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Abstract. We derive a new entropic quantum uncertainty relation in-
volving min-entropy. The relation is tight and can be applied in various
quantum-cryptographic settings.

Protocols for quantum 1-out-of-2 Oblivious Transfer and quantum Bit
Commitment are presented and the uncertainty relation is used to prove
the security of these protocols in the bounded-quantum-storage model
according to new strong security definitions.

As another application, we consider the realistic setting of Quantum
Key Distribution (QKD) against quantum-memory-bounded eavesdrop-
pers. The uncertainty relation allows to prove the security of QKD proto-
cols in this setting while tolerating considerably higher error rates com-
pared to the standard model with unbounded adversaries. For instance,
for the six-state protocol with one-way communication, a bit-flip error
rate of up to 17% can be tolerated (compared to 13% in the standard
model).

Our uncertainty relation also yields a lower bound on the min-entropy
key uncertainty against known-plaintext attacks when quantum ciphers
are composed. Previously, the key uncertainty of these ciphers was only
known with respect to Shannon entropy.

1 Introduction

A problem often encountered in quantum cryptography is the following: through
some interaction between the players, a quantum state ρ is generated and then
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measured by one of the players (call her Alice in the following). Assuming Al-
ice is honest, we want to know how unpredictable her measurement outcome
is to the adversary. Once a lower bound on the adversary’s uncertainty about
Alice’s measurement outcome is established, it is usually easy to prove the de-
sired security property of the protocol. Many existing constructions in quantum
cryptography have been proved secure following this paradigm.

Typically, Alice does not make her measurement in a fixed basis, but chooses
at random among a set of different bases. These bases are usually chosen to
be pairwise mutually unbiased, meaning that if ρ is such that the measurement
outcome in one basis is fixed then this implies that the uncertainty about the
outcome of the measurement in the other basis is maximal. In this way, one
hopes to keep the adversary’s uncertainty high, even if ρ is (partially) under the
adversary’s control.

An inequality that lower bounds the adversary’s uncertainty in such a scenario
is called an uncertainty relation. There exist uncertainty relations for different
measures of uncertainty, but cryptographic applications typically require the
adversary’s min-entropy to be bounded from below.

In this paper, we introduce a new general and tight entropic uncertainty
relation. Since the relation is expressed in terms of high-order entropy (i.e. min-
entropy), it is applicable to a large class of natural protocols in quantum cryp-
tography. In particular, the new relation can be applied in situations where an
n-qubit state ρ has each of its qubits measured in a random and independent
basis sampled uniformly from a fixed set B of bases. B does not necessarily have
to be mutually unbiased, but we assume a lower bound h (i.e. an average en-
tropic uncertainty bound) on the average Shannon entropy of the distribution
Pϑ, obtained by measuring an arbitrary 1-qubit state in basis ϑ ∈ B, meaning
that 1

|B|
∑

ϑ H(Pϑ) ≥ h.

Uncertainty Relation (informal): Let B be a set of bases with an average
entropic uncertainty bound h as above. Let Pθ denote the probability distribution
defined by measuring an arbitrary n-qubit state ρ in basis θ ∈ Bn. For a θ ∈R Bn

chosen uniformly at random, it holds except with negligible probability that

H∞(Pθ) � nh . (1)

Observe that (1) cannot be improved significantly since the min-entropy of a
distribution is at most equal to the Shannon entropy. Our uncertainty relation
is therefore asymptotically tight when the bound h is tight.

Any lower bound on the Shannon entropy associated to a set of measurements
B can be used in (1). In the special case where the set of bases is B = {+, ×} (i.e.
the two BB84 bases), h is known precisely using Maassen and Uffink’s entropic
relation, see inequality (2) below. We get h = 1

2 and (1) results in H∞(Pθ) � n
2 .

Uncertainty relations for the BB84 coding scheme [3] are useful since this coding
is widely used in quantum cryptography. Its resilience to imperfect quantum
channels, sources, and detectors is an important advantage in practice.
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We now discuss applications of our high-order uncertainty relation to impor-
tant scenarios in cryptography: two-party cryptography, quantum key distribu-
tion and quantum encryption.

Application I: Two-Party Cryptography in the Bounded-Quantum-Storage Model.
Entropic uncertainty relations are powerful tools for the security analysis of
cryptographic protocols in the bounded-quantum-storage model. In this model,
the adversary is unbounded in every respect, except that at a certain time, his
quantum memory is reduced to a certain size (by performing some measurement).
In [13], an uncertainty relation involving min-entropy was shown and used in the
analysis of protocols for Rabin oblivious transfer (ROT) and bit commitment.
This uncertainty relation only applies in the case when n qubits are all measured
in one out of two mutually unbiased bases.

A major difference between our result (1) and the one from [13] is that while
both relations bound the min-entropy conditioned on an event, this event hap-
pens in our case with probability essentially 1 (on average) whereas the corre-
sponding event from [13] only happens with probability about 1/2. In Sect. 4,
we prove the following:

1-2 OT in the Bounded-Quantum-Storage Model: There exists a non-
interactive protocol for 1-out-of-2 oblivious transfer (1-2 OT) of �-bit messages,
secure against adversaries with quantum memory size at most n/4 − 2�. Here,
n is the number of qubits transmitted in the protocol and � can be a constant
fraction of n. Honest players need no quantum memory.

Since all flavors of OT are known to be equivalent under classical information-
theoretic reductions, and a ROT protocol is already known from [13], the above
result may seem insignificant. This is not the case, however, for several reasons:
First, although it may in principle be possible to obtain a protocol for 1-2 OT
from the ROT protocol of [13] using the standard black-box reduction, the fact
that we need to call the ROT primitive many times would force the bound on
the adversary’s memory to be sublinear (in the number of transmitted qubits).
Second, the techniques used in [13] do not seem applicable to 1-2 OT, unless
via the inefficient generic reduction to ROT. And, third, we prove security ac-
cording to a stronger definition than the one used in [13], namely a quantum
version of a recent classical definition for information theoretic 1-2 OT [10]. The
definition ensures that all (dishonest) players’ inputs are well defined (and can
be extracted when formalized appropriately). In particular, this implies security
under sequential composition whereas composability of the protocol from [13]
was not proven.

Furthermore, our techniques for 1-2 OT imply almost directly a non-interactive
bit commitment scheme (in the bounded-quantum-storage model) satisfying a
composable security definition. As an immediate consequence, we obtain secure
string commitment schemes. This improves over the bit commitment construction
of [13], respectively its analysis, which does not guarantee composability and thus
does not necessarily allow for string commitments. This application can be found
in Sect. 5.
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Application II: Quantum Key Distribution. We also apply our uncertainty rela-
tion to quantum key distribution (QKD) settings. QKD is the art of distributing
a secret key between two distant parties, Alice and Bob, using only a completely
insecure quantum channel and authentic classical communication. QKD proto-
cols typically provide information-theoretic security, i.e., even an adversary with
unlimited resources cannot get any information about the key. A major difficulty
when implementing QKD schemes is that they require a low-noise quantum chan-
nel. The tolerated noise level depends on the actual protocol and on the desired
security of the key. Because the quality of the channel typically decreases with
its length, the maximum tolerated noise level is an important parameter limiting
the maximum distance between Alice and Bob.

We consider a model in which the adversary has a limited amount of quantum
memory to store the information she intercepts during the protocol execution.
In this model, we show that the maximum tolerated noise level is larger than in
the standard scenario where the adversary has unlimited resources. For one-way
QKD protocols which are protocols where error-correction is performed non-
interactively (i.e., a single classical message is sent from one party to the other),
we show the following result:

QKD Against Quantum-Memory-Bounded Eavesdroppers: Let B be a
set of orthonormal bases of H2 with average entropic uncertainty bound h. Then,
a one-way QKD-protocol produces a secure key against eavesdroppers whose
quantum-memory size is sublinear in the length of the raw key at a positive rate
as long as the bit-flip probability p of the quantum channel fulfills Hbin(p) < h
where Hbin(·) denotes the binary Shannon-entropy function.

Although this result does not allow us to improve (i.e. compared to unbounded
adversaries) the maximum error-rate for the BB84 protocol (the four-state proto-
col), the six-state protocol can be shown secure against adversaries with memory
bound sublinear in the secret-key length as long as the bit-flip error-rate is less
than 17%. This improves over the maximal error-rate of 13% for the same pro-
tocol against unbounded adversaries. We also show that the generalization of
the six-state protocols to more bases (not necessarily mutually unbiased) can be
shown secure (against memory-bounded adversaries) for a maximal error-rate
up to 20% provided the number of bases is large enough.

The quantum-memory-bounded eavesdropper model studied here is not com-
parable to other restrictions on adversaries considered in the literature (e.g.
individual attacks, where the eavesdropper is assumed to apply independent
measurements to each qubit sent over the quantum channel [18,23]). In fact,
these assumptions are generally artificial and their purpose is to simplify secu-
rity proofs rather than to relax the conditions on the quality of the commu-
nication channel from which secure key can be generated. We believe that the
quantum-memory-bounded eavesdropper model is more realistic.

Application III: Key-Uncertainty of Quantum Ciphers. In [15], symmetric quan-
tum ciphers encrypting classical messages with classical secret-keys are consid-
ered. It is shown that under known-plaintext attacks, the Shannon uncertainty
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of the secret-key can be much higher for some quantum ciphers than for any clas-
sical one. The Shannon secret-key uncertainty H(K|C, M) of classical ciphers C
encrypting messages M of size m with keys K of size k > m is always such
that H(K|C, M) ≤ k − m. In the quantum case, the Shannon secret-key uncer-
tainty is defined as the minimum residual uncertainty about key K given the
best measurement (POVM) PM (C) applied to quantum cipher C given plain-
text M . Examples of quantum ciphers are provided with k = m + 1 such that
H(K|PM (C)) = m/2+1 and with k = 2m such that H(K|PM (C)) ≥ 2m−1. All
ciphers in [15] have their keys consisting of two parts. The first part chooses one
basis out a set B of bases while the other part is used as a classical one-time-
pad. The message is first encrypted with the one-time-pad before being rotated
in the basis indicated by the key. In this case, Theorem 4 in [15] states that
the Shannon secret-key uncertainty adds up under repetitions with independent
and random keys1: if H(K|PM (C)) ≥ h then n repetitions with independent
keys satisfy H(K1, . . . , Kn|PM1,...,Mn(C1, . . . , Cn)) ≥ nh. Our uncertainty rela-
tion allows to obtain a stronger result. The analysis in [15] shows that these
quantum ciphers with Shannon secret-key uncertainty h satisfy the condition of
our uncertainty relation. As result we obtain a lower bound on the min-entropy
key uncertainty given the outcome of any quantum measurement applied to all
ciphers and given all plaintexts. When H(K|PM (C)) ≥ h our uncertainty re-
lation tells us that H∞(K1, . . . , Kn|PM1,...,Mn(C1, . . . , Cn)) � nh. Notice that
unlike the two previous applications, this time the result holds unconditionally.
Details of this application will be provided in the full version.

History and Related Work. The history of uncertainty relations starts with
Heisenberg who showed that the outcomes of two non-commuting observables A
and B applied to any state ρ are not easy to predict simultaneously. However,
Heisenberg only speaks about the variance of the measurement results. Because
his result had several shortcomings (as pointed out in [19,16]), more general
forms of uncertainty relations were proposed by Bialynicki-Birula and Myciel-
ski [7] and by Deutsch [16]. The new relations were called entropic uncertainty
relations, because they are expressed using Shannon entropy instead of the sta-
tistical variance and, hence, are purely information theoretic statements. For in-
stance, Deutsch’s uncertainty relation [16] states that H(P )+H(Q) ≥ −2 log 1+c

2 ,
where P, Q are random variables representing the measurement results and c is
the maximum inner product norm between any eigenvectors of A and B. First
conjectured by Kraus [21], Maassen and Uffink [24] improved Deutsch’s relation
to the optimal

H(P ) + H(Q) ≥ −2 log c . (2)

Although a bound on Shannon entropy can be helpful in some cases, it is
usually not good enough in cryptographic applications. The main tool to reduce
the adversary’s information—privacy amplification [5,20,4,27,25]—only works if
a bound on the adversary’s min-entropy (in fact collision entropy) is known.
1 The proof of Theorem 4 in [15] is incorrect but can easily be fixed without changing

the statement.
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Unfortunately, knowing the Shannon entropy of a distribution does in general
not allow to bound its higher order Rényi entropies.

An entropic uncertainty relation involving Rényi entropy of order 2 (i.e. colli-
sion entropy) was introduced by Larsen [22,30]. Larsen’s relation quantifies pre-
cisely the collision entropy for the set {Ai}d+1

i=1 of all maximally non-commuting
observables, where d is the dimension of the Hilbert space. Its use is therefore
restricted to quantum coding schemes that take advantage of all d + 1 observ-
ables, i.e. to schemes that are difficult to implement in practice. Uncertainty
relations in terms of Rényi entropy have also been studied in a different context
by Bialynicki-Birula [6].

2 Preliminaries

2.1 Notation and Terminology

For any positive integer d, Hd stands for the complex Hilbert space of dimension
d and P(H) for the set of density operators, i.e., positive semi-definite trace-1 ma-
trices, acting on H. The pair {|0〉, |1〉} denotes the computational or rectilinear
or “+” basis for the 2-dimensional Hilbert space H2. The diagonal or “×” basis
is defined as {|0〉×, |1〉×} where |0〉× = (|0〉 + |1〉)/

√
2 and |1〉× = (|0〉 − |1〉)/

√
2.

The circular or “�” basis consists of vectors (|0〉 + i|1〉)/
√

2 and (|0〉 − i|1〉)/
√

2.
Measuring a qubit in the + -basis (resp. ×-basis) means applying the measure-
ment described by projectors |0〉〈0| and |1〉〈1| (resp. projectors |0〉×〈0|× and
|1〉×〈1|×). When the context requires it, we write |0〉+ and |1〉+ instead of |0〉
and |1〉, respectively. If we want to choose the + or ×-basis according to the bit
b ∈ {0, 1}, we write [+, ×]b.

The behavior of a (mixed) quantum state in a register E is fully described
by its density matrix ρE. We often consider cases where a quantum state may
depend on some classical random variable X , in that the state is described by
the density matrix ρx

E if and only if X = x. For an observer who has access to the
state but not X , the behavior of the state is determined by the density matrix
ρE :=

∑
x PX(x)ρx

E, whereas the joint state, consisting of the classical X and the
quantum register E is described by the density matrix ρXE :=

∑
x PX(x)|x〉〈x| ⊗

ρx
E, where we understand {|x〉}x∈X to be the standard (orthonormal) basis of

H|X |. Joint states with such classical and quantum parts are called cq-states. We
also write ρX :=

∑
x PX(x)|x〉〈x| for the quantum representation of the classical

random variable X . This notation extends naturally to quantum states that
depend on several classical random variables (i.e. to ccq-states, cccq-states etc.).
Given a cq-state ρXE as above, by saying that there exists a random variable Y
such that ρXY E satisfies some condition, we mean that ρXE can be understood as
ρXE = trY (ρXY E) for some ccq-state ρXY E and that ρXY E satisfies the required
condition.2

2 The quantum version is similar to the case of distributions of classical random vari-
ables where given X, the existence of a certain Y is understood that there exists a
joint distribution PXY with

�
y PXY (·, y) = PX .
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We would like to point out that ρXE = ρX ⊗ ρE holds if and only if the
quantum part is independent of X (in that ρx

E = ρE for any x), where the latter
in particular implies that no information on X can be learned by observing only
ρE. Similarly, X is uniformly random and independent of the quantum state in
register E if and only if ρXE = 1

|X |�⊗ ρE, where 1
|X |� is the density matrix of

the fully mixed state of suitable dimension. Finally, if two states like ρXE and
ρX ⊗ ρE are ε-close in terms of their trace distance δ(ρ, σ) = 1

2 tr(|ρ −σ|), which
we write as ρXE ≈ε ρX ⊗ ρE, then the real system ρXE “behaves” as the ideal
system ρX ⊗ρE except with probability ε in that for any evolution of the system
no observer can distinguish the real from the ideal one with advantage greater
than ε [27].

2.2 Smooth Rényi Entropy

We briefly recall the notion of (conditional) smooth min-entropy [25,28]. For
more details, we refer to the aforementioned literature. Let X be a random
variable over alphabet X with distribution PX . The standard notion of min-
entropy is given by H∞(X) = − log

(
maxx PX(x)

)
and that of max-entropy by

H0(X) = log
∣
∣{x ∈ X : PX(x) > 0}

∣
∣. More general, for any event E (defined by

PE|X(x) for all x ∈ X ) H∞(XE) may be defined similarly simply by replacing PX

by PXE . Note that the “distribution” PXE is not normalized; H∞(XE) is still well
defined, though. For an arbitrary ε ≥ 0, the smooth version Hε

∞(X) is defined as
follows. Hε

∞(X) is the maximum of the standard min-entropy H∞(XE), where
the maximum is taken over all events E with Pr(E) ≥ 1 − ε. Informally, this can
be understood that if Hε

∞(X) = r then the standard min-entropy of X equals r
as well, except with probability ε. As ε can be interpreted as an error probability,
we typically require ε to be negligible in the security parameter n.

For random variables X and Y , the conditional smooth min-entropy Hε
∞(X | Y )

is defined as Hε
∞(X | Y ) = maxE miny H∞(XE | Y = y), where the quantification

over E is over all events E (defined by PE|XY ) with Pr(E) ≥ 1 − ε. In Sect. 6,
we work with smooth min-entropy conditioned on a quantum state. We refer the
reader to [25] for the definition of this quantum version. We will make use of the
following chain rule for smooth min-entropy [28], which in spirit was already shown
in [8].

Lemma 1. Hε+ε′

∞ (X | Y ) > Hε
∞(XY ) − H0(Y ) − log

( 1
ε′

)
for all ε, ε′ > 0.

2.3 Azuma’s Inequality

In the following and throughout the paper, the expected value of a real ran-
dom variable R is denoted by E[R]. Similarly, E[R|E ] and E[R|S] denote the
conditional expectation of R conditioned on an event E respectively random
variable S.

Definition 1. A list of real random variables R1, . . . , Rn is called a martin-
gale difference sequence if E[Ri | R1, . . . , Ri−1] = 0 with probability 1 for every
1 ≤ i ≤ n, i.e., if E[Ri | R1 =r1, . . . , Ri−1 =ri−1] = 0 for every 1 ≤ i ≤ n and
r1, . . . , ri−1 ∈ R.
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The following lemma follows directly from Azuma’s inequality [2,1].

Lemma 2. Let R1, . . . , Rn be a martingale difference sequence such that |Ri| ≤
c for every 1 ≤ i ≤ n. Then, Pr

[∑
i Ri ≥ λn

]
≤ exp

(
−λ2n

2c2

)
for any λ > 0.

3 The Uncertainty Relation

We start with a classical tool which itself might be of independent interest.

Theorem 1. Let Z1, . . . , Zn be n (not necessarily independent) random vari-
ables over alphabet Z, and let h ≥ 0 be such that

H(Zi | Z1 = z1, . . . , Zi−1 = zi−1) ≥ h (3)

for all 1 ≤ i ≤ n and z1, . . . , zi−1 ∈ Z. Then for any 0 < λ < 1
2

Hε
∞(Z1, . . . , Zn) ≥ (h − 2λ)n ,

where ε = exp
(
− λ2n

32 log(|Z|/λ)2
)
.

If the Zi’s are independent and have Shannon-entropy at least h, it is known
(see [28]) that the smooth min-entropy of Z1, . . . , Zn is at least nh for large
enough n. Informally, Theorem 1 guarantees that when the independence
-condition is relaxed to a lower bound on the Shannon entropy of Zi given
any previous history, then we still have min-entropy of (almost) nh except with
negligible probability ε.

Proof (sketch). The idea is to use Lemma 2 for cleverly chosen Ri’s. For any i
we write Zi := (Z1, . . . , Zi) (with Z0 being the “empty symbol”), and similarly
for other sequences. We want to show that Pr

[
PZn(Zn) ≥ 2−(h−2λ)n

]
≤ ε. By

the definition of smooth min-entropy, this then implies the claim. Note that
PZn(Zn) ≥ 2−(h−2λ)n is equivalent to

n∑

i=1

(
log

(
PZi |Zi−1(Zi | Zi−1)

)
+ h

)
≥ 2λn .

We set Si := log PZi|Zi−1(Zi | Zi−1). For such a sequence of real-valued ran-
dom variables S1, . . . , Sn, it is easy to verify that R1, . . . , Rn where Ri : =
Si −E[Si | Si−1] forms a martingale difference sequence. If the |Ri| were bounded
by c, we could use Lemma 2 to conclude that

Pr

[
n∑

i=1

(
Si − E

[
Si | Si−1]

)
≥ λn

]

≤ exp
(

−λ2n

2c2

)

.

As by assumption E[Si | Si−1] ≤ −h, this would give us a bound similar to what
we want to show. In order to enforce a bound on |Ri|, Si needs to be truncated
whenever PZi |Zi−1(Zi | Zi−1) is smaller than some δ > 0. It is then a subtle and
technically involved matter of choosing δ and ε appropriately in order to finish
the proof, as shown in the full version of the paper [12]. ��
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We now state and prove the new entropic uncertainty relation in its most general
form. A special case will then be introduced (Corollary 1) and used in the security
analysis of all protocols we consider in the following.

Definition 2. Let B be a finite set of orthonormal bases in the d-dimensional
Hilbert space Hd. We call h ≥ 0 an average entropic uncertainty bound for B
if every state in Hd satisfies 1

|B|
∑

ϑ∈B H(Pϑ) ≥ h, where Pϑ is the distribution
obtained by measuring the state in basis ϑ.

Note that by the convexity of the Shannon entropy H, a lower bound for all pure
states in Hd suffices to imply the bound for all (possibly mixed) states.

Theorem 2. Let B be a set of orthonormal bases in Hd with an average entropic
uncertainty bound h, and let ρ ∈ P(H⊗n

d ) be an arbitrary quantum state. Let
Θ = (Θ1, . . . , Θn) be uniformly distributed over Bn and let X = (X1, . . . , Xn)
be the outcome when measuring ρ in basis Θ, distributed over {0, . . . , d − 1}n.
Then for any 0 < λ < 1

2 and λ′ > 0,

Hε+ε′

∞ (X | Θ) ≥ (h − 2λ − λ′)n

with ε = exp
(
− λ2n

32(log(|B|·d/λ))2

)
and ε′ = 2−λ′n.

Proof. Define Zi := (Xi, Θi) and Zi := (Z1, . . . , Zi). Let zi−1 be arbitrary in
({0, . . . , d − 1} × B)i−1. Then

H(Zi | Zi−1 =zi−1) = H(Xi | Θi, Z
i−1 =zi−1) + H(Θi | Zi−1 =zi−1)≥ h + log |B|,

where the inequality follows from the fact that Θi is chosen uniformly at random
and from the definition of h. Note that h lower bounds the average entropy for
any system in Hd, and thus in particular for the i-th subsystem of ρ, with all
previous d-dimensional subsystems measured. We use the chain rule for smooth
min-entropy (Lemma 1) and Theorem 1 to conclude that,

Hε+ε′

∞ (X | Θ) > Hε
∞(Z) − H0(Θ) − log

( 1
ε′

)
≥ (h − 2λ)n − λ′n ,

for ε and ε′ as claimed. ��

For the special case where B = {+, ×} is the set of BB84 bases, we can use the
uncertainty relation of Maassen and Uffink [24] (see (2) with c = 1/

√
2), which,

using our terminology, states that B has average entropic uncertainty bound
h = 1

2 . Theorem 2 then immediately gives the following corollary.

Corollary 1. Let ρ ∈ P(H⊗n
2 ) be an arbitrary n-qubit quantum state. Let Θ be

uniformly distributed over {+, ×}n, and let X be the outcome when measuring
ρ in basis Θ. Then for any 0 < λ < 1

2 and λ′ > 0,

Hε+ε′

∞ (X | Θ) ≥
( 1

2 − 2λ − λ′)n

where ε = exp
(

− λ2n
32(2−log(λ))2

)
and ε′ = 2−λ′n.
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Maassen and Uffink’s relation being optimal means there exists a quantum
state ρ—namely the product state of eigenstates of the subsystems, e.g. ρ =
|0〉〈0|⊗n—for which H(X | Θ) = n

2 . On the other hand, we have shown that
(1
2 − λ)n ≤ Hε

∞(X | Θ) for λ > 0 arbitrarily close to 0. For the product state
ρ, the Xi’s are independent and we know from [28] that in this case Hε

∞(X | Θ)
approaches H(X | Θ) = n

2 . It follows that the relation cannot be significantly
improved even when considering Rényi entropy of lower order than min-entropy
(but higher than Shannon entropy).

Another tight corollary is obtained if we consider the set of measurements
B = {+, ×, �}. In [29], Sánchez-Ruiz has shown that for this B the average
entropic uncertainty bound h = 2

3 is optimal. It implies that Hε
∞(X | Θ) ≈

H(X | Θ) = 2n
3 for negligible ε. In the full version [12], we compute the average

uncertainty bound for the set of all bases of a d-dimensional Hilbert space.

4 Application: Oblivious Transfer

4.1 Privacy Amplification and a Min-Entropy-Splitting Lemma

Recall, a class F of hash functions from, say, {0, 1}n to {0, 1}� is called two-
universal [9,31] if Pr[F (x) = F (x′)] ≤ 1/2� for any distinct x, x′ ∈ {0, 1}n and
for F uniformly distributed over F .

Theorem 3 (Privacy Amplification [27,25]). Let ε ≥ 0. Let ρXUE be a ccq-
state, where X takes values in {0, 1}n, U in the finite domain U and register E
contains q qubits. Let F be the random and independent choice of a member of
a two-universal class of hash functions F from {0, 1}n into {0, 1}�. Then,

δ
(
ρF (X)FUE, 1

2��⊗ ρFUE
)

≤ 1
2

2−
1
2

(
Hε

∞(X|U)−q−�
)

+ 2ε . (4)

The theorem stated here is slightly different from the version given in [27,25]
in that the classical and the quantum parts of the adversary’s knowledge are
treated differently. A derivation of the above theorem starting from the result
in [25] can be found in the full version [12].

A second tool we need is the following Min-Entropy-Splitting Lemma. Note
that if the joint entropy of two random variables X0 and X1 is large, then one is
tempted to conclude that at least one of X0 and X1 must still have large entropy,
e.g. half of the original entropy. Whereas this is indeed true for Shannon entropy,
it is in general not true for min-entropy. The following lemma, though, which
appeared in a preliminary version of [33], shows that it is true in a randomized
sense. For completeness, the proof can be found in the full version [12].

Lemma 3 (Min-Entropy-Splitting Lemma). Let ε ≥ 0, and let X0, X1 be
random variables (over possibly different alphabets) with Hε

∞(X0X1) ≥ α. Then,
there exists a binary random variable C over {0, 1} such that Hε

∞(X1−CC)≥α/2.

The corollary below follows rather straightforwardly by noting that (for normal-
ized as well as non-normalized distributions) H∞(X0X1 | Z) ≥ α holds exactly
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if H∞(X0X1 | Z = z) ≥ α for all z, applying the Min-Entropy-Splitting Lemma,
and then using the Chain Rule, Lemma 1.

Corollary 2. Let ε ≥ 0, and let X0, X1 and Z be random variables such that
Hε

∞(X0X1 | Z) ≥ α. Then, there exists a binary random variable C over {0, 1}
such that Hε+ε′

∞ (X1−C | ZC) ≥ α/2 − 1 − log(1/ε′) for any ε′ > 0.

4.2 The Definition

In 1-2 OT �, the sender Alice sends two �-bit strings S0, S1 to the receiver Bob
in such a way that Bob can choose which string to receive, but does not learn
anything about the other. On the other hand, Alice does not get to know which
string Bob has chosen. The common way to build 1-2 OT � is by constructing a
protocol for (Sender-)Randomized 1-2 OT �, which then can easily be converted
into an ordinary 1-2 OT � (see, e.g., [14]). Rand 1-2 OT � essentially coincides
with ordinary 1-2 OT �, except that the two strings S0 and S1 are not input by
the sender but generated uniformly at random during the protocol and output
to the sender.

For the formal definition of the security requirements of a quantum protocol
for Rand 1-2 OT �, let us fix the following notation: Let C denote the binary
random variable describing receiver R’s choice bit, let S0, S1 denote the �-bit
long random variables describing sender S’s output strings, and let Y denote the
�-bit long random variable describing R’s output string (supposed to be SC).
Furthermore, for a fixed candidate protocol for Rand 1-2 OT �, and for a fixed
input distribution for C, the overall quantum state in case of a dishonest sender
S̃ is given by the ccq-state ρCY S̃. Analogously, in the case of a dishonest receiver
R̃, we have the ccq-state ρS0S1R̃.

Definition 3 (Rand 1-2 OT �). An ε-secure Rand 1-2 OT � is a quantum pro-
tocol between S and R, with R having input C ∈ {0, 1} while S has no input, such
that for any distribution of C, if S and R follow the protocol, then S gets output
S0, S1 ∈ {0, 1}� and R gets Y = SC except with probability ε, and the following
two properties hold:

ε-Receiver-security: If R is honest, then for any S̃, there exist random vari-
ables S′

0, S
′
1 such that Pr

[
Y = S′

C

]
≥ 1 − ε and δ

(
ρCS′

0S′
1S̃, ρC ⊗ ρS′

0S′
1S̃

)
≤ ε.

ε-Sender-security: If S is honest, then for any R̃, there exists a binary random
variable D such that δ

(
ρS1−DSDDR̃, 1

|2�|�⊗ ρSDDR̃

)
≤ ε.

If any of the above holds for ε = 0, then the corresponding property is said to
hold perfectly. If one of the properties only holds with respect to a restricted class
S of S̃’s respectively R of R̃’s, then this property is said to hold and the protocol
is said to be secure against S respectively R.

Receiver-security, as defined here, implies that whatever a dishonest sender does
is as good as the following: generate the ccq-state ρS′

0S′
1S̃ independently of C,

let R know S′
C , and output ρS̃. On the other hand, sender-security implies that
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whatever a dishonest receiver does is as good as the following: generate the ccq-
state ρSDDR̃, let S know SD and an independent uniformly distributed S1−D,
and output ρR̃. In other words, a protocol satisfying Definition 3 is a secure
implementation of the natural Rand 1-2 OT � ideal functionality, except that
it allows a dishonest sender to influence the distribution of S0 and S1, and
the dishonest receiver to influence the distribution of the string of his choice.
This is in particular good enough for constructing a standard 1-2 OT � in the
straightforward way.

We would like to point out the importance of requiring the existence of S′
0

and S′
1 in the formulation of receiver-security in a quantum setting: requiring

only that the sender learns no information on C, as is sufficient in the classical
setting (see e.g. [10]), does not prevent a dishonest sender from obtaining S0, S1
by a suitable measurement after the execution of the protocol in such a way that
he can choose S0 ⊕ S1 at will, and SC is the string the receiver has obtained in
the protocol. This would for instance make the straightforward construction of
a bit commitment3 based on 1-2 OT insecure.

4.3 The Protocol

We introduce a quantum protocol for Rand 1-2 OT � that will be shown perfectly
receiver-secure against any sender and ε-sender-secure against any quantum-
memory-bounded receiver for a negligible ε. The first two steps of the protocol
are identical to Wiesner’s “conjugate coding” protocol [32] from circa 1970 for
“transmitting two messages either but not both of which may be received”.

The simple protocol is described in Fig. 1, where for x ∈ {0, 1}n and I ⊆
{1, . . . , n} we define x|I to be the restriction of x to the bits xi with i ∈ I. The
sender S sends random BB84 states to the receiver R, who measures all received
qubits according to his choice bit C. S then picks randomly two functions from a
fixed two-universal class of hash functions F from {0, 1}n to {0, 1}�, where � is to
be determined later, and applies them to the bits encoded in the + respectively
the bits encoded in ×-basis to obtain the output strings S0 and S1. Note that
we may apply a function f ∈ F to a n′-bit string with n′ < n by padding it
with zeros (which does not decrease its entropy). S announces the encoding bases
and the hash functions to the receiver who then can compute SC . Intuitively,
a dishonest receiver who cannot store all the qubits until the right bases are
announced, will measure some qubits in the wrong basis and thus cannot learn
both strings simultaneously.

We would like to stress that although protocol description and analysis are
designed for an ideal setting with perfect noiseless quantum communication and
with perfect sources and detectors, all our results can easily be extended to a
more realistic noisy setting along the same lines as in [13].

It is clear by the non-interactivity of Rand 1-2 QOT
� that a dishonest sender

cannot learn anything about the receiver’s choice bit. The proof of receiver-
security according to Definition 3 can be found in the full version [12]; the idea,
3 The committer sends two random bits of parity equal to the bit he wants to commit

to, the verifier chooses to receive at random one of those bits.
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Rand 1-2 QOT
�: Let c be R’s choice bit.

1. S picks x ∈R {0, 1}n and θ ∈R {+, ×}n, and sends |x1〉θ1
, . . . , |xn〉θn

to R.
2. R measures all qubits in basis [+, ×]c. Let x′ ∈ {0, 1}n be the result.
3. S picks two hash functions f0, f1 ∈R F , announces θ and f0, f1 to R, and

outputs s0 := f0(x|I0) and s1 := f1(x|I1) where Ib := {i : θi =[+,×]b}.
4. R outputs sc = fc(x′|Ic ).

Fig. 1. Quantum Protocol for Rand 1-2 OT �

though, simply is to have a dishonest S̃ execute the protocol with a receiver that
has unbounded quantum memory and that way can compute S′

0 and S′
1.

Proposition 1. Rand 1-2 QOT
� is perfectly receiver-secure.

4.4 Security Against Memory-Bounded Dishonest Receivers

We model dishonest receivers in Rand 1-2 QOT
� under the assumption that the

maximum size of their quantum storage is bounded. Such adversaries are only
required to have bounded quantum storage when Step 3 in Rand 1-2 QOT

� is
reached; before and after that, the adversary can store and carry out arbitrary
quantum computations involving any number of qubits. Let Rq denote the set
of all possible quantum dishonest receivers R̃ in Rand 1-2 QOT

� which have
quantum memory of size at most q when Step 3 is reached. We stress once more
that apart from the restriction on the size of the quantum memory available to
the adversary, no other assumption is made. In particular, the adversary is not
assumed to be computationally bounded and the size of his classical memory is
not restricted.

Theorem 4. Rand 1-2 QOT
� is ε-secure against Rq for a negligible (in n) ε if

n/4 − 2� − q ∈ Ω(n).

For improved readability, we merely give a sketch of the proof; the formal proof
that takes care of all the ε’s is given in the full version [12].

Proof (sketch). It remains to show sender-security. Let X be the random vari-
able that describes the sender’s choice of x, where we understand the distrib-
ution of X to be conditioned on the classical information that R̃ obtained by
measuring all but γn qubits. A standard purification argument, that was also
used in [13], shows that the same X can be obtained by measuring a quantum
state in basis θ ∈R {+, ×}n, described by the random variable Θ: for each qubit
|xi〉θi

the sender S is instructed to send to R, S instead prepares an EPR pair
|Φ〉 = 1√

2
(|00〉 + |11〉) and sends one part to R while keeping the other, and when

Step 3 is reached, S measures her qubits.
The uncertainty relation, Theorem 1, implies that the smooth min-entropy

of X given Θ is approximately n/2. Let now X0 and X1 be the two substrings
of X consisting of the bits encoded in the basis + or ×, respectively. Then the
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Min-Entropy-Splitting Lemma, respectively Corollary 2, implies the existence
of a binary D such that X1−D has approximately n/4 bits of smooth min-
entropy given Θ and D. From the random and independent choice of the hash
functions F0, F1 and from the Chain Rule, Lemma 1, it follows that X1−D has
still about n/4−� bits of smooth min-entropy when conditioning on Θ, D, FD and
FD(XD). The Privacy Amplification Theorem 3, then guarantees that S1−D =
F1−D(X1−D) is close to random, given Θ, D, FD, SD, F1−D and R̃’s quantum
state of size q, if n/4 − 2� − q is positive and linear in n. ��

We note that by adapting recent and more advanced techniques [33] to the
quantum case, the security of Rand 1-2 QOT

� can be proven against Rq if
n/4 − � − q ∈ Ω(n).

5 Application: Quantum Bit Commitment

The binding criterion for classical commitments usually requires that after the
committing phase and for any dishonest committer, there exists a bit d ∈ {0, 1}
that can only be opened with negligible probability. In the quantum world,
the binding property cannot be defined the same way. If the commitment is
unconditionally concealing, the committer can place himself in superposition of
committing to 0 and 1 and only later make a measurement that fixes the choice.
For this reason, the previous standard approach (see e.g. [17]) was to use a weaker
binding condition only requiring that the probabilities p0 and p1 (to successfully
open b = 0 and b = 1 respectively), satisfy p0 + p1 � 1. The bit commitment
scheme proposed in [13] was shown to be binding in this weak sense.

We first argue that this weak notion is not really satisfactory. For instance,
it does not capture the expected behavior of a commitment scheme by allowing
a dishonest committer who can open the commitment with probability 1/2 to
any value, and with probability 1/2 is unable to open it at all (depending on
some event occurring during the opening). Another shortcoming of this notion
is that committing bit by bit does not yield a secure string commitment—the
argument that one is tempted to use requires independence of the pb’s between
the different executions, which in general does not hold. We now argue that
this notion is unnecessarily weak, even when taking into account a committer
committing in superposition. We propose the following definition.

Definition 4. An unconditionally secure commitment scheme is called binding,
if for every (dishonest) committer there exists a classical binary random vari-
able D whose distribution cannot be influenced by the (dishonest) committer
after the commit phase and with the property that the committer’s probability to
successfully open the commitment to 1 − D is negligible.

Note that this definition still allows a committer to commit to a superposition
and otherwise honestly follow the protocol. D is then simply defined to be the
outcome when the register that carries the superposition is measured. On the
other hand, the definition captures exactly what one expects from a commitment
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scheme, except that the bit, to which the committer can open the commitment, is
not fixed right after the commit phase. However, once committed, the dishonest
committer cannot influence its distribution anymore, and thus this is not of any
help to him, because he can always pretend not to know that bit.

It is also clear that with this stronger notion of the binding property, the
obvious reduction from a string to a bit commitment scheme by committing
bit-wise can be proven secure: the i-th execution of the bit commitment scheme
guarantees a random variable Di such that the committer cannot open the i-th
bit commitment to 1 − Di, and thus there exists a random variable S, namely
S = (D1, D2, . . .), such that the committer cannot open the list of commitments
to any other string than S.

We show in the following that the quantum bit-commitment scheme comm

from [13] fulfills the stronger notion of binding from Definition 4 above. Let Cq

denote the set of all possible quantum dishonest committers C̃ in comm which
have quantum memory of size at most q at the start of the opening phase. Then
the following holds.

Theorem 5. The quantum bit-commitment scheme comm from [13] is binding
according to Definition 4 against Cq if n/4 − q ∈ Ω(n).

Proof (Sketch). By considering a purified version of the scheme and using the
uncertainty relation, one can argue that X has (smooth) min-entropy about n/2
given Θ. The Min-Entropy-Splitting Lemma implies that there exists D such that
X1−D has smooth min-entropy about n/4 given Θ and D. Privacy amplification
implies that F (X1−D) is close to random given Θ, D, F and C̃’s quantum register
of size q, where F is a two-universal one-bit-output hash function, which in
particular implies that C̃ cannot guess X1−D. ��

6 Application: Quantum Key Distribution

Let B be a set of orthonormal bases on a Hilbert space H, and assume that
the basis vectors of each basis ϑ ∈ B are parametrized by the elements of some
fixed set X . We then consider QKD protocols consisting of the steps described
in Fig. 2. Note that the quantum channel is only used in the preparation step.
Afterwards, the communication between Alice and Bob is only classical (over an
authentic channel).

As shown in [25] (Lemma 6.4.1), the length � of the secret key that can be
generated in the privacy amplification step of the protocol described above is
given by4

� ≈ Hε
∞(X | E) − H0(C) ,

where E denotes the (quantum) system containing all the information Eve might
have gained during the preparation step of the protocol and where H0(C) is the
number of error correction bits sent from Alice to Bob. Note that this formula
4 The approximation in this and the following equations holds up to some small addi-

tive value which depends logarithmically on the desired security ε of the final key.
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One-Way QKD: let N ∈ N be arbitrary
1. Preparation: For i = 1 . . . N , Alice chooses at random a basis ϑi ∈ B and a

random element Xi ∈ X . She encodes Xi into the state of a quantum system
(e.g., a photon) according to the basis ϑi and sends this system to Bob. Bob
measures each of the states he receives according to a randomly chosen basis
ϑ′

i and stores the outcome Yi of this measurement.
2. Sifting: Alice and Bob publicly announce their choices of bases and keep their

data at position i only if ϑi = ϑ′
i. In the following, we denote by X and Y

the concatenation of the remaining data Xi and Yi, respectively. X and Y are
sometimes called the sifted raw key.

3. Error correction: Alice computes some error correction information C depend-
ing on X and sends C to Bob. Bob computes a guess X̂ for Alice’s string X,
using C and Y .

4. Privacy amplification: Alice chooses at random a function f from a two-
universal family of hash functions and announces f to Bob. Alice and Bob
then compute the final key by applying f to their strings X and X̂ , respec-
tively.

Fig. 2. General form for one-way QKD protocols

can be seen as a generalization of the well known expression by Csiszár and
Körner for classical key agreement [11].

Let us now assume that Eve’s system E can be decomposed into a classical
part Z and a purely quantum part E′. Then, using the chain rule (Lemma 3.2.9
in [25]), we find

� ≈ Hε
∞(X | ZE′) − H0(C) � Hε

∞(X | Z) − H0(E′) − H0(C) .

Because, during the preparation step, Eve does not know the encoding bases
which are chosen at random from the set B, we can apply our uncertainty relation
(Theorem 2) to get a lower bound for the min-entropy of X conditioned on Eve’s
classical information Z, i.e., Hε

∞(X | Z) ≥ Mh, where M denotes the length of
the sifted raw key X and h is the average entropic uncertainty bound for B. Let
q be the bound on the size of Eve’s quantum memory E′. Moreover, let e be the
average amount of error correction information that Alice has to send to Bob
per symbol of the sifted raw key X . Then

� � M(h − e) − q .

Hence, if the memory bound only grows sublinearly in the length M of the sifted
raw key, then the key rate, i.e., the number of key bits generated per bit of the
sifted raw key, is lower bounded by

rate ≥ h − e .

The Binary-Channel Setting. For a binary channel (where H has dimension
two), the average amount of error correction information e is given by the binary
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Shannon entropy5 Hbin(p) = −
(
p log(p) + (1 − p) log(1 − p)

)
, where p is the bit-

flip probability of the quantum channel (for classical bits encoded according to
some orthonormal basis as described above). The achievable key rate of a QKD
protocol using a binary quantum channel is thus given by ratebinary ≥ h−Hbin(p).
Summing up, we have derived the following theorem.

Theorem 6. Let B be a set of orthonormal bases of H2 with average entropic
uncertainty bound h. Then, a one-way QKD-protocol as in Fig. 2 produces a
secure key against eavesdroppers whose quantum-memory size is sublinear in the
length of the raw key (i.e., sublinear in the number of qubits sent from Alice to
Bob) at a positive rate as long as the bit-flip probability p fulfills Hbin(p) < h.

For the BB84 protocol, we have h = 1
2 and Hbin(p) < 1

2 is satisfied as long as
p ≤ 11%. This bound coincides with the known bound for security against an
unbounded adversary. So, the memory-bound does not give an advantage here.6

The situation is different for the six-state protocol where h = 2
3 . In this case,

security against memory-bounded adversaries is guaranteed (i.e. Hbin(p) < 2
3 )

as long as p ≤ 17%. If one requires security against an unbounded adversary,
the threshold for the same protocol lies below 13%, and even the best known
QKD protocol on binary channels with one-way classical post-processing can
only tolerate noise up to roughly 14.1% [26]. It has also been shown that, in
the unbounded model, no such protocol can tolerate an error rate of more than
16.3%.

The performance of QKD protocols against quantum-memory bounded eaves-
droppers can be improved further by making the choice of the encoding bases
more random. For example, they might be chosen from the set of all possible
orthonormal bases on a two-dimensional Hilbert space. As shown in the full
version [12], the average entropic uncertainty bound is then given by h ≈ 0.72
and Hbin(p) < 0.72 is satisfied if p � 20%. For an unbounded adversary, the
thresholds are the same as for the six-state protocol.

7 Open Problems

It is interesting to investigate whether the uncertainty relation (Theorem 2) still
holds if the measurement bases (Θ1, . . . , Θn) are randomly chosen from a rela-
tively small subset of Bn (rather than from the entire set Bn). Such an extension
would reduce the amount of randomness that is needed in applications. In par-
ticular, in the context of QKD with quantum-memory-bounded eavesdroppers,
it would allow for more efficient protocols that use a relatively short initial se-
cret key in order to select the bases for the preparation and measurement of the
states and, hence, avoid the sifting step.

Another open problem is to consider protocols using higher-dimensional quan-
tum systems. The results mentioned in the previous paragraph show that for
5 This value of e is only achieved if an optimal error-correction scheme is used. In

practical implementations, the value of e might be slightly larger.
6 Note, however, that the analysis given here might not be optimal.
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high-dimensional systems, the average entropic uncertainty bound converges to
its theoretical maximum. The maximal tolerated channel noise might thus be
higher for such protocols (depending on the noise model for higher-dimensional
quantum channels).
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