Introduction to
Modern Cryptography

x 3rd lecture:

lxl Computational Security of
Private-Key Encryption and

x Pseudorandomness

some of these slides are copied from or heavily inspired by the
University College London MSc InfoSec 2010 course given by Jens Groth
Thank you very much!



last time:

* perfectly secure encryption
* one-time pad

e its limitations

3rd lecture (today):
*computational security
*pseudorandomness

*reduction proof



Turing Machine

Simple well-defined mathematical model of
computation

Church-Turing Thesis:

Turing machines can compute anything that is
computable (they are universal).

Measure time in steps a Turing machine takes
(think of a step as a clock-cycle on processor)

Number of steps is “robust”, it is related to
time in other more realistic models



Efficiency

® Definition:
An efficient Turing machine is one that runs in
time t(n) polynomial in the input length n.

® Natural examples:
® t(n) = n?is efficient
® t(n) = 2" is not efficient
® Not so natural examples:
e t(n) =n'% + 1000000000000 is efficient

® t(n) = 21000000 j5 not efficient



Polynomial time

® Why define efficient as polynomial time?

® Combining two poly-time Turing machines gives
poly-time Turing machine:

® poly(n) + poly(n) = poly(n)
® poly(n) poly(n) = poly(n)
® poly( poly(n) ) = poly(n)
® At least better than exponential time

® Experience shows that security against poly-time
adversary corresponds well with real life security



Probabilistic
Turing Machines

May make random choices.Ve model this by
giving it additional randomness r<{0,1}".

We write y + Adv(x) or y := Adv(x;r) when
adversary runs on input X with randomness r

PPT: probabilistic polynomial-time

players and adversaries are modeled as PPT
Turing machines



Negligible Advantage

® We want the adversary’s advantage €(n) to
decrease as we increase the security parameter

® Definition:
We say a function €(n) is negligible if for all
polynomials poly(n) we have

g(n) < | / poly(n)

for all sufficiently large n.



Negligible Advantage

® We say a function €(n) is negligible if for all
polynomials poly(n) we have

g(n) < | / poly(n)
for all sufficiently large n.

® Natural examples: ® | ess natural examples:
® 2" is negligible e 21000000-n js negligible
® n'!is not negligible  ® n"'% s not negligible

® Closed under composition:
® negl(n) + negl(n) = negl(n)

® Resists polynomial scaling:

® poly(n) negl(n) = negl(n)



Negligible Advantage

Intuition: events occurring with negligible probability are so

unlikely that they can be ignored for all practical purposes.

® Natural examples: ® | ess natural examples:
® 2" is negligible e 21000000-n js negligible
® n'!is not negligible  ® n"'% s not negligible

® Closed under composition:
® negl(n) + negl(n) = negl(n)

® Resists polynomial scaling:

® poly(n) negl(n) = negl(n)



Definition 3.7

A private-key encryption scheme is a tuple of PPT
algorithms (Gen,Enc,Dec) such that:

|. The key-generation algorithm Gen takes as input the
security parameter n and outputs a key k:

k < Gen(I"). Assume:|k| = n.

2. for a plaintext message m € {0, | }*
ciphertext ¢ < Enci(m)

3. for ciphertext c, we have m := Decy(c).

Correctness: For every n, every k output by
Gen(I"),every m, it holds that Deck(Enck(m)) = m.



Definition 3.7

A fixed-length private-key encryption scheme is a tuple
of PPT algorithms (Gen,Enc,Dec) such that:

|. The key-generation algorithm Gen takes as input the
security parameter n and outputs a key k:

k < Gen(I"). Assume:|k| = n.
2. for a plaintext message m € {0,1}4®
ciphertext ¢ < Encyg(m)

3. for ciphertext ¢, we have m := Decy(c).

Correctness: For every n, every k output by
Gen(I"),every m, it holds that Deck(Enck(m)) = m.



Eavesdropping Indistinguishability Experiment

Priv fjwn (1)

adversary A I challenger
mo,mi < AT T Gen(l)
|[mo|=|mi] , < & Gen(1"
_em D b e o,
C ¢ < Enci(mp)
b® < A(c)
b’
—

b=b’ b+b’

! !

| 0



Silvio Micali Shafi Goldwasser

| 984:

® semantic security
* indistinguishability



PRG Indistinguishability Experiment
G:{0,1}» = {0,1}# ™ a candidate PRG

distinguisher D challenger
r {O’ | }ﬁ W)

oy b « {0,1}

W if b=0, w:=r
e ifb=1, w:=G(s)

b’
—

b’ < D(w)
b=b’ b#b’

! !

| 0



PRG Indistinguishability Experiment
G:{0,1}» = {0,1}# ™ a candidate PRG

distinguisher D

b’ < D(w) X



Silvio Micali Manuel Blum

e |984: defined

notion of pseudo-
random generator




Andrew Chi-Chih Yao -

* PhD from Stanford and Chicago

* Tsinghua University in Beijing

* definition of PRGs and
constructions

* winner of Knuth prize and
Turing Award



https://secure.wikimedia.org/wikipedia/en/wiki/Tsinghua_University
https://secure.wikimedia.org/wikipedia/en/wiki/Beijing
http://en.wikipedia.org/wiki/Knuth_Prize
http://en.wikipedia.org/wiki/Turing_Award

