
Introduction to 
Modern Cryptography

3rd lecture:	


Computational Security of 
Private-Key Encryption and 
Pseudorandomness

some of these slides are copied from or heavily inspired by the  
University College London MSc InfoSec 2010 course given by Jens Groth  
Thank you very much!



3rd lecture (today):	


•computational security	


•pseudorandomness	


•reduction proof

last time:	

• perfectly secure encryption	

• one-time pad	

• its limitations	




Turing Machine
• Simple well-defined mathematical model of 

computation	


• Church-Turing Thesis:  
Turing machines can compute anything that is 
computable (they are universal).	


• Measure time in steps a Turing machine takes 
(think of a step as a clock-cycle on processor)	


• Number of steps is “robust”, it is related to 
time in other more realistic models



Efficiency
• Definition:  

An efficient Turing machine is one that runs in 
time t(n) polynomial in the input length n.	


• Natural examples:	


• t(n) = n2 is efficient	


• t(n) = 2n is not efficient	


• Not so natural examples:	


• t(n) = n100 + 1000000000000 is efficient	


• t(n) = 2n-1000000 is not efficient



Polynomial time
• Why define efficient as polynomial time?	


• Combining two poly-time Turing machines gives 
poly-time Turing machine:	


• poly(n) + poly(n) = poly(n)	


• poly(n) poly(n) = poly(n)	


• poly( poly(n) ) = poly(n)	


• At least better than exponential time	


• Experience shows that security against poly-time 
adversary corresponds well with real life security



Probabilistic 
Turing Machines

• May make random choices. We model this by 
giving it additional randomness r←{0,1}*.	


• We write y ← Adv(x) or y := Adv(x;r) when 
adversary runs on input x with randomness r	


• PPT: probabilistic polynomial-time	


• players and adversaries are modeled as PPT 
Turing machines 



Negligible Advantage

• We want the adversary’s advantage ε(n) to 
decrease as we increase the security parameter	


• Definition:  
We say a function ε(n) is negligible if for all 
polynomials poly(n) we have 
 
	
  	
 ε(n) < 1 / poly(n)  
 
for all sufficiently large n.



Negligible Advantage
• We say a function ε(n) is negligible if for all 

polynomials poly(n) we have 
	
  	
 ε(n) < 1 / poly(n)  
for all sufficiently large n.	


• Natural examples:	


• 2-n is negligible	


• n-1 is not negligible	


• Closed under composition:	


• negl(n) + negl(n) = negl(n)	


• Resists polynomial scaling:	


• poly(n) negl(n) = negl(n)

• Less natural examples:	


• 21000000-n is negligible	


• n-100 is not negligible



Negligible Advantage
• We say a function ε(n) is negligible if for all 

polynomials poly(n) we have 
	
  	
 ε(n) < 1 / poly(n)  
for all sufficiently large n.	


• Natural examples:	


• 2-n is negligible	


• n-1 is not negligible	


• Closed under composition:	


• negl(n) + negl(n) = negl(n)	


• Resists polynomial scaling:	


• poly(n) negl(n) = negl(n)

• Less natural examples:	


• 21000000-n is negligible	


• n-100 is not negligible

Intuition: events occurring with negligible probability are so 
unlikely that they can be ignored for all practical purposes.



Definition 3.7
A private-key encryption scheme is a tuple of PPT 
algorithms (Gen,Enc,Dec) such that:	


1. The key-generation algorithm Gen takes as input the 
security parameter n and outputs a key k:  
k ← Gen(1n).    Assume: |k| ≥ n.	


2. for a plaintext message m ∈ {0,1}*  
ciphertext c ← Enck(m)	


3. for ciphertext c, we have m := Deck(c).	


Correctness:  For every n, every k output by  
Gen(1n),every m, it holds that Deck(Enck(m)) = m.



Definition 3.7
A fixed-length private-key encryption scheme is a tuple 
of PPT algorithms (Gen,Enc,Dec) such that:	


1. The key-generation algorithm Gen takes as input the 
security parameter n and outputs a key k:  
k ← Gen(1n).    Assume: |k| ≥ n.	


2. for a plaintext message m ∈ {0,1}ℓ(n) 

ciphertext c ← Enck(m)	


3. for ciphertext c, we have m := Deck(c).	


Correctness:  For every n, every k output by  
Gen(1n),every m, it holds that Deck(Enck(m)) = m.



Eavesdropping Indistinguishability Experiment

challenger
1n

m0 , m1 ← A(1n)  
|m0|=|m1| m0 , m1

k ← Gen(1n)  
b ← {0,1}	

c ← Enck(mb)c

b’

PrivKeav
A,⇧(n)

adversary A

b=b’ b≠b’

1 0

b’ ← A(c)  



Silvio Micali Shafi Goldwasser

1984:	

• semantic security	

• indistinguishability



PRG Indistinguishability Experiment

challenger

r ← {0,1}ℓ(n) 

s ← {0,1}n

w

b’

distinguisher D

b=b’ b≠b’

1 0

b’ ← D(w)  

b ← {0,1} 

if b=0,   w:=r	

if b=1,   w:=G(s)

G: {0,1}n → {0,1}ℓ(n)  a candidate PRG 



PRG Indistinguishability Experiment

w

b’

distinguisher D

b’ ← D(w)  

G: {0,1}n → {0,1}ℓ(n)  a candidate PRG 



Silvio Micali Manuel Blum

• 1984: defined 
notion of pseudo-
random generator



Andrew Chi-Chih Yao	


• PhD from Stanford and Chicago	

• Tsinghua University in Beijing	

• definition of PRGs and 

constructions	

!

• winner of Knuth prize and  
Turing Award

https://secure.wikimedia.org/wikipedia/en/wiki/Tsinghua_University
https://secure.wikimedia.org/wikipedia/en/wiki/Beijing
http://en.wikipedia.org/wiki/Knuth_Prize
http://en.wikipedia.org/wiki/Turing_Award

