Introduction to Modern Cryptography, Exercise \# 8

University of Amsterdam, Master of Logic
Lecturer: Christian Schaffner
TA: Joachim Schipper

1 November 2011
(to be handed in by Tuesday, 8 November 2011, 9:00)

1. Square-And-Multiply, Efficient Modular Exponentiation: Exercise B. 3 in [KL]. Argue why your algorithm is efficient. Corrected hint: Let $y=\left[a^{b} \bmod N\right]$ denote the answer. Use auxiliary variables x (initialized to a) and t (initialized to 1), and maintain the invariant $t \cdot x^{b}=y \bmod N$ while decreasing b and squaring x. The algorithm terminates when $b=0$ and t is equal to the answer.
2. Interactive Secure Encryption: Exercise 9.1 in [KL]
3. Man-In-The-Middle Attacks: Exercise 9.2 in [KL]
4. Key Exchange with Bit Strings: Exercise 9.3 in [KL]

5. CDH and DDH:

(a) Give an example of a (not necessarily multiplicative) group \mathcal{G} relative to which the CDH-Problem is easy.
(b) Prove formally that the hardness of the CDH problem relative to a group \mathcal{G} implies the hardness of the discrete logarithm problem relative to \mathcal{G}. (Exercise 7.15 in [KL])
(c) Prove formally that the hardness of the DDH problem relative to a group \mathcal{G} implies the hardness of the CDH problem relative go \mathcal{G}. (Exercise 7.16 in [KL])

Diffie-Hellman Key Exchange Using Buckets of Paint Image credit: wikimedia.org.

