the right hand side is not fulfilled. Undefinedness is preserved by set
union: if � ϕ �#� i � is undefined, then � ϕ �!� i �%$ i � is not defined either, for any input i � .
Let us briefly discuss the above definition. Atomic formulas do not add variables to the
input context and the output context is the empty set. Negation behaves as a barrier.
In (ii), the output context is /0, no matter what the output context of the formula in the
scope of the negation is. Conjunction is totally dynamic: things introduced in the first
conjunct can serve as antecedents for the second conjunct as well as for any later for-
mula, and the output of the first conjunct contributes to the input of the second conjunct
while the output of the second conjunct contributes to the output of the whole formula.
The existential quantifier in (vi) adds the variable that it binds to the input context of its
scope, but unlike the universal quantifier, it also adds the variable to the output context.
In (viii), the pronoun operator is treated. It assumes that there is a variable y in the input
context that agrees with x on gender.



3.2 Contextual Information and Deduction

Definition 2 explains how context flows through a sequence of formulas. As deductive
methods such as the tableau method manipulate the structure of formulas, we have to
guarantee that the flow of contextual information is preserved by these manipulations.
Our informal discussion below explains how we achieve this by introducing suitable
labels on formulas; the formal details are postponed until Section 5.

Threading Context. To resolve pronouns during deduction, it is necessary to keep track
of the context against which a particular pronoun can be resolved. The context is not
a global parameter because it can change while processing a sequence of formulas. To
implement this idea, formulas will be annotated with contextual information of the form
� i 	 o � :ϕ, where i is the input context and o is the output context.

Structure Preservation. One of the major differences between dynamic semantics and
classical logics is the structural sensitivity of the former. As an example, whereas �(� ϕ is
classically equivalent to ϕ, this does not hold in dynamic semantics, because the output
contexts of the formulas �(� ϕ and ϕ are not the same since negation functions as a kind
of barrier. Consider (7):

(7)
� i 	 /0 � : ϕ � ψ

� i 	 o � : � ϕ � i $ o 	 o � � : ψ
� � �

Neglecting labels, (7) is the regular tableau expansion rule for implication. Compare this
to the definition of the contextual contribution of the implication in Definition 2, where
the input context of the consequent ψ consists of the union of the input context of the
formula as a whole, ϕ � ψ, and the set of contribution of the antecedent ϕ. Now in (7),
� � ϕ �#� i � will always equal /0, simply because negation functions as a barrier; as explained
in Section 2. Therefore, the implication rule � � � has it was stated in (7) gives the wrong
results. Of course, the problem is that a negation sign has been introduced by a tableau
rule, which is a violation of one of the major principles of deduction methods for natural
language semantics, viz. preservation of structure. But this can easily be remedied by
using signed tableaux, where each formula is adorned with its polarity. Reconsidering
the tableau expansion rule for implication, we have to distinguish two cases: implication
under positive and implication under negative polarity.

(8)
� i 	 /0 	#) � : ϕ � ψ

� i 	 o 	�* � : ϕ � i $ o 	 o � 	!) � : ψ
� ) : � �

� i 	 /0 	�* � : ϕ � ψ
� i 	 o 	#) � : ϕ

� i $ o 	 o � 	�* � : ψ

� * : � �

Now, we can clearly distinguish between the truth-functional and contextual behavior of
negation. Note, that both rules in (8) thread the context in a similar fashion even though
their truth-functional behavior is different.

The order in which we process sentences is important, as they may contain anaphoric
expressions that are only meaningful if the context provides an appropriate antecedent.
This is also mirrored in the tableau rules where the input context of some node depends
on the output of another node. For instance, � i $ o 	 o � 	�* � : ψ depends on � i 	 o 	!) � : ϕ.



Observe that dependency does not only hold between formulas on the same branch, but
can also occur between formulas on different branches, as exemplified by the rule � ) :
� � .

A Note on Unification. In Definition 2 contexts are defined as sets of variables. Be-
low we will be using a free-variable tableau method (cf. [Fit96]), and we have to think
about the double role of variables in a deduction: they are carriers of a value and pos-
sible antecedent for pronouns. Recall that in free-variable tableaux, universally quanti-
fied variables are substituted by a free variable and existentially quantified variables are
substituted by a skolem function that depends on the free variables of the existentially
quantified formula.

Consider the following situation. In a tableau, there are two nodes of the form � i 	 o 	 p � :
ϕ � x � and �#� x � $ i � 	 o � 	 p � � : ψ, where p, p �+�,� )-	�* � and x is a free variable in ϕ. If x is
instantiated to a term t, then we have to substitute t for x in all formulas. But do we also
have to substitute t for x in all context parameters? In our calculus presented in Section 5
below, the following solution is adopted: If t unifies with t � , then t and t � denote the same
entity in the model that we are implicitly building while constructing a tableau. If t is a
possible antecedent for a pronoun z, then t � has to be a possible antecedent for z, too,
since t and t � simply denote the same entity. Therefore, term substitution is applied to
both formulas and contexts.

Introducing Goodness. Up to now, labels adorning formulas carry two kinds of infor-
mation: contextual information (i, o) and polarity information ( ) , * ). These parameters
reflect the dynamic behavior of natural language utterances and the way in which con-
text is threaded through a sequence of sentences. In addition, we have to account for a
more general restriction on natural language utterances. In the set-up that we have so far,
if a pronoun xg occurs in a context i, all variables that are members of i and agree on gen-
der with xg can serve as antecedents. Unfortunately, this is too liberal, as the following
example shows.

(9) A man sees a friend of his. He doesn’t see him or he is in a rush.

The pronoun ‘he’ in (9) cannot refer to ‘a man’. Intuitively, this would seem violate some
kind of consistency constraint. To put it differently, a pronoun xg cannot be resolved to
an antecedent yg if they carry contradictory information. Following [vD98], we call this
restriction on possible pronoun resolutions goodness. Observe that goodness is a special
case of a more general pragmatic principle like Grice’s maxim of quality, cf. [Gri89].

How do we implement the notion of goodness in our calculus? The premises and
the conclusion themselves should be consistent, as we assume that native speakers do
not utter inconsistent sentences. In our calculus we will implement this idea by making
an explicit distinction between the (original) premises and (original) conclusions of a
tableau proof; we will mark the former with . and the latter with / .2

2 Readers familiar with abduction may find it helpful to compare this distinction to the one
where, in abduction, one requires that explanations preserve the consistency of the premises;
see [CMP93].



Summing up, then, the nodes in our tableau calculus will be labeled formulas of the form
� i 	 o 	 ρ 	 p � : ϕ. Here, i is the input context, o is the context contribution of ϕ, ρ �,�0. 	 /1�
indicates whether ϕ occurs as part of the premises or the conclusion, and p �2� )-	�* �
carries the polarity of ϕ.

4 The Semantics of Pronoun Ambiguity

Before we introduce our tableau calculus for � pro, we present its semantics and a notion
of entailment for it. Starting with the latter, there are various possibilities. Following
our discussion in Section 2, we opt for an entailment relation � � a where ψ follows from
ϕ1 	�
�
�
0	 ϕn if there is a disambiguation θ of ϕ1 	�
�
�
	 ϕn and a disambiguation θ � of ψ such
that θ � ϕ1 	�
�
�
0	 ϕn � � � θ �3� ψ � . This choice might lead to overdefinedness of some formula
ϕ, since it might be the case that M 	 h 	 i � � θ � ϕ � , for some disambiguation θ, but M 	 h 	 i 4� �
θ �3� ϕ � , for another disambiguation θ � .

To be able to deal with this, we distinguish between verification ( � � a) and falsifica-
tion ( �5� a). To motivate this distinction, compare the sentences in (10).

(10)a. It is not the case that he sleeps.
b. He doesn’t sleep.

Their semantic representations are formulas of the form � ?xg ϕ and ?xg � ϕ, respectively.
Intuitively, (10.a) and (10.b) have the same meaning, therefore it should be the case that
� ?xg ϕ and ?xg � ϕ are logically equivalent. If we would try to set up a semantics for � pro

by simply using � � a, we would not get the desired equivalence of � ?xg ϕ and ?xg � ϕ:

(11)a. M 	 h 	 i � � a � ?xg ϕ iff M 	 h 	 i 4� � a ?xg ϕ
iff M 	 h � xg 6 h � yg � � 	 i 4� � a ϕ for all yg � i

b. M 	 h 	 i � � a ?xg � ϕ iff M 	 h � xg 6 h � yg � � 	 i � � a � ϕ for some yg � i
iff M 	 h � xg 6 h � yg � � 	 i 4� � a ϕ for some yg � i

The problem is that a semantics built up by using � � a interprets the ?-operator as a quan-
tifier, which it is not. On the other hand, if we distinguish between verification and fal-
sification, we get the desired equivalence:

(12)a. M 	 h 	 i � � a � ?xg ϕ iff M 	 h 	 i �7� a ?xg ϕ
iff M 	 h � xg 6 h � yg � � 	 i �5� a ϕ for some yg � i

b. M 	 h 	 i � � a ?xg � ϕ iff M 	 h � xg 6 h � yg � � 	 i � � a � ϕ for some yg � i
iff M 	 h � xg 6 h � yg � � 	 i �5� a ϕ for some yg � i

In the following definition verification and falsification for the other boolean con-
nectives are defined.

Definition 3 (Semantics of � pro). Verification and falsification are defined, given a model
M, a variable assignment h and a context i. As usual, a model M �98�: 	�;=< consists of
two parts: a universe : and an interpretation ; of the non-logical constants. First, we
are going to define the semantics of the terms of � pro. xg is a variable (possibly a pro-
noun) with gender g, cg is a constant with gender g, and fg is a function with gender g,
where g �>� he 	 she 	 it �



(a) � � xg � � M � h � i � h � xg �
(b) � � cg � � M � h � i � ; � cg �
(c) � � fg � t1 
�
�
 tn � � � M � h � i � f ?g ��� � t1 � � M � h � i 
�
�
 � � tn � � M � h � i �
For formulas, � � a and �5� a can be defined recursively:

(i) M 	 h 	 i � � a R � t1 	�
�
�
@	 tn � iff 8�� � t1 � � M � h � i 	�
�
�
	 � � tn � � M � h � i < � ; � R �
M 	 h 	 i �5� a R � t1 	�
�
�
0	 tn � iff 8�� � t1 � � M � h � i 	�
�
�
0	 � � tn � � M � h � i < 4� ; � R �

(ii) M 	 h 	 i � � a � ϕ iff M 	 h 	 i �5� a ϕ
M 	 h 	 i �5� a � ϕ iff M 	 h 	 i � � a ϕ

(iii) M 	 h 	 i � � a ϕ � ψ iff M 	 h 	 i � � a ϕ and M 	 h 	 i $ � ϕ �#� i � � � a ψ
M 	 h 	 i �5� a ϕ � ψ iff M 	 h 	 i �5� a ϕ or M 	 h 	 i $ � ϕ �#� i � �5� a ψ

(iv) M 	 h 	 i � � a ϕ � ψ iff M 	 h 	 i �5� a ϕ or M 	 h 	 i $ � ϕ �#� i � � � a ψ
M 	 h 	 i �5� a ϕ � ψ iff M 	 h 	 i � � a ϕ and M 	 h 	 i $ � ϕ �#� i � �5� a ψ

(v) M 	 h 	 i � � a ϕ � ψ iff M 	 h 	 i � � a ϕ or M 	 h 	 i � � a ψ
M 	 h 	 i �5� a ϕ � ψ iff M 	 h 	 i �5� a ϕ and M 	 h 	 i �5� a ψ

(vi) M 	 h 	 i � � a � xg ϕ iff � d �A: : M 	 h � xg 6 d � 	 i � � a ϕ
M 	 h 	 i �5� a � xg ϕ iff

�
d �A: : M 	 h � xg 6 d � 	 i �7� a ϕ

(vii) M 	 h 	 i � � a
�

xg ϕ iff
�

d �A: : M 	 h � xg 6 d � 	 i � � a ϕ
M 	 h 	 i �5� a �

xg ϕ iff � d �A: : M 	 h � xg 6 d � 	 i �7� a ϕ
(viii) M 	 h 	 i � � a ?xg ϕ iff � yg � i : M 	 h � xg 6 h � yg � � 	 i � � a ϕ

M 	 h 	 i �5� a ?xg ϕ iff � yg � i : M 	 h � xg 6 h � yg � � 	 i �7� a ϕ

Overdefinedness is induced by the ?-operator. It is possible that a formula containing
a pronoun can be verified and falsified by a model M; i.e., M 	 h 	 i � � a ?xg ϕ and M 	 h 	 i �7� a
?xg ϕ. In addition, it might also happen that the semantic value of a formula ϕ is un-
defined. This is also due to (viii), where undefinedness results if there is no accessible
variable in the context to which the pronoun could be resolved. In this case it holds that
M 	 h 	 i 4� � a ?xg ϕ and M 	 h 	 i 4�5� a ?xg ϕ.

Thus, the resulting logic is four-valued containing besides truth (1) and falsity (0),
overdefinedness and underdefinedness. This can be illustrated by a Hasse diagram, as in
(13).

(13)

� 1 	 0 �
� 1 � � 0 �

/0

The sets denote the truth values that can be assigned to a formula. The singletons � 1 �
and � 0 � denote the classical truth values, /0 denotes undefinedness, and � 1 	 0 � denotes
overdefinedness.

Finally, we define a notion of entailment for sequences of formals that possibly con-
tain unresolved pronouns.

Definition 4 (Entailment in � pro). Let ϕ1 	�
�
�
0	 ϕn 	 ψ be in � pro, h an arbitrary variable
assignment, and i an arbitrary context. We say that ϕ1 	�
�
�
0	 ϕn ambiguously entail ψ,
written as ϕ1 	�
�
�
0	 ϕn � � a ψ, if for all M:



if for all j ��� 1 	�
�
�
1	 n � : M 	 h 	 � ϕ1 � ����� � ϕ j B 1 �!� i � � � a ϕ j

then M 	 h 	 i � � a ψ

Pronouns occurring in ψ are resolved against the context i which is also the context
of the premises. Thereby, ψ cannot pick antecedents introduced in the premises. Note,
that there are several ways to define dynamic entailment relations and the one proposed
is just one of them. [vB96, Chapter 7] classifies the entailment relation defined above
as update-to-update consequence. Observe, by the way, that our notion of entailment is
nonmonotonic, as most entailment relations in dynamic frameworks.

5 A Tableau Calculus for Pronoun Resolution

This section introduces our tableau calculus for reasoning with unresolved pronouns.
The calculus consists of two components, a set of tableau expansion rules, and contex-
tual parameters that allow us to interleave pronoun resolution and deduction steps. We
first discuss the rules and then provide a short example.

5.1 The Tableau Expansion Rules

To reason with pronoun ambiguities we use a tableau calculus that is both free-variable
and signed. The first property is simply to avoid the inefficiency of ground tableaux.
Free-variable tableaux are fairly standard and we will not say much about them here;
the reader is referred to [Fit96] instead. Signed tableaux are not new either, but here the
signs are employed for a novel purpose. In Section 3, we motivated the distinction be-
tween negation in the object language ( � ) and polarities of tableau nodes ( ) , * ). This
was necessary because � has an impact on the flow of contextual information, and to
guarantee structure preservation we do not want to allow tableau rules to introduce ad-
ditional negations. In addition, a distinction between verification and falsification is im-
portant to assign the right semantic values to formulas containing pronouns. An occur-
rence of a node of the form ) : ϕ means that ϕ is verifiable, which corresponds to � � a,
and an occurrence of the form * : ϕ means that ϕ is falsifiable, corresponding to �5� a.

The complete set of tableau rules constituting our calculus for pronoun ambiguity,C pro, is given in Table 1. The rules may seem somewhat overwhelming, but most of
them are familiar ones. Remember that nodes are annotated by labels and are of the form
� i 	 o 	 ρ 	 p � : ϕ, where i is the input context, o is the output context, which is computed
by � ϕ �!� i � . ρ indicates the origin of the formula, whether it occurred as a premise ( . ) or a
conclusion ( / ). Polarity is simply expressed by p, p �D� )-	�* � . The way in which context
is threaded through the tableau corresponds to the definition of contextual contribution,
cf. Definition 2. Polarity assignment is done as defined in Definition 3.

Given our earlier discussions, the expansion rules should be obvious, but some rules
deserve special attention. Let us first discuss the pronoun rules � ) : ? � and � * : ? � . First,
the ?-operator is simply dropped, and the variable it binds is substituted by one of its
accessible terms that agrees with the pronoun on gender. These instantiations are marked
as pro, in order to distinguish them from argument positions that are no instantiations of
a pronoun. The set PRO is the set of all marked terms. The superscript has no influence



Table 1. The tableau rules for E pro

F
i G o G ρ G HJI : ϕ K ψF

i G o LMG ρ G3HNI : ϕF
i O o L G o G ρ G3HNI : ψ

F H : KPI F
i G o G ρ G!Q(I : ϕ K ψF

i G o LRG ρ G"QSI : ϕ
F
i O o LRG o G ρ G"QSI : ψ

F Q : KPI
F
i G /0 G ρ G3HNI : ϕ T ψF

i G o G ρ G3HJI : ϕ
F
i G o L G ρ G3HNI : ψ

F H : TPI
F
i G /0 G ρ G!Q(I : ϕ T ψF

i G o G ρ G!QSI : ϕF
i G o LRG ρ G"QSI : ψ

F Q : TPI

F
i G /0 G ρ G3HNI : ϕ U ψF

i G o G ρ G!Q(I : ϕ
F
i O o G o LMG ρ G3HJI : ψ

F H : UAI
F
i G /0 G ρ G!QSI : ϕ U ψF

i G o G ρ G3HNI : ϕF
i O o G o L G ρ G!QSI : ψ

F Q : UAI
F
i G /0 G ρ G3HNI : V ϕF
i G o G ρ G"QSI : ϕ

F H : VPI
F
i G /0 G ρ G!QSI : V ϕF
i G o G ρ G3HJI : ϕ

F Q : VPI
F
i G /0 G ρ G3HNI : W xg ϕF

i O �
xg �XG o G ρ G3HJI : ϕ Y xg Z Xg [

F H : W+I
F
i G /0 G ρ G!QSI : W xg ϕF

i O �
xg �\G o G ρ G!Q(I : ϕ Y xg Z fg

F
X1 ]!]!] Xn I [

F Q : W+I †
F
i G o O �

xg �XG ρ G3HJI : ^ xgϕF
i O �

xg �XG o G ρ G3HJI : ϕ Y xg Z fg
F
X1 ]"]!] Xn I [

F H : ^0I †
F
i G o O �

xg �\G ρ G"QSI : ^ xg ϕF
i O �

xg �\G o G ρ G!Q(I : ϕ Y xg Z Xg [
F Q : ^0I

F
i O �

tg �XG o G ρ G3HJI : ?xg ϕF
i O �

tg �XG o G ρ G3HJI : ϕ Y xg Z tpro
g [

F H : ? I
F
i O �

tg �\G o G ρ G!Q(I : ?xg ϕF
i O �

tg �\G o G ρ G!Q(I : ϕ Y xg Z tpro
g [

F Q : ? I
F
i G o G ρ G3HNI : R

F
s1 G ]!]!] G sn IF

i LRG o LRG ρ LRG!Q(I : R
F
t1 G ]!]!] G tn I_ F _ I ‡

†Where X1 ]!]"] Xn are the free variables in ϕ and i.
‡If ρ `a ρ L then

�
s1 G ]!]!] G sn G t1 G ]!]"] G tn �+b PRO a /0



on unification of terms, it is just needed to constrain the closure of a branch to cases that
obey goodness.

Next, we consider the rules � ) : � � and � * :
� � . Both rules involve skolemization,

and the question is which influence pronoun variables have on skolem terms. Consider
the node in (14).

(14) � i 	 o 	 ρ 	!) � : � xg ?yg � ϕ
In (14), applying the tableau expansion rule � ) : � � will substitute xg by a skolem func-
tion fg � X1 
�
�
 Xn � , where X1, 
�
�
 , Xn are the free variables in ϕ. But what about yg � ? It does
not occur free in ϕ, because it is bound by the ?-operator, but it could be resolved to some
tn in the context, which contains free variables. This dilemma is due to the order of appli-
cation. First, skolemization is carried out, and then pronoun resolution. This leads to in-
correctness. For instance, from

�
xg � yg � ?zg R � zg 	 yg � � we can now derive � yg � � xg ?zg R � zg 	 yg � � ,

which is clearly not a valid derivation. Here, xg does not occur overtly in R � zg 	 yg � � , but
zg can be resolved to xg. To fix this, skolemization does not only have to depend on the
free variables occurring in formulas, but also on the free variables occurring in the terms
of the input context since pronouns can be resolved to these terms.

Finally, �!c � carries the proviso that two literals of distinct polarity, where both orig-
inate from the premises (marked . ) or both originate from the conclusion (marked / ),
do not allow to close a tableau branch if they contain pronoun instantiations. This al-
lows us to encode goodness into the tableau calculus, saying that pronouns can only be
resolved to antecedents that do not carry contradictory information, as exemplified by
(9). It ensures that the premises themselves and the conclusion on its own are interpreted
consistently. But of course, it is still possible to derive a contradiction from the combi-
nation of the former with the negation of the latter.

5.2 An Example

Given a two-sentence sequence A man sees a boy. He whistles, we want to see whether
we can derive A man whistles. The semantic representation of the premises is given by
the first two nodes, and the negation of the conclusion is given by the third node. The
corresponding proof is displayed in Table 2.

First, we try to resolve the pronoun to ghe. This allows us to close the rightmost branch,
with mgu � Uhe 6 ghe � . But then there is no contradictory node for �#� ghe � 	 /0 	 / 	�* � : man � ghe � .
Hence, we apply pronoun resolution again, and this time resolve it to fhe. Next, univer-
sal instantiation is applied with the new free variable Vhe. Now, all remaining branches
can be closed by the mgu � Vhe 6 fhe � . In Table 2, the pairs that allow to close a branch
are connected by a dashed line.

The threading of contextual information may seem a bit confusing, but it is hard to
display the dynamics of the instantiation of the context variables on ‘static’ paper. It may
be helpful to read the tableau rules in Table 1 as PROLOG clauses, where the context
variables of the parent of a rule unify with the context variables of the node the rule is
applied to.



Table 2. A Sample Proof in E pro

F
/0 G o1 G!d=G HJI : ^ xhe

F
man

F
xhe I\Ke^ yhe

F
boy

F
yhe IXK see

F
xhe G yhe I!I!I

F
o1 G o2 G!d=G3HJI : ?zhe whistle

F
zhe I

F
/0 G o3 GRfXG!QSI : ^ uhe

F
man

F
uhe I\K whistle

F
uhe I!I

o1 : a �
fhe �F �

fhe �\G o1 G!d=G HJI : man
F
fhe IXKe^ yhe

F
boy

F
yhe I\K see

F
fhe G yhe I!I

F3�
fhe �\G � fhe �XG!d=G3HNI : man

F
fhe I

F �
fhe �\G o1 G!d=G HJI : ^ yhe

F
boy

F
yhe I\K see

F
fhe G yhe I!I

o1 : a o1 O �
ghe �F3�

fhe G ghe �XG o4 G!d=G3HJI : boy
F
ghe I\K see

F
fhe G ghe I

F �
fhe G ghe �XG /0 G!d=G3HNI : boy

F
ghe I

F3�
fhe G ghe �XG /0 G!d=G3HNI : see

F
fhe G ghe I

F3�
fhe G ghe �\G /0 G!d=G HJI : whistle

F
ghe I

o3 : a �
Uhe �F3�

Uhe �XG o3 GMfXG!Q(I : man
F
Uhe I\K whistle

F
Uhe I

F3�
Uhe �XG /0 GMfXG!Q(I : man

F
Uhe I F3�

Uhe �XG /0 GMfXG!Q(I : whistle
F
Uhe IF �

fhe G ghe �\G /0 G!d=G3HNI : whistle
F
fhe I _ �

Uhe Z ghe �
o3 : a o3 O �

Vhe �F3�
Vhe �XG o3 GMfXG!Q(I : man

F
Vhe I\K whistle

F
Vhe I

F3�
Vhe �XG /0 GMfXG!Q(I : man

F
Vhe I F3�

Vhe �XG /0 GRfXG!QSI : whistle
F
Vhe I_ �

Vhe Z fhe � _ �
Vhe Z fhe �



6 Results

The tableau calculus
C pro has a number of advantages over a resolution-based approach

to pronoun resolution, as provided in [MdR98b]. First of all, it is possible to interleave
the computation of accessible variables with deduction, since preservation of structure
is guaranteed in our signed tableau method. This is not possible in resolution, because
it is assumed that the input is in conjunctive normal form, which destroys all structural
information needed for pronoun binding. Accessible antecedents can only be computed
by a preprocessing step, cf. [MdR98b].

But the major advantage is that no backtracking is needed if the choice of an an-
tecedent for a pronoun does not allow us to close all open branches; we simply apply
pronoun resolution again, choosing a different antecedent. Of course, more has to be
said about controlling proof construction than we have room for here. For instance, one
would like to prevent the proof method from choosing again an antecedent for a pronoun
that did not allow to close some branches. This can be accomplished by some simple
book keeping about the antecedents that have been used before.C pro has been implemented in PROLOG, and is based on leanTAP [BP95,PSar], a
well-known depth-first theorem prover for classical first-order logic. It is slightly adapted
for our purposes, where we dispense with the assumption that the input is in negation
normal form as this violates the principle of structure preservation. Of course, this adap-
tion results in a less lean, but still rather efficient theorem prover. The PROLOG imple-
mentation of

C pro is available online at g .
To conclude this section, let us turn to a brief discussion of soundness and complete-

ness of
C pro. There are at least two strategies for establishing soundness and complete-

ness. Of course, one can follow a direct strategy: prove soundness by in the traditional
manner, and prove completeness by using the ‘classical’ completeness proof for free
variable tableaux based on Hintikka sets is adapted. Here, we sketch an indirect strategy
that consists in reducing the soundness and completeness of

C pro to the soundness and
completeness of a traditional free-variable tableau calculi for first-order logic,

C class.
The basic intuition is the following: by analyzing tableaux for

C pro one can extract pro-
noun resolutions that can be used to help preprocess ambiguous � pro formulas and turn
them into traditional first-order formulas, while preserving enough information about
satisfiability.

Theorem 5 (Soundness of
C pro). If a closed tableau can be generated from Γ �h�@� /0 	 o 	 . 	!) � :i n

k j 1 ϕk 	 � /0 	 o � � 	 / 	�* � : ψ � 	 where ϕ1 	�
�
�
0	 ϕn 	 ψ �k� pro, then ϕ1, 
�
�
 , ϕn � � a ψ.

Proof. Given a closed tableau T for Γ, the pronoun instantiations � tpro
1 
�
�
 tpro

m � that led
to the closure of the branches of T are collected. Then, we relate the instantiations to
the pronoun variables � x1 
�
�
 xm � that introduced them by an application of � ) : ? � or� * : ? � . As � t1 
�
�
 tm � are free variables or skolem terms, we identify the quantifier vari-
ables � y1 
�
�
 ym � that introduced � t1 
�
�
 tm � . This yields two substitution of the form θ �� x1 6 y1 
�
�
 x j 6 y j � and θ ��l� x j m 1 6 y j m 1 
�
�
 xm 6 ym � , where θ disambiguates the pronouns
occurring in the premises, and θ � disambiguates the pronouns occurring in the conclu-
sion. To ensure that substituted variables are classically bound, we apply a re-bracketing
algorithm which is used in dynamic semantics, in order to relate dynamic semantics to



classical logic, cf. [GS91]. To illustrate the process of re-bracketing, it allows us to re-
place a dynamic formula such as � xϕ � x � � ψ � x � by its classical counterpart � x � ϕ � x � �
ψ � x ��� . More generally the re-bracketing algorithm may be specified as follows:

Definition 6 (Re-bracketing). Every dynamic formula can be translated to a formula
of classical first-order logic. In [GS91] a function n is defined that accomplishes this. n
is defined recursively:

1. n R � t1 
�
�
 tn � � R � t1 
�
�
 tn �
2. n=� ϕ �o�Nn ϕ
3. n%� ϕ1 � ϕ2 � �pn ϕ1 � n ϕ2
4. n=� xϕ �q� x n ϕ
5. n � xϕ � �

x n ϕ
6. n%� ϕ1 � ϕ2 � �

(a) nr� ψ1 � � ψ2 � ϕ2 ��� if ϕ1 � ψ1 � ψ2
(b) � x n%� ψ � ϕ2 � if ϕ1 �o� xψ
(c) n ϕ1 � n ϕ2 otherwise

7. n%� ϕ1 � ϕ2 � �
(a) nr� ψ1 � � ψ2 � ϕ2 ��� if ϕ1 � ψ1 � ψ2
(b)

�
x n%� ψ � ϕ2 � if ϕ1 �q� xψ

(c) n ϕ1 � n ϕ2 otherwise

Re-bracketing can be applied, because pronoun variables are always substituted by
quantified variables that are accessible in the sense of Definition 2, which is based on
the notion of accessibility in dynamic semantics, see e.g., [KR93,GS91].

Then, a closed tableau for ϕ1, 
�
�
 , ϕn, � ψ in
C pro gives rise to a closed tableau for

ϕ �1, 
�
�
 , ϕ �n, � ψ � in
C class, by the soundness of

C class, where ϕ �1, 
�
�
 , ϕ �n is the result of
applying θ and re-bracketing to ϕ1, 
�
�
 , ϕn, and � ψ � results from applying θ � and re-
bracketing to � ψ st
Theorem 7 (Completeness of

C pro). If an open tableau can be generated from Γ �h�%� /0 	 o 	 . 	#) � :i n
k j 1 ϕk 	 � /0 	 o � � 	 / 	�* � : ψ � 	 where ϕ1, 
�
�
 , ϕn 	 ψ �k� pro, then ϕ1, 
�
�
 , ϕn 4� � a ψ.

Proof. If Γ is consistent in
C pro, then it may be shown that for all admissible pronoun

resolutions θ, θ � , the set θϕ1, 
�
�
 , θϕn, θ �u� ψ is consistent in
C class. Obviously, we neeed

to get rid of ambiguous formulas involving the ?-operator. when moving from
C pro toC class, but this is what the admissible pronoun resolution does for us. By the complete-

ness of
C class (see [Fit96]), we get that θϕ1, 
�
�
 , θϕn, θ �R� ψ is (classically) satisfiable,

for any admissible θ, θ � . Hence, ϕ1, 
�
�
 , ϕn, � ψ is satisfiable according to � � a, as re-
quired. st

7 Conclusions

In this paper, we have proposed a tableau calculus that tries to tackle an instance of a
particularly important and difficult task in computational semantics: automated reason-
ing with ambiguity. A tableau calculus that allows one to interleave disambiguation and



deduction has been proposed to overcome the problem of state explosion one inevitably
runs into if theorem proving is applied to naı̈vely disambiguated semantic representa-
tions.

To enable on-the-fly disambiguation during proof development, it is necessary that
enough structural information of the original representation is preserved. In the case of
pronoun resolution this structural information is needed to define which variables can
serve as antecedents for pronouns. The nodes in the tableau were adorned with labels
containing this additional contextual information.

It turned out that tableau methods are especially well-suited for reasoning with nat-
ural language semantics, since they are analytic (in contrast to Natural Deduction), and
they allow for a more sensitive manipulation of the syntactic structures of the formulas
(in contrast to resolution methods). See, for instance, [KK98,MdR98c] for other appli-
cations of tableau methods in the area of computational semantics.

Future work will be devoted to extending our tableau calculus to more complex cases
of anaphora resolution, like presuppositions, or plural pronouns, where contextual infor-
mation has to contain more structure than just lists of accessible terms. At the same time,
it has to be investigated how a more comprehensive framework that allows to reason
with different kinds of ambiguity can be set up. We plan to combine our tableau calculus
for pronoun resolution with some of our earlier work on reasoning with quantificational
ambiguity, cf. [MdR98c].
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