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The noisy-storage model allows the implementation of secure two-party protocols under the sole assumption
that no large-scale reliable quantum storage is available to the cheating party. No quantum storage is thereby
required for the honest parties. Examples of such protocols include bit commitment, oblivious transfer, and secure
identification. Here, we provide a guideline for the practical implementation of such protocols. In particular, we
analyze security in a practical setting where the honest parties themselves are unable to perform perfect operations
and need to deal with practical problems such as errors during transmission and detector inefficiencies. We
provide explicit security parameters for two different experimental setups using weak coherent, and parametric
down-conversion sources. In addition, we analyze a modification of the protocols based on decoy states.
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I. INTRODUCTION

Quantum cryptography allows us to solve cryptographic
tasks without resorting to unproven computational assump-
tions. One example is quantum key distribution (QKD) which
is well studied within quantum information [1,2]. In QKD,
the sender (Alice) and the receiver (Bob) trust each other
but want to shield their communication from the prying eyes
of an eavesdropper. In many other cryptographic problems,
however, Alice and Bob themselves do not trust each other
but nevertheless want to cooperate to solve a certain task.
An important example of such a task is secure identification.
Here, Alice wants to identify herself to Bob (possibly an ATM
machine) without revealing her password. More generally,
Alice and Bob wish to perform secure function evaluation
as depicted in Fig. 1.

In this scenario, security means that the legitimate users
should not learn anything beyond this specification. That is,
Alice should not learn anything about y and Bob should not
learn anything about x, other than what they may be able to in-
fer from the value of f (x,y). Classically, it is possible to solve
this task if one is willing to make computational assumptions,
such as that factoring of large integers is difficult. Sadly, these
assumptions remain unproven. Unfortunately, even quantum
mechanics does not allow us to implement such interesting
cryptographic primitives without further assumptions [3–7].

A. The noisy-storage model

The noisy-storage model (NSM) allows us to obtain secure
two-party protocols under the physical assumption that any
cheating party does not posses a large reliable quantum storage.
First introduced in Refs. [8,9], the NSM has recently [10] been
shown to encompass both the case where the adversary has a
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bounded amount of noise-free storage [11,12] (also known as
the bounded-storage model), as well as the case where the
adversary has access to a potentially large amount of noisy
storage. This last assumption is well justified given the state of
present-day technology and the fact that merely transferring
the state of a photonic qubit onto a different carrier (such
as an atomic ensemble) is typically already noisy, even if
the resulting quantum memory is perfect. In the protocols
considered, the honest parties themselves do not require any
quantum storage at all. We briefly review the NSM here
for completeness. Without loss of generality, noisy quantum
storage is described by a family of completely positive
trace-preserving maps {Ft : B(Hin) → B(Hout)}t>0, where t

is the time that the adversary uses his storage device. An input
state ρ on Hin stored at time t0 = 0 decoheres over time,
resulting in a state Ft (ρ) of the memory at time t . We make
the minimal assumption that the noise is Markovian, meaning
that the adversary does not gain any advantage by delaying the
readout whenever he wants to retrieve encoded information:
waiting longer only degrades the information further. The only
assumption underlying the noisy-storage model consists in
demanding that the adversary can keep only quantum informa-
tion in this noisy-storage device. In particular, he is otherwise
completely unrestricted; for example, he can perform arbitrary
(instantaneous) quantum computations using information from
the storage device and additional ancillas. In particular, he is
able to perform perfect, noise-free quantum computation and
communication. However, after his computation he needs to
discard all quantum information except what is contained in
the storage device, where he may prepare an arbitrary encoded
state on Hin. This scenario is illustrated in Fig. 2.

How can we obtain security from such a physical as-
sumption? We consider protocols which force the adversary
to store quantum information for extended periods to gain
information: This is achieved by using certain time delays
�t at specific points in the protocol (e.g., before starting a
round of communication). This forces the adversary to use his
device for a time at least �t if he wants to preserve quantum
information. Due to the Markovian assumption, it suffices to
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FIG. 1. Alice holds an input x (e.g., her password), and Bob holds
an input y (e.g., the password an honest Alice should possess), and
they want to obtain the value of some function f (x,y) (e.g., the
equality function).

analyze security for the channel F = F�t . Hence the security
model can be summarized as follows:

� The adversary has unlimited classical storage and (quan-
tum) computational resources. He is able to perform any
operations noise-free and has access to a noise-free quantum
channel.

� Whenever the protocol requires the adversary to wait
for a time �t , he has to measure or discard all his quantum
information except what he can encode (arbitrarily) into Hin.
This information then undergoes noise described by F .

We stress that in contrast to the adversary’s potential
resources allowed in this model, the technological demands
on honest parties are minimal: in our protocol, honest parties
merely need to prepare and measure BB84-encoded qubits1

and do not require any quantum storage.

B. Challenges in a practical implementation

In this work we focus on how to put the protocols of [10] into
practice. Unfortunately, the theoretical analysis of Ref. [10]
assumes perfect single-photon sources that are not available yet

1That is, qubits encoded in one of two conjugate bases, such as the
computational and Hadamard basis.

FIG. 2. During waiting times �t , the adversary must use his
noisy-quantum storage described by the completely positive trace-
preserving (CPTP) map F . Before using his quantum storage, he
performs any (error-free) “encoding attack” of his choosing, which
consists of a measurement or an encoding into an error-correcting
code. After time �t , he receives some additional information that he
can use for decoding.

[13,14]. Here, we remove this assumption leading to a slightly
modified protocol that can be implemented immediately using
today’s technology. At first glance, it may appear that the secu-
rity analysis for a practical implementation differs little from
the problems encountered in practical realizations of QKD.
After all, the quantum communication part of the protocols
in [10] consists of Alice sending BB84 states to Bob. Yet, since
now the legitimate users do not trust each other, the analysis
differs from QKD in several fundamental aspects. Intuitively,
these differences arise because Alice and Bob do not cooperate
to check on an outside eavesdropper. Quite on the contrary,
Alice can never rely on anything that Bob says. A second
important aspect that differentiates the setting in Ref. [10] from
QKD lies in the task the cryptographic protocols aim to solve.
For instance, secure identification is particularly interesting at
extremely short distances, for which Alice would ideally use a
small, low-power portable device. Bob, on the other hand, may
use more bulky detectors. At such short distances, we could
furthermore use visible light for which much better detectors
exist than those typically used in QKD at telecom wavelengths.
It is an interesting experimental challenge to come up with
suitable devices. Small handheld setups have been proposed
to perform QKD at short distance [15], which we can also hope
to use here. The QKD devices of Ref. [15] have been devised
to distribute nonreusable authentication keys which could also
be employed for identification. At such short distance, this
could also be achieved by for example loading keys onto a
USB stick at a trusted loading station at a bank for instance.
We emphasize that our work is in spirit very different in that
we allow authentication keys to be reused over and over again,
just as traditional passwords [16].

We first analyze a generic experimental setup in
Sec. II. More specifically, we present a source-independent
characterization of such a setup and discuss all parameters
that are necessary to evaluate security in the NSM. Especially
important is that in any real-world setting even the honest
parties do not have access to perfect quantum operations, and
the channel connecting Alice and Bob is usually noisy. The
challenge we face is to enable the honest parties to execute
the protocol successfully in the presence of errors, while
ensuring that the protocol remains secure against any cheating
party. We shall always assume a worst-case scenario where a
cheating party is able to perform perfect quantum operations
and does not experience channel noise; its only restriction is
its noisy quantum storage.

The primary source of errors at short distances lies in the low
detector efficiencies of present-day single-photon detectors.
For telecom wavelengths these detector efficiencies ηD lie
at roughly 10%, where at visible wavelengths one can use
detectors of about 70% efficiency. Hence, a considerable part
of the transmissions will be lost. In Sec. III, we augment the
protocol for weak string erasure presented in Ref. [10] to deal
with such erasure errors. This protocol is the main ingredient
to realize the primitive of oblivious transfer, which can be
used to solve the problem of computing a function f (x,y).
The second source of errors lies in bit errors which result
from noise on the channel itself or imperfections in Alice and
Bob’s measurement apparatus. At short distances, such errors
will typically be quite small. In Sec. IV, we show how to
augment the protocol for oblivious transfer to deal with bit
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errors. It should be noted that we treat these errors in the
classical communication part of the protocols, independently
of erasure errors, and similar techniques may be used in other
schemes based on weak string erasure in the future.

To obtain security, we have to make a reasonable estimation
of the errors that the honest parties expect to occur. We
state the necessary parameters in Sec. II and provide concrete
estimates for two experimental setups in Sec. V. In particular,
we present explicit security parameters for a source of weak
coherent pulses and a parametric down-conversion (PDC)
source. Throughout we assume that the reader is familiar with
commonly used entropic quantities also relevant for QKD and
quantum information. An introduction to all concepts relevant
for security in the NSM is given in Ref. [10].

II. GENERAL SETUP

Before turning to the actual protocols, we need to inves-
tigate the parameters involved in an experimental setup. The
quantum communication part of all the protocols in the NSM is
a simple scheme for weak string erasure which we will describe
in detail in the next section. In each round of this protocol,
Alice chooses one of the four possible BB84 states [17]
at random and sends this state to Bob. Bob now measures
randomly the state received either in the computational or in the
Hadamard basis. Such a setup is characterized by a source held
by Alice and a measurement apparatus held by Bob as depicted
in Fig. 3. The source can as well include a measurement device,
depending on the actual state preparation process (e.g., when
a PDC source acts as a triggered single-photon source). If
Alice is honest, we can trust the source entirely, which means
that, in principle, we have full knowledge of its parameters.
Note, however, that in any practical setting the parameters
of the source will undergo small fluctuations. For clarity of
exposition, we do not take these fluctuations into account ex-
plicitly but assume that all the parameters below are worst-case
estimates of what we can reasonably expect from our source.

A. Source parameters

Unfortunately, we do not have access to a perfect single-
photon source in a practical setting [13,14] but can only arrange
the source to emit a certain number of photons with a certain
probability. To approximate a single-photon source, we will
later let Alice perform some measurements herself to exclude
multiphoton events in the case of a PDC source. The following
table summarizes the two relevant probabilities we need to
know in any implementation. When using decoy states, we
will frequently add an index s to all parameters to specify a
particular source s that is used.

Probability Description
pn

src The source emits n photons.
pn

sent The source emits n photons conditioned on the event
that Alice concludes that one photon has been emitted.

FIG. 3. A general setup for weak string erasure.

In our analysis, we will be interested in bounding the number
of single-photon emissions in M rounds of the protocol, which
can be achieved using the well-known Chernoff’s inequality
(see, e.g., Ref. [18]): Suppose we have a source that emits a
single photon with probability p1

src and a different number of
photons otherwise. How many single-photon emissions do we
expect? Intuitively, it is clear that in M rounds we have roughly
p1

srcM many. Yet, in the following we need to consider a small
interval around p1

srcM , such that the probability that we do not
fall into this interval is extremely small. More precisely, we
want that

Prob
[∣∣S − p1

srcM
∣∣ � ζ 1

srcM
]

� ε, (1)

where S is the number of single-photon emissions. To apply
Chernoff’s inequality, let Xj = 1 denote the event where a
single-photon emission occurred and let Xj = 0 otherwise,
giving us S =∑j Xj . We then demand that

2e−2(ζ 1
src)2M � ε, (2)

which can be achieved by choosing ζ 1
src = √

ln(2/ε)/(2M).
Operationally this means that the number of single-photon
emissions lies in the interval [(p1

src − ζ 1
src)M,(p1

src + ζ 1
src)M],

except with probability ε. Note that for M being very large we
indeed have ζ 1

src ≈ 0, leaving us with approximately p1
srcM

many single-photon emissions. By exactly the same argument,
if now M refers to the number of rounds in the protocol where
Alice concluded the source emitted single photons, the actual
number of single-photon rounds within these postselected
events lies in the interval [(p1

sent − ζ 1
sent)M,(p1

sent + ζ 1
sent)M]

for ζ 1
sent = √

ln(2/ε)/(2M), except with probability ε. We will
make use of this argument repeatedly and use ζ x

y to denote the
interval when considering an event that occurs with probabiity
px

y .
We emphasize that for our security proof to work, we only

need a conservative lower bound on the number of single-
photon emissions. Should there be some intensity fluctuations
in Alice’s laser provided that we know the worst case (i.e.,
a conservative lower bound p1

src) in the asymptotic case of
large M , then the discussion for the finite-size case will go
through if we consider a one-sided bound in Eq. (1). i.e.,
Prob[S � (p1

src − ζ 1
src)M] � ε.

B. Error parameters

For any setup, we need to determine the following error
parameters. These parameters should be a reasonable estimate
that is made once for a particular experimental implementation
and fixed during subsequent executions of the protocol. For
instance, for a given device meant to be used for identification,
these estimates would be fixed during construction.

1. Losses

As mentioned above, the primary restriction in a practical
setting arises from the loss of signals. These losses can occur
on the channel or be caused by detector inefficiencies. The
following table summarizes all the probabilities we need.
Throughout, we use the superscripts h and d to indicate
that these parameters apply to an honest or dishonest party
respectively.
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Probability Description
pn

erase n photons are erased on the channel

ph
B,click Honest Bob observes a click in his detection apparatus

ph
B,no click Honest Bob observes no click in his detection apparatus

p
h|n
B,click Honest Bob observes a click in his detection apparatus,

conditioned on the event that Alice sent n photons.

ph
B,S,no click Honest Bob observes no click from the signal alone

pdark An honest player obtains a click when the signal was a
vacuum state (dark count)

Note that we have

ph
B,no click =

∞∑
n=0

pn
srcp

h|n
B,no click (3)

and again the number of rounds we expect to be lost can be
bounded to lie in the interval [(ph

B,no click − ζ h
B,no click)M,

(ph
B,no click + ζ h

B,no click)M] with ζ h
B,no click = √

ln(2/ε)/(2M),
except with probability ε.

2. Bit errors

The second source of errors are bit-flip errors that can
occur due to imperfections in Alice’s or Bob’s measurement
apparatus or due to noise on the channel. We use the following
notation for the probability of such an event in the case that
Bob is honest. This probability depends on the detection error
edet in our experimental setup, i.e., on the probability that a
signal sent by Alice produces a click in the erroneous detector
on Bob’s side and on pdark. The quantity edet characterizes the
alignment and stability of the optical system.

Parameter Description
edet Detection error
ph

B,err Honest Bob outputs the wrong bit

For a single bit b ∈ {0,1}, a bit-flip error is described by the
classical binary symmetric channel with error parameter perr

Sperr (b) =
{

b with probability 1 − perr,
(1 − b) with probability perr.

(4)

When each bit of a k-bit string is independently affected by
bit-flip errors, the noise can be described by the channel

Eperr = S⊗k
perr

, (5)

where we omit the explicit reference to k on the left-hand side
when it is clear from the context.

C. Parameters for dishonest Bob

Recall our conservative assumption that a dishonest party is
restricted only by its noisy quantum storage but can otherwise
perform perfect quantum operations and has access to a perfect
channel. Yet, even for a dishonest Bob there are some errors he
cannot avoid, caused by the imperfections in Alice’s apparatus.
If Alice’s source simply outputs no photon for example, then
even a dishonest Bob cannot detect the transmission which is
captured by the following parameter.

Probability Description
pd

B,no click Dishonest Bob observes no click in his detection
apparatus

Generally, we have pd
B,no click = p0

sent. In the protocols that
follow, we will ask an honest Bob to report any round as
missing that has not resulted in a click. Without loss of

FIG. 4. Weak string erasure with errors when both parties are
honest. Eperr denotes the bit-error channel defined in (5).

generality, we can assume that even a dishonest Bob will report
a particular round as lost when he does not observe a click.
Of course, if Bob is dishonest he potentially chooses to report
additional rounds as missing.

In our analysis, we also have to evaluate the following
probability which depends on the experimental setup, as well
as on our choice of protocol parameters.

Probability Description

p
d,n
B,err Dishonest Bob outputs the wrong bit if Alice sent n

photons, and he gets the basis information for free

III. WEAK STRING ERASURE WITH ERRORS

The basic quantum primitive on which all other protocols
in Ref. [10] are based is called weak string erasure. Intuitively,
weak string erasure provides Alice with a random m-bit string
Xm and Bob with a random set of indices I ∈ 2[m] and the
substring XI of Xm restricted to the elements in I.2 If Bob is
honest, then we demand that whatever attack dishonest Alice
mounts, she cannot gain any information about which bits Bob
has learned. That is, she cannot gain any information about
I. If Alice herself is honest, we demand that the amount of
information that Bob can gain about the string Xm is limited.

We now present an augmented version of the weak string
erasure protocol proposed in Ref. [10] that allows us to
deal with the inevitable errors encountered during a practical
implementation. We thereby address the two possible errors
separately: losses are dealt with directly in weak string erasure.
Bit-flip errors, however, are not corrected in weak string
erasure itself, but in subsequent protocols.3 We will thus
implement weak string erasure with errors where the substring
XI is allowed to be affected by bit-flip errors. That is, honest
Bob actually receives Eperr (XI ), where Eperr is the classical
channel corresponding to the bit errors as given in (5), with
k = |I| being the length of the string XI . Figure 4 provides
an intuitive description of this task.

We now provide an informal definition of weak string
erasure with errors. A formal definition can be found in
Appendix A. Even in this informal definition we need to
quantify the knowledge that a cheating Bob has about the
string Xm given access to his entire system B ′.4 This quantity
has a simple interpretation in terms of the min-entropy
as H∞(Xm|B ′) = − log2 Pguess(Xm|B ′), where Pguess(Xm|B ′)
represents the probability that Bob guesses Xm, maximized

2We use 2[m] to denote all subsets of the set [m] = {1, . . . ,m}
3Subsequent protocols will use only part of the string Xm, and

hence allow us to decrease the amount of error-correcting information
needed.

4We use B ′ to differentiate it from the system B an honest Bob holds.
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over all measurements of the quantum part B ′. The quantity
Hε

∞(Xm|B ′) thereby behaves like H∞(Xm|B ′), except with
probability ε. We refer to Ref. [10] for an introduction to these
quantities and their use in the NSM.

Definition III.1 (informal). An (m,λ,ε,perr) weak string
erasure protocol with errors (WSEE) is a protocol between
Alice and Bob satisfying the following properties, where Eperr

is defined as in (5):
Correctness: If both parties are honest, then Alice obtains a

randomly chosen m-bit string Xm ∈ {0,1}m, and Bob obtains
a randomly chosen subset I ⊆ [m], as well as the string
Eperr (XI ).

Security for Alice: If Alice is honest, then the amount of
information Bob has about Xm is limited to

1

m
Hε

∞(Xm|B ′) � λ, (6)

where B ′ denotes the total state of Bob’s system.
Security for Bob: If Bob is honest, then Alice learns nothing

about I.
We are now ready to state a simple protocol for WSEE. We

thereby introduce explicit time slots into the protocol. If Alice
herself concludes that no photon or a multi-photon has been
emitted in a particular time slot, she simply discards this round
and tells Bob to discard this round as well. Since this action
represents no security problem for us, we will for simplicity
omit these rounds altogether when stating the protocol below.
This means that the number of rounds M in the protocol below
actually refers to the set of postselected pulses that Alice did
count as a valid round.

In addition, introducing time slots enables Bob to report
a particular bit as missing if he has obtained no click in a
particular time slot. Alice and Bob will subsequently discard
all missing rounds. This does pose a potential security risk,
which we need to analyze and hence we explicitly include this
step in the protocol below.

Protocol 1: Weak String Erasure with Errors
Outputs: xm ∈ {0,1}m to Alice, (I,z|I|) ∈ 2[m] × {0,1}|I| to Bob.

1. Alice: Chooses a string xM ∈R {0,1}M and basis-specifying
string θM ∈R {0,1}M uniformly at random.

2. Bob: Chooses a basis string θ̃M ∈R {0,1}M uniformly at
random.

3. In time slot i = 1, . . . ,M (considered a valid round by Alice):
1. Alice: Encodes bit xi in the basis given by θi (i.e., as

Hθi |xi〉), and sends the resulting state to Bob.
2. Bob: Measures in the basis given by θ̃i to obtain outcome

x̃i . If Bob obtains no click in this time slot, he records
round i as missing.

4. Bob: Reports to Alice which rounds were missing.
5. Alice: If the number of rounds that Bob reported missing does

not lie in the interval [(ph
B,no click − ζ h

B,no click)M ,
(ph

B,no click + ζ h
B,no click)M], then Alice aborts the protocol.

Otherwise, she deletes all bits from xM that Bob reported
missing. Let xm ∈ {0,1}m denote the remaining bit string, and
let θm be the basis-specifying string for the remaining rounds.
Let θ̃m, and x̃m be the corresponding strings for Bob.

Both parties wait time �t .
6. Alice: Sends the basis information θm to Bob, and outputs xm.
7. Bob: Computes I := {i ∈ [m] | θi = θ̃i}, and outputs

(I,z|I|) := (I,x̃I ).

A. Security analysis

1. Parameters

We prove the security of Protocol 1 in Appendix A, where
our analysis forms an extension of the proof presented in
Ref. [10]. The security proof for dishonest Alice is analogous
to Ref. [10]. The only novelty is to ensure that allowing Bob
to report rounds as missing does not compromise the security.
Here, we focus on weak string erasure with errors, when the
adversary’s storage is of the form F = N⊗νMstore , and N obeys
the strong converse property [19]. An important example is the
d-dimensional depolarizing channel. For this case, we can give
explicit security parameters in terms of the amount of noise
generated by N . The quantity ν denotes the storage rate, and
Mstore is the number of single-photon emissions that we expect
an honest Bob to receive for large M . That is

Mstore := p1
sentp

h|1
B,clickM. (7)

We hence allow Bob’s storage size to be determined as in
the idealized setting of Ref. [10], where we have only single-
photon emissions. Throughout, we let M (n) denote the number
of n photon emissions in M valid rounds and use r (n) to denote
the fraction of these n-photon pulses that Bob decides to report
as missing. Clearly, r (n) is not a parameter we can evaluate
but depends on the strategy of dishonest Bob. Finally, we
use M

(n)
left = (1 − r (n))M (n) to denote the number of n-photon

pulses that are left. Note that M
(n)
left is a function of r (n) chosen

by Bob according to certain constraints which we investigate
later. A proof of Theorem III.2, as well as a generalization to
other channels F not necessarily of the form F = N⊗νMstore ,
can be found in Appendix A. Here, we state the theorem for
a worst-case setting which can be obtained using (A29). This
result is independent of the actual choice of signals that Bob
chooses to report as missing. For simplicity, we present the
theorem omitting terms that vanish for large M . These terms
are, however, considered in Appendix A.

Theorem III.2 (WSEE). Let Bob’s storage be given by F =
N⊗νMstore for a storage rate ν > 0, N satisfying the strong
converse property [19] and having capacity CN bounded by

CN ν <

(
1

2
− δ

)
p1

sent − ph
B,no click + pd

B,no click

p1
sentp

h|1
B,click

. (8)

Then Protocol 1 is an [m,λ(δ),ε(δ),ph
B,err] weak string erasure

protocol with errors with the following parameters: Let δ ∈
]0, 1

2 − CN ν[. Then the min-entropy rate λ(δ) is given by

λ(δ) = min
{r (n)}n

1

m

×
[
νγN
(

R

ν

)
Mstore −

∞∑
n=2

M
(n)
left log2

(
1 − p

d,n
B,err

)]
,

(9)

where γN is the strong converse parameter of N (see (15))
and the minimization is taken over all {r (n)}n such that∑∞

n=1 r (n)M (n) � Md
report, Mstore is given by (7), and
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m =∑∞
n=1 M

(n)
left (the number of remaining rounds)

Md
report = (ph

B,no click − pd
B,no click

)
M (the number of rounds dishonest Bob can report missing)

R = ( 12 − δ
)

1−r (1)

p
h|1
B,click

(the rate at which dishonest Bob has to send information through storage)

for sufficiently large M . The error has the form

ε(δ) � 4 exp

[
− δ2

512
(
4 + log2

1
δ

)2
× (p1

sent − ph
B,no click + pd

B,no click

)
M

]
. (10)

What kind of channels N : B(Hin) → B(Hout) satisfy the
strong converse property? It was recently shown in [19] that
all channels for which the maximum α-norm is multiplicative,
and which are group covariant, that is N (gρg†) = gN (ρ)g†

for all g ∈ G where g acts irreducibly on the output space
Hout, satisfy this property. An important example of such a
channel is the d-dimensional depolarizing channel given as

Nr (ρ) := rρ + (1 − r)
I

d
(11)

which replaces the input state ρ with the completely mixed
state I/d with probability 1 − r . Security parameters for this
channel can be found in Ref. [10] for the case of a perfect setup
with a single-photon source, assuming no errors nor detection
inefficiencies.

2. Limits to security

Before analyzing in detail concrete practical implementa-
tions based on a weak coherent source, and a PDC source,
we investigate when security can be obtained at all for the
d-dimensional depolarizing channel as a function of p1

sent,
pd

B,no click, ph
B,no click, and p

h|1
B,no click in comparison to the storage

parameters r and ν. Note that for the security parameter ε(δ)
to vanish we need

p1
sent − ph

B,no click + pd
B,no click > 0. (12)

Second, we require (in the limit of large M where we may
choose δ → 0) that

CNr
ν <

1

2

p1
sent − ph

B,no click + pd
B,no click

p1
sentp

h|1
B,click

, (13)

where CNr
is given by [20]

CNr
= log2 d +

(
r + 1 − r

d

)
log2

(
r + 1 − r

d

)
+ (d − 1)

1 − r

d
log2

1 − r

d
. (14)

In subsections V A and V B we provide sample trade-offs
between r and ν for some typical values of the source
parameters and the losses.

To determine the magnitude of the actual security pa-
rameters, we need to evaluate the strong converse parameter

γN [19]. In the case of the d-dimensional depolarizing channel
it can be expressed as [10]

γN (R̂) := max
α�1

α − 1

α

{
R̂ − log2 d + 1

1 − α

× log2

[(
r + 1 − r

d

)α

+ (d − 1)

(
1 − r

d

)α]}
.

(15)

For a general definition and discussion on how to evaluate this
parameter for other channels see Refs. [10,19]. For simplicity,
we consider here a setup where Bob always gains full
information from a multiphoton emission, that is p

d,n
B,err = 0 for

n > 1. This means that he will never report any such rounds as
missing, that is, r (n) = 0 for n > 1. From (A29) it follows that

λ(δ) � 1

m

⎧⎨⎩νγN

⎡⎣1

ν

(
1

2
− δ

)

× p1
sent − ph

B,no click + pd
B,no click

p1
sentp

h|1
B,click

⎤⎦⎫⎬⎭Mstore, (16)

providing the security conditions (12) and (13) are satisfied. In
subsections V A and V B we plot λ(δ) for a variety of parameter
choices for a weak coherent and a PDC source, respectively.

B. Using decoy states

We now consider a slight modification of the protocol
above, where we make use of so-called decoy states as they
are also used in QKD [21–23]. The main idea consists of Alice
randomly choosing a particular setting of her photon source
according to a distribution PS over some set of settings S
for each state she sends to Bob. One of these settings (signal
setting) corresponds to the configuration of the source she
would normally use to execute the weak string erasure protocol
above, all others (decoy settings) are used to test the behavior
of dishonest Bob. In our setting, the effect of using decoy
states is that dishonest Bob needs to behave roughly the same
as honest Bob when it comes to choosing which rounds to
report as missing. This enables us to place a better bound on
the parameter r (1), which can lead to a significant increase in
the set of detection efficiencies for which we can hope to show
security (e.g., for a weak coherent source see subsection V A3),
and translates into an enhancement of the rate R given by (A26)
and (A29) at which the adversary needs to transmit information
through his storage, if he wants to break the security of the
protocol.

We briefly describe how we make use of decoy states,
before turning to the actual protocol. For each source setting,
Alice can compute the gain, that is, the probability that Bob
observes a click. Here we consider only the number of rounds
M which Alice determines to be valid and all probabilities
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are as explained in Sec. II conditioned on the event that Alice
declared the round to be valid. We can then write the gain
of honest Bob when Alice uses setting s, averaged over all
possible numbers of photons, as

Qh
s = ph

B,click,s =
∞∑

n=0

pn
sent,sp

h|n
B,click. (17)

Note that ph|n
B,click thereby does not depend on the source setting

s, even though Bob can gain information about the setting s by
making a photon number measurement, since not all photon
numbers are equally likely to occur for the different settings.
Yet, since the photon number is the only information that Bob
obtains, we can without loss of generality assume that his
strategy is deterministic and depends only on the observed
photon number. By counting the number of rounds that Bob
reports missing, Alice obtains an estimate of this gain as

Qmeas
s = Mleft,s

Ms

. (18)

The parameter Ms denotes the number of valid rounds in which
Alice uses setting s, and Mleft,s represents the number of such
rounds that Bob did not report as missing. For an honest Bob,
we have Qmeas

s ≈ Qh
s in the limit of large Ms . For finite Ms , we

conclude that Mleft,s lies in the interval [(Qh
s − ζ h

s )Ms,(Qh
s +

ζ h
s )Ms], except with probability ε. In the protocol below, Alice

will hence abort if Mleft,s lies outside this interval for any
setting s ∈ S.

From the observed quantities Qmeas
s for different settings,

Alice can obtain a lower bound on the yield of the single-
photon emissions following standard techniques used in decoy
state QKD [21–24]. Let us denote this lower bound as τ . For
honest Bob, the yield of single photons is of course just ph|1

B,click
as honest Bob always reports a round as missing if he did not
observe a click. For dishonest Bob, placing a bound on this
yield corresponds to placing a bound on 1 − r (1), which in the
limit of large M can be seen as the probability that dishonest
Bob does not choose to report a round as missing. Hence, we
can use decoy states to obtain an estimate for the parameter
r (1) as

r (1) � 1 − τ (19)

even if Bob is dishonest. In Sec. V we provide an explicit
expression for τ for the case of a source emitting phase-
randomized coherent states.

Protocol 2: Weak String Erasure with Errors using decoy
states

Outputs: xm ∈ {0,1}m to Alice, (I,z|I|) ∈ 2[m] × {0,1}|I| to Bob.
1. Alice: Chooses a string xM̂ ∈R {0,1}M̂ and basis-specifying

string θM̂ ∈R {0,1}M̂ uniformly at random.
2. Bob: Chooses a basis string θ̃ M̂ ∈R {0,1}M̂ uniformly at

random. He initializes M ← ∅.
3. In time slot i = 1, . . . ,M̂:

1. Alice: Chooses a source setting si ∈ S with probability
PS(si). Encodes bit xi in the basis given by θi (i.e., as
Hθi |xi〉) and sends the resulting state to Bob.

2. Bob: Measures in the basis given by θ̃i to obtain
outcome x̃i . If Bob obtains no click in this time slot, he
records round i as missing by letting M ← M ∪ {i}.

4. Bob: Reports to Alice which rounds were missing by
sending M.

4′. Alice: For each possible source setting s ∈ S, Alice
computes the set of missing rounds Ms = {i ∈ M | si = s}.
Let M̂s = |{j ∈ [M̂] | sj = s}| be the number of rounds sent
using setting s.

5. Alice: For each source setting s ∈ S: if the number of rounds
that Bob reported missing does not lie in the interval
[(ph

B,no click,s − ζ h
B,no click,s)M̂s,(ph

B,no click,s + ζ h
B,no click,s)M̂s],

then Alice aborts the protocol. Otherwise, she deletes all bits
from xM̂ that Bob reported missing, and all bits that
correspond to decoy state settings s ∈ S. Let xm ∈ {0,1}m

denote the remaining bit string, and let θm be the
basis-specifying string for the remaining rounds. Let θ̃m, and
x̃m be the corresponding strings for Bob.

Both parties wait time �t .
6. Alice: Informs Bob which rounds remain and sends the basis

information θm to Bob, and outputs xm.
7. Bob: Computes I := {i ∈ [m] | θi = θ̃i}, and outputs

(I,z|I|) := (I,x̃I ).

We now state the security parameters for this protocol for
the case of large Ms = M̂s for each possible source. The only
difference to the previous statement is that we replace the
bound on the rate (A29) with the bound obtained by bounding
r (1) as in (19). The parameter M refers to the number of valid
pulses coming from the signal setting. The decoy pulses are
merely used as an estimate and play no further role in the
protocol. However, the probability ε to make a correctness or
security error is increased by ε for every interval check Alice
does. As she does one check per source setting, we get a factor
of 1 + |S| increase in the error probability.

Theorem III.3 (WSEE with decoy states). Let M = M̂signal.
When Bob’s storage is given by F = N⊗νMstore for a storage
rate ν > 0, withN satisfying the strong converse property [19]
and having capacity CN bounded by

CN ν <

(
1

2
− δ

)
τ

p
h|1
B,click

(20)

with τ � 1 − r (1), then Protocol 1 is an (m,λ(δ),ε(δ),ph
B,err)

weak string erasure protocol with errors with the following
parameters: Let δ ∈]0, 1

2 − CN ν[. Then the min-entropy rate
λ(δ) is given by

λ(δ) = min
{r (n)}n

1

m

×
[
νγN
(

R

ν

)
Mstore −

∞∑
n=2

M
(n)
left log2

(
1 − p

d,n
B,err

)]
(21)

where γN is the strong converse parameter of N [see (15)]
and the minimization is taken over all {r (n)}n with 1 − r (1) � τ

such that
∑∞

n=1 r (n)M (n) � Md
report and

m =
∞∑

n=1

M
(n)
left Mstore = p1

sentp
h|1
B,clickM (22)

R =
(

1

2
− δ

)
1 − r (1)

p
h|1
B,click

Md
report = (ph

B,no click − pd
B,no click

)
M

(23)
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FIG. 5. 1-2 oblivious transfer from fully randomized transfer by
sending additional messages given by the dashed lines.

for sufficiently large M . The error has the form

ε(δ) � (1 + |S|)2 exp

(
− δ2

512
(
4 + log2

1
δ

)2 τ p1
sentM

)
. (24)

IV. OBLIVIOUS TRANSFER FROM WSEE

We now show how to obtain oblivious transfer from WSEE.
Here we implement a fully randomized oblivious transfer
protocol (FROT), which can easily be converted into 1-2
oblivious transfer as shown in Fig. 5. We now give an informal
description of this task and refer to Ref. [10] for a formal
definition.

Definition IV.1 (informal). An (
,ε) fully randomized
oblivious transfer protocol (FROT) is a protocol between two
parties, Alice and Bob, satisfying the following properties:

Correctness: If both parties are honest, then Alice obtains
two random strings S0,S1 ∈ {0,1}
, and Bob obtains a random
choice bit C ∈ {0,1} as well as SC .

Security for Alice. If Alice is honest, then there exists C ∈
{0,1} such that given SC , Bob cannot learn anything about
S1−C , except with probability ε.

Security for Bob. If Bob is honest, then Alice learns nothing
about C.

A. Ingredients

1. Suitable error-correcting codes

To deal with the bit-flip errors in the weak string erasure we
need to augment the protocol of Ref. [10] with an additional
error-correction step as in Ref. [25]. That is, Alice has to send
some small amount of error-correcting information to Bob. The
challenge we face is to ensure that security is preserved: Recall
that if Bob is dishonest, we assume a worst-case scenario
where he does not experience any transmission errors and
he can perform perfect quantum operations. Hence, he could
use this additional error-correcting information to correct some
of the errors caused by his noisy quantum storage. On the
other hand, if Alice is dishonest, we have to guarantee that

FIG. 6. Interactive hashing.

the error-correcting process does not allow her to gain any
information about the choice bit C. This last requirement can
be achieved by using a one-way (or forward) error-correcting
code in which only Alice sends information to Bob.5 Let {Cn}
be a family of linear error-correcting codes of length n capable
of efficiently correcting perrn errors. For a k-bit string xk ,
error correction is done by sending the syndrome information
syn(xk) to Bob who can then efficiently recover xk from his
noisy string Eperr (x

k). For instance, low-density parity-check
(LDPC) codes can correct a k-bit string, where each bit flipped
with probability perr, by sending at most 1.2h(perr)k bits of
error-correcting information [27].

2. Interactive hashing

Apart from an error-correcting code, the protocol below re-
quires three classical ingredients that need to be implemented:
First, we need to use the primitive of interactive hashing of
subsets. This is a classical protocol in which Bob holds as
input a subset Wt ⊆ [α] (where α is some natural number) and
Alice has no input. Both Alice and Bob receive two subsets
Wt

0,W
t
1 ⊆ [α] as outputs, where there exists some C ∈ {0,1}

such that Wt
C = Wt as depicted in Fig. 6. Informally, security

means that Alice does not learn C, and Wt
1−C is chosen almost

at random from the set of all possible subsets of [α]. That
is, Bob has very little control over the choice of Wt

1−C . Here
we restrict ourselves to this definition and refer to [10] for a
formal definition. In order to perform interactive hashing, we
describe below how to encode the input subsets into a t-bit
string. Intuitively, interactive hashing can be done by Alice
asking Bob for random parities of his t-bit string W . After
t − 1 linearly independent queries, there are only two possible
strings left: one of which is Bob’s original input, the other
one is pretty much out of his control. A concrete protocol for
interactive hashing can be found, for instance, in Ref. [28].

3. Encoding of subsets

The second ingredient we need is thus an encoding of
subsets as bit strings. More precisely, we map t-bit strings
to subsets using Enc : {0,1}t → T , where T is the set of all
subsets of [α] of size α/4. Here we assume without loss of
generality that α is a multiple of 4. The encoding Enc is
injective, that is, no two strings are mapped to the same subset.
Below, we furthermore choose t such that 2t �

(
α

α/4

)
� 2 × 2t .

This means that not all possible subsets are encoded, but at least

5This is in contrast to QKD where common solutions typically use
interactive error correction, such as the cascade scheme [26].
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half of them. We refer to Refs. [28,29] for details on how to
obtain such an encoding.

4. Two-universal hashing

Finally, we require the use of two-universal hash functions
for privacy amplification as they are also used in QKD [30].
Any implementation used for QKD may be used here. Below,
we use R to denote the set of possible hash functions and use
Ext(X,R) to represent the output of the hash function given by
R when applied to the string X.

B. Protocol

Before providing a detailed description of the protocol, we
first give a description of the different steps involved in Fig. 7.

Protocol 3: WSEE to FROT
Parameters: Integers m,β such that α := m/β is a multiple of 4. Set
t := α/2. Outputs: (s


0,s


1) ∈ {0,1}
 × {0,1}
 to Alice, and (c,y
) ∈

{0,1} × {0,1}
 to Bob
1: Alice and Bob: Execute (m,λ,ε,perr) WSEE. Alice obtains a

string xm ∈ {0,1}m, Bob a set I ⊂ [m] and a string
s = Eperr (xI ). If |I| < m/4, Bob aborts. Otherwise, he
randomly truncates I to the size m/4, and deletes the
corresponding values in s.
We arrange xm into a matrix z ∈ Mα×β ({0,1}), by zj,k :=
x(j−1)·β+k for (j,k) ∈ [α] × [β].

2: Bob:
1. Randomly chooses a string wt ∈R {0,1}t corresponding

to an encoding of a subset Enc(wt ) of [α] with α/4
elements.

2. Randomly partitions the m bits of xm into α blocks of β

bits each: He randomly chooses a permutation
π : [α] × [β] → [α] × [β] of the entries of z such that
he knows π (z)Enc(wt ) (that is, these bits are permutation
of the bits of s). Formally, π is uniform over
permutations satisfying the following condition: for all
(j,k) ∈ [α] × [β] and (j ′,k′) := π (j,k), we have
(j − 1)β + k ∈ I if and only if j ′ ∈ Enc(wt ).

3. Bob sends π to Alice.
3: Alice and Bob: Execute interactive hashing with Bob’s input

equal to wt . They obtain wt
0,w

t
1 ∈ {0,1}t with wt ∈ {wt

0,w
t
1}.

4: Alice: Sends error-correcting information for every block in
Enc(wt

0) and Enc(wt
1), i.e., ∀j ∈ Enc(wt

0) ∪ Enc(wt
1), Alice

sends Syn(π (z)j ) to Bob.
5: Alice: Chooses r0,r1 ∈R R and sends them to Bob.
6: Alice: Outputs (s


0,s


1) :=

[Ext(π (z)Enc(wt
0),r0),Ext(π (z)Enc(wt

1),r1)].
7: Bob: Computes c, where wt = wt

c, and π (z)Enc(wt ) from s.
Performs error correction on the blocks of π (z)Enc(wt ). He
outputs (c,y
) := [c,Ext(π (z)Enc(wt ),rc)].

When using WSEE to obtain FROT, Protocol 3 achieves
the following parameters. The proof of this statement can be
found in Appendix B.

Theorem IV.1 (oblivious transfer). For any constant ω � 2
and β � max{67,256ω2/λ2}, the protocol WSEE-to-FROT

implements an (
,41 × 2
− λ2

512ω2β
m + 2ε)-FROT from one in-

stance of (m,λ,ε,perr) WSEE, where


 :=
⌊[(

ω − 1

ω

)
λ

8
− λ2

512ω2β
− 1.2h(perr)

8

]
m − 1

2

⌋
.

FIG. 7. Conceptual steps in the protocol for FROT from WSEE.

The parameter ω appearing in the theorem above is an
additional parameter that we can tune to trade off a higher rate
of OT against an error that decays more slowly. Our choice
of ω will thereby depend on the error perr: Note that for large
values of ω, we can essentially achieve security as long as
λ > h(perr) (see Fig. 8). Of course, this requires us to use
many more rounds to be able to achieve the desired block size
β, as well as to make the error sufficiently small again. Using
more rounds, however, may be much easier than to decrease
the bit error rate of the channel.

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.02

0.04

0.06

0.08

0.10

λλ

pe
rr

FIG. 8. (Color online) Security can be achieved if (perr,λ) lies in
the shaded region, where we chose a very large value of ω = 100 000.
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V. SECURITY FOR TWO CONCRETE
IMPLEMENTATIONS

We now show how our security analysis applies to two
particular experimental setups using weak coherent pulses or
a parametric down-conversion source. Unlike in QKD, our
protocols are particularly interesting at short distance, where
one may use visible light for which better detectors exist.

A. Phase-randomized weak coherent pulses

1. Experimental setup and loss model

We first consider a phase-randomized weak coherent
source. The basic setup for Alice and Bob is illustrated in
Fig. 9. The signal states sent by Alice can be described as

ρk = e−µ

∞∑
n=0

µn

n!
|nk〉〈nk|, (25)

where the signals |nk〉 denote Fock states with n photons in one
of the four possible polarization states of the BB84 scheme,
which are labeled with the index k.

On the receiving side, we shall assume that honest Bob
uses an active-basis-choice measurement setup. It consists
of a polarization analyzer and a polarization shifter which
effectively changes the polarization basis of the subsequent
measurement. The polarization analyzer has two threshold
detectors, each monitoring the output of a polarizing beam
splitter. These detectors are characterized by their detection
efficiency η and their dark-count probability pdark. Note that
we include all sources of loss in the system (including channel
loss, coupling loss in Alice’s and Bob’s laboratory, etc.) in the
definition of the detection efficiency η.6 For the case of honest
Alice and Bob, the overall transmittance, η, is a product.
i.e., η = ηAηchannelηBηD , where ηA is the transmittance on
Alice’s side, ηchannel is the channel transmittance, ηB is the
transmittance on Bob’s side (excluding detection inefficiency),
and ηD is the detector efficiency defined previously in the

6In this work, we are not considering the detection efficiency
mismatch problem and detector-related attacks such as time-shift
attacks [31,32] or faked-state attacks [33,34]. We remark that security
proofs for QKD schemes that take into account such detection
efficiency mismatch do exist, see, e.g., Ref. [35].

FIG. 9. Experimental setup with phase-randomized weak coher-
ent pulses. The Encoder codifies the BB84 signal information. The
polarization shifter (PS) allows to change the polarization basis
(computational basis + or Hadamard basis ×) of the measurement
as desired. The polarization analyzer consists of a polarizing beam
splitter (PB) and two threshold detectors. The PB discriminates the
two orthogonal polarized modes.

TABLE I. Summary of the probabilities for phase-randomized
weak coherent pulses.

Parameter Value

p1
src e−µµ

p1
sent p1

src

p
h|1
B,click η + (1 − η)pdark(2 − pdark)

p
d,n
B,err 0

pd
B,no click e−µ

ph
B,S,no click e−µ

∑∞
n=0

µn

n! (1 − η)n = e−ηµ

ph
B,no click ph

B,S,no click − ph
B,S,no clickpdark(2 − pdark)

pB,D,err pdark(1 − pdark) + p2
dark/2

pB,DS,err (1 − ph
B,S,no click)[(1 − edet)

pdark
2 + edetpdark( 3

2 − pdark)]

ph
B,S,err edet(1 − ph

B,S,no click)

ph
B,err ph

B,S,err[1 − pdark(2 − pdark)] + ph
B,S,no clickpB,D,err

+ pB,DS,err

introductory section. Recall, from the introductory section,
that ηD is about 10% for telecom wavelengths and 70% for
visible wavelengths.

Now, for some practical setups (such as short-distance
free-space with visible wavelength), it is probably
technologically feasible to achieve ηAηchannelηB of order
1, say 50%. In more detail, in some setups (e.g., with a weak
coherent state source), Alice may compensate for her internal
loss by characterizing it and then simply turning up the
intensity of her laser. In those cases, she may effectively set
ηA = 1. Now, for short-distance applications, ηchannel, can be
made of order 1. All that is required to achieve ηAηchannelηB

of order 1 is to reduce Bob’s internal loss, thus boosting ηB to
order 1. For simplicity, we consider that both detectors have
equal parameters. Since we absorb all terms into the detector
inefficiency, we simply refer to this as η.

As in QKD [36], the fact that each signal state is phase
randomized is an important element for our security analysis.
It allows us to argue that, without loss of generality, a dis-
honest Bob always performs a quantum nondemolition (QND)
measurement of the total number of photons contained in each
pulse sent by Alice. Hence, we can analyze the single-photon
pulses separately from the multiphoton pulses, which makes
an important difference for Bob’s cheating capabilities. In
Appendix C, we compute all relevant probabilities to evaluate
security in this scenario. These probabilities are summarized in
Table I. For completeness, we explicitly state some parameters
which we need in order to evaluate the error probability ph

B,err.
These parameters are as follows: the probability that Bob
makes an error due to dark counts alone (pB,D,err), the signal
alone (pB,S,err), and the probability that he makes an error
due to dark counts and the signal (pB,DS,err), as well as the
probability that a signal alone produces no click in Bob’s side
(ph

B,S,no click).

2. Security parameters

To evaluate the probabilities above we assume that pdark =
0.85 × 10−6 and use edet = 0.033 as a very conservative
number on a distance of 122 km [37].
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FIG. 10. (Color online) Security possible for (η,µ) in the shaded
region where (12) is fulfilled. Our proof does not apply to parameters
in the region below the curve. For the shaded region above the curve,
additional conditions such as (13) are checked in Fig. 11.

a. Weak string erasure We now investigate the security of
(m,λ,ε,perr) weak string erasure, when using a weak coherent
source. Before examining the weak string erasure rate λ that
one can obtain for some set of source parameters, we first
consider when security can be obtained in principle [i.e.,
when (12) and (13) are satisfied] as a function of the mean
photon number µ, the detection efficiency η, the storage rate
ν and the amount of storage noise. Our examples here focus
on the depolarizing channel with parameter r as defined in
(11). First, Fig. 10 tells us when security is possible at all,
independently of the amount of storage noise. We then examine
a particular example of storage noise and storage rates in
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FIG. 11. (Color online) Security possible for (η,µ) in the upper
enclosed regions for a low storage noise of r = 0.9 and storage rates
ν of 1/2 (dashed red line), 0.45 (dotted green line), 0.35 (dot-dashed
blue line), 0.25 (large dashed magenta line), and 0.15 (solid black
line) [satisfying (12) and (13)].
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FIG. 12. (Color online) Security for (r,ν) below the lines for µ =
0.3 and detection efficiencies η: 0.7 (solid black line), 0.5 (large
dashed magenta line), 0.4 (dot-dashed blue line), 0.3 (dotted green
line), and 0.2 (dashed red line).

Fig. 11. This shows that even for low storage noise, we can
hope to achieve security for many source settings. Note that
this plot is merely an example, and, of course, does not rule out
security of other forms of storage noise or other storage rates.
The following plots have been made using MATHEMATICA, and
the corresponding files used are available on request.

We now consider when conditions (12) and (13) can be
satisfied in terms of the amount of noise in storage given by
r , and the storage rate ν for some typical parameters in an
experimental setup. Figure 12 shows us that there is a clear
trade-off between r and ν dictating when weak string erasure
can be obtained from our analysis, but typical parameters of
the source move us well within a possible region.

Now that we have established that secure weak string
erasure can be obtained for a reasonable choice of parameters,
it remains to establish the weak string erasure rate λ. This
parameter cannot be read off explicitly but is determined by
the optimization problem given in (16). To gain some intuition
about the magnitude of this parameter we plot it in Fig. 13 for
various choices of experimental settings and a storage rate of
ν = 1. This shows that even for a very high storage rate, there
is a positive rate of λ for many reasonable settings. Of course
λ can be larger if we were to consider a lower storage rate.
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FIG. 13. (Color online) The WSE rate λ in terms of the amount
of depolarizing noise r where µ = 0.3, and a variety of detection
efficiencies η: 0.7 (solid black line), 0.6 (dashed red line), 0.5 (dotted
blue line), 0.4 (dot-dashed yellow line), 0.3 (large dashed magenta
line), and 0.2 (larger dashed turquoise line).
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FIG. 14. (Color online) The WSE rate λ in terms of the detection
efficiency η for r = 0.8 and storage rates ν: 1/5 (solid blue line),
1/4 (dashed red line), 1/2 (dotted green line), and 2/3 (dot-dashed
magenta line).

To gain further intuition into the role that the different
parameters play in determining the rate λ, we investigate the
trade-off between λ and the detection efficiency η in Fig. 14,
and the trade-off between λ and the mean photon number µ in
Fig. 15 for some choices of storage noise r and storage rate ν.

b. 1-2 oblivious transfer We can now consider the security
of (
,ε) oblivious transfer based on weak string erasure
implemented using a weak coherent source. The parameter
which is of most concern to us here is the bit error rate
perr = ph

B,err/(1 − ph
B,no click). As we already saw in Fig. 8,

this error cannot be arbitrarily large for a fixed value of the
WSE rate λ. In a practical implementation, this translates into
a trade-off between the bit error perr and the efficiency η as
shown in Fig. 16, where for now we treat perr as an independent
parameter to get an intuition for its contribution.

Of course perr is not an independent parameter but depends
on µ, η and most crucially on edet. Figure 17 shows how many
bits 
 of 1-2 oblivious transfer we can hope to obtain per valid
pulse M for very large M . The parameter µ has thereby been
chosen to obtain a high rate when all other parameters were
fixed. We will also refer to 
/M as the oblivious transfer rate.
As expected, we can see that this rate does of course depend
greatly on the efficiency η but also on the storage noise and on
the storage rate.
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FIG. 15. (Color online) The WSE rate λ in terms of the mean
photon number µ for r = 0.8 and ν as in Figure 14.
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FIG. 16. (Color online) Security for (perr,η) in the shaded region,
for example, parameters r = 0.4, ν = 1/5 and large ω = 100 000.

3. Parameters using decoy states

We now analyze the scenario where Alice sends decoy
states. In particular, let us consider a simple system with only
two decoy states: vacuum and a weak decoy state with mean
photon number µ̂. The mean photon number of the signal states
will be denoted as µ. Moreover, we select µ̂ < µ. Without
loss of generality, we hence use labels S = {vac,µ̂,µ} for the
possible settings of the source. Furthermore, we assume that
Alice chooses one of these settings uniformly at random, that is
PS(s) = 1/3 for all s ∈ S. This may not be optimal, but due to
the large number of parameters we will limit ourselves to this
choice. Since pn

src = pn
sent for the case of a phase-randomized

weak coherent source, we can write for honest Bob

Qh
vac = p

h|0
B,click (26)

Qh
µ̂ = e−µ̂

∞∑
n=0

µ̂n

n!
p

h|n
B,click (27)
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FIG. 17. (Color online) The rate 
/M of oblivious transfer for a
large number of valid pulses M for parameters ω = 1000 and µ =
0.15, η = 0.3, r = 0.1, ν = 1/10 (solid blue line); µ = 0.4, η = 0.7,
r = 0.1, ν = 1/10 (dashed red line); µ = 0.15, η = 0.7, r = 0.7,
ν = 1/4 (dotted magenta line); and µ = 0.2, η = 0.7, r = 0.4, ν =
1/3 (light blue line).
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Qh
µ = e−µ

∞∑
n=0

µn

n!
p

h|n
B,click. (28)

For the typical channel model, that is, if Bob were honest, we
furthermore have

p
h|0
B,click = 2pdark(1 − pdark) + p2

dark (29)

p
h|n
B,click = 1 − (1 − p

h|0
B,click

)
(1 − η)n. (30)

For simplicity, when calculating the value of the parameter
p

h|0
B,click we have only considered the noise arising from dark

counts in the detectors. In a practical situation, however, there
might be other effects like stray light that also contribute
to the final value of p

h|0
B,click. Still, from her knowledge of

the experimental setup, Alice can always make a reasonable
estimate of the maximum tolerable value of p

h|0
B,click such that

the protocol is not aborted and the analysis is completely
analogous. Furthermore, we have assumed that the losses come
mainly from the finite detection efficiency of the detectors,
since the communication distance will be typically quite short.

To estimate a lower bound on the yield of single photons
we follow the procedure proposed in Ref. [24]. Note, however,
that many other estimation techniques are also available, like,
for instance, linear programming tools [38]. In the asymptotic
case we obtain [24]

(1 − r (1)) � τ̂

with

τ̂ := µ

µµ̂ − µ̂2

(
Qh

µ̂eµ̂ − Qh
µeµ µ̂2

µ2
− µ2 − µ̂2

µ2
Qh

vac

)
,

(31)

where we used the fact that for honest Bob p
h|1
B,click = 1 − r (1)

in the limit of large M , as Bob will decide to report any round
as missing that he did not receive. In Protocol 2 we have that
conditioned on the event that Alice does not abort the protocol

Qmeas
vac ∈ [(Qh

vac − ζ0
)
,
(
Qh

vac + ζ0
)]

(32)

Qmeas
µ̂ ∈ [(Qh

µ̂ − ζµ̂

)
,
(
Qh

µ̂ + ζµ̂

)]
(33)

Qmeas
µ ∈ [(Qh

µ − ζµ

)
,
(
Qh

µ + ζµ

)]
, (34)

where ζ0 = √
ln(2/ε)/(2M0), ζµ̂ = √ln(2/ε)/(2Mµ̂), and

ζµ = √ln(2/ε)/(2Mµ). We can hence bound

(1 − r (1)) � τ

with

τ := µ

µµ̂ − µ̂2

[(
Qh

µ̂ − 2ζµ̂

)
eµ̂ − (Qh

µ + 2ζµ

)
eµ

× µ̂2

µ2
− µ2 − µ̂2

µ2

(
Qh

vac + 2ζ0
)]

, (35)

which in the limit of large M0, Mµ, and Mµ̂ gives us (31).
The factor 2 in Eq. (35) above stems from the fact that Alice
still accepts a value at the upper (or lower) edge of the interval
such as Qh

µ + ζµ. In this case however, the real parameter Q̂h
µ

is possibly as high as Qh
µ + 2ζµ.
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FIG. 18. (Color online) Security possible for (η,µ) with decoy
states in the shaded region where (12) is fulfilled. Additional
conditions such as (13) are checked in Fig. 19.

4. Weak string erasure

For direct comparison, we now provide the same plots as
given in subsection V A2a, where for simplicity we will always
choose µ̂ = 0.05. Of course, this may not be optimal, but
serves as a good comparison. As expected using decoy states
limits dishonest Bob from reporting too many single-photon
rounds as missing, thereby allowing us to place a better bound
on r (1). This fact greatly increases the range of parameters η

and µ for which we can hope to show security as shown in
Figs. 18 and 19. We also observe in Fig. 20 that the detection
efficiency η plays almost no role in determining for which
values of storage noise r and storage rate ν we can obtain
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FIG. 19. (Color online) Security possible for (η,µ) with decoy
states in the upper enclosed regions for a low storage noise of r = 0.9
and storage rates 1/2 (dashed red line), 0.45 (dotted green line), 0.35
(dot-dashed blue line), 0.25 (large dashed magenta line), and 0.15
(solid black line). [satisfying (12) and (13)].
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FIG. 20. (Color online) Security for (r,ν) with decoy states below
the lines for µ = 0.3 and detection efficiencies η: 0.7 (solid black
line), 0.5 (large dashed magenta line), 0.4 (dot-dashed blue line),
0.3 (dotted green line), and 0.2 (dashed red line).

security. This is true for all values of µ � 0.4 we have chosen
to examine.

It is, however, interesting to observe that the magnitude
of the final weak string erasure rate λ changes only slightly
when we use decoy states. This is due to the strong converse
parameter (15) which determines λ as given in (16) and which
is not necessarily large for larger values of R. This is shown by
Fig. 21. Still, we again observe that we may use much lower
values of η as shown in Fig. 22 and a much higher mean photon
number µ as shown in Fig. 23.

5. 1-2 oblivious transfer

Again, we also consider the security of (
,ε) oblivious
transfer based on weak string erasure implemented using a
weak coherent source and decoy states as above. We first
observe that decoy states soften the trade-off between the bit
error perr and the efficiency η as shown in Fig. 24, where
we for now treat perr as an independent parameter to get an
intuition for its contribution. Figure 25 now shows how many
bits 
 of 1-2 oblivious transfer we can hope to obtain per
valid pulse M for very large M , when using decoy states.
Again, we see that using decoy states softens the effects of
η. Note that we again count only the valid pulses, which here
corresponds to all pulses sent with the signal setting. As in
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FIG. 21. (Color online) The WSE rate λ for decoy states in terms
of the amount of depolarizing noise r where µ = 0.3 and a variety
of detection efficiencies η: 0.7 (solid black line), 0.6 (dashed green
line), 0.5 (dotted blue line), 0.4 (dot-dashed yellow line), 0.3 (large
dashed magenta line), and 0.2 (larger dashed turquoise line).
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FIG. 22. (Color online) The WSE rate λ for decoy states in terms
of the detection efficiency η for r = 0.8 and storage rates ν: 1/5 (solid
blue line), 1/4 (dashed red line).

QKD, it may be possible to use the remaining pulses which
one could incorporate in our analysis given in the Appendix A.
However, for clarity of exposition, we have chosen not to make
use of such pulses in this work.

B. Parametric down-conversion source

1. Experimental setup and loss model

Now we consider that Alice uses a pumped type II PDC
source. The states emitted by this type of source can be written
as [39]

|�src〉AB =
∞∑

n=0

√
pn

src|�n〉AB, (36)

where the probability distribution pn
src is given by

pn
src = (n + 1)(µ/2)n

(1 + (µ/2))n+2
. (37)

The parameter µ/2 is directly related to the pump amplitude
of the laser resulting in a mean photon pair number per pulse
of µ, and

|�n〉AB =
n∑

m=0

(−1)m√
n + 1

|n − m,m〉A|m,n − m〉B. (38)

Here we have used the computational basis on each side. Each
signal state |�n〉AB contains exactly 2n photons; n of them are
measured by Alice and the other n are measured by Bob, as

0.4 0.6 0.8 1.0
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0.30

λ

FIG. 23. (Color online) The WSE rate λ for decoy states in terms
of the mean photon number µ for r = 0.8 and ν as in Fig. 22.
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FIG. 24. (Color online) Security for (perr,η) with decoy states in
the shaded region for example parameters r = 0.4, ν = 1/5 and large
ω = 100 000.

depicted in Fig. 26. We furthermore choose η as in the case
of a weak coherent source. That is, since ηAηchannelηB = 1 we
simply write η = ηD for both parties. The dark count rate is
again denoted by pdark.

An important difference between the setup using a PDC
source and the one using a weak coherent pulse source, is that
Alice herself can (with some probability) discard a round if
she concludes no photon—or too many photons—have been
emitted. These rounds can be safely discarded by herself, and
thus do not contribute to the protocol any further. We will
refer to the remaining pulses as valid. To compare the two
approaches more easily, we will assume that in the case of a
PDC source, we consider only the valid pulses. That is, the
parameter M in the WSE protocol corresponds to the valid
pulses and not to all pulses emitted by Alice. It is certainly
debatable whether this is a fair comparison, but since M is the
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FIG. 25. (Color online) The rate 
/M of oblivious transfer with
decoy states for a large number of valid pulses M for parameters ω =
1000 and µ = 0.2, η = 0.3, r = 0.1, ν = 1/10 (solid blue line); µ =
0.3,η = 0.7, r = 0.1, ν = 1/10 (dashed red line); µ = 0.3, η = 0.7,
r = 0.7, ν = 1/4 (dotted magenta line); µ = 0.3, η = 0.7, r = 0.4,
ν = 1/3 (light blue line).

FIG. 26. Experimental setup with a PDC source. Alice and Bob
measure each output signal by means of an active BB84 measurement
setup, like the one described in subsection V A1.

parameter which is relevant to the security of the protocol, we
choose to consider the final rates as a function of M .

The setting of a PDC source is slightly more difficult to
analyze but can lead to better rates 
/M than those arising from
a weak coherent source, where, like before, 
 is the number
of bits of oblivious transfer we obtain and M is the number
of valid pulses. The reason for this improvement is twofold:
First, from her measurement results, Alice can (with some
probability) estimate how many photons have been emitted
each given time. This means that we are no longer restricted
to tuning the source such that the number of multiphoton
emissions is too low but can permit for a larger variation by
relying on Alice to filter out the unwanted events. Second, a
multiphoton emission does not provide dishonest Bob with
full information about the signal state sent by Alice. In this
scenario we need to consider the probability of success for
dishonest Bob when a certain number of photons have been
emitted which is given by Claim C2 in the Appendix C. Table II
again summarizes the probabilities we need to know in order
to evaluate security. Since some expressions can be rather
unwieldy for the case of a PDC source, we will sometimes
refer to the corresponding equation in the Appendix C.

2. Security parameters

a. Weak string erasure We now investigate the security of
(m,λ,ε,perr) weak string erasure, when using a PDC source.
For easy comparison, we will consider exactly the same plots
as before, where, however, we sometimes choose a different
value for the mean photon number which seemed more useful

TABLE II. Summary of probabilities for parametric down-
conversion source.

Parameter Value

p1
src µ/[1 + (µ/2)]3

p1
sent (C21)

p
h|1
B,click η + (1 − η)pdark(2 − pdark)

p
d,n
B,err (C27)

pd
B,no click p0

sent, see (C21)

ph
B,S,no click (C23)

ph
B,no click ph

B,S,no click − ph
B,S,no clickpdark(2 − pdark)

pB,D,err pdark(1 − pdark) + p2
dark/2

pB,DS,err (C26)

ph
B,S,err (C24)

ph
B,err ph

B,S,err[1 − pdark(2 − pdark)] + ph
B,S,no clickpB,D,err

+ pB,DS,err
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FIG. 27. (Color online) Security possible for (η,µ) in the shaded
region where (12) is fulfilled. Our proof does not apply to parameters
in the region below the curve. For the shaded region above the curve,
additional conditions such as (13) are checked in Fig. 28.

for this source. For simplicity, we will also consider a setting
where we give all the information encoded in multiphotons
to dishonest Bob for free, i.e., we consider p

d,n
B,err = 0, which

clearly overestimates his capabilities as we see in Claim C2.
Again, we first consider when security can be obtained in
principle [i.e., when (12) and (13) are satisfied] as a function
of the mean photon number µ, the detection efficiency η,
the storage rate ν, and the amount of storage noise, where
our examples here focus on the depolarizing channel with
parameter r as defined in (11). Figure 27 thereby tells us again
when security is possible at all, independently of the amount of
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FIG. 28. (Color online) Security possible for (η,µ) in the upper
enclosed regions for a low storage noise of r = 0.9 and storage rates
1/2 (dashed red line), 0.45 (dotted green line), 0.35 (dot-dashed blue
line), 0.25 (large dashed magenta line), and 0.15 (solid black line)
[satisfying (12) and (13)].
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FIG. 29. (Color online) Security for (r,ν) below the lines for µ =
0.3 and detection efficiencies η: 0.7 (solid black line), 0.5 (large
dashed magenta line), 0.4 (dot-dashed blue line), 0.3 (dotted green
line), and 0.2 (dashed red line).

storage noise. As before, we then examine a particular example
of storage noise and storage rates in Fig. 28, that even for low
storage noise, we can hope to achieve security for many source
settings.

Second, we consider again when conditions (12) and (13)
can be satisfied in terms of the amount of noise in storage given
by r , and the storage rate ν for some typical parameters in an
experimental setup in Fig. 29. It is interesting to note that the
efficiency η plays a much more prominent role when using a
PDC source. This comes from the fact that Alice herself also
uses a detector of efficiency η to postselect some of the pulses.

Yet, we conclude that secure weak string erasure can be
obtained for a reasonable choice of parameters, so it remains
to establish the weak string erasure rate λ by solving the
optimization problem given by (16). Figure 30 gives us λ

for various choices of experimental settings, and a storage rate
of ν = 1. This demonstrates that even for a very high storage
rate, there is a positive rate of λ for many reasonable settings.

The trade-off between λ and the detection efficiency η given
in Fig. 31 is quite similar to what we observed in the case
of a weak coherent source. On the other hand, the trade-off
between λ and the mean photon number µ in Fig. 32 shows that
having a low mean photon number seems more significant.
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FIG. 30. (Color online) The WSE rate λ in terms of the amount
of depolarizing noise r where µ = 0.3 and a variety of detection
efficiencies η: 0.7 (solid black line), 0.6 (dashed red line), 0.5 (dotted
blue line), 0.4 (dot-dashed yellow line), 0.3 (large dashed magenta
line), and 0.2 (larger dashed turquoise line).
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FIG. 31. (Color online) The WSE rate λ in terms of the detection
efficiency η for r = 0.8 and storage rates ν: 1/5 (solid blue line),
1/4 (dashed red line), 1/2 (dotted green line), and 2/3 (dot-dashed
magenta line).
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FIG. 32. (Color online) The WSE rate λ in terms of the mean
photon number µ for r = 0.8 and ν as in Fig. 31.
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FIG. 33. (Color online) Security for (perr,η) in the shaded region,
for example, parameters r = 0.4, ν = 1/5 and large ω = 100 000.
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FIG. 34. (Color online) The rate 
/M of oblivious transfer for
a large number of valid pulses M for parameters µ = 0.05, ω =
1000 and η = 0.3, r = 0.1, ν = 1/10 (solid blue line); η = 0.7, r =
0.1, ν = 1/10 (dashed red line); η = 0.7, r = 0.7, ν = 1/4 (dotted
magenta line); η = 0.7, r = 0.4, ν = 1/3 (light blue line). Note that
the scaling of this plot differs for the WCP source with and without
decoy states.

Recall, however, that we have for simplicity assumed that
we give all multiphotons to Bob for free which greatly
overestimates his capabilities when using a PDC source.
These parameters could thus be improved when including
multiphotons.

b. 1-2 oblivious transfer We can now consider the security
of (
,ε) oblivious transfer based on weak string erasure
implemented using a PDC source. In Fig. 33, we first examine
the trade-off between an independently chosen bit error
rate perr and the efficiency η, which is similar to what we
observe for the case of a weak coherent source.

Figure 34 now shows how many bits 
 of 1-2 oblivious
transfer we can hope to obtain per valid pulse M for very
large M . This is much higher than what we observe for the
case of a weak coherent source, but note that in all plots
we only consider the valid pulses M . For a weak coherent
source, this is equal to the actual number of pulses emitted
as Alice does not postselect. However, for the case of a
PDC source, Alice can (with some probability) discard rounds
in which no photon has been emitted. This comparison is
arguably unfair, but since M is the parameter that is relevant
to the security of our protocol, we chose to use the number of
valid pulses, instead of the number of all pulses.

VI. CONCLUSIONS AND OPEN QUESTIONS

We have shown that security in the noisy-storage model
[8,10] can in principle be obtained in a practical setting
and provided explicit security parameters for two possible
experimental setups. Our analysis shows that the protocols of
Ref. [10] are well within reach of today’s technology.

We have been mostly focusing our attention on short-
distance (in the order of a few meters) applications. For this
range, it is an interesting experimental challenge to construct
small hand-held devices which can be used to implement these
protocols. Nonetheless, in the future it might be interesting to
study the curve between the rate and the distance of secure
WSEE (in a similar way as the key rate versus distance curve
in QKD). Such a curve will allow us to see if our protocols can
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be applied in a local area network (LAN) or metropolitan area
network (MAN). Note that for medium-distance (say order 10
km) applications, our protocol may still work. For instance,
standard telecom fiber has a channel loss of about 0.2 dB/km
at telecom wavelength (i.e., 1550 nm) So, 10 km translates to
only 2 dB channel loss, which seems quite manageable!

Many important theoretical (see Ref. [10]) as well as
practical issues remain to be addressed. As in QKD, we have
assumed that all experimental components behave as we expect
them to. Hence, we have not considered any practical attacks
such as exploiting detectors that are blind above a certain
threshold [40], which is outside the scope of this work. Most
importantly, however, it is certaintly possible to improve the
parameters obtained here. These improvements can come from
theoretical advances [10], as well as an exact optimization of all
parameters for a particular experimental setup. Furthermore, in
the case of parametric down-conversion, for example, we have
not made use of the fact that Bob cannot gain full information
from multiphoton emissions, which leads to an increase in
rates. Similarly, when using decoy states, one could make
use of pulses emitted using a decoy setting in the protocol.
This requires a careful analysis of weak string erasure for
different photon sources analogous to the one presented in the
Appendix C. Nevertheless, we hope that this analysis paves
the way for a practical implementation of protocols in the
noisy-storage model.
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APPENDIX A: PROOF OF SECURITY: WSEE

Here we show how the security proof of Ref. [10] can be
modified to apply in the practical settings considered in this
article. To this end, we first provide a more formal definition
of WSEE.

Definition A.1. An (m,λ,ε,perr) weak string erasure proto-
col with errors (WSEE) is a protocol between Alice and Bob
satisfying the following properties where Eperr is defined as
in (5):

Correctness: If both parties are honest, then the ideal state
σXmIEperr (XI ) is defined such that

1. The joint distribution of the m-bit string Xm and subset
I is uniform:

σXmI = τ{0,1}m ⊗ τ2[m] (A1)

2. The joint state ρAB created by the real protocol is ε-close
to the ideal state:

ρAB ≈ε σXmIEperr (XI ), (A2)

where we identify (A,B) with [Xm,IEperr (XI )].
Security for Alice: If Alice is honest, then there exists an

ideal state σXmB ′ such that
1. The amount of information B ′ gives Bob about Xm is

limited:

1

m
H∞(Xm|B ′)σ � λ (A3)

2. The joint state ρAB ′ created by the real protocol is
ε-close to the ideal state:

σXmB ′ ≈ε ρAB ′ (A4)

where we identify (Xm,B ′) with (A,B ′).
Security for Bob: If Bob is honest, then there exists an ideal

state σA′X̂mI , where X̂m ∈ {0,1}m and I ⊆ [m] such that
1. The random variable I is independent of A′X̂m and

uniformly distributed over 2[m]:

σA′X̂mI = σA′X̂m ⊗ τ2[m] . (A5)

2. The joint state ρA′B created by the real protocol is
ε-close to the ideal state:

ρA′B ≈ε σA′IEperr (X̂I ) (A6)

where we identify (A′,B) with [A′,IEperr (X̂I )].
We study Protocol 1, i.e., without the use of decoy states.

The case of decoy states is analogous, where we obtain a
different bound in (A19), as discussed in subsection III B. The
analysis is essentially the same in both cases, only we bound
certain parameters in a different way. The general security
evaluation of correctness and the case when Bob is honest
follows the same arguments as in Ref. [10]. It is clear by
construction that an honest Bob reports enough rounds so that
Alice does not abort except with probability ε and hence the
real output states are at most ε-far from the ideal states.

From now on we concentrate on the situation where Alice
is honest, but Bob might try to cheat. Our analysis contains
two steps. We first consider single-photon emissions, which we
analyze as in Ref. [10], taking into account that Bob may report
some additional single-photon rounds as missing. Second, we
consider multiphoton rounds. The main difficulty arises from
the fact that Bob may report up to

Md
max = (ph

B,no click + ζ h
B,no click

)
M (A7)

of the M rounds as missing, where he himself can choose
which rounds to report. First, note that we can assume that
even a dishonest Bob always reports a round as missing if he
receives a vacuum state. By the same arguments as in Sec. II we
have that the number of rounds where Bob observes no click
lies in the interval [(pd

B,no click − ζ d
B,no click)M,(pd

B,no click +
ζ d

B,no click)M] for ζ d
B,no click = √

ln(2/ε)/(2M), except with
probability ε. Here, we make a worst-case assumption that
the number of rounds where dishonest Bob observes no click
is given by

Md
nc = (pd

B,no click − ζ d
B,no click

)
M (A8)

052336-18



IMPLEMENTATION OF TWO-PARTY PROTOCOLS IN THE . . . PHYSICAL REVIEW A 81, 052336 (2010)

and he can thus report up to

Md
report = Md

max − Md
nc

= (ph
B,no click − pd

B,no click + ζ h
B,no click + ζ d

B,no click

)
M

(A9)

rounds of his choice to be missing. Let M (n) denote the number
of rounds corresponding to an n-photon emission, let r (n)

denote the fraction of n photon rounds that dishonest Bob
chooses to report as missing, and let M

(n)
left = (1 − r (n))M (n)

denote the number of n photon rounds that dishonest Bob has
left. Note that in the limit of large M we have M (n) = pn

sentM .
Clearly, we must have that

∞∑
n=1

r (n)M (n) � Md
report (A10)

or Alice will abort the protocol.

1. Single-photon emissions

Single photons are desirable, since they correspond to the
idealized setting analyzed in Ref. [10] where Alice does indeed
send BB84 states. Clearly, in the limit of large M , we expect
roughly p1

sentM single-photon rounds. However, since Bob
may choose to report single-photon rounds as missing, we have
to analyze how many rounds still contribute to our security
analysis. The analysis of Ref. [10] links the security to the
rate at which Bob has to send classical information through
his noisy storage channel. In order to determine this rate, we
first investigate the setting where he is not allowed to keep any
quantum state.

Let X(1) denote the substring of XM that corresponds to
single-photon emissions. In Ref. [10] the rate at which Bob
needs to send information through his noisy-storage channel
depends on an uncertainty relation using postmeasurement
information. This uncertainty relation provides a bound on
the min-entropy that Bob has about X(1) given a classical
measurement outcome K , and the basis information he obtains
later on. We are thus interested in the min-entropy

H∞(X(1)|K (1)�(1))ρ = − log2 Pguess(X
(1)|K (1)�(1)), (A11)

where we use K (1) and �(1) to denote Bob’s classical
information and the basis information corresponding to the
single-photon rounds respectively and Pguess is the probability
that Bob guesses the string X(1) maximized over all choices of
measurements anticipating his post-measurement information
�(1) [41]. Important for us is the fact that since Alice picks
one of the four BB84 encodings uniformly at random in each
time slot, the initial state

ρX(1)Q(1)�(1) =
M (1)⊗
j=1

ρ
X

(1)
j Q

(1)
j �

(1)
j

(A12)

has tensor-product form, and it follows from Ref. [41] together
with Ref. [8] that also the state

ρX(1)K (1)�(1) =
M (1)⊗
j=1

ρ
X

(1)
j K

(1)
j �

(1)
j

(A13)

is a tensor product, that is, Bob’s best strategy to guess X(1)

purely with the help of classical information K (1) has tensor-
product form. It is important to note that this does not mean that
Bob does indeed perform a tensor-product attack in general.
It merely states that with respect to the uncertainty he has
about X(1) given only his classical information and the basis
information if he kept no quantum computation, his best attack
would be a tensor-product attack. And hence for any other
classical information that he may obtain from his actual attack
in the protocol, this uncertainty is only going to be greater.

We can now use the fact that the min-entropy of a tensor-
product state is additive [8], to conclude that the min-entropy
that Bob has about X(1) given K (1) and �(1) is thus a min-
entropy per bit, which allows us to compute the remaining
min-entropy if Bob reports some of the single-photon rounds
as missing. More precisely, if X

(1)
left is the substring of XM

corresponding to the single-photon rounds that Bob does not
report as missing, we know from the uncertainty relation of
Ref. [12] and a purification argument that

Hε
∞
(
X

(1)
left

∣∣K (1)
left�

(1)
left

)
�
(

1
2 − 2δ
)
M

(1)
left, (A14)

where K
(1)
left and �

(1)
left correspond to the classical and basis

information respectively for the remaining single-photon
rounds, and

ε = exp

[
− δ2M

(1)
left

32
(
2 + log2

1
δ

)2
]

. (A15)

To determine the security as a whole, we of course need to
take into account that dishonest Bob also holds some quantum
information about X

(1)
left, besides his classical information. We

adopt the notation of Ref. [10] and write

ρ
X

(1)
left�

(1)
leftK

(1)F(Qin) = 1(
2|M (1)

left|
)2∑

x,θ

k∈K

PK|X=x,�=θ (k) |x〉〈x|︸ ︷︷ ︸
Alice

⊗ |θ〉〈θ | ⊗ |k〉〈k| ⊗ F(ζxθk)︸ ︷︷ ︸
Bob B(1)

, (A16)

where Bob holds B(1) = �
(1)
leftK

(1)F(Qin), and ζxθk ∈ B(Qin)
is the state entering Bob’s quantum storage when Alice chose
x and θ , and Bob already extracted some classical information
k. Here, K (1) includes all of Bob’s classical information and
depending on Bob’s attack may not have tensor-product form.
Nevertheless, we know from Ref. [10] that (A14) tells us at
which rate cheating Bob has to send information through his
storage channel F for any attack he conceives.

a. General storage noise

In particular, we can now make use of the uncertainty
relation (A14) together with the analysis of Ref. [10], Lemma
2.2 and Theorem 3.3] to obtain that for single-photon rounds
we have that for any attack of dishonest Bob

Hε
∞
[
X

(1)
left

∣∣�(1)
leftK

(1)
leftF(Q(1))

]
� − log2 PF

succ

(( 1
2 − δ
)
M

(1)
left

)

(A17)
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for

ε = 2 exp

{
− (δ/4)2

32[2 + log2(4/δ)]2
M

(1)
left

}
. (A18)

Note that we have from (A10) that

r (1) � min

[
ph

B,no click − pd
B,no click + ζ h

B,no click + ζ d
B,no click

p1
sent − ζ 1

sent

,1

]
(A19)

and hence

M
(1)
left = (1 − r (1))M (1) (A20)

� M

(
1 − ph

B,no click − pd
B,no click + ζ h

B,no click + ζ d
B,no click

p1
sent − ζ 1

sent

) (
p1

sent − ζ h
sent

)
(A21)

which in the limit of large M gives us

M
(1)
left � M

(
p1

sent + pd
B,no click − ph

B,no click

)
. (A22)

Since r (1) is chosen by dishonest Bob and hence is unknown
to Alice, we bound ε for any strategy of dishonest Bob
as

ε � 2 exp

{
− (δ/4)2

32[2 + log2(4/δ)]2

[
1 −
(

ph
B,no click − pd

B,no click + ζ h
B,no click + ζ d

B,no click

p1
sent − ζ 1

sent

)] (
p1

sent − ζ h
sent

)
M

}
. (A23)

In the case of decoy states, we just obtain a better bound in
(A19), where the remaining security analysis is analogous.

b. Tensor-product channels

Of particular interest is the case where Bob’s storage noise
is of the form F = N⊗νMstore , where ν is the storage rate, Mstore

is the number of bits we count to determine Bob’s storage, and
N obeys the strong converse property [19]. As outlined earlier,
we assume that the number of qubits that determines Bob’s
storage size is as in the idealistic setting of Ref. [10] given
by the number of single-photon emissions that we expect an
honest Bob to receive for large M , i.e., Mstore.

From the strong converse property of N follows that

− log2 PN⊗νMstore

succ (MstoreR) � ν · γN (R/ν)Mstore, (A24)

where γN (R/ν) > 0 for CN · ν < R and CN is the classical
capacity of the channel N [19]. To achieve security in this
setting we hence want to determine R such that(

1
2 − δ
)
M

(1)
left = RMstore, (A25)

which gives us

R =
(

1

2
− δ

)
(1 − r (1))

(
p1

sent − ζ 1
sent

)
p1

sentp
h|1
B,click

for p
h|1
B,click > 0

(A26)

and R = 0 otherwise, which for large M becomes

R =
(

1

2
− δ

)
1 − r (1)

p
h|1
B,click

. (A27)

Whenever p
h|1
B,click > 0, note that R can be significantly larger

than 1/2 due the difference between M (1) and Mstore. We can
now use (A19) to bound R as

R �
(

1

2
− δ

)
max

[
0,

1

p
h|1
B,click

− ph
B,no click − pd

B,no click + ζ h
B,no click + ζ d

B,no click

p1
sentp

h|1
B,click

]
(A28)

which for large M is just

R �
(

1

2
− δ

)
max

[
0,

p1
sent − ph

B,no click + pd
B,no click

p1
sentp

h|1
B,click

]
.

(A29)

Summarizing, we have that for any strategy of dishonest Bob

Hε
∞
[
X

(1)
left

∣∣�(1)
leftK

(1)
leftF(Q(1))

]
� νγN

(
R

ν

)
Mstore. (A30)

2. Multiphoton emissions

It remains to address the case of multi-photon emissions.
We analyze here a conservative scenario where dishonest Bob
obtains the basis information for free whenever a multi-photon
emission occurred. This situation can only make dishonest
Bob more powerful. Note that this also means that Bob will
never attempt to store such emissions, since he will never
obtain more information about them as he already has. We
thus assume that Bob keeps no quantum knowledge about the
rounds corresponding to multiphoton emissions. We will see
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below that for the case of a PDC source, Bob nevertheless
does not obtain full information about a bit in the case of a
multiphoton emission.

For an n-photon emission, the probability that Bob performs
a correct decoding is given by (1 − p

d,n
B,err). If bit j of XM was

generated by an N = n-photon emission, we thus have

H∞(Xj |�jKj N = n) = − log2

(
1 − p

d,n
B,err

)
. (A31)

Since we assume that Bob keeps no quantum information about
the multiphoton rounds we may write his state corresponding
to the rounds in which n > 1 photons have been emitted as

ρ
X

(n)
leftB

(n) =
⊗

j

ρ
X

(n)
left,jB

(n)
j

, (A32)

where B
(n)
j is a classical register. Using the fact that the

min-entropy is additive for a tensor-product state [8], we
have that Bob’s min-entropy about the substring X(n) of XM

(belonging to N = n photon emissions that Bob does not report
as missing) is given by

1

M
(n)
left

H∞
(
X

(n)
left|�(n)

leftK
(n)
leftN = n

) = − log2

(
1 − p

d,n
B,err

)
.

(A33)

3. Putting things together

Let Xm be the substring of bits of XM that Bob does not
report as missing. In order to determine the overall security
parameters, we need to determine how much min-entropy
dishonest Bob has about

Xm =
∞⋃

n=1

X
(n)
left. (A34)

Since we assume that Bob keeps no quantum information about
the multiphoton rounds we may write the state of the system
if Bob is dishonest as

ρXmB ′ �
∞⊗

n=1

ρ
X

(n)
leftB

(n) , (A35)

where B(n) contains a copy of all classical information
available to Bob and where we have reordered the systems into
parts belonging to different photon number n. The following
theorem comes from Ref. [10], Theorem 3.3], together with
the discussion given above.

Theorem A.2 (Security against Bob). Fix δ ∈]0, 1
2 [ and let

ε = 2 exp

{
− (δ/4)2

32[2 + log2(4/δ)]2
M

(1)
left

}
. (A36)

Then for any attack of a dishonest Bob with storage F :
B(Hin) → B(Hout), there exists a cq-state σXmB ′ such that

1. σXmB ′ ≈2ε ρXmB ′

2. 1
m

H∞(Xm|B)σ � − 1
m

[log2 PF
succ(RMstore) +∑∞

n=2

M
(n)
left log2(1 − p

d,n
B,err)]

where ρXmB ′ is given by (A35).
Proof. Let σ

X
(1)
leftB

(1) be defined as in the analysis of single-
photon emissions in Ref. [10]. Following the same arguments
as in Ref. [10] and adding another ε for the probability that

the number of rounds in which Bob observes no click lies
outside the interval [(pd

B,no click − ζ d
B,no click)M,(pd

B,no click +
ζ d

B,no click)M], we get 1
2‖ρ

X
(1)
leftB

(1) − σ
X

(1)
leftB

(1)‖1 � 2ε. Further-
more, let σ

X
(n)
leftB

(n) = ρ
X

(n)
leftB

(n) for n > 1 and let

σXmB ′ =
∞⊗

n=1

σ
X

(n)
leftB

(n) . (A37)

Note that by the subadditivity of the trace distance, we have

1
2‖ρXmB ′ − σXmB ′ ‖1 � 2ε. (A38)

It remains to show that σXmB ′ has high min-entropy. Note that

H∞(Xm|B)σ = H∞
(
X

(1)
left|B(1)
)
σ

+
∞∑

n=2

H∞
(
X

(n)
left|B(n)
)
σ

(A39)

where we have used the additivity of the min-entropy for
tensor-product states [8], and that conditioning on independent
information does not change the min-entropy. Our claim now
follows immediately from subsections A1 and A2. �

We can again specialize this result to the case of tensor-
product channels.

Corollary A.3 (Security against Bob). Let Bob’s storage
be described by F = N⊗νMstore with ν > 0, N satisfying the
strong converse property [19], and

CN ν < min
r (1)

R, (A40)

where R is defined in (A26). Fix δ ∈]0, minr (1) R − CN ν[.
Then, for any attack of dishonest Bob there exists a cq-state
σXmB ′ such that

1. σXmB ′ ≈2ε ρXmB ′

2. 1
m

H∞(Xm|B ′)σ � 1
m

[Mstoreν · γN (R/ν) −∑∞
n=2 M

(n)
left

log2(1 − p
d,n
B,err)]

with ρXnB ′ and ε given by (A35) and (A36) respectively.
Our main theorem now follows by allowing Bob to choose

{r (n)} minimizing his total min-entropy. To be able to give an
exact security guarantee we bound the parameter ε which may
depend on dishonest Bob’s choice of r (1) using (A23).

Theorem A.4 (Weak string erasure). Protocol 1 is an
(m,λ(δ),ε(δ),ph

B,err) weak string erasure protocol for the
following two settings:

1. Let Bob’s storage be given by F : B(Hin) → B(Hout),
and let δ ∈]0, 1

2 [. Then we obtain a min-entropy rate

λ(δ) = min
{r (n)}n

lim
m→∞

1

m

[
− log2 PF

succ(RMstore)

−
∞∑

n=2

M
(n)
left log2

(
1 − p

d,n
B,err

)]
(A41)

where the minimization is taken over all {r (n)}n such that∑∞
n=1 r (n)M (n) � Md

report and

m =
∞∑

n=1

M
(n)
left Mstore = p1

sentp
h|1
B,clickM (A42)

R =
(

1

2
− δ

)
1 − r (1)

p
h|1
B,click

(A43)
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ε(δ) � 4 exp

(
− δ2

512
(
4 + log2

1
δ

)2
{

p1
sent −
[

p1
sent

(
ph

B,no click − pd
B,no click + ζ h

B,no click + ζ d
B,no click

)
p1

sent − ζ 1
sent

]}
M

)
. (A44)

2. Suppose F = N⊗νMstore for a storage rate ν > 0, N
satisfying the strong converse property [19] and having
capacity CN bounded by

CN ν < min
r (1)

R. (A45)

Let δ ∈]0, 1
2 − CN ν[. Then we obtain a min-entropy rate of

λ̃(δ) = min
{r (n)}n

1

m

×
[
ν · γN
(

R

ν

)
Mstore −

∞∑
n=2

M
(n)
left log2

(
1 − p

d,n
B,err

)]
(A46)

for sufficiently large M .

APPENDIX B: PROOF OF SECURITY: FROT FROM WSEE

We show that our augmented protocol implements fully
randomized oblivious transfer, as defined in Ref. [10]. The
proofs of correctness and security for honest Bob are analogous
to the ones given in Ref. [10], using the fact that the properties
of the error-correcting code ensure that Bob obtains SC

except with probability ε. Furthermore, note that a dishonest
Alice cannot gain any information about C from a one-way
error-correction scheme. We therefore concentrate on proving
security for an honest Alice when Bob is dishonest. The proof
proceeds as in Ref. [10], except for a small variation which we
state below.

Lemma B.1 (Security for Alice). Let 
 := �[(ω−1
ω

) λ
8 −

λ2

512ω2β
− 1.2h(perr)

8 ]m − 1
2�. Then, Protocol WSEE to FROT

satisfies security for Alice with an error of

41 × 2
− λ2

512ω2β
m + 2ε .

Proof. We know from the analysis in Ref. [10] that

Hε+4δ
∞
(
�(Z)Enc(Wt

1−C )

∣∣S

CCR0R1W

t
0W

t
1�B ′′′,A

)
σ̃

�
(

ω − 1

ω

)
λm

4
− 
 − 1 , (B1)

where B ′′′ is the system of dishonest Bob after the interactive
hashing protocol and A is the event that the interactive hashing
protocol provides us with a set Wt

1−C of high min-entropy. A
has probability Prob[A] � 1 − 32δ2, where δ = 2−αλ2/(512ω2).
Here, Bob has some additional information given by the syn-
dromes Syn(�(Z)j ) of the blocks j ∈ Enc(Wt

0) ∪ Enc(Wt
1).

Let us denote the total of this error-correcting information
by Syn := {Syn[�(Z)j ]}j∈Enc(Wt

0)∪Enc(Wt
1). Notice that even if

the encodings overlap in some blocks, only the syndromes

of the α/4 blocks in Enc(Wt
1−C) lower Bob’s min-entropy on

�(Z)Enc(Wt
1−C ). We can hence bound

Hε+4δ
∞
(
�(Z)Enc(Wt

1−C )

∣∣S

CCR0R1W

t
0W

t
1�SynB ′′′,A

)
σ̃

(B2)

� Hε+4δ
∞
(
�(Z)Enc(Wt

1−C )

∣∣S

CCR0R1W

t
0W

t
1�B ′′′,A

)
σ̃

− 1.2 · h(perr)
m

4
(B3)

�
[(

ω − 1

ω

)
λ

4
− 1.2h(perr)

4

]
m − 
 − 1, (B4)

where the first inequality follows from the chain rule, the
monotonicity of the smooth min-entropy [30], and the fact
that error-correction information needs to be sent for βα/4 =
m/4 bits. Using privacy amplification [30], we then have that,
conditioned on the event A,

1
2

∥∥σ̃S1−C,SCCR0R1W
t
0W

t
1�SynB ′′′ − τ{0,1}
 ⊗ σ̃SCCR0R1W

t
0W

t
1�SynB ′′′

∥∥
1

� δ + 2ε + 8δ, (B5)

since (
ω − 1

ω

)
λm

4
− 1.2h(perr)m

4
− 2
 − 1

� 2 log2 1/δ = 2

(
λ2α

512ω2

)
,

which follows from


 �
[(

ω − 1

ω

)
λ

8
− 1.2h(perr)

8

]
m − λ2α

512ω2
− 1

2
.

Let B∗ := (R0R1W
t
0W

t
1�SynB ′′′) be Bob’s part in the output

state. Since Prob[A] � 1 − 32δ2, we get

σ̃S1−CSCB∗C ≈32δ2+9δ+2ε τ{0,1}
 ⊗ σ̃SCB∗C

and

σ̃S0S1B∗ = ρ̃S0S1B∗ .

Since δ2 � δ, this implies the security condition for Alice, with
a total error of at most 41δ + 2ε. �

APPENDIX C: DERIVATION OF PARAMETERS

In this section, we show how to compute the parameters for
both experimental setups.

1. Weak coherent source

The case of phase-randomized weak coherent pulses is
particularly easy to analyze, since here we can assume that
Bob always gains full knowledge of the encoded bit from
a multiphoton emission. That is, p

d,n
B,err = 0 for all n > 1. In

particular, this yields

pd
B,no click = p0

src = e−µ (C1)
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and

p1
src = e−µµ. (C2)

The action of Bob’s detection device can be described by
two positive-operator valued measures (POVM), one for each
of the two polarization bases β used in the BB84 protocol.
Each POVM contains four elements: F

β
vac,F

β

0 ,F
β

1 , and F
β

D .
The outcome of the first operator, F

β
vac, corresponds to no

click in the detectors, the following two POVM operators, F
β

0

and F
β

1 , give precisely one detection click, and the last one,
F

β

D , gives rise to both detectors being triggered. If we denote
by |n,m〉β the state which has n photons in one mode and
m photons in the orthogonal polarization mode with respect
to the polarization basis β, the elements of the POVM for this
basis are given by

Fβ
vac =

∞∑
n,m=0

η̄n+m |n,m〉β〈n,m|,

F
β

0 =
∞∑

n,m=0

(1 − η̄n)η̄m |n,m〉β〈n,m|,
(C3)

F
β

1 =
∞∑

n,m=0

(1 − η̄m)η̄n |n,m〉β〈n,m|,

F
β

D =
∞∑

n,m=0

(1 − η̄n)(1 − η̄m) |n,m〉β〈n,m|,

where η is the detection efficiency of a detector as introduced
in subsection V A1 and η̄ = (1 − η). Furthermore, we take
into account that the detectors show noise in the form of dark
counts which are, to a good approximation, independent of
the incoming signals. As in subsection V A1, the dark count
probability of each detector is denoted by pdark.

First, since Alice does not verify how many photons have
actually been emitted, we have

pn
sent = pn

src. (C4)

To determine the other parameters, we start by computing the
probability that an honest Bob does not observe a click due to
a signal being sent which can be expressed as

ph
B,S,no click = Tr

(
Fβ

vacρk

) = e−µ

∞∑
n=0

µn

n!
(1 − η)n (C5)

with ρk given by (25). Conversely, the probability that Bob
does see a click due to a signal being sent is

ph
B,S,click = 1 − ph

B,S,no click. (C6)

To calculate the total probability of Bob observing a click in his
detection apparatus, we have to take dark counts into account.
We now write the probability of Bob observing no-click due
to a dark count as

pB,D,no click = (1 − pdark)2, (C7)

and the probability that at least one of his two detectors clicks
becomes

pB,D,click = pdark(2 − pdark). (C8)

The total probability that honest Bob observes a click is thus

ph
B,click = ph

B,S,clickpB,D,no click + ph
B,S,no clickpB,D,click

+ph
B,S,clickpB,D,click

= ph
B,S,click + ph

B,S,no clickpB,D,click. (C9)

Note that

ph
B,no click = 1 − ph

B,click. (C10)

To finish our analysis, it remains to evaluate the error
probability for honest Bob, which determines how much
error-correcting information Alice will send him. First, an
error may occur from the signal itself, for example, due to
misalignment in the channel. We have

ph
B,S,err = edetp

h
B,S,click. (C11)

The second source of errors are dark counts. If the signal has
been lost, the probability of making an error due to a dark
count is given by the probability that Bob experiences a click
in the wrong detector or both his detectors click. Hence, we
have

pB,D,err = pdark(1 − pdark) + p2
dark

/
2, (C12)

where the second term stems from letting Bob flip a coin to
determine the outcome bit when both of his detectors click. We
can also have a combination of errors from the signal and the
dark counts. Considering all different possibilities we obtain

pB,DS,err

= ph
B,S,click

[
(1 − edet)

pdark

2
+ edetpdark

(
3

2
− pdark

)]
.

(C13)

Putting everything together we have

ph
B,err = ph

B,S,errpB,D,no click + ph
B,S,no clickpB,D,err + pB,DS,err.

(C14)

2. Parametric down-conversion source

In this section, we show how to compute all relevant
parameters for a PDC source. Recall that at each time slot,
the source itself emits an entangled state given by (36). The
state |�n〉AB which appears in (38) can be written as

|�n〉AB =
n∑

m=0

(−1)m√
n + 1

(a†
1)n−m

√
(n − m)!

(a†
2)m√
m!

|0,0〉A|m,n − m〉B.

(C15)

We shall consider that both detectors on Alice’s side are
equal. In this situation, it is possible to attribute their losses to
a single-loss beam splitter of transmittance η as illustrated in
Fig. 35. The creation operators a

†
1 and a

†
2 can be expressed as

a
†
1 = √

ηc
†
1 +
√

1 − ηd
†
1,

a
†
2 = √

ηc
†
2 +
√

1 − ηd
†
2,
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FIG. 35. a and b denote the input modes to a beam splitter (BS)
of transmittance η, while c and d are the output modes.

for the two orthogonal polarization modes. Tracing out the
modes d1 and d2 we obtain that the state shared by Alice and
Bob, after accounting for Alice’s losses, is given by

ρAB =
∑
n,n′

√
pn

srcp
n′
src

n∑
m=0

n′∑
m′=0

min(n−m,n′−m′)∑
j=0

×
min(m,m′)∑


=0

√
(n − m)!m!

(n − m − j )!j !(m − 
)!
!

×
√

(n′ − m′)!m′!
(n′ − m′ − j )!j !(m′ − 
)!
!

(−1)m+m′

√
n + 1

√
n′ + 1

×√
η

n+n′−2j−2

√

1 − η
2(j+
)|n − m − j,m − 
〉

× 〈n′ − m′ − j,m′ − 
|A ⊗ |m,n − m〉〈m′,n′ − m′|B.

Even though we again have two bases of course, we will only
consider one of the two, the other one merely differs in a
prior transform by Alice and does not change the resulting
probabilities. For perfect threshold detectors, the probability
that Alice sees a click in her first detector (concluding an
encoding of “0”) is given by

p0
A,S,click = Tr

[(
CA

1 ⊗ IB
)
ρAB

]
=

∞∑
n=1

pn
src

n + 1
,

n−1∑
m=0

[(1 − η)m − (1 − η)n], (C16)

where

CA
1 =

∞∑
n=1

|n〉〈n|c1 ⊗ |0〉〈0|c2 . (C17)

The probability that she observes a click in the second detector
is similarly determined by p1

A,S,click = Tr[(CA
2 ⊗ IB)ρAB] with

CA
2 = |0〉〈0|c1 ⊗

∞∑
n=1

|n〉〈n|c2 . (C18)

If Alice sees no click in a given round, or both her detectors
click, she simply discards this round all together and it no
longer contributes to the protocol. We have that p0

A,S,click =
p1

A,S,click.
As discussed previously, we consider that the noise in the

form of dark counts shown by the detectors is, to a good
approximation, independent of the incoming signals. Then,
to include this effect, we have to consider the probability of
observing a click due to a dark count alone. This is given by
the probability that we detect no photons

pvac = Tr[(|0,0〉〈0,0|c1,c2 ⊗ IB)ρAB], (C19)

but the detector clicks because of a dark count. We can
obtain the probability that Alice observes only one click due
to a signal or a dark count by considering operators of the
form

ĈA
1 = (1 − pdark)CA

1 + (1 − pdark)pdark|0,0〉〈0,0|c1,c2,

ĈA
2 = (1 − pdark)CA

2 + (1 − pdark)pdark|0,0〉〈0,0|c1,c2,

which gives us

p0
A,click = p1

A,click = (1 − pdark)p0
A,S,click

+ (1 − pdark)pdark

∞∑
n=0

pn
src(1 − η)n. (C20)

Combining everything, and tracing out Alice’s regis-
ter we obtain that Bob’s unnormalized states are given
by

ρ̃0
B = (1 − pdark)ρ̃0,sig

B + (1 − pdark)pdarkρ̃
vac
B ,

ρ̃1
B = (1 − pdark)ρ̃1,sig

B + (1 − pdark)pdarkρ̃
vac
B ,

with

ρ̃
0,sig
B =

∞∑
n=1

pn
src

n + 1

n−1∑
m=0

[(1 − η)m − (1 − η)n]

× |m,n − m〉〈m,n − m|B,

ρ̃
1,sig
B =

∞∑
n=1

pn
src

n + 1

n−1∑
m=0

[(1 − η)m − (1 − η)n]

× |n − m,m〉〈n − m,m|B,

ρ̃vac
B =

∞∑
n=0

pn
src(1 − η)n

n + 1

n∑
m=0

|m,n − m〉〈m,n − m|B.

In the following, we use ρ = ρ̃/ Tr(ρ̃) to refer to the normal-
ized versions of these states. Note that these normalization
factors are the same for an encoding of a “0” or a “1” and are
given by c = p0

A,click.
We can now write the probability that the source emits

n photons given that Alice obtained one single click in her
measurement apparatus as

pn
sent := 1

c
pn

src(1 − pdark)

×
{
pdark(1 − η)n + 1

n+ 1

n∑
m=0

[(1 − η)m − (1 − η)n]

}
.

(C21)

We are now ready to compute the probabilities relevant to
the security analysis. First, we need to know the probability
that honest Bob observes a click for the pulses where Alice
has obtained one single click,

ph
B,click = ph

B,S,clickpB,D,no click + ph
B,S,no clickpB,D,click

+ph
B,S,clickpB,D,click. (C22)
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The probability that honest Bob does not observe a click at all,
due to the signal is given by

ph
B,S,no click = Tr

(
Fβ

vacρ
0
B

)
= 1

c

[
pdark(1 − pdark)

∞∑
n=0

pn
src(1 − η)2n

+ (1 − pdark)
∞∑

n=0

pn
src

n + 1

n∑
m=0

[(1 − η)m − (1 − η)n](1 − η)n
]
,

and

ph
B,S,click = 1 − ph

B,S,no click, (C23)

where the probabilities pB,D,no click and pB,D,click are defined
in the same way as in the previous section. We also need to
determine the probability of an error for honest Bob. This is
calculated analogous to the case of a weak coherent source,
where we consider the probabilities of an error due to the signal
itself, dark counts, and both combined. In our setting an honest
Bob has two detectors to decide what bit Alice has encoded. If
both detectors click, we shall consider again that honest Bob
flips a coin to determine the outcome. It is enough to analyze
the case of a “0” encoding; the “1” encoding provides the
same result. The probability that Bob makes an error due to
the signal is given by

ph
B,S,err = 1

c
Tr
(
F ρ̃0

B

)
, (C24)

where

F = F̃
β

0 + 1
2F

β

D,

F̃
β

0 = (1 − edet)F
β

0 + edetF
β

1 ,

and F
β

0 , F
β

1 , and F
β

D are given by (C3). Note that

ph
B,S,click = ph

B,S,err + ph
B,S,no err. (C25)

Then, using that

pB,DS,err = ph
B,S,errpdark

(3
2

− pdark

)
+ ph

B,S,no err

pdark

2
,

(C26)

we can now compute the combined error of Bob as in
Eq. (C14).

In the case of PDC source we also need to compute Bob’s
success probability of decoding a bit from a multiphoton
emission, if he is given the basis information for free. First,
note that since ρ0

B and ρ1
B are Fock diagonal states, without

loss of generality we can always assume that dishonest Bob

first measures the photon number of each pulse sent by Alice,
and afterward he performs his attack. For n � 1, we have

ρ̃
0,n,sig
B = pn

src

n + 1

n−1∑
m=0

[(1 − η)m − (1 − η)n]

× |m,n − m〉〈m,n − m|B,

ρ̃
1,n,sig
B = pn

src

n + 1

n−1∑
m=0

[(1 − η)m − (1 − η)n]

× |n − m,m〉〈n − m,m|B,

ρ̃
vac,n
B = pn

src
(1 − η)n

n + 1

n∑
m=0

|m,n − m〉〈m,n − m|B.

The unnormalized states of Bob containing n photons and
corresponding to an encoding of a “0” or “1” respectively can
then be written as

ρ̃
0,n
B = (1 − pdark)ρ̃0,n,sig

B + (1 − pdark)pdarkρ̃
vac,n
B ,

ρ̃
1,n
B = (1 − pdark)ρ̃1,n,sig

B + (1 − pdark)pdarkρ̃
vac,n
B .

The normalization factor for both states is

cn = Tr
(
ρ̃

0,n
B

) = (1 − pdark) Tr
(
ρ̃

0,n,sig
B

)
+ (1 − pdark)pdark Tr

(
ρ̃

vac,n
B

)
,

= (1 − pdark)
pn

src

n + 1

n∑
m=0

[(1 − η)m − (1 − η)n]

+ (1 − pdark)pdarkp
n
src(1 − η)n.

Claim C.1. The probability that Bob makes an error in
decoding if Alice sent an n-photon signal and he is given the
basis information for free is given by

p
d,n
B,err = 1

2
− 1

4

×
[

1 − pdark

cn

pn
src

n + 1

n∑
m=0

|(1 − η)m − (1 − η)n−m|
]

.

(C27)

Proof. This is an immediate consequence of Helstrom’s
theorem [42] using the fact that an encoding of “0” and “1”
are a priori equally probable for Bob. Furthermore, note that
ρ

0,n
B and ρ

1,n
B are both Fock diagonal, and hence their trace

distance is simply given by the classical statistic distance on
the right-hand side of

1

2

∥∥ρ0,n
B − ρ

1,n
B

∥∥
1 = 1 − pdark

2cn

pn
src

n + 1

×
n∑

m=0

|(1 − η)m − (1 − η)n−m|.
(C28)
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[11] I. B. Damgård, S. Fehr, L. Salvail, and C. Schaffner, in

Proceedings of 46th IEEE FOCS (IEEE, Seoul, Korea, 2005),
pp. 449–458.
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