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The Measurement of Information

[R.V.L. Hartley, 1928]
“A quantitative measure of “information” is developed which is based on

physical as contrasted with psychological considerations.”
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How much “choice” is involved?

Shannon’s set of axioms;

Proof: we are talking about the entropy indeed;

Other sets of axioms: comparisons and consequences;

Logarithm: why?
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Shannon’s axioms
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Shannon’s axioms

Suppose we have a set of possible events whose probabilities of occurrence
are p1, p2, . . . , pn:

1 H is continuous in pi , for any i ;

2 If pi = 1
n , for any i , then H is a monotonic increasing function of n;

3 If a choice be broken down into two successive choices, the original H
is the weighted sum of the individual values of H.
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Uniqueness of Uncertainty Measure

Theorem

There exists a unique H satisfying the three above assumptions.
In particular, H is of the form:

H = −K
n∑

i=1

pi log(pi ).

Proof: Consider A(n) := H( 1n , . . . ,
1
n ).
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Alternative set of axioms [CT]
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Alternative set of axioms [CT]

Let Hm(p1, p2, . . . , pm) be a sequence of symmetric functions, then it
satisfies the following properties:

1 Normalization: H2(12 ,
1
2) = 1;

2 Continuity: H(p, 1 − p) is a continuous function in p;

3 Grouping: Hm(p1, p2, . . . , pm) =
= Hm−1(p1 + p2, p3, . . . , pm) + (p1 + p2)H2( p1

p1+p2
, p2
p1+p2

).
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Alternative set of axioms [Carter]

Let I (p) be an information measure and let p indicate a probability
measure.

1 I (p) ≥ 0 (non-negative);

2 I (1) = 0,
(we don’t get any information from an event with probability 0);

3 let p1 and p2 be the probabilities of two independent events. Then,
I (p1 · p2) = I (p1) + I (p2) (!);

4 I is a continuous and monotonic function of the probability (slight
changes in probability-slight changes in information).
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Comparisons between axiomatisations

I (p2) = I (p · p) = I (p) + I (p) = 2 · I (p) by axiom (3);

by induction on n, we get: I (pn) = I (p · · · · · p) = n · I (p);

I (p) = I ((p
1
m )m) = m · I (p

1
m ), then: I (p

1
m ) = 1

m I (p);

by continuity, for any 0 < p ≤ 1 and 0 < a: I (pa) = a · I (p).

We get, again, I (p) = log( 1
p ) as measure of information.
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Logarithm: why?

“The most natural choice is the logarithmic function.” (Shannon, 1948)

It is practically more useful;

It is nearer to our intuitive feelings;

It is mathematically more suitable.
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Here it is: the Entropy!

[John von Neumann]
“You should call it entropy, for two reasons. In the first place, your

uncertainty function has been used in statistical mechanics under that
name, so it already has a name. In the second place, and more important,
nobody knows what entropy really is, so in a debate you will always have

the advantage.”
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“Claude Shannon invented a way to measure the ‘amount of information’
in a message without defining the word information itself, nor even
addressing the question of the meaning of the message.”
(Hans Christian von Baeyer)

THANK YOU!
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Baudot System
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