| | | | ٠ | _ | | | | | | | C | | | | | | |------|-----------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--| | 10 | | | | | | Q. | 01 | | | Ç | 00 | | | | | | | | <u>-1</u> | 110 | 110 | 101 | 101 | 100 | 100 | 011 | 011 | 010 | 2 | 001 | 901 | 000 | 000 | | | 1111 | 1110 | 1101 | 1100 | 1011 | 1010 | 1001 | 1000 | 0111 | 0110 | 0101 | 0100 | 0011 | 0010 | 0001 | 0000 | | ## The total symbol code budget available when making a uniquely indicated by the size of the box it Figure 5.1. The symbol coding budget. The 'cost' 2^{-l} of each codeword (with length l) is is written in. The total budget You can think of this diagram as showing a codeword supermarket, with the codewords arranged in aisles by their length, and the cost of each codeword indicated by the size of its box on the shelf. If the cost of the codewords that you take exceeds the budget then your code will not be uniquely decodeable. | | C_0 : | |---|---| | - 0 | a_i | | 11 10 01 00 | a_i $c(a_i)$ l_i a 1000 4 b 0100 4 c 0010 4 d 0001 4 | | C ₀ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 1 1110
0 11001
1010 1000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000 | d c b a a_i | | - 0 | $c(a_i)$ 0 10 110 111 | | 10 01 80 | C_3 : | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 00000 00000 00000 00000 00000 00000 0000 | $egin{array}{c} l_i \ 1 \ 2 \ 3 \ 3 \ 3 \ \end{array}$ | | | C_4 C_5 a 00 0 b 01 1 c 10 00 d 11 11 | | 111 1110 11110 11110 11110 11110 1110 | | | - 0 | C_6 : a_i $c(a_i)$ p_i $h(p_i)$ l_i a 0 $1/2$ 1.0 1 b 01 $1/4$ 2.0 2 c 011 $1/8$ 3.0 3 d 111 $1/8$ 3.0 3 | | | C_6 : p_i p_i $1/2$ $1/4$ $1/8$ $1/8$ | | 111 101 100 010 000 000 | $h(p_i) \ 1.0 \ 2.0 \ 3.0 \ 3.0$ | | 1111
1110
1100
1100
1100
1000
1000
100 | $egin{array}{c c} l_i \ \hline 2 \ 3 \ \hline 3 \ \hline \end{array}$ | | I | | | | | |-------|--------|------------------------|----------|------------| | a_i | p_i | $\log_2 \frac{1}{p_i}$ | l_i | $c(a_i)$ | | മ | 0.0575 | 4.1 | 4 | 0000 | | Ъ | 0.0128 | 6.3 | 6 | 001000 | | C | 0.0263 | _ | ೮ | 00101 | | Д | 0.0285 | 5.1 | ೮ | 10000 | | Ф | 0.0913 | 3.5 | 4 | 1100 | | Ħ | 0.0173 | 5.9 | 6 | 111000 | | ଫ | 0.0133 | 6.2 | 6 | 001001 | | ਖ | 0.0313 | 5.0 | ೮ | 10001 | | р. | 0.0599 | 4.1 | 4 | 1001 | | ت. | 0.0006 | 10.7 | 10 | 1101000000 | | ᅜ | 0.0084 | 6.9 | 7 | 1010000 | | _ | 0.0335 | 4.9 | ೮٦ | 11101 | | Ħ | 0.0235 | 5.4 | 6 | 110101 | | Ħ | 0.0596 | 4.1 | 4 | 0001 | | 0 | 0.0689 | 3.9 | 4 | 1011 | | р | 0.0192 | 5.7 | 6 | 111001 | | Д | 0.0008 | 10.3 | 9 | 110100001 | | r | 0.0508 | 4.3 | ೮ | 11011 | | Ø | 0.0567 | 4.1 | 4 | 0011 | | ct | 0.0706 | 3.8 | 4 | 1111 | | u | 0.0334 | 4.9 | တ | 10101 | | ⋖ | 0.0069 | 7.2 | ∞ | 11010001 | | W | 0.0119 | 6.4 | 7 | 1101001 | | × | 0.0073 | 7.1 | 7 | 1010001 | | У | 0.0164 | 5.9 | 6 | 101001 | | N | 0.0007 | 10.4 | 10 | 1101000001 | | ı | 0.1928 | 2.4 | 2 | 01 | | | | | | | Figure 5.6. Huffman code for the English language ensemble (monogram statistics). codelengths and the ideal codelengths $\log_2 1/p_i$. the ensemble is 4.11 bits. Observe the disparities between the assigned ure 5.6. This code has an expected length of 4.15 bits; the entropy of