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Noisy channel

During the course we assumed that information sent over a channel was
noise-free, that is information was losslesly transmitted through the channel.
Real channels are noisy.

We want to find out how to send messages through a noisy channel such that
the rate of messages send is maximized, but the error is small.
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Binary Symmetric Channel

Example

P(y = 0|x = 0) = 1− p

P(y = 1|x = 0) = p

P(y = 0|x = 1) = p

P(y = 1|x = 1) = 1− p
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Discrete memoryless channel

Definition

A discrete memoryless channel(X ,P(Y |X ),Y) is characterized by an input
alphabet X and an output alphabet Y and a set of conditional probability
distributions P(y |x), one for each x ∈ X . These transition probabilities may be
written in matrix form:

Qji := P(y = bj |x = ai )

The n′th extension is the channel (X n,P(Y n|X n),Yn) with
p(yn|xn) =

∏n
i=1 p(yi |xi )

Binary symmetric channel
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Definitions

Capacity

We define the information channel capacity of a discrete memoryless channel as

C = max
Px

I(X ;Y )

Where Px is the probability distribution of X , the random variable over the
alphabet X .

Block code

An (M,n) code for the channel (X ,P(Y |X ),Y) consists of the following:

An index set {1, 2, . . . ,M}.
An encoding function X n : {1, 2, . . . ,M} → X n, yielding codewords
xn(1), xn(2), . . . , xn(M). The set of codewords is called the codebook .

A decoding function g : Yn → {1, 2, . . . ,M}. Deterministic rule which
assigns a guess to each y ∈ Yn.
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Formal notions of error
Given that i was sent, the probability of error:

λi = P(g(Y n) 6= i |X n = xn(i))

Average :

P(n)
e =

1

M

M∑
i=1

λi

Rate

The rate of an (M,n) code is

R =
log(M)

n
, bits per transmission
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Shannon’s noisy-channel theorem

Theorem
For a discrete memory-less channel, for every rate R < C, there exists a sequence
of (2nR , n) codes with maximum probability of error λ(n) → 0
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Noisy-Typewriter

Example of theorem

We take the index set to be: {1, 2, . . . , 13}
The following encoding function X (1) = a,X (2) = c , . . . , x(M) = y

The decoding function maps the received letter to the nearest letter in the
code.

Then our rate R = log(13)
1 , which can be shown to be smaller than capacity and

the error is always zero.
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Idea

Idea
For large block lengths, every channel looks like the noisy typewriter; the channel
has a subset of inputs that produce essentially disjoint sequences at the output.
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Typical sequences

Definition typical sequence

Let X be a random variable over an alphabet X . A sequence x ∈ X of length n is
called typical of tolerance β if and only if

|1
n
log

1

p(xN)
− H(X )| < β

Example

Suppose we flip a coin 10 times, then

x := 1111100000

Is typical for every β ≥ 0.
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Joint Typicality

Definition jointly typical sequence

Let X ,Y be a random variable over the alphabets X ,Y. Two sequences x ∈ X n

and y ∈ Yn of length n are called typical of tolerance β if and only if both x and
y are typical and

|1
n
log

1

p(xn, yn)
− H(X ,Y )| < β

We define A
(n)
ε to be the set of jointly typical sequences.
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Typicality theorems

Theorem

Typicality theorem: Let (X n,Y n) be sequences of length n drawn i.i.d according
to p(xn, yn) =

∏n
i=1 p(xi , yi ). Then:

1 P((X n,Y n) ∈ A
(n)
ε )→ 1 as n→∞

2 (1− ε)2n(H(X ,Y )−ε) ≤ |A(n)
ε | ≤ 2n(H(X ,Y )+ε)

3 if (X ′n,Y ′n) ∼ p(xn)p(yn), then

(1− ε)2−n(I (X ;Y )+3ε) ≤ P((X ′n,Y ′n) ∈ A(n)
ε ) ≤ 2−n(I (X ;Y )−3ε)

Intuition
1 ”Large messages wil always become typical”

2 ”Size of set of typical messages is approximately 2nH(X ,Y )”

3 ”The odds that two random messages are jointly typical is small for large n
and depends on the mutual information”
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Decoding

Decoding by joint typicality

The probability that any pair of typical X n and Y n are jointly typical is about
2(−n(I (X ;Y ))(part 3 of theorem),

Hence we expect that if we consider 2n(I (X ;Y )) such pairs before coming
across a jointly typical pair.

Thus if we decode based on joint typicality, the odds that we confuse a
codeword with the codeword that caused the output Y n is small if we have
2n(I (X ;Y )) codewords.
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Outline of proof

Theorem
For a discrete memory-less channel, for every rate R < C, there exists a sequence
of (2nR , n) codes with maximum probability of error λ(n) → 0

Proof outline

We select 2nR random codewords.

Decode by joint typicality

Analyse the error, there are 2 types:

The output Y n is not jointly typical with the transmitted codeword
There is some other codeword jointly typical with Y n

The first error type goes to zero because of (1) from previous slide

The second error goes to zero if R < C and because of reasoning above.
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Proof

Theorem
For a discrete memory-less channel, for every rate R < C, there exists a sequence
of (2nR , n) codes with maximum probability of error λ(n) → 0

Creating a code

Fix p(x). Generate 2nR codewords independently at random according to the
distribution

p(xn) =
n∏

i=1

p(xi ).

And assign a codeword X (W ) to each message W . Note that this code has rate
R. Furthermore, we make this code known to both the sender and receiver.
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Decoding

Theorem
For a discrete memory-less channel, for every rate R < C, there exists a sequence
of (2nR , n) codes with maximum probability of error λ(n) → 0

Decoding

The receiver declares that the message W̃ was sent if the following conditions are
satisified:

1 (X n(W̃ ),Y n) is jointly typical

2 There is no other index W ′ 6= W̃ such that (X n(W ′),Y n) are jointly typical

Thus we make a mistake when:

1 The output Y n is not jointly typical with the transmitted codeword

2 There is some other codeword jointly typical with Y n
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Analysing error (1)

Theorem
For a discrete memory-less channel, for every rate R < C, there exists a sequence
of (2nR , n) codes with maximum probability of error λ(n) → 0

Analysing error (1)

By the first part of the typicality theorem we know that

∀ε∃N : P((X n(W̃ ),Y n) /∈ A(n)
ε ) ≤ ε
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Analysing error (2)

Theorem
For a discrete memory-less channel, for every rate R < C, there exists a sequence
of (2nR , n) codes with maximum probability of error λ(n) → 0

Analysing error (2)

We know by the third part of the typicality theorem that a random X n(W ′) and
Y n are jointly typical with odds ≤ 2−n(I (X ;Y )−3ε). There are 2nR − 1 such cases.
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Overall error

Theorem
For a discrete memory-less channel, for every rate R < C, there exists a sequence
of (2nR , n) codes with maximum probability of error λ(n) → 0

Overall error
Thus with the union bound and the previous slide:

Pr(Error) = Pr(Error1∪Error2) ≤ ε+
∑2nR

i=2 2−n(I (X ;Y )−3ε) ≤ ε+ 2−n(I (X ;Y )−R−3ε)

If n is sufficiently large and R < I (X ;Y )− 3ε we get: Pr(Error) ≤ 2ε

If we take our distribution p(x) to be the distribution p∗(x) which achieves
capacity we can replace the condition R < I (X ;Y ) by R < C . This proofs our
theorem.
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Thanks for listening!
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