Introduction to Modern Cryptography Class Exercises \#1

University of Amsterdam, Master of Logic, 2014
Lecturer: Christian Schaffner
TA: Malvin Gattinger

Thursday, 4 September 2014

Class Exercises (to be solved during exercise class)

1. Questions about the video lectures:
(a) Name some cryptographic primitives and use cases.
(b) What is modern about Modern Cryptography?
(c) What is the keyspace for the substitution, Vigener and the one-time pad ciphers?
(d) Give examples for deterministic and randomized algorithms.
(e) Why could the birthday paradox be relevant in Cryptography?
2. State the contrapositive of the following statements:
(a) If it rains, the trees get wet.
(b) If the car drives, its fuel tank is not empty.
(c) If p is a prime, then $p=2$ or p is odd.
(d) If assumption X holds, protocol Y is secure.
(e) If you can factorize efficiently, the RSA protocol is insecure.
3. Let the probability that a news article contains the word president be 20%. The probability that it contains the word president if it already contains the word Obama is 35%. The probability that it contains the word president if it does not contain the word Obama is 5%. Under these assumptions, what is the probability that a news article contains the word Obama?
4. Probability theory Let E_{1} and E_{2} be probability events. Then, $E_{1} \wedge E_{2}$ denotes their conjunction, i.e. $E_{1} \wedge E_{2}$ is the event that both E_{1} and E_{2} occur. The conditional probability of E_{1} given E_{2}, denoted $\operatorname{Pr}\left[E_{1} \mid E_{2}\right]$ is defined as

$$
\operatorname{Pr}\left[E_{1} \mid E_{2}\right]:=\frac{\operatorname{Pr}\left[E_{1} \wedge E_{2}\right]}{\operatorname{Pr}\left[E_{2}\right]}
$$

as long as $\operatorname{Pr}\left[E_{2}\right] \neq 0$. Prove Bayes' theorem.
Theorem 1 (Bayes' theorem) Let E_{1} and E_{2} be probability events with $\operatorname{Pr}\left[E_{2}\right] \neq 0$. Then,

$$
\operatorname{Pr}\left[E_{1} \mid E_{2}\right]=\frac{\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2} \mid E_{1}\right]}{\operatorname{Pr}\left[E_{2}\right]} .
$$

