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We consider the problem of secure identification: user U proves to server S that he knows 
an agreed (possibly low-entropy) password w , while giving away as little information 
on w as possible—the adversary can exclude at most one possible password for each 
execution. We propose a solution in the bounded-quantum-storage model, where U and 
S may exchange qubits, and a dishonest party is assumed to have limited quantum 
memory. No other restriction is posed upon the adversary. An improved version of the 
proposed identification scheme is also secure against a man-in-the-middle attack, but 
requires U and S to additionally share a high-entropy key k. However, security is still 
guaranteed if one party loses k to the attacker but notices the loss. In both versions, 
the honest participants need no quantum memory, and noise and imperfect quantum 
sources can be tolerated. The schemes compose sequentially, and w and k can securely 
be re-used. A small modification to the identification scheme results in a quantum-key-
distribution (QKD) scheme, secure in the bounded-quantum-storage model, with the same 
re-usability properties of the keys, and without assuming authenticated channels. This is in 
sharp contrast to known QKD schemes (with unbounded adversary) without authenticated 
channels, where authentication keys must be updated, and unsuccessful executions can 
cause the parties to run out of keys.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Secure identification Consider two parties, a user U and a server S, who share a common secret-key (or password or Personal 
Identification Number PIN) w . In order to obtain some service from S, U needs to convince S that he is the legitimate user 
U by “proving” that he knows w . In practice—think of how you prove to the ATM that you know your PIN—such a proof 
is often done simply by announcing w to S. This indeed guarantees that a dishonest user U∗ who does not know w
cannot identify himself as U, but of course incurs the risk that U might reveal w to a malicious server S∗ who may now 
impersonate U. Thus, from a secure identification scheme we also require that a dishonest server S∗ obtains (essentially) no 
information on w .

✩ A preliminary version of this paper appeared in CRYPTO 2007.
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There exist various approaches to obtain secure identification schemes, depending on the setting and the exact security 
requirements. For instance zero-knowledge proofs (and some weaker versions), as initiated by Feige, Fiat and Shamir [19,18], 
allow for secure identification. In a more sophisticated model, where we allow the common key w to be of low entropy 
and additionally consider a man-in-the-middle attack, we can use techniques from password-based key-agreement (like [21,
20]) to obtain secure identification schemes. Common to these approaches is that security relies on the assumption that 
some computational problem (like factoring or computing discrete logs) is hard and that the attacker has limited computing 
power.

Our contribution In this work, we take a new approach: we consider quantum communication, and we develop two iden-
tification schemes which are information-theoretically secure under the sole assumption that the attacker can only reliably 
store quantum states of limited size. This model was first considered in [9]. On the other hand, the honest participants only 
need to send qubits and measure them immediately upon arrival, no quantum storage or quantum computation is required. 
Furthermore, our identification schemes are robust to both noisy quantum channels and imperfect quantum sources. Our 
schemes can therefore be implemented in practice using existing technology.

The first scheme is secure against dishonest users and servers but not against a man-in-the-middle attack. It allows the 
common secret-key w to be non-uniform and of low entropy, like a human-memorizable password. Only a user knowing 
w can succeed in convincing the server. In any execution of this scheme, a dishonest user or server cannot learn more on 
w than excluding one possibility, which is unavoidable. This is sometimes referred to as password-based identification. The 
second scheme requires in addition to w a uniformly distributed high-entropy common secret-key k, but is additionally 
secure against a man-in-the-middle attack. Furthermore, security against a dishonest user or server holds as for the first 
scheme even if the dishonest party knows k (but not w). This implies that k can for instance be stored on a smart card, and 
security of the scheme is still guaranteed even if the smart card gets stolen, assuming that the affected party notices the 
theft and thus does not engage in the scheme anymore. Both schemes compose sequentially, and w (and k) may be safely 
re-used super-polynomially many times, even if the identification fails (due to an attack, or due to a technical failure).

A small modification of the second identification scheme results in a quantum-key-distribution (QKD) scheme secure 
against bounded-quantum-memory adversaries. The advantage of the proposed new QKD scheme is that no authenticated 
channel is needed and the attacker can not force the parties to run out of authentication keys. The honest parties merely 
need to share a password w and a high-entropy secret-key k, which they can safely re-use (super-polynomially many 
times), independent of whether QKD succeeds or fails. Furthermore, like for the identification scheme, losing k does not 
compromise security as long as the loss is noticed by the corresponding party. One may think of this as a quantum version 
of password-based authenticated key exchange. The properties of our solution are in sharp contrast to all known QKD 
schemes without authenticated channels (which do not pose any restrictions on the attacker). In these schemes, an attacker 
can force parties to run out of authentication keys by making the QKD execution fail (e.g. by blocking some messages). 
Worse, even if the QKD execution fails only due to technical problems, the parties can still run out of authentication keys 
after a short while, since they cannot exclude that an eavesdropper was in fact present. This problem is an important 
drawback of QKD implementations, especially of those susceptible to single (or few) point(s) of failure [14].

Other approaches We briefly discuss how our identification schemes compare with other approaches. We have already 
given some indication on how to construct computationally secure identification schemes. This approach typically allows 
for very practical schemes, but requires some unproven complexity assumption. Another interesting difference between 
the two approaches: whereas for (known) computationally-secure password-based identification schemes the underlying 
computational hardness assumption needs to hold indefinitely, the restriction on the attacker’s quantum memory in our 
approach only needs to hold during the execution of the identification scheme, actually only at one single point during 
the execution. In other words, having a super-quantum-storage-device at home in the basement only helps you cheat at 
the ATM if you can communicate with it on-line quantumly—in contrast to a computational solution, where an off-line 
super-computer in the basement can make a crucial difference.

Furthermore, obtaining a satisfactory identification scheme requires some restriction on the adversary, even in the 
quantum setting: considering only passive attacks, Lo [24] showed that for an unrestricted adversary, no password-based 
quantum identification scheme exists. Lo’s impossibility result only applies if the user U is guaranteed not to learn anything 
about the outcome of the identification procedure. The impossibility of the general case has been shown in very recent 
work [4]. Using the definitions from [17], one can even show that the whole password of the honest player leaks to the 
dishonest player.

Another alternative approach is the classical bounded-storage model [25,5,1]. In contrast to our approach, only classical 
communication is used, and it is assumed that the attacker’s classical memory is bounded. Unlike in the quantum case 
where we do not need to require the honest players to have any quantum memory, the classical bounded-storage model 
requires honest parties to have a certain amount of memory which is related to the allowed memory size of the adversary: 
if two legitimate users need n bits of memory in an identification protocol meeting our security criterion, then an adversary 
must be bounded in memory to O (n2) bits. The reason is that given a secure password-based identification scheme, one 
can construct (in a black-box manner) a key-distribution scheme that produces a one-bit key on which the adversary 
has an (average) entropy of 1

2 . On the other hand it is known that in any key-distribution scheme which requires n bits 
of memory for legitimate players, an adversary with memory Ω(n2) can obtain the key except for an arbitrarily small 
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amount of remaining entropy [13]. It follows that password-based identification schemes in the classical bounded-storage 
model can only be secure against adversaries with memory at most O (n2). This holds even for identification schemes with 
only passive security and without security against man-in-the-middle attacks. Roughly, the reduction works as follows. 
Alice and Bob agree on a public set of two keys {w0, w1}. Alice picks a ∈R {0, 1}, Bob picks b ∈R {0, 1}, and they run the 
identification scheme with keys wa and wb respectively. The outcome of the identification is then made public from which 
Bob determines a. We argue that if the identification fails, i.e. a ̸= b, then a is a secure bit. Thus, on average, a has entropy 
(close to) 1

2 from an eavesdropper’s point of view. Consider w ′ /∈ {w0, w1}. By the security property of the identification 
scheme, Alice and thus also a passive eavesdropper Eve cannot distinguish between Bob having used wb or w ′ . Similarly, 
we can then switch Alice’s key wa to w1−a and Bob’s switched key w ′ to w1−b without changing Eve’s view. Thus, Eve 
cannot distinguish an execution with a = 0 from one with a = 1 if a ̸= b.

This limitation of the classical bounded-storage model is in sharp contrast with what we achieve in this paper, the honest 
players need no quantum memory at all while our identification scheme remains secure against adversaries with quantum 
memory linear in the total number of qubits sent. The same separation between the two models was shown for OT and bit 
commitment [9,8].

Finally, if one settles for the bounded-quantum-storage model, then in principle one could take a generic construction 
for general two-party secure-function-evaluation (SFE) based on OT together with the OT scheme from [9,8] in order to 
implement a SFE for string equality and thus password-based identification. However, this approach leads to a highly im-
practical solution, as the generic construction requires many executions of OT, whereas our solution is comparable with one
execution of the OT scheme from [9,8]. Furthermore, SFE does not automatically take care of a man-in-the-middle attack, 
thus additional work would need to be done using this approach.

Subsequent work The difficulty of storing quantum information can also be modeled differently from assuming a bound on 
the physical number of qubits an adversary can control. In the more realistic noisy-quantum-storage model put forward 
in [33], all incoming qubits can be stored by an adversary but are subject to storage noise. Assuming a simple storage 
strategy, one can show that the protocols in the current paper remain secure [31].

More recent work [23] defined the basic cryptographic primitive of weak string erasure and several follow-up works have 
investigated how to securely implement this primitive in the noisy-storage model, both theoretically [23,2] and experimen-
tally [26]. It is shown in [23] how to build bit commitment and oblivious transfer from weak string erasure. It is likely that 
similar constructions will yield password-based identification schemes as well. The drawback of these constructions is the 
use of interactive hashing which makes the protocols rather inefficient. In [30], it is shown how to circumvent this problem.

If the storage limitation on the adversary fails to hold, it is easy to see that not only will our security proofs fail, but in 
fact the protocol we propose can be broken quite efficiently. However, as shown in [7], it is possible to add a “preamble” to 
the protocol using a commitment scheme based on a computational assumption. In order to break the resulting protocol, an 
adversary must have both large quantum memory and large computing power. Of a similar spirit is the quantum identifica-
tion scheme considered in [3]: in order to break it, an adversary must have both large quantum memory and “non-trivial” 
quantum computation capabilities.

2. Preliminaries

2.1. Notation and terminology

Quantum states We assume the reader’s familiarity with basic notation and concepts of quantum information process-
ing [27]. In this paper, the computational or +-basis is defined by {|0⟩, |1⟩} (also written as {|0⟩+, |1⟩+}). The pair 
{|0⟩×, |1⟩×} denotes the diagonal or ×-basis, where |0⟩× = (|0⟩ + |1⟩)/

√
2 and |1⟩× = (|0⟩ − |1⟩)/

√
2. We write |x⟩θ =

|x1⟩θ1 ⊗ · · ·⊗ |xn⟩θn for the n-qubit state where string x = (x1, . . . , xn) ∈ {0, 1}n is encoded in bases θ = (θ1, . . . , θn) ∈ {+, ×}n .
The behavior of a (mixed) quantum state in a register E is fully described by its density matrix ρE . In order to simplify 

language, we tend to be a bit sloppy and use E as well as ρE as “naming” for the quantum state. We often consider 
cases where a quantum state E may depend on some classical random variable X (from a finite set X ) in that the state is 
described by the density matrix ρx

E if and only if X = x. For an observer who has only access to the state E but not to X , 
the behavior of the state is determined by the density matrix ρE := ∑

x P X (x)ρx
E , whereas the joint state, consisting of the 

classical X and the quantum state E , is described by the density matrix ρX E := ∑
x P X (x)|x⟩⟨x| ⊗ ρx

E , where we understand 
{|x⟩}x∈X to be the standard (orthonormal) basis of C|X | . More general, for any event E (defined by PE |X (x) = P [E |X = x]
for all x), we write

ρX E|E :=
∑

x

P X |E (x)|x⟩⟨x| ⊗ ρx
E and ρE|E := trX (ρX E|E ) =

∑

x

P X |E (x)ρx
E .

We also write ρX := ∑
x P X (x)|x⟩⟨x| for the quantum representation of the classical random variable X (and similarly for 

ρX |E ). This notation extends naturally to quantum states that depend on several classical random variables, defining the 
density matrices ρXY E , ρXY E|E , ρY E|X=x etc. We tend to slightly abuse notation and write ρx

Y E = ρY E|X=x and ρx
Y E|E =
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ρY E|X=x,E , as well as ρx
E = trY (ρx

Y E ) and ρx
E|E = trY (ρx

Y E|E ).1 Note that writing ρX E = trY (ρXY E ) and ρE = trX,Y (ρXY E ) is 
consistent with the above notation. We also write ρX E|E = trY (ρXY E|E ) and ρE|E = trX,Y (ρXY E|E ), where one has to be aware 
that in contrast to above, here the state E may depend on the event E (namely via Y ), so that, e.g., ρE|E = ∑

x P X |E (x)ρx
E|E . 

Given a quantum state E that depends on a classical random variable X , by saying that there exists a random variable Y
such that ρXY E satisfies some condition, we mean that ρX E can be understood as ρX E = trY (ρXY E ) for some ρXY E (with 
classical Y ) and that ρXY E satisfies the required condition.2

X is independent of E (in that ρx
E does not depend on x) if and only if ρX E = ρX ⊗ ρE , which in particular implies 

that no information on X can be learned by observing only E . Similarly, X is random and independent of E if and only if 
ρX E = 1

|X | I ⊗ ρE , where 1
|X | I is the density matrix of the fully mixed state of suitable dimension. Finally, if two states like 

ρX E and ρX ⊗ ρE are ε-close in terms of their trace distance δ(ρ, σ ) = 1
2 tr(|ρ − σ |), which we write as ρX E ≈ε ρX ⊗ ρE , 

then the real system ρX E “behaves” as the ideal system ρX ⊗ ρE except with probability ε in that for any evolution of the 
system no observer can distinguish the real from the ideal one with advantage greater than ε [29]. As ε can be interpreted 
as an error probability, we typically require ε to be negligible in a security parameter n, denoted as ε = negl(n). A security 
parameter is a natural number n that parameterizes our protocols, and a probability is said to be negligible in n if for any 
monic polynomial p, it is smaller than 1/p(n) for all sufficiently large n.

Conditional independence We also need to express that a random variable X is (close to) independent of a quantum state E
when given a random variable Y . This means that when given Y , the state E gives no (or little) additional information on X . 
Formally, this is expressed by requiring that ρXY E equals (or is close to) ρX↔Y ↔E , which is defined as3

ρX↔Y ↔E :=
∑

x,y

P XY (x, y)|x⟩⟨x| ⊗ |y⟩⟨y| ⊗ ρ y
E .

In other words, ρXY E = ρX↔Y ↔E precisely if ρx,y
E = ρ y

E for all x and y. To further illustrate its meaning, notice that if the 
Y -register is measured and value y is obtained, then the state ρX↔Y ↔E collapses to (

∑
x P X |Y (x|y)|x⟩⟨x|) ⊗ ρ y

E , so that 
indeed no further information on x can be obtained from the E-register. This notation naturally extends to ρX↔Y ↔E|E
simply by considering ρXY E|E instead of ρXY E . Explicitly,

ρX↔Y ↔E|E =
∑

x,y

P XY |E (x, y)|x⟩⟨x| ⊗ |y⟩⟨y| ⊗ ρ y
E|E .

The notion of conditional independence has been introduced in [10] (a classical version was independently proposed 
in [6]) and used as a convenient tool in subsequent papers [17,4]. In this paper we will use the following property of 
conditional independence whose proof is given in Appendix A.1.

Lemma 1. For any event E , the density matrix ρX↔Y ↔E can be decomposed into

ρX↔Y ↔E = P [E]2 · ρX↔Y ↔E|E +
(
1 − P [E]2) · τ

for some density matrix τ . Furthermore, if E is independent of X and Y , then

ρX↔Y ↔E = P [E] · ρX↔Y ↔E|E + P [Ē] · ρX↔Y ↔E|Ē .

(Conditional) smooth min-entropy Different notions of conditional (smooth) min-entropy have been proposed in the liter-
ature; we briefly specify here the variant that is convenient for us. Let X and Y be random variables, over respective 
finite alphabets X and Y , with joint distribution P XY . The conditional min-entropy of X given Y is defined as the negative 
logarithm of the guessing probability of X given Y : Hmin(X |Y ) := − log(pguess(X |Y )) where

pguess(X |Y ) :=
∑

y

P Y (y)max
x

P X |Y (x|y) =
∑

y

max
x

P XY (x, y)

and log denotes the binary logarithm (here and throughout the paper). More generally, we define Hmin(XE |Y ) for any event 
E as Hmin(XE |Y ) := − log(pguess(XE |Y )) where

pguess(XE|Y ) :=
∑

y

P Y (y)max
x

P XE|Y (x|y) =
∑

y

max
x

P XY E (x, y).

1 The density matrix ρx
E|E describes the quantum state E in the case that the event E occurs and X takes on the value x. The corresponding holds for 

the other density matrices considered here.
2 This is similar to the case of distributions of classical random variables where given X the existence of a certain Y is understood that there exists a 

certain joint distribution P XY with ∑y P XY (·, y) = P X .
3 The notation is inspired by the classical setting where the corresponding independence of X and Z given Y can be expressed by saying that X ↔ Y ↔ Z

forms a Markov chain.
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pguess(XE |Y ) can be understood as the optimal probability in guessing X and have E occur, when given Y . The conditional 
smooth min-entropy Hε

min(X |Y ) is then defined as

Hε
min(X |Y ) := max

E
Hmin(XE|Y )

where the max is over all events E with P [E] ≥ 1 − ε.
Obviously, the unconditional versions of smooth and non-smooth min-entropy are obtained by using an “empty” Y ; 

furthermore the above notions extend naturally to Hmin(X |Y , E) and Hε
min(X |Y , E) for any event E by considering the 

corresponding conditional joint distribution P XY |E .

2.2. Tools

Min-entropy-splitting A technical tool, which will come in handy, is the following entropy-splitting lemma, which may also 
be of independent interest. Informally, it says that if for a list of random variables, every pair has high (smooth) min-entropy, 
then all of the random variables except one must have high (smooth) min-entropy. The proof is given in Appendix A.2.

Lemma 2 (Entropy-splitting lemma). Let ε ≥ 0. Let X1, . . . , Xm and Z be random variables such that Hε
min(Xi X j|Z) ≥ α for all 

i ̸= j. Then there exists a random variable V over {1, . . . , m} such that for any independent random variable W over {1, . . . , m} with 
Hmin(W ) ≥ 1,

H2mε
min (XW |V W Z , V ≠ W ) ≥ α/2 − log(m) − 1.

Quantum uncertainty relation At the very core of our security proofs lies (a special case of) the quantum uncertainty relation 
from [8],4 that lower bounds the (smooth) min-entropy of the outcome when measuring an arbitrary n-qubit state in a 
random basis θ ∈ {0, 1}n .

Theorem 1 (Uncertainty relation [8]). Let E be an arbitrary fixed n-qubit state. Let Θ be uniformly distributed over {+, ×}n (indepen-
dent of E), and let X ∈ {0, 1}n be the random variable for the outcome of measuring E in basis Θ . Then, for any λ > 0, the conditional 
smooth min-entropy is lower bounded by

Hε
min(X |Θ) ≥

(
1
2

− 2λ

)
n

with ε ≤ 2−σ (λ)n and σ (λ) = λ2 log(e)
32(2−log(λ))2 .

Thus, ignoring negligibly small “error probabilities” and linear fractions that can be chosen arbitrarily small, the outcome 
of measuring any n-qubit state in a random basis has n/2 bits of min-entropy, given the basis.

Privacy amplification Finally, we recall the quantum-privacy-amplification theorem of Renner and König [29]. The version 
we use here follows immediately from [28, Corollary 5.6.1] by applying the chain rule for min- and max-entropy [28, 
Lemma 3.2.9] and using the equivalence, as shown in [22], of the quantum and the classical notion of (smooth) conditional 
min-entropy. Recall that a class F of hash functions from X to Y is called (strongly) universal-2 if for any x ̸= x′ ∈ X , and 
for F uniformly distributed over F , the collision probability P [F (x) = F (x′)] is upper bounded by 1/|Y|, respectively, for the 
strong notion, the random variables F (x) and F (x′) are uniformly and independently distributed over Y .

Theorem 2. Let X and Z be random variables distributed over X and Z , respectively, and let E be a q-qubit state that may depend 
on X and Z . Let F be the random and independent choice of a member of a universal-2 class of hash functions F from X into {0, 1}ℓ . 
Then, for any ε > 0

δ

(
ρF (X)F Z E ,

1
2ℓ

I ⊗ ρF Z E

)
≤ 1

2
2− 1

2 (Hε
min(X |Z)−q−ℓ) + 2ε.

3. The identification scheme

3.1. The setting

We assume that the honest user U and the honest server S share some key w ∈ W (which we think of as a password), 
where the choice of w is described by the random variable W . An identification protocol is now simply any protocol for 

4 In [8], a stricter notion of conditional smooth min-entropy was used, which in particular implies the bound as stated here.
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U and S using classical and/or quantum communication where the parties are both given as input (in the honest case) the 
password w , and where S outputs accept or reject in the end. The protocol may be parameterized by one or more security 
parameters.

We do not require W to be very large (i.e. |W| does not have to be lower bounded by the security parameter in any 
way), and w does not necessarily have to be uniformly distributed in W . So, we may think of w as a human-memorizable 
password or PIN code. The goal of this section is to construct an identification scheme that allows U to “prove” to S that he 
knows w . The scheme should have the following security properties: a dishonest server S∗ learns essentially no information 
on w beyond that he can come up with a guess w ′ for w and learns whether w ′ = w or not, and similarly a dishonest 
user succeeds in convincing the verifier essentially only if he guesses w correctly, and if his guess is incorrect then the only 
thing he learns is that his guess is incorrect. This in particular implies that as long as the entropy of W is large enough, the 
identification scheme may be safely repeated. Finally, it must of course be the case that S accepts the legitimate user who 
has the correct password. More formally, we require the following:

Definition 1. We say that an identification protocol for two parties U, S is ε-correct if an execution by honest U, S on input 
w for both parties results in S accepting, except with probability ε.

Definition 2. We say that an identification protocol for two parties U, S is ε-secure for the user against (dishonest) server S∗ if 
the following is satisfied: whenever the initial state of S∗ is independent of W , the joint state ρW ES∗ after the execution of 
the protocol is such that there exists a random variable W ′ that is independent of W and such that

ρW W ′ ES∗ |W ′≠W ≈ε ρW ↔W ′↔ES∗ |W ′≠W .

Definition 3. We say that an identification protocol for two parties U, S is ε-secure for the server against (dishonest) user U∗

if the following is satisfied: whenever the initial state of a dishonest user U∗ is independent of W , there exists W ′ (possi-
bly ⊥), independent of W , such that if W ≠ W ′ then S accepts with probability at most ε, and if W = W ′ then S accepts 
with certainty. Furthermore, the common state ρW EU∗ after the execution of the protocol (including S’s announcement to 
accept or reject) satisfies

ρW W ′ EU∗ |W ′≠W ≈ε ρW ↔W ′↔EU∗ |W ′≠W .

If these security definitions are satisfied for a small ε, then we are guaranteed that whatever a dishonest party does 
is essentially as good as trying to guess W by some arbitrary (but independent) W ′ and learning whether the guess was 
correct or not, but nothing beyond that. Such a property is obviously the best one can hope for, since an attacker may 
always honestly execute the protocol with a guess for W and observe whether the protocol was successful.

We would like to point out that the above security definitions, and in fact any security claim in this paper, guarantees 
sequential self-composability, as the output state is guaranteed to have the same independency property (for any fixed choice 
of W ′) as is required from the input state (except if the attacker guesses W ). Moreover, it is shown in [15,17] that our 
definitions imply a “real/ideal” world definition given in [17]. More specifically, it is shown that a protocol satisfying our 
information theoretic conditions implements a natural ideal identification functionality, and by the composition theorem 
from [17], this means that the protocol composes sequentially in a classical environment, i.e. the quantum protocol can be 
treated as the ideal functionality when analyzing a more complicated classical outer protocol.

It should be noted that security for user and server is usually not sufficient for application in practice of an identification 
protocol. A problem occurs if the honest user and server are interacting and an attacker can manipulate the communication, 
i.e., do a “man-in-the-middle” attack, and observe the reaction of the honest parties. This scenario is not covered by the 
above definitions, and indeed it turns out that the simplest version of our protocol is not secure against such an attack. 
Nevertheless, the problem can be solved and we address it in Section 4.

We would also like to point out that once the honest server has verified by means of the identification protocol that he is 
communicating with the legitimate user, and thus he is willing to provide some service to the user, we cannot exclude that 
in the meantime the honest user has been “pushed away” and the service is thus actually provided to an illegitimate user. 
In the example of identifying yourself to an ATM by proving knowledge of your PIN, it is still possible that once the ATM 
dispenses the cash you are physically attacked and someone else takes the money. But of course such a physical attack can 
never be prevented by means of a protocol between the user and the server. Whenever the server provides some physical
service (like dispensing cash or allowing access to a room), it is impossible to prevent by (quantum) cryptographic means 
that a dishonest party steps in after the legitimate identification and physically snatches the offered service. As such, our 
security definitions capture the best possible security.

The situation is somewhat different in case the service the server provides to the legitimate user is of the form of 
providing digital data. In this case, we may expect that the server encrypts the data before giving it to the user, in such 
a way that only the legitimate user, who just identified himself, is able to decrypt. This is what we achieve with the 
authenticated QKD scheme in Section 5.
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Fig. 1. Identification scheme Q-ID.

3.2. The intuition

The scheme we propose is related to the (randomized) 1–2 OT scheme of [8]. In that scheme, Alice sends |x⟩θ to Bob, for 
random x ∈ {0, 1}n and θ ∈ {+, ×}n . Bob then measures everything in basis + or ×, depending on his choice bit c, so that 
he essentially knows half of x (where Alice used the same basis as Bob) and has no information on the other half (where 
Alice used the other basis), though, at this point, he does not know yet which bits he knows and which ones he does not. 
Then, Alice sends θ and two hash functions to Bob, and outputs the hash values s0 and s1 of the two parts of x, whereas 
Bob outputs the hash value sc that he is able to compute from the part of x he knows. It is proven in [8] that no dishonest 
Alice can learn c, and for any quantum-memory-bounded dishonest Bob, at least one of the two strings s0 and s1 is random 
for Bob.

This scheme can be extended by giving Bob more options for measuring the quantum state. Instead of measuring all 
qubits in the + or the × basis, he may measure using m different strings of bases, where any two possible basis-strings 
have large Hamming distance. Then Alice computes and outputs m hash values, one for each possible basis-string that Bob 
might have used. She reveals θ and the hash functions to Bob, so he can compute the hash value corresponding to the basis 
that he has used, and no other hash value. Intuitively, such an extended scheme leads to a randomized 1-m OT.

The scheme can now be transformed into a secure identification scheme as follows, where we assume (wlog) that 
W = {1, . . . , m}. The user U, acting as Alice, and the server S, acting as Bob, execute the randomized 1-m OT scheme where 
S “asks” for the string indexed by his key w , such that U obtains random strings s1, . . . , sm and S obtains sw . Then, to 
do the actual identification, U sends sw to S, who accepts if and only if it coincides with his string sw . Intuitively, such a 
construction is secure against a dishonest server since unless he asks for the right string (by guessing w correctly) the string 
U sends him is random and thus gives no information on w . On the other hand, a dishonest user does not know which 
of the m strings S asked for and wants to see from him. We realize this intuitive idea in the next section. In the actual 
protocol, U does not have to explicitly compute all the si ’s, and also we only need a single hash function (to compute sw ). 
We also take care of some subtleties, for instance that the si are not necessarily random if Alice (i.e. the user) is dishonest.

3.3. The basic scheme

Let c : W → {+, ×}n be the encoding function of a binary code of length n with m = |W| codewords and minimal 
distance d. c can be chosen such that n is linear in log(m) or larger, and d is linear in n. Furthermore, let F and G
be strongly universal-2 classes of hash functions5 from {0, 1}n to {0, 1}ℓ and from W to {0, 1}ℓ , respectively, for some 
parameter ℓ. For x ∈ {0, 1}n and I ⊆ {1, . . . , n}, we define x|I ∈ {0, 1}n to be the restriction of x to the coordinates xi with 
i ∈ I . If |I| < n then applying f ∈ F to x|I is to be understood as applying f to x|I padded with sufficiently many 0’s.

The quantum identification scheme Q-ID is given in Fig. 1. It is trivial to verify that protocol Q-ID satisfies correctness, 
i.e., Definition 1, with ε = 0. In addition, we have:

Proposition 1 (User security). Assume that the size of the quantum memory of dishonest server S∗ is at most q at step 3 of Q-ID, and 
that Hmin(W ) ≥ 1. Then Q-ID is ε-secure for the user against S∗ according to Definition 2, where

ε = 2− 1
2 (( 1

4 −λ)d−log(m)−q−ℓ−1) + 2−(σ (λ)d−log(m)−3)

for an arbitrary 0 < λ < 1
4 .

Note that σ (λ) was defined earlier in the claim of the uncertainty relation. To understand what the result on ε means, 
note that using a family of asymptotically good codes, we can assume that d grows linearly with the main security pa-
rameter n, while still allowing m (the number of passwords) to be exponential in n. So we may choose the parameters 

5 Actually, we only need G to be strongly universal-2.



I. Damgård et al. / Theoretical Computer Science 560 (2014) 12–26 19

such that d
n , log(m)

n , q
n and ℓ

n are all constants. The result above now says that ε is exponentially small as a function of 
n if these constants are chosen in such a way that for some 0 < λ < 1

4 , it holds that ( 1
4 − λ) d

n − log(m)
n − q

n − ℓ
n > 0 and 

σ (λ) d
n − log(m)

n > 0. See Theorem 3 for a choice of parameters that also take server security into account. If we are willing 
to assume that log(m) is sublinear in n, which may be quite reasonable is case we use short passwords that humans can 
remember, the condition further simplifies to d

4n − q
n − ℓ

n > 0.

Proof. We consider and analyze a purified version of Q-ID where in step 1, instead of sending |x⟩θ to S∗ for a random x, U
prepares a fully entangled state 2−n/2 ∑

x |x⟩|x⟩ and sends the second register to S∗ while keeping the first. Then, in step 3 
when the memory bound has applied, he measures his register in the random basis θ ∈R {+, ×}n in order to obtain x. 
Standard arguments imply that this purified version produces exactly the same common state, consisting of the classical 
information on U’s side and S∗ ’s quantum state.

Recall that before step 3 is executed, the memory bound applies to S∗ , meaning that S∗ has to measure all but q of 
the qubits he holds, which consists of his initial state and his part of the EPR pairs. Before doing the measurement, he 
may append an ancilla register and apply an arbitrary unitary transform. As a result of S∗ ’s measurement, S∗ gets some 
outcome y, and the common state collapses to a (n +q)-qubit state (which depends on y), where the first n qubits are with 
U and the remaining q with S∗ . The following analysis is for a fixed y, and works no matter what y is.

We use upper case letters W , X , Θ , F , G and Z for the random variables that describe the respective values w , x, θ etc. 
in an execution of the purified version of Q-ID. We write X j = X |I j for any j, and we let E ′

S∗ be S∗ ’s q-qubit state at step 3, 
after the memory bound has applied. Note that W is independent of X , Θ , F , G and E ′

S∗ .
For 1 ≤ i ̸= j ≤ m, fix the value of X , and correspondingly of Xi and X j , at the positions where c(i) and c( j) coincide, 

and focus on the remaining (at least) d positions. The uncertainty relation (Theorem 1) implies that the restriction of X to 
these positions has ( 1

2 − 2λ)d bits of ε′-smooth min-entropy given Θ , where ε′ ≤ 2−σ (λ)d and 0 < λ < 1
2 arbitrary. Since 

every bit in the restricted X appears in one of Xi and X j , the pair Xi , X j also has ( 1
2 − 2λ)d bits of ε′-smooth min-entropy 

given Θ . The Entropy Splitting Lemma 2 implies that there exists W ′ (called V in Lemma 2) such that if W ≠ W ′ then 
XW has ( 1

4 − λ)d − log(m) − 1 bits of 2mε′-smooth min-entropy given W and W ′ (and Θ). Privacy amplification then 
guarantees that F (XW ) is ε′′-close to random and independent of F , W , W ′ , Θ and E ′

S∗ , conditioned on W ≠ W ′ , where 
ε′′ = 1

2 · 2− 1
2 (d/4−λd−log(m)−1−q−ℓ) + 4mε′ . It follows that Z = F (XW ) ⊕ G(W ) is ε′′-close to random and independent of F , 

G , W , W ′ , Θ and E ′
S∗ , conditioned on W ≠ W ′ .

Formally, we want to upper bound δ(ρW W ′ ES∗ |W ′≠W , ρW ↔W ′↔ES∗ |W ′≠W ). Since the output state ES∗ is, without loss of 
generality, obtained by applying some unitary transform to the set of registers (Z , F , G, W ′, Θ, E ′

S∗ ), the distance above is 
equal to the distance between ρW W ′(Z ,F ,G,Θ,E ′

S∗ )|W ′≠W and ρW ↔W ′↔(Z ,F ,G,Θ,E ′
S∗ )|W ′≠W . We then get:

ρW W ′(Z ,F ,G,Θ,E ′
S∗ )|W ′≠W ≈ε′′

1
2ℓ

I ⊗ ρW W ′(F ,G,Θ,E ′
S∗ )|W ′≠W

= 1
2ℓ

I ⊗ ρW ↔W ′↔(F ,G,Θ,E ′
S∗ )|W ′≠W ≈ε′′ ρW ↔W ′↔(Z ,F ,G,Θ,E ′

S∗ )|W ′≠W ,

where approximations follow from privacy amplification and the exact equality comes from the independency of W , which, 
when conditioned on W ′ ≠ W , translates to independency given W ′ . The claim follows with ε = 2ε′′ . ✷

Proposition 2 (Server security). If Hmin(W ) ≥ 1, then Q-ID is ε-secure for the server against any U∗ according to Definition 3, where 
ε = m2/2ℓ .

The formal proof is given below. The idea is the following. We let U∗ execute Q-ID with a server that is unbounded in 
quantum memory. Such a server can obviously obtain x and thus compute s j = f (x|I j ) ⊕ g( j) for all j. Note that sw is the 
message z that U∗ is required to send in the last step. Now, if the s j ’s are all distinct, then z uniquely defines w ′ such that 
z = sw ′ , and thus S accepts if and only if w ′ = w , and U∗ does not learn anything beyond. The strong universal-2 property 
of g guarantees that the s j ’s are all distinct except with probability m2/2ℓ .

Proof. Again, we consider a slightly modified version. We let U∗ interact with a server that has unbounded quantum memory 
and does the following. Instead of measuring |x⟩θ in step 2 in basis c, it stores the state and measures it after step 3 in 
basis θ (and obtains x). This modified version produces the same common state ρW EU∗ as the original scheme, since the 
only difference between the two is when and in what basis the qubits at positions i /∈ I w are measured, which does not 
effect the execution in any way.

We use the upper case letters W , X , Θ , F , G and Z for the random variables that describe the respective values w , x, 
θ etc. in an execution of the modified version of Q-ID. Furthermore, we define S j := F (X |I j ) ⊕ G( j) for j = 1, . . . , m. Note 
that Z ′ = SW represents the value z′ used by S in the last step. Let E be the event that all S j ’s are distinct. By the strong 
universal-2 property, and since G is independent of X and F , the S j ’s are pairwise independent and thus it follows from 
the union bound that E occurs except with probability at most m(m − 1)/2 · 1/2ℓ ≤ m2/2ℓ+1.
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Let E ′
U∗ be U∗ ’s quantum state after the execution of Q-ID but before he learns S’s decision to accept or reject. We may 

assume that the values of all random variables X , Θ , F , G , Z and the S j ’s are known/given to U∗ , i.e., we consider them 
as part of E ′

U∗ . Furthermore, we may assume that Z is one of the S j ’s, i.e. that Z = SW ′ for a random variable W ′ . Indeed, 
if Z ≠ S j for all j then we set W ′:= ⊥ and S’s decision is “reject”, no matter what W is, and U∗ obviously learns no 
information on W at all. By the way we have defined W ′ , is clear that S accepts if W = W ′ .

Note that E ′
U∗ is independent of W by assumption on U∗ ’s initial state (in Definition 3) and by definition of the random 

variables X , Θ etc. Since E is determined by the S j ’s (which are part of E ′
U∗ ), this holds also when conditioning on E . This 

then translates to the independence of E ′
U∗ from W when given W ′ , conditioned on W ′ ≠ W and E .

We now consider U∗ ’s state EU∗ after he has learned S’s decision. If W ′ ≠ W and all S j ’s are distinct then S rejects with 
probability 1. Hence, conditioned on the events W ′ ≠ W and E , U∗ ’s state EU∗ remains independent of W given W ′ . Define 
p := P [E |W ′ ≠ W ] and p̄ := P [Ē |W ′ ≠ W ] = 1 − p, where Ē is the complementary event to E . Recall that P [Ē] ≤ m2/2ℓ+1, 
and therefore p̄ ≤ P [Ē]/(1 − P [W ′ = W ]) ≤ 2P [Ē] ≤ m2/2ℓ , where the second-last inequality follows from the independence 
of W and W ′ , and from the condition on Hmin(W ). Note that p̄ upper bounds the probability that S accepts in case 
W ′ ≠ W , proving the first claim. From the above it follows that

ρW W ′ EU∗ |W ′≠W = p · ρW W ′ EU∗ |E,W ′≠W + p̄ · ρW W ′ EU∗ |Ē,W ′≠W

= p · ρW ↔W ′↔EU∗ |E,W ′≠W + p̄ · ρW W ′ EU∗ |Ē,W ′≠W .

Furthermore, it is not too hard to see that E is independent of W and W ′ , and thus also when conditioned on W ′ ≠ W . 
Lemma 1 hence implies that

ρW ↔W ′↔EU∗ |W ′≠W = p · ρW ↔W ′↔EU∗ |E,W ′≠W + p̄ · ρW ↔W ′↔EU∗ |Ē,W ′≠W .

By definition of the metric δ(·, ·), and because it cannot be bigger than 1, the distance between the two states is at most 
p̄ ≤ m2/2ℓ . ✷

We call an identification scheme ε-secure against impersonation attacks if the protocol is ε-secure for the user and ε-secure 
for the sender. The following holds:

Theorem 3. If Hmin(W ) ≥ 1, then the identification scheme Q-ID (with suitable choice of parameters) is ε-secure against imperson-
ation attacks for any unbounded user and for any server with quantum memory bound q, where

ε = 2− 1
3 (( 1

4 −λ)nµ−3 log(m)−q−2) + 2−(σ (λ)nµ−log(m)−4)

for an arbitrary 0 < λ < 1
4 , and where µ = h−1(1 − log(m)/n), and h−1 is the inverse of the binary entropy function: h(p) := −p ·

log(p) − (1 − p) · log(1 − p) restricted to 0 < p ≤ 1
2 . In particular, if log(m) is sublinear in n, then ε is negligible in n − 8q.

Proof. We choose ℓ = 1
3 (( 1

4 − λ)d + 3 log(m) − q − 1). Then user security holds except with an error ε =
2− 1

3 (( 1
4 −λ)d−3 log(m)−q−1)+2−(σ (λ)d−2 ln(m)−3) , and server security holds except with an error m2/2ℓ = 2− 1

3 (( 1
4 −λ)d−3 log(m)−q−1) . 

Using a code c, which asymptotically meets the Gilbert–Varshamov bound [32], d may be chosen arbitrarily close to 
n · h−1(1 − log(m)/n). In particular, we can ensure that d differs from this value by at most 1. Inserting the value 
d = n · h−1(1 − log(m)/n) − 1 in the expression for user security yields the theorem. ✷

3.4. Mutual identification

In order to obtain mutual identification, where also the server identifies himself towards the user, one could of course 
simply run Q-ID in both directions: say, first U identifies himself to S, and then S identifies himself to U (by exchanging 
their roles in Q-ID). However, this scheme allows the dishonest server to exclude two possible keys w ∈ W per invocation, 
and it requires to also assume the user’s quantum memory to be bounded, and has doubled complexity.

We briefly sketch an approach that circumvents these drawbacks of the trivial solution: In the original Q-ID scheme, 
instead of announcing z = f (x|I w ) ⊕ g(w), U announces a noisy version z̃, obtained from z by flipping each bit of z indepen-
dently with some small probability; this still allows S to verify if U knows w by testing if z̃ is “close” to z′ , and S has then 
to prove knowledge of w by announcing to U the positions where U flipped the bits.

Security against a dishonest user still holds (with a slightly larger error probability) since the uniformity of the S j ’s, as 
defined in the proof, also guarantees that the S j ’s are pair-wise “far apart” so that W ′ is still uniquely determined by Z̃ . 
And security against a dishonest server follows from the fact that if W ′ ≠ W then Z is (essentially) uniformly distributed 
and thus given its noisy version Z̃ the server can at best guess the positions of the bit-flips, which are independent of W .
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3.5. An error-tolerant scheme

We now consider an imperfect quantum channel with “error rate” φ. The scheme Q-ID is sensitive to such errors in that 
they cause x|I w and x′|I w to be different and thus an honest server S is likely to reject an honest user U. This problem 
can be overcome by means of error-correcting techniques: U chooses a linear error-correcting code that allows to correct a 
φ-fraction of errors, and then in step 2, in addition to θ and f , U sends a description of the code and the syndrome s of 
x|I w to S; this additional information allows S to recover x|I w from its noisy version x′|I w by standard techniques. However, 
this technique introduces a new problem: the syndrome s of x|I w may give information on w to a dishonest server. Hence, 
to circumvent this problem, the code chosen by U must have the additional property that for a dishonest user, who has 
high min-entropy on x|I w , the syndrome s is (close to) independent of w .

This problem has been addressed and solved in the classical setting by Dodis and Smith [12], and subsequently in the 
quantum setting in [16]. Dodis and Smith present a family of efficiently decodable linear codes allowing to correct a constant 
fraction of errors, and where the syndrome of a string is close to uniform if the string has enough min-entropy and the 
code is chosen at random from the family. Specifically, Lemma 5 of [12] guarantees that for every 0 < λ < 1 and for an 
infinite number of n′ ’s there exists a δ-biased (as defined in [12]) family C = {C j} j∈J of [n′, k′, d′]2-codes with δ < 2−λn′/2, 
and which allows to efficiently correct a constant fraction of errors. Furthermore, Theorem 3.2 of [16] (which generalizes 
Lemma 4 in [12] to the quantum setting) guarantees that if a string Y has t bits of min-entropy6 then for a randomly 
chosen code C j ∈ C , the syndrome of Y is close to random and independent of j and any q-qubit state that may depend 
on Y , where the closeness is given by δ · 2(n′+q−t)/2. In our application, Y = XW , n′ ≈ n/2 and t ≈ d/4 − log(m) − ℓ, where 
the additional loss of ℓ bits of entropy comes from learning the ℓ-bit string z. Choosing λ = 1 − t

2n′ gives an ensemble of 
code families that allow to correct a linear number of errors and the syndrome is ε-close to uniform given the quantum 
state, where ε ≤ 2−n′/2+t/4 ·2(n′+q−t)/2 = 2−(t−2q)/4, which is exponentially small provided that there is a linear gap between 
t and 2q. Thus, the syndrome gives essentially no additional information. The error rate φ that can be tolerated this way 
depends in a rather complicated way on λ, but choosing λ larger, for instance λ = 1 − t+νq

2n′ for a constant ν > 0, allows to 
tolerate a higher error rate but requires q to be a smaller (but still constant) fraction of t .

Another imperfection has to be taken into account in current implementations of the quantum channel: imperfect 
sources. An imperfect source transmits more than one qubit in the same state with probability η independently each 
time a new transmission takes place. To deal with imperfect sources, we freely give away (xi , θi) to the adversary when a 
multi-qubit transmission occurs in position i. It is not difficult to see that parameter ε in Proposition 1 then changes in that 
d is replaced by (1 − η)d.

It follows that a quantum channel with error-rate φ and multi-pulse rate η, called the (φ, η)-weak quantum model in [9], 
can be tolerated for some small enough (but constant) φ and η.

4. Defeating man-in-the-middle attacks

4.1. The approach

In the previous section, we “only” proved security against impersonation attacks, but we did not consider a man-in-
the-middle attack, where the attacker sits between an honest user and an honest server and controls their (quantum and 
classical) communication. And indeed, Q-ID is highly insecure against such an attack: the attacker may measure the first 
qubit in, say, basis +, and then forward the collapsed qubit (together with the remaining untouched ones) and observe if 
S accepts the session. If not, then the attacker knows that he introduced an error and hence that the first qubit must have 
been encoded and measured using the ×-basis, which gives him one bit of information on the key w . The error-tolerant 
scheme seems to prevent this particular attack, but it is by no means clear that it is secure against any man-in-the-middle 
attack.

To defeat a man-in-the-middle attack that tampers with the quantum communication, we perform a check of correctness 
on a random subset. The check allows to detect if the attacker tampers too much with the quantum communication, and the 
scheme can be aborted before sensitive information is leaked to the attacker. In order to protect the classical communication, 
one might use a standard information-theoretic authentication code. However, the key for such a code can only be securely 
used a limited number of times. A similar problem occurs in QKD: even though a successful QKD execution produces fresh 
key material that can be used in the next execution, the attacker can have the parties run out of authentication keys by 
repeatedly enforcing the executions to fail. In order to overcome this problem, we will use some special authentication 
scheme allowing to re-use the key under certain circumstances, as discussed in Section 4.3.

4.2. The setting

Similar to before, we assume that the user U and the server S share a not necessarily uniform, low-entropy key w . In 
order to handle the stronger security requirements of this section, we have to assume that U and S in addition share a 

6 [16] does not consider smooth min-entropy, but it is not too hard to see that their results also hold for the smooth version.
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uniform high-entropy key k. We require that a man-in-the-middle attacker can do no better that making a guess w ′ at w , 
and if his guess is incorrect then he learns no more information on w besides that his guess is wrong, and essentially no 
information on k. More formally:

Definition 4. We say that an identification protocol is ε-secure against man-in-the-middle attacks by E if, whenever the initial 
state of E is independent of the keys W and K , there exists W ′ , independent of W , such that the common state ρK W E
after the execution of the protocol satisfies

ρK W W ′ E|W ′≠W ≈ε ρK ⊗ ρW ↔W ′↔E|W ′≠W .

Furthermore, we require security against impersonation attacks, as defined in the previous section, even if the dishonest 
party knows k. It follows that k can for instance be stored on a smart card, and security is still guaranteed even if the smart 
card gets stolen, assuming that the theft is noticed and the corresponding party does/cannot execute the scheme anymore. 
We would also like to stress that by our security notion, not only w but also k may be safely reused, even if the scheme 
was under attack.

4.3. An additional tool: extractor MACs

An important tool used in this section is an authentication scheme, i.e., a Message Authentication Code (MAC), that also 
acts as an extractor, meaning that if there is high min-entropy in the message, then the key-tag pair cannot be distinguished 
from the key and a random tag. Such a MAC, introduced in [11], is called an extractor MAC, EXTR-MAC for short. For instance 
MAC∗

α,β(x) = [αx] + β , where α, x ∈ GF(2n), β ∈ GF(2ℓ) and [.], denotes truncation to the ℓ first bits, is an EXTR-MAC: 
impersonation and substitution probability are 1/2ℓ , and, for an arbitrary message X and “side information” Z , a random 
key K = (A, B) and the corresponding tag T = [A · X] + B , the tuple (T , K , Z) is ( 1

2 ·2− 1
2 (Hε

min(X |Z)−ℓ) +2ε)-close to (U , K , Z), 
where U is the uniform distribution, respectively, ρT K Z E is ( 1

2 ·2− 1
2 (Hε

min(X |Z)−q−ℓ) +2ε)-close to 1
2ℓ I ⊗ρK Z E = 1

2ℓ I ⊗ρK ⊗ρZ E

if we allow a q-qubit state E that may depend only on X and Z . A useful feature of an EXTR-MAC is that if an adversary 
gets to see the tag of a message on which he has high min-entropy, then the key for the MAC can be safely re-used 
(sequentially). Indeed, closeness of the real state, ρT K E , to the ideal state, 1

2ℓ I ⊗ρK E = 1
2ℓ I ⊗ρK ⊗ρE , means that no matter 

how the state evolves, the real state behaves like the ideal one (except with small probability), but of course in the ideal 
state, K is still “fresh” and can be reused.

4.4. The scheme

As for Q-ID, let c : W → {+, ×}n be the encoding function of a binary code of length n with m = |W| codewords and 
minimal distance d, and for parameter ℓ, let F and G be strongly universal-2 classes of hash functions from {0, 1}n to 
{0, 1}ℓ and W to {0, 1}ℓ , respectively. Also, let MAC∗ : K × M → {0, 1}ℓ be an EXTR-MAC with an arbitrary key space K, a 
message space M that will become clear later, and an error probability 2−ℓ . Furthermore, let {syn j} j∈J be the family of 
syndrome functions7 corresponding to a family C = {C j} j∈J of linear error correcting codes of size n′ = n/2, as discussed in 
Section 3.5: any C j allows to efficiently correct a δ-fraction of errors for some constant δ > 0, and for a random j ∈ J , the 
syndrome of a string with t = ( 1

4 − λ)d − log(m) − 3ℓ bits of min-entropy is 2−(t−2q)/4-close to uniform (given j and any 
q-qubit state) for some λ > 0.

Recall, by the set-up assumption, the user U and the server S share a password w ∈ W as well as a uniform high-entropy 
key, which we define to be a random authentication key k ∈ K. The resulting scheme Q-ID+ is given in Fig. 2 below.

Proposition 3 (Security against man-in-the-middle). Assume that the quantum memory of E is of size at most q qubits at step 3 of 
Q-ID+ . Then Q-ID+ is ε-secure against man-in-the-middle attacks by E, where

ε = negl
((

1
4

− λ

)
d − log(m) − 2q − 3ℓ

)
+ negl

(
σ (λ)d − log(m)

)
+ negl(ℓ)

for an arbitrary 0 < λ < 1
4 .

Proof. We use capital letters (W , Θ , etc.) for the values (w , θ , etc.) occurring in the scheme whenever we view them as 
random variables, and we write XW and X ′

W for the random variables taking values x|I w and x′|I w , respectively. To simplify 
the argument, we neglect error probabilities that are of order ε, as well as linear fractions that can be chosen arbitrarily 
small. We merely give indication of a small error by (sometimes) using the word “essentially”.

7 We agree on the following convention: for a bit string y of arbitrary length, syn j(y) is to be understood as syn j(y0 · · ·0) with enough padded zeros if 
its bit length is smaller than n′ , and as (syn j(y′), y′′), where y′ consist of the first n′ and y′′ of the remaining bits of y, if its bit length is bigger than n′ .
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Fig. 2. Identification scheme Q-ID+ .

First note that due to the security of the MAC and its key, if the attacker substitutes θ , j, s, f , g , T , test or z, or if S
recovers an incorrect string as x|I w , then S will reject at the end of the protocol. We can define W ′ (independent of W ) 
as in the proof of Proposition 1 such that if W ≠ W ′ then XW has essentially d/4 − log(m) bits of smooth min-entropy, 
given W , W ′ and Θ . Furthermore, given TAG∗ , F (XW ), TEST (as well as K , F , T , W , W ′ and Θ), XW has still essentially 
t = d/4 − log(m) − 3ℓ bits of smooth min-entropy, if W ≠ W ′ . By the property of the code family C , it follows that if t > 2q
with a linear gap then the syndrome S = syn J (XW ) is essentially random and independent of J , TAG∗ , F (XW ), TEST , K , 
F , T , W , W ′ , Θ and E , conditioned on W ≠ W ′ . Furthermore, it follows from the privacy-amplifying property of MAC∗

and of f that if d/4 − log(m) − 2ℓ > q with a linear gap, then the set of values (TAG∗, F (XW )) is essentially random and 
independent of K , F , TEST , T , W , W ′ , Θ and E , conditioned on W ≠ W ′ . Finally, K is independent of the rest, and E is 
independent of K , F , TEST , T , W , Θ . It follows that ρK W W ′ E|W ′≠W ≈ ρK ⊗ ρW ↔W ′↔E|W ′≠W , before he learns S’s decision 
to accept or reject.

It remains to argue that S’s decision does not give any additional information on W . We will make a case distinction, 
which does not depend on w , and we will show for both cases that S’s decision to accept or reject is independent of w , 
which proves the claim. But first, we need the following observation. Recall that outside of the test set T , S measured in 
the bases dictated by w , but within T in random bases. Let I ′w be the subset of positions i ∈ I w with ci = c(w)i (and thus 
also = θi ), and let T ′ = T ∩ I ′w . In other words, we remove the positions where S measured in the “wrong” basis. The size 
of T ′ is essentially ℓ/4, and given its size, it is a random subset of I ′w of size |T ′|. It follows from the theory of random 
sampling that ν(x|I ′w , x′|I ′w ) essentially equals ν(x|T ′ , x′|T ′) (except with probability negligible in the size of T ′), where ν(·, ·)
denotes the fraction of errors between the two input strings. Furthermore, since the set V = {i ∈ T : θi = ci} of positions 
where U and S compare x and x′ is a superset of T ′ of essentially twice the size, ν(x|V , x′|V ) is essentially lower bounded 
by 1

2 ν(x|T ′ , x′|T ′ ). Putting things together, we get that ν(x|I ′w , x′|I ′w ) is essentially upper bounded by 2ν(x|V , x′|V ). Also note 
that ν(x|V , x′|V ) does not depend on w . We can now do the case distinction:
Case 1: If ν(x|V , x′|V ) ≤ δ

2 (minus an arbitrarily small value), then x|I ′w and x′|I ′w differ in at most a δ-fraction of their 
positions, and thus S correctly recovers x|I w (using test = x|T to get x|I w \I ′w and using s to correct the rest), no matter what 
w is, and it follows that S’s decision only depends on the attacker’s behavior, but not on w .
Case 2: Otherwise, S is guaranteed to get the correct test = x|T (or else rejects) and thus rejects as test and test′ , restricted 
to V , differ in more than a δ

2 -fraction of their positions. Hence, S always rejects in case 2. ✷

For a dishonest user or server who knows k (but not w), breaking Q-ID+ is equivalent to breaking Q-ID, up to a 
change in the parameters. Doing the maths on the parameters similarly to the proof of Theorem 3 (namely, setting ℓ to be
ℓ = 1

4 (( 1
4 − λ)d + log(m) − 2q) whence ε = negl(( 1

4 − λ)d − 7 log(m) − 2q)), it then follows:

Theorem 4. If Hmin(W ) ≥ 1, then the identification scheme Q-ID+ is ε-secure against a man-in-the-middle attacker with quantum 
memory bound q, and, even with a leaked k, Q-ID+ is ε-secure against impersonation attacks for any unbounded user and for any 
server with quantum memory bound q, where

ε = negl
((

1
4

− λ

)
µn − 7 log(m) − 2q

)
+ negl

(
σ (λ)µn − log(m)

)

for µ = h−1(1 − log(m)/n) and an arbitrary 0 < λ < 1
4 . In particular, if log(m) is sublinear in n, ε is negligible in n − 16q.

It is easy to see that Q-ID+ can tolerate a noisy quantum communication up to any error rate φ < δ. Similar to the 
discussion in Section 3.5, tolerating a higher error rate requires the bound on the adversary’s quantum memory to be 
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smaller but still linear in the number of qubits transmitted. Imperfect sources can also be addressed in a similar way as 
for Q-ID. It follows that Q-ID+ can also be shown secure in the (φ, η)-weak quantum model provided φ and η are small 
enough constants.

5. Application to QKD

As already pointed out in Section 4.1, current QKD schemes have the shortcoming that if there is no classical channel 
available that is authenticated by physical means, and thus messages need to be authenticated by an information-theoretic 
authentication scheme, an attacker can force the parties to run out of authentication keys simply by making an execution (or 
several executions if the parties share more key material) fail. Even worse, even if there is no attacker, but some execution(s) 
of the QKD scheme fails due to a technical problem, parties could still run out of authentication keys because it may not 
be possible to distinguish between an active attack and a technical failure. This shortcoming could make the technology 
impractical in situations where denial of service attacks or technical interruptions often occur.

The identification scheme Q-ID+ from the previous section immediately gives a QKD scheme in the bounded-quantum-
storage model that allows to re-use the authentications key(s). Actually, we can inherit the key-setting from Q-ID+ , where 
there are two keys, a human-memorizable password and a uniform, high-entropy key, where security is still guaranteed 
even if the latter gets stolen and the theft is noticed. In order to agree on a secret key sk, the two parties execute Q-ID+ , 
and extract sk from x|I w by applying yet another strongly universal-2 function, for instance chosen by U in step 3 and 
authenticated together with the other information in step 5. Here, n needs to be increased accordingly to have the addi-
tional necessary amount of entropy in x|I w . The analysis of Q-ID+ immediately implies that if honest S accepts, then he is 
convinced that he shares sk with the legitimate U which knows w . In order to convince U, S can then use part of sk to 
one-time-pad encrypt w , and send it to U. The rest of sk is then a secure secret key, shared between U and S. In order to 
have a better “key rate”, instead of using sk (minus the part used for the one-time-pad encryption) as secret key, one can 
also run a standard QKD scheme on top of Q-ID+ and use sk as a one-time authentication key.
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Appendix A. Proofs

A.1. Proof of Lemma 1

Writing p = P [E] and p̄ = P [Ē] we indeed get

ρX↔Y ↔E =
∑

x,y

P XY (x, y)|x⟩⟨x| ⊗ |y⟩⟨y| ⊗ ρ y
E

=
∑

x,y

(
p · P XY |E (x, y) + p̄ · P XY |Ē (x, y)

)
|x⟩⟨x| ⊗ |y⟩⟨y| ⊗

(
p · ρ y

E|E + p̄ · ρ y
E|Ē

)

= p2 ·
∑

x,y

P XY |E (x, y)|x⟩⟨x| ⊗ |y⟩⟨y| ⊗ ρ y
E|E +

(
1 − p2) · τ

= p2 · ρX↔Y ↔E|E +
(
1 − p2) · τ

for some density matrix τ . If E is independent of X and Y , so that P XY = P XY |E = P XY |Ē , then

ρX↔Y ↔E =
∑

x,y

P XY (x, y)|x⟩⟨x| ⊗ |y⟩⟨y| ⊗ ρ y
E

=
∑

x,y

P XY (x, y)|x⟩⟨x| ⊗ |y⟩⟨y| ⊗
(

p · ρ y
E|E + p̄ · ρ y

E|Ē
)

= p ·
∑

x,y

P XY |E (x, y)|x⟩⟨x| ⊗ |y⟩⟨y| ⊗ ρ y
E|E
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+ p̄ ·
∑

x,y

P XY |Ē (x, y)|x⟩⟨x| ⊗ |y⟩⟨y| ⊗ ρ y
E|Ē

= p · ρX↔Y ↔E|E + p̄ · ρX↔Y ↔E|E . ✷

A.2. Proof of Lemma 2

For any pair i ̸= j let Ei j be an event such that P [Ei j] ≥ 1 − ε and
∑

z

P Z (z) · max
xi ,x j

P Xi X jEi j |Z (xi, x j|z) ≤ 2−α (A.1)

for all xi ∈ Xi , x j ∈ X j and z ∈ Z . By assumption, such events exist.8 For any j = 1, . . . , m − 1 define L j to be the set of 
tuples (x1, . . . , xm, z) for which

P X1|Z (x1|z), . . . , P X j−1|Z (x j−1|z) < 2−α/2 and P X j |Z (x j|z) ≥ 2−α/2.

Informally, L j consists of the tuples (x1, . . . , xm, z), where x j has “large” probability given z whereas all previous entries 
have small probabilities. We define V as follows. We let V be the index j ∈ {1, . . . , m − 1} such that (X1, . . . , Xm, Z) ∈ L j , 
and in case there is no such j we let V be m. Note that if there does exist such a j then it is unique.

We need to show that this V satisfies the claim. Fix j ∈ {1, . . . , m}. Clearly, for i < j,
∑

z

P Z (z) · max
xi

P Xi V Ei j |Z (xi, j|z) ≤
∑

z

P Z (z) · max
xi

P Xi V |Z (xi, j|z)

=
∑

z

P Z (z) · max
xi

P Xi |Z (xi |z)P V |Xi Z ( j|xi, z) < 2−α/2. (A.2)

Indeed, either P Xi |Z (xi |z) < 2−α/2 or P V |Xi Z ( j|xi, z) = 0 by definition of V . Consider now i > j. Note that
∑

z

P Z (z) · max
xi

P Xi V Ei j |Z (xi, j|z) =
∑

z

P Z (z) · max
xi

∑

x j

P Xi X j V Ei j |Z (xi, x j, j|z)

≤ 2α/2
∑

z

P Z (z) · max
xi ,x j

P Xi X jEi j |Z (xi, x j|z) ≤ 2−α/2, (A.3)

where the last inequality follows from (A.1) and the first is a consequence of the fact that the number of non-zero sum-
mands (in the sum over x j ) cannot be larger than 2α/2, because for any x j with P Xi X j V Ei j |Z (xi, x j, j|z) > 0, it also holds 
that P X j |Z (x j |z) ≥ 2−α/2 and the sum over all those x j would exceed 1 if there were more than 2α/2 summands. Note that 
per-se, Ei j is only defined in the probability space given by Xi , X j and Z , but it can be naturally extended to the proba-
bility space given by X1, . . . , Xn, Z , V by assuming it to be independent of anything else when given Xi , X j , Z , so that e.g. 
P Xi V Ei j |Z is indeed well-defined.

Consider now an independent random variable W with Hmin(W ) ≥ 1. By the assumptions on W it holds that 
P [V ≠ W ] ≥ 1

2 and P XW V W Z (xi, j, i, z) = P Xi V W Z (xi, j, i, z) = P Xi V Z (xi, j, z)P W (i). In the probability space determined by 
the random variables X1, . . . , Xn, V , W , Z and all of the events Ei j , define the event E as E := EW V , so that

P XW V W E|Z (xi, j, i|z) = P Xi V W Ei j |Z (xi, j, i|z) = P Xi V Ei j |Z (xi, j|z)P W (i).

Note that

P [Ē] =
∑

i, j

P V W ĒW V
( j, i) =

∑

i, j

P V Ēi j
( j)P W (i) ≤

∑

i, j

P [Ēi j]P W (i) ≤ mε

and thus P [Ē |V ≠ W ] ≤ P [Ē]/P [V ≠ W ] ≤ 2mε. From the above, it follows that

pguess(XW ,E|V W Z , V ≠ W ) =
∑

z,i, j

max
x

P XW V W ZE|V ≠W (x, j, i, z)

≤ 2
∑

z,i≠ j

max
x

P XW V W ZE (x, j, i, z)

= 2
∑

z,i≠ j

P Z (z) · max
x

P XW V W E|Z (x, j, i|z)

8 In case ε = 0, i.e., α lower bounds the ordinary (rather then the smooth) min-entropy, the Ei j are the events “that always occur” and can be ignored 
from the rest of the analysis.
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= 2
∑

z,i≠ j

P Z (z) · max
xi

P Xi V Ei j |Z (xi, j|z) · P W (i)

= 2
∑

i

P W (i)
∑

j≠i

∑

z

P Z (z) · max
xi

P Xi V Ei j |Z (xi, j|z) ≤ 2m · 2−α/2,

where we used (A.2) and (A.3) in the last inequality. The claim now follows by definition of Hmin. ✷
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