Introduction to Modern Cryptography Class Exercises #1

University of Amsterdam, Master of Logic, 2014 Lecturer: Christian Schaffner TA: Malvin Gattinger

Thursday, 4 September 2014

Class Exercises (to be solved during exercise class)

- 1. Questions about the video lectures:
 - (a) Name some cryptographic primitives and use cases.
 - (b) What is modern about Modern Cryptography?
 - (c) What is the keyspace for the substitution, Vigener and the one-time pad ciphers?
 - (d) Give examples for deterministic and randomized algorithms.
 - (e) Why could the birthday paradox be relevant in Cryptography?
- 2. State the contrapositive of the following statements:
 - (a) If it rains, the trees get wet.
 - (b) If the car drives, its fuel tank is not empty.
 - (c) If p is a prime, then p = 2 or p is odd.
 - (d) If assumption X holds, protocol Y is secure.
 - (e) If you can factorize efficiently, the RSA protocol is insecure.
- 3. Let the probability that a news article contains the word *president* be 20%. The probability that it contains the word *president* if it already contains the word *Obama* is 35%. The probability that it contains the word *president* if it does not contain the word *Obama* is 5%. Under these assumptions, what is the probability that a news article contains the word *Obama*?
- 4. Probability theory Let E_1 and E_2 be probability events. Then, $E_1 \wedge E_2$ denotes their conjunction, i.e. $E_1 \wedge E_2$ is the event that both E_1 and E_2 occur. The conditional probability of E_1 given E_2 , denoted $\Pr[E_1|E_2]$ is defined as

$$\Pr[E_1|E_2] := \frac{\Pr[E_1 \wedge E_2]}{\Pr[E_2]}$$

as long as $\Pr[E_2] \neq 0$. Prove Bayes' theorem.

Theorem 1 (Bayes' theorem) Let E_1 and E_2 be probability events with $Pr[E_2] \neq 0$. Then,

$$Pr[E_1|E_2] = \frac{Pr[E_1] \cdot Pr[E_2|E_1]}{Pr[E_2]}$$