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Abstract. We propose a general security definition for cryptographic
quantum protocols that implement classical non-reactive two-party
tasks. The definition is expressed in terms of simple quantum-
information-theoretic conditions which must be satisfied by the protocol
to be secure. The conditions are uniquely determined by the ideal func-
tionality F defining the cryptographic task to be implemented. We then
show the following composition result. If quantum protocols w1, ..., 7
securely implement ideal functionalities Fi, ..., F¢ according to our secu-
rity definition, then any purely classical two-party protocol, which makes
sequential calls to Fu,...,F, is equally secure as the protocol obtained
by replacing the calls to Fi,...,F, with the respective quantum proto-
cols m1,...,m. Hence, our approach yields the minimal security require-
ments which are strong enough for the typical use of quantum protocols
as subroutines within larger classical schemes. Finally, we show that re-
cently proposed quantum protocols for secure identification and oblivious
transfer in the bounded-quantum-storage model satisfy our security def-
inition, and thus compose in the above sense.

1 Introduction

Background. Finding the right security definition for a cryptographic task is
a non-trivial fundamental question in cryptography. From a theoretical point
of view, one would like definitions to be as strong as possible in order to ob-
tain strong composability guarantees. However, this often leads to impossibility
results or to very complex and inefficient schemes. Therefore, from a practical
point of view, one may also consider milder security definitions which allow for
efficient schemes, but still offer “good enough” security.

It is fair to say that in computational cryptography, the question of defin-
ing security and the trade-offs that come along with these definitions are by
now quite well understood. The situation is different in quantum cryptography.
For instance, it was realized only recently that the standard security definition of
quantum key-agreement does not guarantee the desired kind of security and some
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work was required to establish the right security definition [I3I23212217]. Se-
curity definitions for general quantum protocols have first been proposed in [14]
and subsequently been refined for the case of quantum multi-party computa-
tion in [26]. In [3I27], strong security definitions for general quantum protocols
were proposed by translating Canetti’s universal-composability framework and
Backes, Pfitzmann and Waidner’s reactive-simulatability model, respectively,
into the quantum setting. The resulting security definitions are very strong and
guarantee full composability. However, they are complex and hard to achieve.
Indeed, so far they have been actually used and shown to be achievable only in a
couple of isolated cases: quantum key distribution [2] and quantum multi-party
computation with dishonest minority [I]. It is still common practice in quantum
cryptography that every paper proposes its own security definition of a certain
task and proves security with respect to the proposed definition. However, it usu-
ally remains unclear whether these definitions are strong enough to guarantee
any kind of composability, and thus whether protocols that meet the definition
really behave as expected.

Contribution. We propose a general security definition for quantum protocols
that implement cryptographic two-party tasks. The definition is in terms of sim-
ple quantum-information-theoretic security conditions that must be satisfied for
the protocol to be secure. In particular, the definition does not involve addi-
tional entities like a “simulator” or an “environment”. The security conditions
are uniquely determined by the ideal functionality that defines the cryptographic
task to be realized. Our definition applies to any non-reactive, classical ideal
functionality F, which obtains classical (in the sense of non-quantum) input
from the two parties, processes the provided input according to its specifica-
tion, and outputs the resulting classical result to the parties. A typical example
for such a functionality/task is oblivious transfer (OT). Reactive functionalities,
i.e. functionalities that have several phases (like e.g. bit commitment), or func-
tionalities that take quantum input and/or produce quantum output are not the
scope of this paper.

We show the following composition result. If quantum protocols 71, ..., 7y se-
curely implement ideal functionalities Fi, ..., F; according to our security defi-
nition, then any purely classical two-party protocol, which makes sequential calls
to Fi,...,Fe, is equally secure as the protocol obtained by replacing the calls to
F1,...,Fe¢ with the respective quantum subroutines 7y, ..., 7. We stress that
our composition theorem, respectively our security definition, only allows for the
composition of quantum sub-protocols into a classical outer protocol. This is a
trade-off which allows for milder security definitions (which in turn allows for
simpler and more efficient implementations) but still offers security in realistic
situations. Indeed, current technology is far from being able to execute quantum
algorithms or protocols which involve complicated quantum operations and/or
need to keep a quantum state “alive” for more than a tiny fraction of a second.
Thus, the best one can hope for in the near future in terms of practical quantum
algorithms is that certain small subroutines, like key-distribution or OT, may
be implemented by quantum protocols, while the more complex outer protocol
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remains classical. From a more theoretical point of view, our general security
definition expresses what security properties a quantum protocol must satisfy in
order to be able to instantiate a basic cryptographic primitive upon which an
information-theoretic cryptographic construction is based. For instance, it ex-
presses the security properties a quantum OTY needs to satisfy so that Kilian’s
classicald construction of general secure function evaluation based on OT [15]
remains secure when instantiating the OT primitive by a quantum protocol.

Finally, we show that the ad-hoc security definitions proposed by Damgard,
Fehr, Salvail and Schaffner for their 1-2 OT and secure-identification protocols
in the bounded-quantum-storage model [7J9] imply (and are likely to be equiv-
alent) to the corresponding security definitions obtained from our approach
This implies composability in the above sense for these quantum protocols in
the bounded-quantum-storage model.

Related work. In the classical setting, Crépeau et al. proposed information-
theoretic conditions for two-party secure function evaluation [5], though re-
stricted to the perfect case, where the protocol is not allowed to make any error.
They show equivalence to a simulation-based definition that corresponds to the
standard framework of Goldreich [12]. Similar conditions have been subsequently
found by Crépeau and Wullschleger for the case of non-perfect classical proto-
cols [6]. Our work can be seen as an extension of [5l6] to the setting where
classical subroutines are implemented by quantum protocols.

As pointed out and discussed above, general frameworks for universal com-
posability in the quantum setting have been established in [3I27]. The compos-
ability of protocols in the bounded-quantum-storage model has recently been
investigated by Wehner and Wullschleger [29]. They propose security definitions
that guarantee sequential composability of quantum protocols within quantum
protocols. This is clearly a stronger composition result than we obtain (though
restricted to the bounded-quantum-storage model) but comes at the price of
a more demanding security definition. And indeed, whereas we show that the
simple definitions used in [8l7] already guarantee composability into classical
protocols without any modifications to the original parameters and proofs, [29)
need to strengthen the quantum-memory bound (and re-do the security proof)
in order to show that the 1-2 OT protocol from [7] meets their strong security
definition. As we argued above, this is an overkill in many situations.

1 'We are well aware that quantum OT is impossible without any restriction on the
adversary, but it becomes possible for instance when restricting the adversary’s quan-
tum memory [8I7].

2 Here, “classical” can be understood as “non-quantum” as well as “being a classic”.

3 Interestingly, this is not true for the definition of Rabin OT given in the first paper in
this line of research [§], and indeed in the full version of that paper, it is mentioned
that their definition poses some “composability problems” (this problem though
has been fixed in the journal version [I0]). This supports our claim that failure
of satisfying our security definition is strong evidence for a security problem of a
quantum protocol (or the definition used).
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2 Notation

Quantum States. We assume the reader’s familiarity with basic notation and
concepts of quantum information processing [21].

Given a bipartite quantum state px g, we say that X is classical if px g is of
the form pxp = > » Px(z)|z)z| ® pf for a probability distribution Py over
a finite set X'. This can be understood in that the state of the quantum register
FE depends on the classical random variable X, in the sense that E is in state
pg exactly if X = x. For any event £ defined by Pg|x(z) = P[] X =] for all z,
we may then write

PXE|E = ZPX|8($)\$><$\ ® pE - (1)

When we omit registers, we mean the partial trace over these register, for in-
stance pgpje = trx(pxpje) = Y, Px|e(x)pE, which describes E given that the
event £ occurs.

This notation extends naturally to states that depend on several classical ran-
dom variables X, Y etc., defining the density matrices pxvE, pxvE|s, PYE|X=2
etc. We tend to slightly abuse notation and write py, p = pxg|x=, and pj, Ble =
PY E|X=g,¢, as well as pf, = try (p{ ) and Phie = try(pf,Elg). Given a state px g
with classical X, by saying that “there exists a classical random variable Y such
that pxy g satisfies some condition”, we mean that pxg can be understood as
pxE = try (pxy ) for some state pxy g with classical X and Y, and that pxy g
satisfies the required condition.

X is independent of E (in that p% does not depend on z) if and only if
pxE = px @ pg, which in particular implies that no information on X can be
learned by observing only E. Similarly, X is random and independent of E if
and only if pxp = I/'{fl I® pg, where I/'lYII[ is the density matrix of the fully mixed
state of suitable dimension.

We also need to express that a random variable X is independent of a quantum
state & when given a random wvariable Y. This means that when given Y, the
state E gives no additional information on X. Yet another way to understand
this is that E is obtained from X and Y by solely processing Y. Formally,
adopting the notion introduced in [9], this is expressed by requiring that pxy g
equals px vy g, where the latter is defined as

pxever = Pxy(z,y)|z)z| @ ly)Xy| @ pl .

z,y

In other words, pxyr = pxoyop precisely if p¥ = p¥, for all z and y. This

notation naturally extends to px .y gje = 3_, , Pxvie(, y)\x)(m|®|y>(y\®p%lg

Full (conditional) independence is often too strong a requirement, and it usu-
ally suffices to be “close” to such a situation. Closeness of two states p and
o is measured in terms of their trace distance &§(p,0) = 5 tr(|p — o), where
for any operator A, |A| is defined as |A| = VAAt. We write p ~. o to de-
note that d(p,0) < ¢, and we then say that p and o are e-close. It is known



354 S. Fehr and C. Schaffner

that e-closeness is preserved under any quantum operation; this in particular
implies that if p ~. ¢ then no observer can distinguish p from o with advan-
tage greater than e [23]. For states pxp and px g with classical X and X', it
is not hard to see that §(pxe,px'e') = Y, 0(Px(2)p}, Px/(x)p%, ), and thus
pxE, px ) = Y., Px(x)0(p%, ph) if Px = Px/. In case of purely classical
states px and px/, the trace distance coincides with the statistical distance of
the random variables X and X': §(px, px:) = 3 >, |Px(x) — Px/(z)|, and we
then write Px ~. Px/, or X ~. X', instead of px ~. px-.

We will make use of the following lemmas whose proofs are given in the full
version [I1] of this paper.

Lemma 2.1. 1. If pxyzE ®e pxovozE then pxyze X px oy zoE-
2. If pxzE =< px ® pzE then pxzE o pPxezoE-
3. If pxze = I/|X| ® pzE, then pxzE Ruc pXsz0E-

Lemma 2.2. If pxvE ~c px—v—E then PXF(X,Y)YE e PXf(X,Y)oY—E for
any function f.

Lemma 2.3. For an event £ which is completely determined by the random
variable Y, i.e. for all y, the probability Pr[E|Y = y| either vanishes or equals
one, we can decompose the density matric px y—g nt

pxoyor =Prl€] pxoyepe +Prl€]l px v pe-

3 Protocols and Functionalities

Quantum Protocols. We counsider two-party quantum protocols m = (A, B),
consisting of interactive quantum algorithms A and B. For convenience, we call
the two parties who run A and B Alice and Bob, respectively. There are different
approaches to formally define interactive quantum algorithms and thus quantum
two-party protocols, in particular when we restrict in- and outputs (of honest
participants) to be classical. For instance such a formalization can be done by
means of quantum circuits, or by means of a classical Turing machine which
outputs unitaries that are applied to a quantum register. For our work, the
specific choice of the formalization is immaterial; what is important is that such
a two-party quantum protocol, formalized in whatever way, uniquely specifies its
input-output behavior. Therefore, in this work, we capture quantum protocols
by their input-output behavior, which we formalize by a quantum operation, i.e.
a trace-preserving completely-positive map, which maps the common two-partite
input state p;y to the common two-partite output state pxy. We denote this
operation by pxy = 7 py;y, or, when we want to emphasize that 7 is executed by
honest Alice and Bob, also by pxy = ma g pyy - If one of the players, say Bob,
is dishonest and follows a malicious strategy B’, then we slightly abuse notation
and write 7a g/ for the corresponding operator.

4 One is tempted to think that such a decomposition holds for any event &; however,
this is not true. See Lemma 2.1 of [9] for another special case where the decomposition
does hold.
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Protocols and Functionalities with Classical In- and Output. In this
work, we focus on quantum protocols © = (A, B) with classical in- and output
for the honest players. This means that we assume the common input state p;;y,
to be classical, i.e. of the form p;, = Y. Pov(u,v)|u)fu| @ |v)v| for some
probability distribution Pyy, and the common output state pxy = ma g pyy I8
then guaranteed to be classical as well, i.e., pxy = >_, . Pxv (2, y)|zXz| @ [y)y|.
In this case we may understand U and V as well as X and Y as random vari-
ables, and we also write (X,Y) = w(U, V). Note that the input-output behavior
of the protocol is uniquely determined by the conditional probability distribu-
tion Pyy|yv. If one of the players, say Bob, is dishonest and follows a ma-
licious strategy B’, then we may allow his part of the input to be quantum
and denote it as V', i.e. pyy = 32, Pu(u)|uful @ py._,, and we allow his
part Y’ of the common output state pxy: = 7ap pyys to be quantum, i.e.
pxyr =y, Px(x)z)z| ® py/|x—p. We write ppry as pyy = py @ py = py if V/
is empty, i.e. if B’ has no input at all, and we write it as p;; - if part of his
input, Z, is actually classical.

A classical non-reactive two-party ideal functionality F is given by a condi-
tional probability distribution Pz, vy vv, inducing a pair of random variables
(X,Y) = F(U,V) for every joint distribution of U and V. We also want to
take into account ideal functionalities which allow the dishonest player some
additional—though still limited—capabilities (as for instance in Section [l). We
do this as follows. We specify F not only for the “proper” domains & and V,
over which U and V' are supposed to be distributed, but we actually specify
it for some larger domains U O U and % D V. The understanding is that U
and V provided by honest players always lie in &/ and V), respectively, whereas
a dishonest player, say Bob, may select V from V \ V, and this way Bob may
cause F, if specified that way, to process its inputs differently and/or to provide
a “more informative” output Y to Bob. For simplicity though, we often leave
the possibly different domains for honest and dishonest players implicit.

We write (X,Y) = F3 g(U,V) or pxy = Fj g pyy for the execution of the
“ideal-life” protocol, where Alice and Bob forward their inputs to F and output
whatever they obtain from . And we write pxy+ = Fj g, iy for the execution
of this protocol with a dishonest Bob with strategy B’ and quantum input V.
Note that Bob’s possibilities are very limited: he can produce some classical input
V for F (distributed over V) from his input quantum state V', and then he can
prepare and output a quantum state Y’ which might depend on F’s reply Y.

Classical Hybrid Protocols. A two-party classical hybrid protocol %1%t =
(/:\ Ié) between Alice and Bob is a protocol which makes a bounded number &
of sequential oracle calls to possibly different ideal functionalities F7,..., Fe.
We allow A and B to make several calls to independent copies of the same F;,
but we require from X1 %¢ that for every possible execution, there is always
agreement between A and B on when to call which functionality; for instance we
may assume that A and B exchange the index i before they call F; (and stop if
there is disagreement).
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Formally, such a classical hybrid U
protocol is given by a sequence of k£ + 1 E’flﬁ"}}
quantum protocols formalized by quan- \ AB
tum operators with classical in- and out- :
put for the honest players, see Figure [l -
For an honest player, say Alice, the j-
th protocol outputs an index ¢ indicating
which functionality is to be called, classi- r/ \1
cal auxiliary (or “state”) information in- i,55,Uj i Vi |psu,vr

formation S; and a classical input U; for
Fi. The (j + 1)-st protocol expects as in-
put S; and Alice’s classical output X;
from F;. Furthermore, the first protocol
expects Alice’s classical input U to the X Yj
hybrid protocol, and the last produces
the classical output X of the hybrid pro-

tocol. In case of a dishonest player, say
Bob, all in- and outputs may be quan- / \
tum states V) respectively Y]. By instan-
tiating the j-th call to a functionality F
(where we from now on omit the index Fig. 1. Hybrid protocol X717
for simpler notation) in the obvious way AB
by the corresponding “ideal-life” proto-
col F, g (respectively Fj, g or Fz g in case of a dishonest Alice or Bob), we
obtain the instantiated hybrid protocol formally described by quantum operator
Z{E"ﬂ (respectively Z;lé'ﬂ or Z{E;'ﬂ)ﬁ

For the hybrid protocoi to be clasl%‘cal7 we mean that it has classical in- and
output (for the honest players), but also that all communication between Alice
and Bob is classical.Since we have not formally modeled the communication
within (hybrid) protocols, we need to formalize this property as a property of
the quantum operators that describe the hybrid protocol: Consider a dishonest
player, say Bob, with no input, and consider the common state ps,u,v; at any
point during the execution of the hybrid protocol when a call to functionality
Fi is made. The requirement for the hybrid protocol to be classical is now
expressed in that there exists a classical Z;—to be understood as consisting of

X Y’

B"’s classical communication with A and with the Fj/’s up to this point—such
that given Z;, Bob’s quantum state V}’ is uncorrelated with (i.e. independent
of) Alice’ classical input and auxiliary information: pg;y, z, V) = PS;U; 2oV -
Furthermore, we require that we may assume Z; to be part of Vj’ in the sense
that for any B’ there exists B” such that Z; is part of V;. This definition is
motivated by the observation that if Bob can communicate only classically with
Alice, then he can correlate his quantum state with information on Alice’s side
only by means of the classical communication.

5 Note that for simpler notation, we are a bit sloppy and give the same name, like A and

B’, to honest Alice’s and dishonest Bob’s strategy within different (sub)protocols.
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We also consider the protocol we obtain by replacing the ideal functionalities
by quantum two-party sub-protocols 71,...,m with classical in- and outputs
for the honest parties: whenever X717 instructs A and B to execute F; A B
they instead execute m; = (A;,B;) and take the resulting outputs. We write
ymm = (A, B) for the real-life quantum protocol we obtain this way.

4 Security for Two-Party Quantum Protocols

4.1 The Security Definition

Framework. We use the following framework for defining security of a quantum
protocol 7 with classical in- and output. We distinguish three cases and consider
the respective output states obtained by executing 7 in case of honest Alice and
honest Bob, in case of honest Alice and dishonest Bob, and in case of dishonest
Alice and honest Bob. For each of these cases we require some security conditions
on the output state to hold. More precisely, for honest Alice and Bob, we fix an
arbitrary joint probability distribution Pyy for the inputs U and V, resulting
in outputs (X,Y) = ma g(U, V) with a well defined joint probability distribution
Pyyxy. For an honest Alice and a dishonest Bob, we fix an arbitrary distribution
Py for Alice’s input and an arbitrary strategy B’ with no input for Bob, and we
consider the resulting joint output state

puxy = (idu ® Ta ) puvp = ZPU(U)|U><U| ® A (Ju)u|®pp)

augmented with Alice’s input U, where U and X are classical and Y’ is in
general quantum. And, correspondingly, for a dishonest Alice and an honest
Bob, we fix an arbitrary distribution Py, for Bob’s input and an arbitrary strat-
egy A’ with no input for Alice, and we consider the resulting joint output state
PVX'Y = (idv®7rA/’B)pV@V augmented with Bob’s input V. Then, security is de-
fined by specific information-theoretic conditions on Pyy xy, puxy’ and py xry,
where the conditions depend on the functionality F which 7 is implementing.
Definition ET] below for a general functionality F, as well as the definitions
studied later for specific functionalities (Definitions [6.1]), are to be understood
in this framework. In particular, the augmented common output states are to
be understood as defined above.

We stress once more that the framework assumes that dishonest players have
no input at all. This might appear too weak at first glance; one would expect a
dishonest player, say Bob, to at least get the input V of the honest Bob. The
justification for giving dishonest players no input is that on the one hand, we will
show that this “minimalistic approach” is good enough for the level of security
we are aiming for (see Theorem [B.]]), and on the other hand, our goal is to keep
the security definitions as simple as possible.

Restricting the Adversary. Since essentially no interesting two-party task
can be implemented securely by a quantum protocol against unbounded quantum
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attacks [20/T9JI816], one typically has to put some restriction upon the dishon-
est player’s capabilities, like to limit his quantum-storage capabilities [S[TI92g]
or the size of coherent measurements he can do [24]. Throughout, we let 2 and
2B be subfamilies of all possible strategies A’ and B’ of a dishonest Alice and a
dishonest Bob, respectively. In order to circumvent pathological counter exam-
ples, we need to assume the following two natural consistency conditions on 2,
and correspondingly on 8. If a dishonest strategy A’ € 2 expects as input some
state pzy: with classical Z, then for any z and for any py/|z—., the strategy

’Z’pmz:y which has z hard-wired and prepares the state pyr|z—. as an initial
step but otherwise runs like A’, is in 2 as well. And, if A’ € 2 is a dishonest
strategy for a protocol X™ which makes a call to a sub-protocol 7, then the
corresponding “sub-strategy” of A’, which is active during the execution of =, is
in A as well. It is for instance clear that bounding the quantum memory leads
to a family of strategies that satisfies these conditions.

Defining Security. Following the framework described above, we propose the
following security definition for two-party quantum protocols with classical in-
and output. The proposed definition implies strong simulation-based security
when using quantum protocols as sub-protocols in classical outer protocols (The-
orem[5.]), yet it is expressed in a way that is as simple and as weak as seemingly
possible, making it as easy as possible to design and prove quantum crypto-
graphic schemes secure according to the definition.

Definition 4.1. A two-party quantum protocol T e-securely implements an ideal
classical functionality F against A and B if the following holds:

Correctness: For any joint distribution of the input U and V', the resulting
common output (X,Y) =n(U,V) satisfies (U, V,X,Y) =, (U, V,F(U,V)).

Security for Alice: For any B’ € B (with no input), and for any distribution
of U, the resulting common output state pyxy: (augmented with U) is such
that there exisﬁ classical random variables V.Y such that Pyy =~. Py - Py,
(UV,X,Y) = (U, V,F(U,V)), and puxvyy’ e pux—vyoy'-

Security for Bob: For any A’ € 2 (with no input), and for any distribution
of V, the resulting common output state py xy (augmented with V') is such
that there exist classical random variables U, X such that Pyy ~¢ Py - Py,
(UV,X,Y) = (U, V,F(U,V)), and pvyuxx’ ®e pyyUXx X'

The three conditions for dishonest Bob (and similarly for dishonest Alice) express
that, up to a small error, V is independent of U, X and Y are obtained by
applying F, and the quantum state Y is obtained by locally processing V and Y.

We would like to point out that Definition £ Ilrequires existence of the dishon-
est party’s input, and as such prohibits the dishonest party to execute 7 in super-
position with several inputs and to obtain a superposition of the corresponding
outputs. Indeed, it is interesting to note that from a superposition of outputs,

6 As defined in Section
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the dishonest party can typically extract “forbidden information” [4I25].This is
another way to see that without any restriction on the adversary, non-trivial
quantum two-party computation is not possible [I§].

4.2 Equivalent Formulations

As already mentioned, Definition [£]] appears to guarantee security only in a
very restricted setting, where the honest player has no information beyond his
input, and the dishonest player has no (auxiliary) information at all. Below, we
argue that Definition 1] actually implies security in a somewhat more general
setting, where the dishonest player is allowed as input to have arbitrary classical
information Z as well as a quantum state which only depends on Z. For com-
pleteness, although this is rather clear, we also argue that not only the honest
player’s input is protected, but also any classical “side information” S he might
additionally have but does not use.

Proposition 4.2. Let m be a two-party protocol that e-securely implements F
against A and B. Let B’ € B be a dishonest Bob who takes as input a classical
Z and a quantum state V' and outputs (the same) Z and a quantum state Y.
Then, for any pgyzv: With psyzv: = Psuczoyss the resulting overall output
state (augmented with S and U) psuxzy = (idSU ® WA,B’)pSUUZV' 18 such
that there exist classical random variables V,Y such that Psyzyv ~: Psy—zov,
(S, UV, XY, Z) ~. (S,U,V,F(U,V),Z) and psuxvyzy = PSUX-VYZoy'
The corresponding holds for a dishonest Alice.

The proof of Proposition 2] as well as the proof of Proposition below, can
be found in the full version [I].

Note the restriction on the adversary’s quantum input V’/, namely that it is
only allowed to depend on the honest player’s input U (and side information S)
“through” Z. It is this limitation which prohibits quantum protocols satisfying
Definition ET] to securely compose into outer quantum protocols but requires
the outer protocol to be classical. Indeed, within a quantum protocol that uses
quantum communication, a dishonest player may be able to correlate his quan-
tum state with classical information on the honest player’s side; however, within
a classical protocol, he can only do so through the classical communication so
that his state is still independent when given the classical communication.

The following proposition shows equivalence to a simulation-based definition;
this will be a handy formulation in order to prove the composition theorem.

Proposition 4.3. Let m be a two-party protocol that e-securely implements F
against A and B. Let B’ € B be a dishonest Bob who takes as input a classical Z
and a quantum state V', engages into m with honest Alice and outputs Z and a

quantum state Y'. Then, for any pgy zv: with pgyzv: = sy, zov there exists
B’ such that

(ldS ® ﬂ-A’B/)pSUZV’ 3 (ldS ® ‘ITA,B’)pSUZV’ .

The corresponding holds for a dishonest Alice.
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Recall that F; Ap IS the execution of the “ideal-life” protocol, where honest A
relays in- and outputs, and the only thing dishonest B’ can do is modify the
input and the output. Note that we do not guarantee that B’ is in B; we will
comment on this after Theorem [B.11

5 Composability

We show the following composition result. If quantum protocols my, ..., 7 se-
curely implement ideal functionalities Fi,...,F; according to Definition [£1]
then any two-party classical hybrid protocol 71 +%¢ which makes sequential
calls to F1,...,Fy is essentially equally secure as the protocol obtained by re-
placing the calls to Fi, ..., Fy by the respective quantum subroutines 71, . .., 7.

We stress that the F;’s are classical functionalities, i.e., even a dishonest player
A’ or B’ can only input a classical value to F;, and for instance cannot execute F;
with several inputs in superposition. This makes our composition result stronger,
because we give the adversary less power in the “ideal” (actually hybrid) world.

Theorem 5.1 (Composition Theorem). Let 717t = (A B) be a classical
two-party hybrid protocol which makes at most k oracle calls to the functionali-

ties, and for every i € {1,...,L}, let protocol m; be an e-secure implementation
of Fi against A and B. Then, the following holds.

Correctness: For every (distribution of) U and V
6(EX,1|§'WPUV7 Zﬁgﬂva) < ke.

Security for Alice: For every B’ € 9B there exists B’ such that for every U
o( R puos T T pua) < Bhe.

Security for Bob: For every A’ € 2 there exists A such that for every V

6(E7AT’1B Pov Ef BHHP(Z)V) < 3ke.

Before going into the proof, we would like to point out the following observations.
First of all, note that in contrast to typical composition theorems, which per-se
guarantee security when replacing one functionality by a sub-protocol and where
in case of several functionalities security then follows by induction, Theorem [5.1]
is stated in such a way that it directly guarantees security when replacing all
functionalities by sub-protocols. The reason for this is that the assumption that
the outer protocol is classical is not satisfied anymore once the first functionality
is replaced by a quantum sub-protocol, and thus the inductive reasoning does
not work directly. We stress that our composition theorem nevertheless allows for
several levels of compositions (see Corollary and the preceding discussion).
Also, note that in Theorem [B.J] we assume the dishonest party to have no
input. As in Section[£2] this can be relaxed to a dishonest party, say Bob, that
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has an auxiliary input, consisting of a classical part Z and a quantum part V’,
as long as the quantum part V' depends on Alice’ input U only through Z:
pUZV = pU—z—v; i.e., dishonest Bob has only classical side-information on
Alice’ input. This restriction is motivated by our model which captures a classical
world except for specific designated quantum sub-protocols, and as such provides
dishonest Bob a priori only with classical side-information.

Furthermore, note that we do not guarantee that the hybrid adversary B is
in 9B (and similarly for A’). For instance the specific B’ we construct in the proof
is more involved with respect to classical resources (memory and computation),
but less involved with respect to quantum resources: essentially it follows B’, ex-
cept that it remembers all classical communication and except that the actions
during the sub-protocols are replaced by sampling a value from some distribu-
tion and preparing a quantum state (of a size that also B’ has to handle); the
descriptions of the distribution and the state have to be computed by B’ from the
stored classical communication. By this, natural restrictions on B’ concerning its
quantum capabilities propagate to B’. For instance if B’ has a quantum memory
of bounded size, so has B’. Furthermore, in many cases the classical hybrid pro-
tocol is actually unconditionally secure against classical dishonest players and as
such in particular secure against unbounded quantum dishonest players (because
every dishonest quantum strategy can be simulated by an unbounded classical
adversary), so no restriction on B’ is needed.

Finally, note that we do not specify what it means for the hybrid protocol to
be secure; Theorem [B.] guarantees that whatever the hybrid protocol achieves,
essentially the same is achieved by the real-life protocol with the oracle calls
replaced by protocols. But of course in particular, if the hybrid protocol is secure
in the sense of Definition 1] then so is the real-life protocol, and as such it could
itself be used as a quantum sub-protocol in yet another classical outer protocol.

Corollary 5.2. If X717t s q §-secure implementation of G against A and
B, and if m; is an e-secure implementation of F; against A and B for every
i€{1,...,4}, then X™ "™ is q (0+3ke)-secure implementation of G.

Proof (of Theorem [5]]). Correctness is obvious. We show security for Alice;
security for Bob can be shown accordingly. Consider a dishonest B’. First we
argue that for every distribution for Alice’s input U, there exists a B’ as claimed
(which though may depend on Py). Then, in the end, we show how to make B’
independent of Py .

Let A’s input U be arbitrarily distributed. We prove the claim by induction
on k. The claim holds trivially for protocols that make zero oracle calls. Consider
now a protocol X271 F¢ with at most k > 0 oracle calls. For simplicity, we as-
sume that the number of oracle calls equals k, otherwise we instruct the players
to makes some “dummy calls”. Let p SKULV! be the common state right before the
k-th and thus last call to one of the sub-protocols 71, ..., 7, in the execution of
the real protocol XY™™ To simplify notation in the rest of the proof, we omit
the index k and write pgy,, instead; see Figure 2l We know from the induction

hypothesis for k — 1 that there exists B’ such that Psiv: R3(k—1)e Ogpys Where
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Fig. 2. Steps of the Composability Proof

Ospys 18 the common state right before the k-th call to a functionality in the
execution of the hybrid protocol E B T pue- As described in Section [3] S,U
and V"’ are to be understood as follows. S denotes A’s (respectively A’s ) classical
auxiliary information to be “remembered” during the call to the functionality. U
denotes A’s (respectively A’s) input to the sub-protocol (respectively function-
ality) that is to be called next, and V' denotes the dishonest player’s current
quantum state. For simplicity, we assume that the index ¢, which determines the
sub-protocol 7; (functionality F;) to be called next, is fized and we just write 7
and F for m; and F;, respectively. If this is not the case, we consider PSUV| [=i
and TS0 =i instead, and reason as below for any 4, where I denotes the index
of the sub-protocol (functlonahty) to be called. Note that conditioning on [ = i
means that we allow B to depend on i, but this is legitimate since I is known
to the dishonest party.

Consider now the evolution of the state o gy, when executing F3 g, (as pre-
scribed by the hybrid protocol) with a strategy for B/ yet to be determined and
when executing ma g instead. Let 055y, and 755y denote the corresponding
states after the execution of respectively ma g and F A See Figure[2l We show
that 055y, and 755y are 3e-close; this then proves the result by the fact that
evolution does not increase the trace distance and by the triangle inequality:

psxy: = (idg @ Tap) pspy: Fak-1)e (ids ® Tap) 0557, = O5x7
~ze Tsxy = (idg ® Fap) o507 -

Let o o5xzy and Tggzy, be the extensions of the respective states

Tspps ggf;/, and Tggy, when we also consider Z (which collects the classi-
cal communication dictated by Y71 +%¢ as well as B"’s classical inputs to and
outputs from the previous oracle calls), which is guaranteed to exist by our for-
malization of a classical hybrid protocol, so that Z is without loss of generality
contained in V' and 5527 = O50mzai It thus follows from Proposition 3]
that 0557y, and 735 ;¢ are 3e-close for a proper strategy of B’. Note that the
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strategy of B/ may depend on the state o but since Py as well as A’s

behavior are fixed, o is also fixed.

Suzve
SUZv’

It remains to argue that we can make B’ independent of Pyy. We use an elegant
argument due to Crépeau and Wullschleger [6]. We know that for any Py there
exists a B’ (though depending on Pyy) as required. For any value u that U may
take on, let then

Eu = 5(22—)13/ Tr[pUQ)|U:u7ZA71é/ [pU@|U:u) .

Then, ), Py(u)e, = 3ke. The €,’s depend on Py, and thus we also write
eu(Py). Consider now the function F' which maps an arbitrary distribution Py

for U to a new distribution defined as F(Py)(u) := 1J;i“'3(JZU)PU(u). Function F
is continuous and maps a non-empty, compact, convex set onto itself. Thus, by
Brouwer’s Fixed Point Theorem, it must have a fixed point: a distribution Py
with F(Py) = Py, and thus e,(Py) = 3ke for any u. It follows that B’ which
works for that particular distribution Py in fact works for any specific value for

U and so for any distribution of U. O

6 Example: Secure Identification

We show that the information-theoretic security definition proposed by Damgard
et al. for their secure-identification quantum protocol in the bounded-quantum-
storage model [9] implies security in our sense for a proper functionality Fip; this
guarantees composability as in Theorem [B.]] for their protocol. In the full ver-
sion [II] of this paper, we also show the corresponding for the 1-2 OT scheme [7]
and for other variants of OT.

A secure identification scheme allows a user Alice to identify herself to server
Bob by securely checking whether the supplied password agrees with the one
stored by Bob. Specifically, on respective input strings W4, Wg € W provided
by Alice and Bob, the functionality outputs the bit Y = (W4 = Wg) to Bob. A
dishonest server B’ should learn essentially no information on W, beyond that
he can come up with a guess W’ for W4 and learns whether W’ = W4 or not,
and similarly a dishonest user A’ succeeds in convincing Bob essentially only
if she guesses Wy correctly. If her guess is incorrect then the only thing she
might learn is that her guess is incorrect. The corresponding ideal functionality
is depicted in Figure [3l Note that if dishonest A’ provides the “correct” input
W4 = Wg, then Fip allows A’ to learn this while she may still enforce Bob to
reject (by setting the “override bit” D to 0). In [II] we study a slightly stronger
variant, which does not allow this somewhat unfair option for A’ ﬁ

We recall the security definition from [9] for a secure identification scheme.
The definition is in the framework described in Section 1} thus, it considers
a single execution of the protocol with an arbitrary distribution for the honest

" The reason we study here the weaker version is that this corresponds to the security
guaranteed by the definition proposed in [9], as we show.
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Functionality Fip: Upon receiving strings W4 and Wp from user Alice
and from server Bob, Fip outputs the bit W4 < Wg to Bob.

If Alice is dishonest, she may input an additional “override bit” D. Then,
Fip outputs the bit W4 < Wg to Alice and the bit (Wa = Wpg)AD to Bob.

Fig. 3. The Ideal Password-Based Identification Functionality

players inputs and with no input for dishonest players, and security is defined by
information-theoretic conditions on the resulting output states. For consistency
with the above notation (and the notation used in [9]), Alice and Bob’s inputs
are denoted by W4 and Wp, respectively, rather than U and V. Furthermore,
note that honest Alice’s output X is empty: X = 0.

Definition 6.1 (Secure Identification). A password-based quantum identifi-
cation scheme is e-secure (against A and B) if the following properties hold.

Correctness: For honest user Alice and honest server Bob, and for any joint
wmput distribution Py ,wy, Bob learns whether their input is equal, except
with probability €.

Security for Alice: For any dishonest server B’ € B, and for any distribution

of Wa, the resulting common output state pw, vy (augmented with Wy ) is
such that there exists a classical W' that is independent of Wa and such that

PWAW'Y ' |WAEW' Ne PWa oW Y |WaEW!

Security for Bob: For any dishonest user A" € 2, and for any distribution
of Wg, the resulting common output state pw,yx: (augmented with Wg)
is such that there exists a classical W' independent of Wpg, such that if
Wg # W' then Y = 1 with probability at most €, and

PWeW'X'|W'£Wg e PWpoaW' X/ |WI£AWg -

Proposition 6.2. A quantum protocol satisfying Definition [6.1 3e-securely im-
plements the functionality Fip from Figure [3 according to Definition [[-1}

Proof. Correctness follows immediately.

Security for Alice: Consider W’ which is guaranteed to exist by Definition [6.1}
Let us define V.= W’ and let Y be the bit W4 = W’. By the requirement of
Definition [6.1], W' is independent of Alice’s input W,4. Furthermore, we have

(WAawlu(DvY) = (WAawlaf/D(WAvwl))

by the definition of Fp. Finally, we note that Y completely determines the event
E:={Wy4 # W'} and therefore, we conclude using Lemma 23] that
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PW AW YY"

=Pr[Wa # W' pwaowryy iwazw: +PrWa =W pwow vy iwa=w
=Pr[Wa # W' pwowryy iwazw: +PrWa = W'l-pw, cwryoviw,=w-

R PrWa # W' pwacwry oy wazw: + PrWa = W' pw, cwry oy iwamw

=PWAeW'Y oY .

Security for Bob: Consider the random variable W’ which is guaranteed to exist
by Definition Let us define U and X as follows. We let U = (W', D) where
we define D =Y if W = W/, and else we choose D “freshly” to be 0 with
probability Pr[Y = 0|Wp = W] and to be 1 otherwise. Furthermore, we let X =

2

(W’ = Wg). Recall that by the requirement of Definition [6.1, W’ is independent
of Bob’s input Wp. Furthermore by construction, D = 0 with probability Pr[Y =
0|Wg = W], independent of the value of Wg (and independent of whether
Wpg = W' or not). Thus, U is perfectly independent of Wp.

Since by Definition the probability for Bob to decide that the inputs are
equal, Y = 1, does not exceed ¢ if W # W', we have that

Puwyxy = PrWp=W'|-Pyw, xy|ws=w + Pr[Ws#W']- Puw, xv|ws2w"
=Pr[Wp=W'|- Puw, rpw,we)we=w' + PrWp#W']- Puw, xv|wy 2w
~e Pr(We=W']- Puw, Fpw,wp) we=w' +PrWa £ W']- Puw, 7o (U,wp) | W 2w
=PuwpFip(UWs) -

Finally, we have

pweyuxx: = Pr(We#W' - pwoyw pxx/\wyzw

+Pr[Ws=W'| - pwoyw DX X/ |\Ws=w" -

In the case Wg = W', we have by construction that D = Y and therefore, we
obtain that pw,yw Dxx/|\We=w' = Pwpyw' Doxx|We=w'- If Wp # W', it
follows from Definition [6.1] and the fact that D is sampled independently that
PWEW'DX'|W'£Wg e PWg oW’ Do X' |W'£Wy - Furthermore, the bit X is fixed to
0 in case Wp # W’ and we only make an error of at most £ assuming that Bob’s
output Y is always 0 and therefore,

PWeYW'DXX'|We#AW' e PWg(Y=0)W'D(X=0)X'|Wg#W'
Ne PWg(Y=0)=W'D(X=0)=X'|Wg#£W’' e PWgY -W'DX X' |Wg#W'’
Putting things together, we obtain
!/
pwYUxx: R3e PrWe# W' - pwyyow Dxox/|we 2w

+Pr[Wp=W'] - PWpY W'D XX/ |We=W'

= PWRY ->(W'D)X =X’ >

where we used Lemma 2] and in the last step. O
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7 Conclusion

We proposed a general security definition for quantum protocols in terms of sim-
ple quantum-information-theoretic conditions and showed that quantum proto-
cols fulfilling the definition do their job as expected when used as subroutines in
a larger classical protocol. The restriction to classical “outer” protocols fits our
currently limited ability for executing quantum protocols, but can also be appre-
ciated in that our security conditions pose minimal requirements for a quantum
protocol to be useful beyond running it in isolation.
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