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Abstract. The standard security definition of unconditional secure
function evaluation, which is based on the ideal/real model paradigm, has
the disadvantage of being overly complicated to work with in practice.
On the other hand, simpler ad-hoc definitions tailored to special scenar-
ios have often been flawed. Motivated by this unsatisfactory situation,
we give an information-theoretic security definition of secure function
evaluation which is very simple yet provably equivalent to the standard,
simulation-based definitions.

1 Introduction

1.1 Secure Function Evaluation

Secure function evaluation is a cryptographic task originally introduced by Yao
in [30]. In essence, this task enables a set of mutually distrustful parties without
access to a trusted intermediary to jointly compute the output of a function f
without any party revealing any information about its input or output to the
other parties beyond what these parties can infer from their own inputs and
outputs. Goldreich, Micali and Wigderson [21] showed how to achieve this for
any function f in a computationally secure way. Schemes ensuring unconditional
security were subsequently provided by Ben-Or, Goldwasser and Wigderson [3]
and independently by Chaum, Crépeau and Damg̊ard [12].

Micali and Rogaway [25] and Beaver [2] proposed formal security definitions
for secure function evaluation. Both definitions were inspired by the simulation
paradigm used by Goldwasser, Micali and Rackoff [22] to define zero-knowledge
proofs of knowledge. In a nutshell, to each real protocol computing f we asso-
ciate a two-step procedure in an ideal model, where each party simply forwards
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its input to a trusted party which in turn computes f and distributes the rel-
evant outputs to the parties. The real protocol is deemed secure if any adver-
sary attacking the protocol has a counterpart in the ideal model that achieves
a similar result simply by processing the input prior to forwarding it to the
trusted party, and then by processing the output it receives from it. In other
words, a protocol is secure if any attack can be simulated in the much more
restrictive ideal model. Such protocols secure in the ideal/real model paradigm
were later shown to be sequentially composable in the sense that the composi-
tion of two or more secure protocols is itself a secure protocol. The sequential
composability of secure protocols was further explored by Canetti [9, 10] and
Goldreich [20].

Canetti [11] also defined universal composability, an even stronger security re-
quirement that guarantees that protocols satisfying it can be securely composed
concurrently in any environment. A similar security definition was provided in-
dependently by Backes, Pfitzmann and Waidner [1]. Unfortunately, however ap-
pealing the properties of these security definitions may be, they are too strong
to allow even basic tasks such as bit commitment to be realized without further
assumptions. For this reason, we will limit ourselves to the simpler definition
given by Goldreich [20].

1.2 Oblivious Transfer

1-out-of-n string oblivious transfer, denoted
(
n
1

)
-OTk, is a primitive that allows

a sender Alice to send one of n binary strings of length k to a receiver Bob.
The primitive allows Bob to receive the string of his choice while concealing
this choice from (possibly dishonest) Alice. On the other hand, the primitive
guarantees that (any dishonest) Bob cannot obtain information about more than
one of the strings, including partial joint information on two or more strings.

The first variant of oblivious transfer was introduced by Wiesner [28]. Inde-
pendently, Rabin re-introduced oblivious transfer in [27] and demonstrated its
potential as a cryptographic tool. Its applicability to multi-party computation
was shown by Even, Goldreich and Lempel in [19]. It has since been proved that
oblivious transfer is in fact sufficient by itself to securely compute any function
[23]. More completeness results followed in [14], [15] and [24].

1.3 Contributions

The motivation behind our work was to come up with a general information-
theoretic security definition to replace the various ad-hoc definitions proposed in
the past for specific cryptographic primitives. To this end, we adopt the standard
security definition based on the ideal/real model paradigm of Goldreich [20] for
computationally-bounded parties, and adapt it to a model where the parties are
allowed to be computationally unbounded and to use independent sources of
randomness such as channels. We then distill the relevant security properties of
the ideal model into a set of information-theoretic conditions, which we use as a
basis for constructing our new formal definition of security. We prove that despite
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its apparent simplicity, our definition is in fact equivalent to the original based on
the ideal/real model paradigm. We then examine the important special case of
oblivious transfer, and show that in this case, the resulting security requirements
can be significantly simplified. We also revisit some of the information-theoretic
definitions of security used in the past and point out subtle flaws that some of
them contain. As an illustration of the usefulness of our definitions, we give a
simple proof for the protocol presented in [29] that optimally inverts

(2
1

)
-OT.

1.4 Shortcomings of Previously Proposed Security Definitions for
Oblivious Transfer

We revisit some information-theoretic definitions for oblivious transfer that
appear in the literature and list some of their shortcomings. Our examples
demonstrate that coming up with the ‘right’ information-theoretic definition
is a delicate task, which is the reason why in this paper we aim for a security
definition provably equivalent to the standard definition based on the ideal/real
model paradigm.

Random Inputs. In [18], only oblivious transfer with random inputs is con-
sidered, thereby restricting the scope of the proposed definitions to only a few
special cases.

Problems with the Security for the Receiver. In [5, 26], the definition of
security for the receiver requires that the sender’s view be independent of the
receiver’s input. This is often unattainable: in the most general case, where we
assume that there is a known dependency between the inputs, no protocol can
satisfy the above security condition since the sender’s input, which is always part
of his own view, will be correlated with the input of the receiver. The definition
should instead require that the two variables be independent given the sender’s
input.

Problems with the Security for the Sender. The security for the sender
is more difficult to formalize correctly. In addition to problems analogous to the
ones presented above for the definition of security for the receiver ([5, 26]), there
are several commonly encountered difficulties:

– In [6, 16] a dishonest receiver is only allowed to change his input in a deter-
ministic way. Specifically, the random variable C′ indicating the receiver’s
effective input (i.e., the bit he eventually obtains) must be a deterministic
function of the input C, in contrast to the ideal model where C′ can be
chosen probabilistically by the dishonest receiver.

– In [7] the random variable C′ may depend on the honest sender’s input,
which is impossible in the ideal model. Furthermore, the view V of the
dishonest receiver is required to be independent of the honest sender’s input
X conditioned on the original input C and the receiver’s output XC′ , but
not on C′. This definition will hence admit some clearly insecure protocols.
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For example, suppose the dishonest receiver picks C′ ∈ {0, 1} uniformly at
random (independently of C) and the protocol allows him to output V =
(XC′ , X1−C′ ⊕ C′). While it is true that V is independent of X0, X1 given
C, X ′

C , no such protocol can be simulated in the ideal model since both
inputs can be deduced from C′ and V .

Abort. In [6, 16, 7], the honest player is allowed to abort the protocol. However,
it is possible that the dishonest player gets some information before the honest
player aborts, or that the fact of aborting itself provides information about the
honest player’s inputs.

A correct definition is given in [17] in the context of the bounded-storage
model. However, this definition is overly complicated and requires a special setup
stage, which is in general not present in OT protocols.

1.5 Preliminaries

Let X , Y , and Z be three random variables. We will often use expressions of the
form

I(X ; Y | Z) = 0 ,

where I is the conditional mutual Shannon information. This means that X and
Y are independent, given Z. The same condition can also be expressed by saying
that X, Y and Z form a Markov-chain,

X ↔ Z ↔ Y ,

or by
PY |ZX = PY |Z .

By the chain rule for mutual information we have

I(X ; Y W | Z) = I(X ; W | Z) + I(X ; Y | WZ) .

The information processing inequality says that local computation cannot in-
crease mutual information. In other words, for any probabilistic f we have

I(X ; Y | Z) ≥ I(f(X); Y | Z) .

The statistical distance or variational distance between the distributions of two
random variables X and Y over the same domain V is defined as

δ(X, Y ) =
1
2

∑

v∈V

∣
∣Pr[X = v] − Pr[Y = v]

∣
∣.

We also use the notation X ≡ε Y for δ(X, Y ) ≤ ε. If X and Y have the same
distribution, i.e., δ(X, Y ) = 0, we write X ≡ Y . The statistical distance can
alternatively be expressed as:

δ(X, Y ) = max
S

(Pr[X ∈ S] − Pr[Y ∈ S]) .
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From this expression it is easy to see that the optimal algorithm distinguishing
the two distributions can succeed with probability exactly 1

2 + δ(X, Y ). Another
important property of the statistical distance is that for any random variables
X and Y , there exists a random variable X̃ with the same distribution as Y
satisfying Pr[X̃ �= X ] = δ(X, Y ).

2 Definition of Secure Function Evaluation

In this section we provide a definition of secure function evaluation. We follow
Definition 7.2.10 of [20] (see also [10]) but modify the associated model as follows:

i) We allow the adversary to be computationally unbounded.
ii) We require that the output distributions of the ideal and the real model be

either perfectly indistinguishable or statistically indistinguishable (as opposed
to computationally indistinguishable).

iii) We consider the input alphabet to be fixed.
iv) We allow randomized players that use independent sources of randomness,

rather than supplying randomness to otherwise deterministic players.
v) We allow both players to have an output.

Note that ii) and iii) are just consequences of i) while iv) is used to simplify
notation and v) simplifies the model by making it symmetric and generalizes
it to allow functions such as coin flipping by telephone [4] where both players
have an output, but which can be implemented without allowing either party to
abort the protocol. In Section 6 we also discuss the model of Definition 7.2.6 of
[20], i.e., the model where the first party is allowed to abort the protocol after
receiving its result but before the second party receives its own.

We use the following notation: x ∈ X denotes the input of the first party, y ∈ Y
the input of the second party and z ∈ {0, 1}∗ represents an additional auxiliary
input available to both parties but assumed to be ignored by all honest parties.
A g-hybrid protocol is a pair of (randomized) algorithms Π = (A1, A2) which
can interact by exchanging messages and which additionally have access to the
functionality g. More precisely, for a (randomized) function g : X×Y → U×V the
two parties can send x and y to a trusted party and receive u and v, respectively,
where (u, v) = g(x, y). Note that a default value is used if a player refuses to
send a value. A pair of algorithms A = (A1, A2) is called admissible for protocol
A if either A1 = A1 or A2 = A2, i.e., if at least one of the parties is honest and
uses the algorithm defined by the protocol Π .

Definition 1 (Real Model). Let Π = (A1, A2) be a g-hybrid protocol and
let A = (A1, A2) be an admissible pair of algorithms for the protocol Π. The
joint execution of Π under A on input pair (x, y) ∈ X × Y and auxiliary input
z ∈ {0, 1}∗ in the real model, denoted by

real
g

Π,A(z)
(x, y) ,

is defined as the output pair resulting from the interaction between A1(x, z) and
A2(y, z) using the functionality g.
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The ideal model defines the optimal scenario where the players have access
to an ideal functionality f corresponding to the function they wish to compute.
A malicious player may therefore only change (1) his input to the functionality
and (2) the output he obtains from the functionality.

Definition 2 (Ideal Model). The trivial f -hybrid protocol B = (B1, B2) is
defined as the protocol where both parties send their inputs x and y unchanged
to the functionality f and output the values u and v received from f unchanged.
Let B = (B1, B2) be an admissible pair of algorithms for B. The joint execution
of f under B in the ideal model on input pair (x, y) ∈ X ×Y and auxiliary input
z ∈ {0, 1}∗, denoted by

idealf,B(z)(x, y) ,

is defined as the output pair resulting from the interaction between B1(x, z) and
B2(y, z) using the functionality f .

Any admissible protocol B in the ideal model can be expressed in the following
way: the first party receives input (x, z) and the second party receives input
(y, z). The two parties produce (x′, z1) = Bin

1 (x, z) and (y′, z2) = Bin
2 (y, z), from

which x′ and y′ are inputs to a trusted third party, and z1 and z2 are some
auxiliary output. The trusted party computes (u′, v′) = f(x′, y′) and sends u′

to the first party and v′ to the second party. The two parties are now given the
outputs v′ and u′ and the auxiliary inputs z1 and z2, respectively. The first party
outputs u = Bout

1 (u′, z1) while the second party outputs v = Bout
2 (v′, z2). Note

that if the first party is honest, we have Bin
1 (x, z) = (x, ⊥) and Bout

1 (u′, z1) = u′

and similarly for the second party.
Now, to show that a g-hybrid protocol Π securely computes a functionality

f , we have to show that anything an adversary can do in the real model can also
be done in the ideal model.

Definition 3 (Perfect Security). A g-hybrid protocol Π securely computes f
perfectly if for every pair of algorithms A = (A1, A2) that is admissible in the
real model for the protocol Π, there exists a pair of algorithms B = (B1, B2)
that is admissible in the ideal model for protocol B (and where the same players
are honest), such that for all x ∈ X , y ∈ Y, and z ∈ {0, 1}∗, we have

idealf,B(z)(x, y) ≡ real
g

Π,A(z)
(x, y) .

It is sometimes not possible to achieve perfect security. The following definition
captures the situation where the simulation has a (small) error ε, defined as the
maximal statistical distance between the output distributions in the real and
ideal model.

Definition 4 (Statistical Security). A g-hybrid protocol Π securely com-
putes f with an error of at most ε if for every pair of algorithms A = (A1, A2)
that is admissible in the real model for the protocol Π, there exists a pair of
algorithms B = (B1, B2) that is admissible in the ideal model for protocol B
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(and where the same players are honest), such that for all x ∈ X , y ∈ Y, and
z ∈ {0, 1}∗, we have

idealf,B(z)(x, y) ≡ε real
g

Π,A(z)
(x, y) .

The statistical distance is used because it has nice properties and intuitively
measures the error of a computation: a protocol Π which securely computes f
with an error of at most ε, computes f perfectly with probability at least 1 − ε.

A very important property of the above definitions is that they imply sequen-
tial composition. The following theorem has been proven in [10].

Theorem 1. If an h-hybrid protocol Γ securely computes g with an error of at
most γ and a g-hybrid protocol Π securely computes f with an error of at most
π, then the composed protocol ΠΓ , namely the protocol Π where every call to g
is replaced by Γ , is an h-hybrid protocol that securely computes f with an error
of at most π + tγ, where t is the number of calls of Π to g.

2.1 Efficient Simulation

So far, we have not been talking about efficiency. Indeed, if we live in a world
where every participant has unlimited computer power, efficiency is not an issue,
and our security definitions work well. In the world of zero-knowledge interac-
tive proof systems [22] we have learned that “perfect zero-knowledge” is a more
powerful notion than “zero-information” because the former also imposes com-
putational conditions that require an efficient simulator. In this paper we choose
to focus on the latter because in the context of two-party secure function eval-
uation, even in the simplest case security is not yet properly defined. When
considering computationally bounded adversaries, the situation is different: It
might be the case that, even though an attack in the ideal model is possible
in principle, simulation is infeasable, because it takes much more time than to
attack the real protocol. This problem can be solved by requiring that the run-
ning time of the ideal adversary is polynomial in the running time of the real
adversary. We do not consider efficient simulation any further in this paper.

3 Secure Function Evaluation from an Information-
Theoretic Point of View

In this section, we adopt an information-theoretic view of the security definition.
We change our notation slightly to make it more suitable to the information-
theoretic domain. We let X , Y and Z be random variables denoting the inputs,
distributed according to an unknown distribution. Likewise, we let U and V be
random variables denoting the outputs of the two parties. Hence, for specific
inputs x, y, z we have

(U, V ) = real
g

Π,A(z)
(x, y)

and
(U, V ) = idealf,B(z)(x, y) .
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Note that the condition of Definition 3, namely that for all x ∈ X , y ∈ Y, and
z ∈ {0, 1}∗, we have

idealf,B(z)(x, y) ≡ real
g

Π,A(z)
(x, y) ,

can equivalently be expressed as

PUV |XY Z = PUV |XY Z .

We now state our main theorem. It gives an information-theoretic condition
for the security of a real protocol, without the use of an ideal model. Intuitively,
the security condition for player 1 (and its counterpart for player 2) says the
following: Since I(X ; Y ′ | ZY ) = 0, we have PY ′|Y ZX = PY ′|Y Z . Therefore, Y ′

could have been created without knowing X . The condition

PUV ′|XY ′Y Z(u, v′ | x, y′, y, z) = Pr[(u, v′) = f(x, y′)]

ensures that the distributions of U and V ′ are the same as those of the outputs
of f on input X and Y ′. Finally, I(UX; V | ZY Y ′V ′) = 0 ensures that V could
have been constructed out of Z, Y , Y ′ and V ′, without the help of X and U .
Therefore, these conditions ensure that the resulting distribution in the real
model could also have been obtained in the ideal model.

Theorem 2. A g-hybrid protocol Π securely computes f perfectly if and only
if for every pair of algorithms A = (A1, A2) that is admissible in the real model
for the protocol Π and for all inputs (X, Y ) and auxiliary input Z, A produces
outputs (U, V ), such that the following conditions are satisfied:

– (Correctness) If both players are honest, we have

PUV |XY Z(u, v, x, y, z) = Pr[(u, v) = f(x, y)] .

– (Security for Player 1) If player 1 is honest, then there exist random variables
Y ′ and V ′ such that we have

I(X ; Y ′ | ZY ) = 0 ,

PUV ′|XY ′Y Z(u, v′ | x, y′, y, z) = Pr[(u, v′) = f(x, y′)] ,

and
I(UX ; V | ZY Y ′V ′) = 0 .

– (Security for Player 2) If player 2 is honest, then there exist random variables
X ′ and U ′, such that we have

I(Y ; X ′ | ZX) = 0 ,

PU ′V |X′Y XZ(u′, v | x′, y, x, z) = Pr[(u′, v) = f(x′, y)] ,

and
I(V Y ; U | ZXX ′U ′) = 0 .
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Proof. Let us first assume that the protocol Π securely computes f . Then there
exists an admissible pair of algorithms B = (B1, B2) for the ideal model such
that for all x ∈ X , y ∈ Y, and z ∈ {0, 1}∗, we have

idealf,B(z)(x, y) ≡ real
g

Π,A(z)
(x, y) ,

or equivalently,
PUV |XY Z = PUV |XY Z .

If both players are honest we have B = B. B1 and B2 forward their inputs
(X, Y ) unchanged to the trusted third party, get back (U

′
, V

′
) := f(X, Y ) and

output (U, V ) = (U
′
, V

′
). This establishes the correctness condition.

Without loss of generality, let player 1 be honest and player 2 be malicious.
Let us look at the execution of B = (B1, B2). The malicious B2 can be modeled
by the two conditional probability distributions PY

′
Z2|Y Z computing the input

to the ideal functionality and some internal data Z2, and PV |V ′
Z2

computing
the output. Note that we can write PY

′
Z2|Y Z = PY

′|Y ZPZ2|Y ZY
′ , i.e., we can

say that Y
′
is computed from X and Z, and that Z2 is computed from Y , Z,

and Y
′
. Clearly, we have

I(X ; Y
′ | ZY ) = 0 .

The honest B1 always sends X to the trusted party, which computes (U
′
, V

′
) =

f(X, Y
′
) and sends the results to B1 and B2. Since B1 always outputs U = U

′
,

we have
PUV

′|XY
′
Y Z(u, v′ | x, y′, y, z) = Pr[(u, v′) = f(x, y′)] .

B2’s output V only depends on V
′
and Z2, which only depends on Y , Z and Y

′
.

It follows that
I(UX; V | ZY Y

′
V

′
) = 0 .

Since the probability distributions PUV |XY Z and PUV |XY Z are identical, there
must exist random variables satisfying the same properties for the output of
protocol Π in the real model. Consequently, there must exist random variables
Y ′ and V ′, such that

I(X ; Y ′ | ZY ) = 0 ,

PUV ′|XY ′Y Z(u, v′ | x, y′, y, z) = Pr[(u, v′) = f(x, y′)] ,

and
I(UX; V | ZY Y ′V ′) = 0 .

Now assume that the conditions of Theorem 2 hold. If both players are honest,
the correctness condition implies PUV |XY Z = PUV |XY Z . If both players are
malicious nothing needs to be shown. Without loss of generality, let player 1 be
honest and player 2 be malicious. We will define an admissible protocol B =
(B1, B2) in the ideal model that produces the same distribution as the protocol
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Π in the real model. Let B2 choose his input Y
′
according to PY

′|Y Z := PY ′|Y Z ,
and let him choose his output V according to PV |Y ZY

′
V

′ := PV |Y ZY ′V ′ . The
conditional distribution of the output in the ideal model is given by

PUV |XY Z =
∑

y′,v′

PY
′|Y ZPUV

′|XY
′PV |Y ZY

′
V

′ ,

where
PUV

′|XY
′(u, v′ | x, y′) = Pr[(u, v′) = f(x, y′)] .

From I(X ; Y ′ | ZY ) = 0 and I(UX ; V | ZY Y ′V ′) = 0 it follows that
PY ′|XY Z = PY ′|Y Z and PV |XY ZY ′UV ′ = PV |Y ZY ′V ′ . Furthermore, we have
PUV ′|XY ′Y Z = PUV

′|XY
′ . As for the conditional distribution of the output in

the real model, we have:

PUV |XY Z =
∑

y′,v′

PY ′UV ′|XY ZPV |XY ZY ′UV ′

=
∑

y′,v′

PY ′|XY ZPUV ′|XY ZY ′PV |Y ZY ′V ′

=
∑

y′,v′

PY
′|Y ZPUV

′|XY
′PV |Y ZY

′
V

′

= PUV |XY Z .

Therefore, for any admissible A in the real model there exists an admissible B
in the ideal model such that

idealf,B(z)(x, y) ≡ real
g

Π,A(z)
(x, y) ,

implying that the protocol is perfectly secure. �

Note that the expression

PUV ′|XY ′Y Z(u, v′ | x, y′, y, z) = Pr[(u, v′) = f(x, y′)]

can be replaced by (U, V ′) = f(X, Y ′) if f is deterministic. This yields the
following corollary for deterministic functionalities.

Corollary 1. A protocol Π securely computes the deterministic functionality
f perfectly, if and only if for every pair of algorithms A = (A1, A2) that is
admissible in the real model for the protocol Π and for all inputs (X, Y ) and
auxiliary input Z, A produces outputs (U, V ), such that the following conditions
are satisfied:

– (Correctness) If both players are honest, we have (U, V ) = f(X, Y ).
– (Security for Player 1) If player 1 is honest then there exist random variables

Y ′ and V ′ such that (U, V ′) = f(X, Y ′),

I(X ; Y ′ | ZY ) = 0 , and I(UX ; V | ZY Y ′V ′) = 0 .
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– (Security for Player 2) If player 2 is honest then there exist random variables
X ′ and U ′ such that (U ′, V ) = f(X ′, Y ),

I(Y ; X ′ | ZX) = 0 , and I(V Y ; U | ZXX ′U ′) = 0 .

Note that we require the conditions of Theorem 2 and Corollary 1 to hold
for all distributions of the inputs (X, Y ). In particular, they have to hold for
any input distribution PXY |Z=z, i.e., given the event that the auxiliary input
Z equals z. Since all the requirements are conditioned on Z, it is sufficient to
show that the conditions are met for all distributions PXY , ignoring Z in all the
expressions.

The information-theoretic security definition of Theorem 2 and Corollary 1
can also be used for protocols which are not perfectly secure. A protocol is secure
with error ε if for all inputs X, Y, Z, the joint distribution of the outputs has a
statistical distance of at most ε from the output of a perfectly secure protocol.
In information theory, the distance between distributions is typically expressed
using bounds on entropy and mutual information instead of statistical distance.
The following inequalities translate such bounds into bounds on statistical dis-
tance. Let U be uniformly distributed over the set X .

δ(PXY Z , PZPX|ZPY |Z) ≤ 1
2

√
2 ln 2 I(X ; Y | Z)

δ(PX , PU ) ≤ 1
2

√
2 ln 2(log |X | − H(X))

The first inequality can easily be proved from [13], Lemma 16.3.1 while the
second inequality was proved in [8], Lemma 3.4.

4 Oblivious Transfer

We now apply our security definition to 1-out-of-n string oblivious transfer, or(
n
1

)
-OTk for short. The ideal functionality fOT is defined as

fOT(X, C) := (⊥, XC) ,

where ⊥ denotes a constant random variable, X = (X0, . . . , Xn−1), Xi ∈ {0, 1}k

for i ∈ {1, . . . , n}, and C ∈ {1, . . . n}.

Theorem 3. A protocol Π securely computes
(
n
1

)
-OTk perfectly if and only if

for every pair of algorithms A = (A1, A2) that is admissible for protocol Π and
for all inputs (X, C) and auxiliary input Z, A produces outputs (U, V ) such that
the following conditions are satisfied:

– (Correctness) If both players are honest, then (U, V ) = (⊥, XC).
– (Security for Player 1) If player 1 is honest, then we have U = ⊥ and there

exists a random variable C′, such that

I(X ; C′ | ZC) = 0 , and I(X ; V | ZCC′XC′) = 0 .
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– (Security for Player 2) If player 2 is honest, then we have

I(C; U | ZX) = 0 .

Proof. We only need to show that the security condition for player 2 is equivalent
to the one in Corollary 1:

I(C; X ′ | ZX) + I(X ′
CC; U | ZXX ′) = 0

Since X ′
C is a function of C and X ′,

I(X ′
CC; U | ZXX ′) = 0 is equivalent to I(C; U | ZXX ′) = 0 .

From the chain rule it follows that

I(C; X ′ | ZX)+ I(C; U | ZXX ′) = I(C; X ′U | ZX) = I(C; U | ZX)+ I(C; X ′ | ZXU) .

Now choose X ′ = (X ′
0, . . . , X

′
n−1) as follows: for all values i, let X ′

i be chosen
according to the distribution PV |ZXU,C=i except for X ′

C . We set X ′
C = V . Note

that all X ′
i, 0 ≤ i ≤ n − 1, have distribution PV |ZXU,C=i. Thus X ′ does not

depend on C given ZXU , we have V = X ′
C and I(C; X ′ | ZXU) = 0. So there

always exists a suitable X ′1, and the condition simplifies to I(C; U | ZX) = 0. �

The interpretation of these properties of oblivious transfer is quite intuitive: If
player 1 is honest, then she can be confident that anything player 2 can do is
basically equivalent to choosing a choice bit C′ which is possibly different from
C. On the other hand, if player 2 is honest, he can be certain that player 1 does
not get to know his input C. Theorem 3 shows that in the case of a dishonest
sender in

(
n
1

)
-OTk, privacy alone implies security. There always exists an input

X ′ that a dishonest sender can use in the ideal model to obtain the same results.

5 An Example

In this section we show how the result from the Section 4 can be used to prove
the security of a protocol. Our example will be the protocol from [29], where
one instance of

(2
1

)
-OT is implemented using one instance of

(2
1

)
-TO, which is an

instance of
(2
1

)
-OT in the opposite direction.

Protocol 1 ([29]). Let player 1 have input X = (X0, X1) ∈ {0, 1}×{0, 1}, and
player 2 have input C ∈ {0, 1}.

1. Player 2 chooses R ∈ {0, 1} at random.
2. The two players execute

(2
1

)
-TO, where player 1 inputs C = X0 ⊕ X1, and

player 2 inputs X0 = R and X1 = R ⊕ C.
3. Player 1 receives A = XC and sends M = X0 ⊕ A to the player 2.
4. Player 1 outputs V := R ⊕ M .
1 Note that these values X ′ are not necessarily known to a malicious player 1.
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Theorem 4. Protocol 1 perfectly securely reduces
(2
1

)
-OT to one realization of(2

1

)
-TO.

Proof. If both parties are honest, the protocol is correct because we have

R ⊕ M = R ⊕ X0 ⊕ (X0 ⊕ X1)C ⊕ R = XC .

Let player 1 be honest, and let C′ := X0 ⊕ X1. Using the data processing
inequality,

I(X0X1; C′ | ZC) ≤ I(X0X1; X0X1 | ZC) ≤ I(X0X1; ZC | ZC) = 0 .

Since M = X0 ⊕ (X0 ⊕ X1)(X0 ⊕ X1) ⊕ X0 = XC′ ⊕ X0, the values X0X1M ,
X0C

′M , and X0C
′XC′ contain the same information. Thus, using the data

processing inequality,

I(X0X1; V | ZCC′XC′) ≤ I(X0X1; CZX0X1M | ZCC′XC′)

= I(X0X1; CZX0C
′XC′ | ZCC′XC′) = 0 .

Now let player 2 be honest. Since A = R ⊕ CC and R is uniform, we have

I(C; U | ZX0X1) ≤ I(C; X0X1ZA | ZX0X1) = I(C; A | ZX0X1) = 0 .

Thus, the protocol is secure. �

6 Secure Two-Party Computation with Abort

In this section we will briefly discuss the model of Definition 7.2.6 of [20] where
the first party is allowed to abort the protocol right after receiving its output
but before the second party has received its own. The ideal model with abort for
player 1 is similar to the ideal model from Definition 2, the only difference being
that player 1 is given the option of aborting the computation by sending a bit
C to the trusted party after having received his output. The trusted party sends
to player 2 the corresponding output if C = 1, and ⊥ if C = 0. An honest player
always sends C = 1. The real model and the definition of security are identical
to the definition without abort. We call a protocol that satisfies this definition
secure with abort for player 1.

Theorem 5. A g-hybrid protocol Π securely computes f perfectly with abort
for player 1, if and only if for every pair of algorithms A = (A1, A2) that is
admissible in the real model for the protocol Π, and for all inputs (X, Y ) and
auxiliary input Z, A produces outputs (U, V ), such that the following conditions
are satisfied:

– (Correctness) If both players are honest, we have

PUV |XY Z(u, v | x, y, z) = Pr[(u, v) = f(x, y)] .
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– (Security for Player 1) If player 1 is honest, then there exist random variables
Y ′ and V ′, such that we have

I(X ; Y ′ | ZY ) = 0 ,

PUV ′|XY ′Y Z(u, v′ | x, y′, y, z) = Pr[(u, v′) = f(x, y′)] ,

and
I(UX ; V | ZY Y ′V ′) = 0 .

– (Security for Player 2) If player 2 is honest, then there exist random variables
X ′, C and U ′, V ′, such that we have

I(Y ; X ′ | ZX) = 0 ,

PU ′V ′|X′Y XZ(u′, v′ | x′, y, x, z) = Pr[(u′, v′) = f(x′, y)] ,

I(V ′Y ; UC | ZXX ′U ′) = 0 ,

and V = V ′ if C = 1 and V = ⊥ if C = 0.

Proof. The proof is identical to that of Theorem 2 for the case where player 1 is
honest. We therefore only examine the case where player 2 is honest and player
1 is malicious.

Let us assume that the protocol Π securely computes f . Consequently, there
exists an admissible pair of algorithms B = (B1, B2) such that for all x ∈ X ,
y ∈ Y, and z ∈ {0, 1}∗ we have PUV |XY Z = PUV |XY Z .

The malicious B1 can be modeled by the two conditional probability distribu-
tions PX

′
Z2|XZ computing the input to the ideal functionality and some internal

data Z2, and PUC|U ′
Z2

computing the output U and the bit C. Note that we
can write PX

′
Z2|XZ = PX

′|XZPZ2|XZX
′ . Clearly, we have

I(Y ; X
′ | ZX) = 0 .

The ideal functionality computes U
′
, V

′
such that

PU
′
V

′|X′
Y XZ(u′, v′ | x′, y, x, z) = Pr[(u′, v′) = f(x′, y)] .

B1 gets back U
′
from the ideal functionality. Based on X, Z, X

′
, U

′
he decides

to send C to the functionality and outputs U . Hence, we have

I(V
′
Y ; UC | XZX

′
U

′
) = 0 .

If C = 1, the functionality sends V = V
′
to B2, if C = 0 it sends V = ⊥. B2

outputs V unchanged. As PUV |XY Z = PUV |XY Z it must be the case that the
same conditions hold in the real model, which implies the security condition for
player 2.



552 C. Crépeau et al.

Now let the conditions of Theorem 5 hold. We define an admissible protocol
B = (B1, B2) in the ideal model that produces the same distribution as the
protocol Π in the real model. Let B1 choose input X

′
according to PX

′|XZ :=
PX′|XZ , and (U, C) according to PUC|XZX

′
U

′ := PUC|XZX′U ′ . The conditional
distribution of the output in the ideal model is given by

PUV |XY Z =
∑

x′,c,u′,v′

PX
′|XZPU

′
V

′|X′
Y PUC|XZX

′
U

′PV |V ′
C ,

where
PU

′
V

′|X′
Y (u′, v′ | x′, y) = Pr[(u′, v′) = f(x′, y)] .

From I(Y ; X ′ | ZX) = 0 and I(V ′Y ; UC | XZX ′U ′) = 0 it follows that
PX′|XY Z = PX′|XZ and PUC|XZX′U ′V ′Y = PUC|XZX′U ′ . Furthermore, we have
PU ′V ′|X′Y XZ = PU

′
V

′|X′
Y and PV |V ′C = PV |V ′

C . We get for the conditional
distribution of the output in the real model

PUV |XY Z =
∑

x′,c,u′,v′

PX′|XY ZPU ′V ′|XY ZX′PUCV |XY ZX′U ′V ′

=
∑

x′,c,u′,v′

PX′|XZPU
′
V

′|X′
Y PUC|XY ZX′U ′V ′PV |XY ZX′U ′V ′CU

=
∑

x′,c,u′,v′

PX′|XZPU
′
V

′|X′
Y PUC|XZX′U ′PV |V ′C

=
∑

x′,c,u′,v′

PX
′|XZPU

′
V

′|X′
Y PUC|XZX

′
U

′PV |V ′
C

= PUV |XY Z .

Therefore for any admissible A in the real model there exists an admissible B in
the ideal model such that

idealf,B(z)(x, y) ≡ real
g

Π,A(z)
(x, y) ,

which means that the protocol is perfectly secure with abort for player 1. �

7 Conclusion and Open Problems

We have shown that various information-theoretic security definitions for oblivi-
ous transfer used in the past contain subtle flaws. We propose a new information-
theoretic security definition which is provably equivalent to the security defin-
ition based on the ideal/real model paradigm. This not only provides a solid
security foundation for most protocols in the literature, which turn out to meet
our requirements, but also shows that they are in fact sequentially composable.

An interesting open problem is to generalize our model to various quantum
settings, for example to the scenario where two players connected by a quantum
channel wish to securely implement a classical functionality.
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12. D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure proto-
cols (extended abstract). In Proceedings of the 20th Annual ACM Symposium on
Theory of Computing (STOC ’88), pages 11–19. ACM Press, 1988.

13. T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-
Interscience, New York, USA, 1991.
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