Gambling with Information Theory

Govert Verkes

University of Amsterdam

January 27, 2016

How do you bet?

Private noisy channel transmitting results while you can still bet, correct transmission(p) or error in transmission(q), with $p \gg q$.

Introduction Kelly gambling Horse races Entropy rate Stock market

Overview

- ► Kelly gambling
- Horse races
- ► Value of side information
- ▶ Entropy rate of stochastic processes
- Dependent horse races

John L. Kelly

- John Larry Kelly, Jr. (1923–1965)
- ▶ PhD in Physics
- ► Bell labs
- Shannon (Las Vegas)
- Warren Buffett (Investor)

Gambler with private wire

Communication channel transmitting results

 V_0 : Starting capital

Noiseless channel

$$1\longrightarrow 1$$

$$\vdots \hspace{1cm} V_N=2^NV_0$$
 $N\longrightarrow N$ V_N : Capital after N bets

Gambler with private wire

- Communication channel transmitting results
- Noiseless channel

$$1 \longrightarrow 1$$

$$\vdots \hspace{1cm} V_N = 2^N V_0$$
 $N \longrightarrow N$
 $V_N : \mathsf{Capital after N bets}$

Exponential rate of growth

$$G = \lim_{N \to \infty} \frac{1}{N} \log \frac{V_N}{V_0}$$

 V_0 : Starting capital

Gambler with noisy private wire

Exponential rate of growth

$$G = \lim_{N \to \infty} \frac{1}{N} \log \frac{V_N}{V_0}$$

How would you bet on the received result?

p : probability of correct transmission

q: probability of error in transmission

Gambler with noisy private wire

Exponential rate of growth

$$G = \lim_{N \to \infty} \frac{1}{N} \log \frac{V_N}{V_0}$$

How would you bet on the received result?

p : probability of correct transmission

q: probability of error in transmission

 ℓ : the fraction of gambler's capital that he bets

$$V_N = (1+\ell)^W (1-\ell)^L V_0$$

Horse races

Wealth relative

$$S(X) = b(X)o(X)$$

b(i): fraction of gambler's wealth on horse i

o(i): o(i)-for-1 odds on horse i

m: number of horses

Horse races

Wealth relative

$$S(X) = b(X)o(X)$$

b(i): fraction of gambler's wealth on horse i

o(i): o(i)-for-1 odds on horse i

m: number of horses

Wealth after N races (fraction)

$$S_n = \prod_{i=1}^n S(X_i)$$

Doubling rate

$$W(\mathbf{b}, \mathbf{p}) = \mathbb{E}[\log S(X)] = \sum_{i=1}^{m} p_i \log b_i o_i$$

 p_i : probability that horse i wins

Horse races

Horse races doubling rate

Doubling rate

$$W(\mathbf{b}, \mathbf{p}) = \mathbb{E}[\log S(X)] = \sum_{i=1}^{m} p_i \log b_i o_i$$

 p_i : probability that horse i wins

Justification

$$\frac{1}{n}\log S_n = \frac{1}{n}\sum_{i=1}^n \log S(X_i) \xrightarrow{LLN} \mathbb{E}[\log S(X)]$$

$$S_n = \prod_{i=1}^n S(X_i) \qquad S_n = 2^{nW(\mathbf{b}, \mathbf{p})}$$

Maximize doubling rate

$$W^*(\mathbf{p}) = \max_{\mathbf{b}: \sum b_i = 1} W(\mathbf{b}, \mathbf{p}) = \max_{\mathbf{p}: \sum b_i = 1} \sum_{i=1}^m p_i \log b_i o_i$$

Maximize doubling rate

$$W^*(\mathbf{p}) = \max_{\mathbf{b}: \sum b_i = 1} W(\mathbf{b}, \mathbf{p}) = \max_{\mathbf{p}: \sum b_i = 1} \sum_{i=1}^m p_i \log b_i o_i$$

 $\mathbf{b} = \mathbf{p}$

Maximize doubling rate

$$W^*(\mathbf{p}) = \max_{\mathbf{b}: \sum b_i = 1} W(\mathbf{b}, \mathbf{p}) = \max_{\mathbf{p}: \sum b_i = 1} \sum_{i=1}^m p_i \log b_i o_i$$
 $\mathbf{b} = \mathbf{p}$
 $W^*(\mathbf{b}) = \sum p_i \log o_i - H(\mathbf{p})$

▶ 3 horses with 3-for-1 odds

$$p_1 = \frac{1}{2}, \ p_2 = p_3 = \frac{1}{4}$$
 $o_1 = o_2 = 3$

how would you bet?

▶ 3 horses with 3-for-1 odds

$$p_1 = \frac{1}{2}, \ p_2 = p_3 = \frac{1}{4}$$
 $o_1 = o_2 = 3$

how would you bet?

$$\sum p_i \log o_i - H(\mathbf{p}) = \log 3 - H(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}) = 0.085$$
$$S_n = 2^{n0.085} = (1.06)^n$$

► Odds are fair with respect to some distribution

$$\sum \frac{1}{o_i} = 1 \quad \text{and} \quad r_i = \frac{1}{o_i}$$

► Odds are fair with respect to some distribution

$$\sum \frac{1}{o_i} = 1 \quad \text{and} \quad r_i = \frac{1}{o_i}$$

$$W(\mathbf{b}, \mathbf{p}) = \sum p_i \log \frac{b_i}{p_i} \frac{p_i}{r_i}$$
$$= D(p||r) - D(p||b)$$

Gambling with side information

- ▶ We have prior information Y
- Conditional doubling rate

$$W^*(X) = \sum_{\mathbf{p}_i \log o_i} p_i \log o_i - H(\mathbf{p})$$

$$W^*(X|Y) = \max_{\mathbf{b}(x|y)} \sum_{x,y} p(x,y) \log b(x|y) o(x)$$

Gambling with side information

- We have prior information Y
- Conditional doubling rate

$$W^*(X) = \sum p_i \log o_i - H(\mathbf{p})$$

$$W^*(X|Y) = \max_{\mathbf{b}(x|y)} \sum_{x,y} p(x,y) \log b(x|y) o(x)$$

$$= \sum p_i \log o_i - H(X|Y)$$

Gambling with side information

- We have prior information Y
- Conditional doubling rate

$$W^*(X) = \sum p_i \log o_i - H(\mathbf{p})$$

$$W^*(X|Y) = \max_{\mathbf{b}(x|y)} \sum_{x,y} p(x,y) \log b(x|y) o(x)$$

$$= \sum p_i \log o_i - H(X|Y)$$

Increase in doubling rate

$$\Delta W = W^*(X|Y) - W^*(X)$$

= $H(X) - H(X|Y) = I(X;Y)$

Stochastic processes

► Sequence of random variables

$$\{X_t\}_{t\in\mathcal{T}}$$
 for discrete process $\mathcal{T}=\mathbb{N}$ $Pr(X_1,X_2,\ldots,X_n)$

Stochastic processes

Sequence of random variables

$$\{X_t\}_{t\in\mathcal{T}}$$
 for discrete process $\mathcal{T}=\mathbb{N}$ $Pr(X_1,X_2,\ldots,X_n)$

- $lackbox{t} \in \mathcal{T}$ is more often than not interpreted as time
- Arbitrary dependence

$$\Pr(X_{n+1} \mid X_1, X_2, \dots, X_n)$$

Stochastic processes properties

Markov

$$\Pr(X_{n+1} \mid X_1, X_2, \dots, X_n) = \Pr(X_{n+1} \mid X_n)$$

Stationary

$$Pr(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

= $Pr(X_{1+t} = x_1, X_{2+t} = x_2, ..., X_{n+t} = x_n)$

Entropy rate

Stochastic processes properties

Markov

$$\Pr(X_{n+1} \mid X_1, X_2, \dots, X_n) = \Pr(X_{n+1} \mid X_n)$$

Stationary

$$Pr(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

= $Pr(X_{1+t} = x_1, X_{2+t} = x_2, ..., X_{n+t} = x_n)$

Example: Simple random walk

$$Y = \begin{cases} 1 & \text{with Pr: } \frac{1}{2} \\ -1 & \text{with Pr: } \frac{1}{2} \end{cases}$$
$$X_n = \sum_{i=1}^n Y_i$$

Stationary? Markov?

llv gambling

rse races

Entropy rate

Entropy rate

Definition

$$H(\mathcal{X}) = \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \dots X_n)$$

Examples

► *X* is i.i.d

$$H(X_1, X_2, \dots, X_n) = nH(X_1)$$

$$H(\mathcal{X}) = H(X_1)$$

Examples

► *X* is i.i.d

$$H(X_1, X_2, \dots, X_n) = nH(X_1)$$

$$H(\mathcal{X}) = H(X_1)$$

► X independent but not identically distributed

$$H(X_1, X_2, ..., X_n) = \sum_{i=1}^n H(X_i)$$

Entropy rate, related quantity

Definition

$$H(\mathcal{X}) = \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \dots X_n)$$

$$H'(\mathcal{X}) = \lim_{n \to \infty} H(X_n \mid X_1, X_2, \dots X_{n-1})$$

► For stationary processes

$$H(\mathcal{X}) = H'(\mathcal{X})$$

Dependent horse races

▶ Horse race is dependent on past performance of horses

 $\{X_n\}$: Sequence of horse race outcomes

► Horse race is dependent on past performance of horses

 $\{X_n\}$: Sequence of horse race outcomes

$$W^*(X_n|X_{n-1},X_{n-2},\ldots,x_1) = \log m - H(X_n|X_{n-1},X_{n-2},\ldots,X_1)$$
$$W = \log m - H(X)S_n$$

Stock market

 $X = (X_1, X_2, \dots, X_n)$: Stock vector

 $b = (b_1, b_2, \dots, b_n)$: Investment vector (portfolio)

 $S = \mathbf{b}^t \mathbf{X}$: Money gained after one day

 $X \sim F(x)$: joint distribution of vector prices

$$W(\mathbf{b}, F) = \int \log \mathbf{b}^{t} \mathbf{x} \ dF(\mathbf{x})$$
$$W * (F) = \max_{\mathbf{b}} W(\mathbf{b}, F)$$

Conclusion

▶ Optimal betting strategy not always highest expected value

Conclusion

- ▶ Optimal betting strategy not always highest expected value
- Proportional betting is the way to go for fair odds

Conclusion

- ▶ Optimal betting strategy not always highest expected value
- Proportional betting is the way to go for fair odds
- Stock market interesting ([CT] chapter 15)

References

- ► Thomas M. Cover, Joy A. Thomas. "Elements of information theory"
- ▶ J. L. Kelly, Jr., "A New Interpretation of Information Rate"

Questions?