English Text over Erasure Channel

10% erasures:

A_ she said_this she |_oked down at her han_s, _nd was surpris_d to _ee
_hat she had put on one of th_ Rabbit's _ittle white _id_gloves wh_le

she was talking._'How CAN | have done that?'_she_th__ght. "_ m_st

be growing small again.’ She got up and _ent to the table to measure

hersel_ by it,_a_d_fo_nd that,_as n_arly as she could gu___, _ e was now

20% erasures:

a_out _wofe__ high,_an__as_go__ g _n__h_ nking rapid__: she _oon found
out that t_e _ause of this was the fa_ she_wa_ holding, _nd__he dropp_d

it has_ily,_just i_t__e to_avoid shrinking away altog_ther.

‘That__AS a narrow es_ape!' said ___ce,_a good deal _righ__ned at _h_

s_dde_ change,_but very glad_to _in_ __rsel_ s_Ill_in existence; '_nad



English Text over Erasure Channel

30% erasures:
n__ _rth__gard_n!"_nd_her wit__ Il _p e _ c_to_he_li_tl_door:
_U_, _|_Ilthelitt_edoo_w_s__hut__ain,a__t_e_ li_ |_g_lde_key was
lyingont_e _|_ss_t_ble_ s be_ore, 'and _hing_are wor_e th_n _v_r,
t ought_t_ po_rchild, 't r_Ineve___s_o_ ll_asth_ be_o e, _e_e !
And |_dec_arei_'_t  bad,_tha__ tis!
40% erasures:

S_e€e.S t es__w_rdsh__ _oot_sli_ped, and_in_ano_her ___ent,

shewa_up__ _e_c_inin_altwater. _e_first_d_a_ast ats__

had eh__fal_e_int__t a,_ _ndi_th__ _ase_| _can go_ba_k_by

r_il_ay,__hes_i_to_her_e_.(Alicehad _e_to_these_ _d__ nc__in

_rli,an_h__c_me_t_th_ gener Cl ,_a__her_e _ou

as_ !
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50% erasures:

_ont__ Eng_l a a e ba___ngma_h_n_sin_th_

S_,S h Nn__Ig_I___in_the san_ woode_ S _ h__arw

of gin__h s,_an_behin_the__a _ailwayst__o . )H_we_r, _h_s_

ma_e ou_tha__ew.s n_h__o f_ e w_.i_she h .dw_p_w_n

SN e h h.

60% erasures:

—w.sh |l h " r s_.m__!" ad___c_,as_s__s_am_a_out, g
fi__h . h | s_edfo__t wl_upo_ ,__
b g _rwed_n r!l h 'L g ni__, u_el!

Ho_e e, _v_ry gis_u_.e__ o-_YV.

th h_ar eth__gs N Lo N 0 |




Source-channel separation
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e For (time-varying) DMC we can design the source encoder and channel coder
separately and still get optimum performance

e Not true for:

— Correlated Channel and Source
— Multiple access with correlated sources

— Broadcast channel

ECE 534 by Natasha Devroye
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Figure 1.5. A binary data
sequence of length 10000
transmitted over a binary
symmetric channel with noise
level f = 0.1. [Dilbert image
Copyright(©)1997 United Feature
Syndicate, Inc., used with
permission. |
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Algorithm 1.9. Majority-vote
decoding algorithm for R3. Also
shown are the likelihood ratios
(1.23), assuming the channel is a
binary symmetric channel;

y=0=1/f
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Figure 1.11. Transmitting 10 000
source bits over a binary
symmetric channel with f = 10%
using a repetition code and the
majority vote decoding algorithm.
The probability of decoded bit
error has fallen to about 3%; the
rate has fallen to 1/3.
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Figure 1.12. Error probability py,
versus rate for repetition codes
over a binary symmetric channel
with f = 0.1. The right-hand
figure shows py, on a logarithmic
scale. We would like the rate to
be large and py, to be small.
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S t S t S t S t
0000 0000000 0100 0100110 1000 1000101 1100 1100011
0001 0001011 0101 0101101 1001 1001110 1101 1101000
0010 0010111 0110 0110001 1010 1010010 1110 1110100
0011 0011100 0111 0111010 1011 1011001 1111 1111111

Table 1.14. The sixteen codewords

{t} of the (7,4) Hamming code.

Any pair of codewords differ from

each other in at least three bits.
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Figure 1.17. Transmitting 10 000
source bits over a binary
symmetric channel with f = 10%
using a (7,4) Hamming code. The
probability of decoded bit error is
about 7%.
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Figure 1.18. Error probability py,
versus rate R for repetition codes,
the (7,4) Hamming code and
BCH codes with blocklengths up
to 1023 over a binary symmetric
channel with f = 0.1. The
righthand figure shows p}, on a
logarithmic scale.
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Figure 1.19. Shannon’s
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noisy-channel coding theorem.
The solid curve shows the
Shannon limit on achievable
values of (R, pp) for the binary
symmetric channel with f = 0.1.
Rates up to R = C are achievable
with arbitrarily small py,. The
points show the performance of
some textbook codes, as in

figure 1.18.

Shannon limit (the solid curve) is
R=C/(1 - Hz(pp)), where C and
Hs are defined in equation (1.35).
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 The equation defining the
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C' ~ 0.53. Let us consider what this means in terms of noisy disk drives. The
repetition code R3 could communicate over this channel with py, = 0.03 at a
rate R = 1/3. Thus we know how to build a single gigabyte disk drive with
pp = 0.03 from three noisy gigabyte disk drives. We also know how to make a
single gigabyte disk drive with py, ~ 107!° from sixty noisy one-gigabyte drives
(exercise 1.3, p.8). And now Shannon passes by, notices us juggling with disk
drives and codes and says:

“‘What performance are you trying to achieve? 10~°? You don’t
need sixty disk drives — you can get that performance with just
two disk drives (since 1/2 is less than 0.53). And if you want
pp = 10718 or 1072* or anything, you can get there with two disk
drives too!’
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C' ~ 0.53. Let us consider what this means in terms of noisy disk drives. The
repetition code R3 could communicate over this channel with py, = 0.03 at a
rate R = 1/3. Thus we know how to build a single gigabyte disk drive with
pp = 0.03 from three noisy gigabyte disk drives. We also know how to make a
single gigabyte disk drive with py, ~ 107!° from sixty noisy one-gigabyte drives
(exercise 1.3, p.8). And now Shannon passes by, notices us juggling with disk
drives and codes and says:

“‘What performance are you trying to achieve? 10~°? You don’t
need sixty disk drives — you can get that performance with just
two disk drives (since 1/2 is less than 0.53). And if you want
pp = 10718 or 1072* or anything, you can get there with two disk

drives too!’

[Strictly, the above statements might not be quite right, since, as we shall see,
Shannon proved his noisy-channel coding theorem by studying sequences of
block codes with ever-increasing blocklengths, and the required blocklength
might be bigger than a gigabyte (the size of our disk drive), in which case,
Shannon might say ‘well, you can’t do it with those tiny disk drives, but if you
had two noisy terabyte drives, you could make a single high-quality terabyte

drive from them’.]
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