x	$\log _{2}(P(\mathbf{x}))$
..1...............1....1...1.1......1......1.........1..................1......11...	. -50.1
...1....1....1......1...1.......1................................1...	. -37.3
.1...1.1...1...11..1.1.......11.....................1..1.1..1...1.............. 1.	. -65.9
1.1..1.............1....................11.1.1........................1....1.1.11....	. -56.4
...11.........1..1....1.1.....1........1...1..1....1..........1....................	. -53.2
.1.....1.......1.1......1........1..........1..1...................1......	- -43.7
....1......1.....1..1.........1.........1.........1.....1.11....................	. -46.8
....1..1.1............111...............1............1.......1.1...1...1........... 1	$1-56.4$
..1........1....1.....1........1...1.....................................1...	. -37.3
.....1......................1..............1....1..1.1.1.1.....................................1.	. -43.7
1.....................1.........1..1..................1...1...1........1.11..1.1..1........	-56.4
11.1.........1. \qquad .1...... 1. . 1.	. -37.3
.1........1..1.1..........1.....11........1.1...1...........1..........11........	. -56.4
.....1..1..1....1.11.1.1.1..1..................1..........1...........1.1............	. -59.5
....11.1.....1...1..1........................1......1............1......1........	. -46.8
	. -15.2
11	$1-332.1$

Figure 4.10. The top 15 strings are samples from X^{100}, where $p_{1}=0.1$ and $p_{0}=0.9$. The bottom two are the most and least probable strings in this ensemble. The final column shows the log-probabilities of the random strings, which may be compared with the entropy $H\left(X^{100}\right)=46.9$ bits.
$n(r)=\binom{N}{r}$

$P(\mathbf{x})=p_{1}^{r}\left(1-p_{1}\right)^{N-r}$
$\log _{2} P(\mathbf{x})$

$n(r) P(\mathbf{x})=\binom{N}{r} p_{1}^{r}\left(1-p_{1}\right)^{N-r}$

Book by David MacKay

0.045
0.04
0.035
0.03
0.025
0.02
0.015
0.01
0.005
0.04
0.035
0.03
0.025
0.02
0.02
0.015
0.01
0.005
0 $0-1.1$
 dom variables each with entropy $H(X)$ can be compressed into more than $N H(X)$ bits with negligible risk of information loss, as $N \rightarrow \infty$; conversely if they are compressed into fewer than $N H(X)$ bits it is virtually certain that information will be lost.

Book by David MacKay

at least $H-\epsilon$ bits. These two extremes tell us that regardless of our specific allowance for error, the number of bits per symbol needed to specify \mathbf{x} is H bits; no more and no less.

Book by David MacKay

