The Measure of Information
 Uniqueness of the Logarithmic Uncertainty Measure

Almudena Colacito

Information Theory
Fall 2014

December 17th, 2014

The Measurement of Information

[R.V.L. Hartley, 1928]
"A quantitative measure of "information" is developed which is based on physical as contrasted with psychological considerations."

How much "choice" is involved?

- Shannon's set of axioms;
- Proof: we are talking about the entropy indeed;
- Other sets of axioms: comparisons and consequences;
- Logarithm: why?

How much "choice" is involved?

■ Shannon's set of axioms;

- Proof: we are talking about the entropy indeed;
- Other sets of axioms: comparisons and consequences;
- Logarithm: why?

How much "choice" is involved?

■ Shannon's set of axioms;

■ Proof: we are talking about the entropy indeed;

■ Other sets of axioms: comparisons and consequences;

- Logarithm: why?

How much "choice" is involved?

- Shannon's set of axioms;

■ Proof: we are talking about the entropy indeed;

- Other sets of axioms: comparisons and consequences;
- Logarithm: why?

How much "choice" is involved?

- Shannon's set of axioms;

■ Proof: we are talking about the entropy indeed;

■ Other sets of axioms: comparisons and consequences;

■ Logarithm: why?

Shannon's axioms

Shannon's axioms

Suppose we have a set of possible events whose probabilities of occurrence are $p_{1}, p_{2}, \ldots, p_{n}$:
$1 H$ is continuous in pi, for any i;
2 If $p i=\frac{1}{n}$, for any i, then H is a monotonic increasing function of n;
3 If a choice be broken down into two successive choices, the original H is the weighted sum of the individual values of H .

Shannon's axioms

Suppose we have a set of possible events whose probabilities of occurrence are $p_{1}, p_{2}, \ldots, p_{n}$:
$1 H$ is continuous in pi, for any i;
2 If $p i=\frac{1}{n}$, for any i, then H is a monotonic increasing function of n;
3 If a choice be broken down into two successive choices, the original H is the weighted sum of the individual values of H .

Shannon's axioms

Suppose we have a set of possible events whose probabilities of occurrence are $p_{1}, p_{2}, \ldots, p_{n}$:
$1 H$ is continuous in pi, for any i;
2 If $p i=\frac{1}{n}$, for any i, then H is a monotonic increasing function of n;
3 If a choice be broken down into two successive choices, the original H is the weighted sum of the individual values of H .

Shannon's axioms

Suppose we have a set of possible events whose probabilities of occurrence are $p_{1}, p_{2}, \ldots, p_{n}$:
$1 H$ is continuous in pi, for any i;
2 If $p i=\frac{1}{n}$, for any i, then H is a monotonic increasing function of n;
3 If a choice be broken down into two successive choices, the original H is the weighted sum of the individual values of H .

Uniqueness of Uncertainty Measure

Theorem
There exists a unique H satisfying the three above assumptions.
In particular, H is of the form:

$$
H=-K \sum_{i=1}^{n} p_{i} \log \left(p_{i}\right) .
$$

Proof: Consider $A(n):=H\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)$.

Uniqueness of Uncertainty Measure

Theorem
There exists a unique H satisfying the three above assumptions.
In particular, H is of the form:

$$
H=-K \sum_{i=1}^{n} p_{i} \log \left(p_{i}\right) .
$$

Proof: Consider $A(n):=H\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)$.

Alternative set of axioms [CT]

Alternative set of axioms [CT]

Let $H_{m}\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ be a sequence of symmetric functions, then it satisfies the following properties:

1 Normalization: $H_{2}\left(\frac{1}{2}, \frac{1}{2}\right)=1$;
$\boxed{2}$ Continuity: $H(p, 1-p)$ is a continuous function in p;
3 Grouping: $H_{m}\left(p_{1}, p_{2}, \ldots, p_{m}\right)=$

Alternative set of axioms [CT]

Let $H_{m}\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ be a sequence of symmetric functions, then it satisfies the following properties:

1 Normalization: $H_{2}\left(\frac{1}{2}, \frac{1}{2}\right)=1$;
乙 Continuity: $H(p, 1-p)$ is a continuous function in p;
3 Grouping: $H_{m}\left(p_{1}, p_{2}, \ldots, p_{m}\right)=$

Alternative set of axioms [CT]

Let $H_{m}\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ be a sequence of symmetric functions, then it satisfies the following properties:

1 Normalization: $H_{2}\left(\frac{1}{2}, \frac{1}{2}\right)=1$;
2 Continuity: $H(p, 1-p)$ is a continuous function in p;

Alternative set of axioms [CT]

Let $H_{m}\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ be a sequence of symmetric functions, then it satisfies the following properties:

1 Normalization: $H_{2}\left(\frac{1}{2}, \frac{1}{2}\right)=1$;
2 Continuity: $H(p, 1-p)$ is a continuous function in p;
3 Grouping: $H_{m}\left(p_{1}, p_{2}, \ldots, p_{m}\right)=$

$$
=H_{m-1}\left(p_{1}+p_{2}, p_{3}, \ldots, p_{m}\right)+\left(p_{1}+p_{2}\right) H_{2}\left(\frac{p_{1}}{p_{1}+p_{2}}, \frac{p_{2}}{p_{1}+p_{2}}\right) .
$$

Alternative set of axioms [Carter]

Let $I(p)$ be an information measure and let p indicate a probability measure.
$1 I(p) \geq 0$ (non-negative);
『 $I(1)=0$,
(we don't get any information from an event with probability 0);
3 let p_{1} and p_{2} be the probabilities of two independent events. Then, $I\left(p_{1} \cdot p_{2}\right)=I\left(p_{1}\right)+I\left(p_{2}\right)(!) ;$
4 $/$ is a continuous and monotonic function of the probability (slight changes in probability-slight changes in information).

Alternative set of axioms [Carter]

Let $I(p)$ be an information measure and let p indicate a probability measure.
$1 I(p) \geq 0$ (non-negative);
$2 I(1)=0$,
(we don't get any information from an event with probability 0);
${ }^{3}$ let p_{1} and p_{2} be the probabilities of two independent events. Then, $I\left(p_{1} \cdot p_{2}\right)=I\left(p_{1}\right)+I\left(p_{2}\right)(!) ;$
4 I is a continuous and monotonic function of the probability (slight changes in probability-slight changes in information).

Alternative set of axioms [Carter]

Let $I(p)$ be an information measure and let p indicate a probability measure.
$1 I(p) \geq 0$ (non-negative);
$2 I(1)=0$,
(we don't get any information from an event with probability 0);
3 let p_{1} and p_{2} be the probabilities of two independent events. Then, $I\left(p_{1} \cdot p_{2}\right)=I\left(p_{1}\right)+I\left(p_{2}\right)(!)$;

4 $/$ is a continuous and monotonic function of the probability (slight changes in probability-slight changes in information).

Alternative set of axioms [Carter]

Let $I(p)$ be an information measure and let p indicate a probability measure.
$1 I(p) \geq 0$ (non-negative);
$2 I(1)=0$,
(we don't get any information from an event with probability 0);
3 let p_{1} and p_{2} be the probabilities of two independent events. Then, $I\left(p_{1} \cdot p_{2}\right)=I\left(p_{1}\right)+I\left(p_{2}\right)(!) ;$
4 $/$ is a continuous and monotonic function of the probability (slight changes in probability-slight changes in information).

Alternative set of axioms [Carter]

Let $I(p)$ be an information measure and let p indicate a probability measure.
$1 \quad I(p) \geq 0$ (non-negative);
$2 I(1)=0$,
(we don't get any information from an event with probability 0);
3 let p_{1} and p_{2} be the probabilities of two independent events. Then, $I\left(p_{1} \cdot p_{2}\right)=I\left(p_{1}\right)+I\left(p_{2}\right)(!) ;$
$4 I$ is a continuous and monotonic function of the probability (slight changes in probability-slight changes in information).

Comparisons between axiomatisations

$\square I\left(p^{2}\right)=I(p \cdot p)=I(p)+I(p)=2 \cdot I(p)$ by axiom (3);

- by induction on n, we get: $I\left(p^{n}\right)=I(p \cdots \cdot p)=n \cdot I(p)$;
$\square I(p)=I\left(\left(p^{\frac{1}{m}}\right)^{m}\right)=m \cdot I\left(p^{\frac{1}{m}}\right)$, then: $I\left(p^{\frac{1}{m}}\right)=\frac{1}{m} I(p)$;
- by continuity, for any $0<p \leq 1$ and $0<a: I\left(p^{a}\right)=a \cdot I(p)$.

$$
\text { We get, again, } 1(p)-\log \left(\frac{1}{p}\right) \text { as measure of information. }
$$

Comparisons between axiomatisations

$\square I\left(p^{2}\right)=I(p \cdot p)=I(p)+I(p)=2 \cdot I(p)$ by axiom (3);

■ by induction on n, we get: $I\left(p^{n}\right)=I(p \cdots p)=n \cdot I(p)$;
$\square I(p)=I\left(\left(p^{\frac{1}{m}}\right)^{m}\right)=m \cdot I\left(p^{\frac{1}{m}}\right)$, then: $I\left(p^{\frac{1}{m}}\right)=\frac{1}{m} I(p)$;

- by continuity, for any $0<p \leq 1$ and $0<a: I\left(p^{a}\right)=a \cdot I(p)$. We get, again, $\prime \prime(p)=\log \left(\frac{1}{p}\right)$ as measure of information.

Comparisons between axiomatisations

$\square I\left(p^{2}\right)=I(p \cdot p)=I(p)+I(p)=2 \cdot I(p)$ by axiom (3);

■ by induction on n, we get: $I\left(p^{n}\right)=I(p \cdots \cdot p)=n \cdot I(p)$;

- $I(p)=I\left(\left(p^{\frac{1}{m}}\right)^{m}\right)=m \cdot I\left(p^{\frac{1}{m}}\right)$, then: $I\left(p^{\frac{1}{m}}\right)=\frac{1}{m} I(p)$;
- by continuity, for any $0<p \leq 1$ and $0<a: I\left(p^{a}\right)=a \cdot I(p)$. We get, again, $I(p)=\log \left(\frac{1}{p}\right)$ as measure of information.

Comparisons between axiomatisations

$\square I\left(p^{2}\right)=I(p \cdot p)=I(p)+I(p)=2 \cdot I(p)$ by axiom (3);

■ by induction on n, we get: $I\left(p^{n}\right)=I(p \cdots p)=n \cdot I(p)$;

- $I(p)=I\left(\left(p^{\frac{1}{m}}\right)^{m}\right)=m \cdot I\left(p^{\frac{1}{m}}\right)$, then: $I\left(p^{\frac{1}{m}}\right)=\frac{1}{m} I(p)$;
- by continuity, for any $0<p \leq 1$ and $0<a: I\left(p^{a}\right)=a \cdot I(p)$.

We get, again, $I(p)=\log \left(\frac{1}{p}\right)$ as measure of information.

Comparisons between axiomatisations

$\square I\left(p^{2}\right)=I(p \cdot p)=I(p)+I(p)=2 \cdot I(p)$ by axiom (3);

■ by induction on n, we get: $I\left(p^{n}\right)=I(p \cdots p)=n \cdot I(p)$;

- $I(p)=I\left(\left(p^{\frac{1}{m}}\right)^{m}\right)=m \cdot I\left(p^{\frac{1}{m}}\right)$, then: $I\left(p^{\frac{1}{m}}\right)=\frac{1}{m} I(p)$;

■ by continuity, for any $0<p \leq 1$ and $0<a: I\left(p^{a}\right)=a \cdot I(p)$.

$$
\text { We get, again, } I(p)=\log \left(\frac{1}{p}\right) \text { as measure of information. }
$$

Comparisons between axiomatisations

$\square I\left(p^{2}\right)=I(p \cdot p)=I(p)+I(p)=2 \cdot I(p)$ by axiom (3);

■ by induction on n, we get: $I\left(p^{n}\right)=I(p \cdots \cdot p)=n \cdot I(p)$;

- $I(p)=I\left(\left(p^{\frac{1}{m}}\right)^{m}\right)=m \cdot I\left(p^{\frac{1}{m}}\right)$, then: $I\left(p^{\frac{1}{m}}\right)=\frac{1}{m} I(p)$;

■ by continuity, for any $0<p \leq 1$ and $0<a: I\left(p^{a}\right)=a \cdot I(p)$.
We get, again, $I(p)=\log \left(\frac{1}{p}\right)$ as measure of information.

Logarithm: why?

"The most natural choice is the logarithmic function." (Shannon, 1948)

- It is practically more useful;
- It is nearer to our intuitive feelings;
- It is mathematically more suitable.

Logarithm: why?

"The most natural choice is the logarithmic function." (Shannon, 1948)

- It is practically more useful;
- It is nearer to our intuitive feelings;
- It is mathematically more suitable.

Logarithm: why?

"The most natural choice is the logarithmic function." (Shannon, 1948)
■ It is practically more useful;
■ It is nearer to our intuitive feelings;

- It is mathematically more suitable.

Logarithm: why?

"The most natural choice is the logarithmic function." (Shannon, 1948)
■ It is practically more useful;

- It is nearer to our intuitive feelings;

■ It is mathematically more suitable.

Here it is: the Entropy!

[John von Neumann]
"You should call it entropy, for two reasons. In the first place, your uncertainty function has been used in statistical mechanics under that name, so it already has a name. In the second place, and more important, nobody knows what entropy really is, so in a debate you will always have the advantage."

"Claude Shannon invented a way to measure the 'amount of information' in a message without defining the word information itself, nor even addressing the question of the meaning of the message." (Hans Christian von Baeyer)

References

1 C. E. Shannon, A Mathematical Theory of Communication, The Bell System Technical Journal, Vol. 27, pp. 379-423, 623-656, July, October, 1948.

2 R. V. Hartley, Transmission of Information, 1928.

3 T. M. Cover, J. A. Thomas, Elements of Information Theory, second edition, Wiley-Interscience, New York, 2006.

4 T. Carter, An Introduction to Information Theory and Entropy, http://astarte.csustan.edu/ tom/SFI-CSSS, California State University Stanislaus.

Baudot System

