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We show how to implement cryptographic primitives based on the realistic assumption that
quantum storage of qubits is noisy. We thereby consider individual-storage attacks; i.e., the dishonest
party attempts to store each incoming qubit separately. Our model is similar to the model of bounded-
quantum storage; however, we consider an explicit noise model inspired by present-day technology. To
illustrate the power of this new model, we show that a protocol for oblivious transfer is secure for any
amount of quantum-storage noise, as long as honest players can perform perfect quantum operations. Our
model also allows us to show the security of protocols that cope with noise in the operations of the honest
players and achieve more advanced tasks such as secure identification.
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Traditional cryptography is concerned with the secure
and reliable transmission of messages. With the advent of
widespread electronic communication new cryptographic
tasks have become increasingly important. Examples of
such tasks are secure identification, electronic voting, on-
line auctions, contract signing and other applications
where the protocol participants do not necessarily trust
each other. It is well known that almost all of these inter-
esting tasks are impossible to realize without any restric-
tions on the participating players, neither classically nor
with the help of quantum communication [1]. It is therefore
an important task to come up with a cryptographic model
which restricts the capabilities of adversarial players and in
which these tasks become feasible. It turns out that all such
two-party protocols can be based on a simple primitive
called 1–2 oblivious transfer [2] (1–2 OT), first introduced
in [3]. Hence, 1–2 OT is commonly used to provide a
‘‘proof of concept’’ for the universal power of a new
model. In 1–2 OT, the sender Alice starts off with two
bit strings S0 and S1, and the receiver Bob holds a choice
bit C. The protocol allows Bob to retrieve SC in such a way
that Alice does not learn any information about C (thus,
Bob cannot simply ask for SC). At the same time, Alice
must be ensured that Bob only learns SC, and no informa-
tion about the other string S1�C (thus, Alice cannot simply
send him both S0 and S1). A 1–2 OT protocol is called un-
conditionally secure when neither Alice nor Bob can break
these conditions, even when given unlimited resources.

In this Letter, we propose a cryptographic model based
on current practical and near-future technical limitations,
namely, that quantum storage is noisy. Thus the presence of
noise, the very problem that makes it so hard to implement
a quantum computer, can actually be turned to our advan-
tage. Recently it was shown that secure OT is possible
when the receiver Bob has a limited amount of quantum
memory [4,5] at his disposal. Within this ‘‘bounded-
quantum-storage model’’ OT can be implemented securely
as long as a dishonest receiver Bob can store at most
n=4�O�1� qubits coherently, where n is the number of

qubits transmitted from Alice to Bob. However, at present
we do not know of any practical physical situation which
enforces such a storage limit. We therefore propose an
alternative model of noisy quantum storage inspired by
present-day physical implementations: We require no ex-
plicit memory bound, but we assume that any qubit that is
placed into quantum storage undergoes a certain amount of
decoherence. The advantage of our model is that we can
evaluate the security parameters of a protocol explicitly in
terms of the noise. In this Letter, we show that the OT
protocol from [5] is secure in our new model. This simple
OT protocol could be implemented using photonic qubits
(using polarization or phase encoding) with standard BB84
quantum key distribution [6,7] hardware, only with differ-
ent classical postprocessing.

We analyze the case where the adversary performs
individual-storage attacks. More precisely, Bob may choose
to (partially) measure (a subset of) his qubits immediately
upon reception using an error-free product measurement.
In addition he can store each incoming qubit, or postmea-
surement state from a prior partial measurement, sepa-
rately and wait until he gets additional information from
Alice (at step 3 in Protocol 1). Once he obtains the addi-
tional information he may perform an arbitrary coherent
measurement on his stored qubits using the stored classical
data. We thereby assume that qubit qi undergoes some
noise while in storage, and we also assume that the noise
acts independently on each qubit. In the following, we use
the superoperator Si to denote the combined channel given
by Bob’s initial (partial) measurement and the noise. Prac-
tically, noise can arise as a result of transferring the qubit
onto a different physical carrier, such as an atomic ensem-
ble or atomic state, for example, or into an error-correcting
code with fidelity less than 1. In addition, the (encoded)
qubit will undergo noise once it has been transferred into
‘‘storage.’’ Hence, the quantum operation Si in any real
world setting necessarily includes some form of noise.

We show that for any initial measurement, and any noisy
superoperator Si the 1–2 OT protocol is secure if the
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honest participants can perform perfect noise-free quantum
operations. As an explicit example we consider the case of
depolarizing noise during storage. In particular, we can
show the following all-or-nothing result: if Bob’s stor-
age noise is above a certain threshold, his optimal cheating
strategy is to perform a measurement in the so-called
Breidbart basis. On the other hand, if the noise level is
below the threshold, he is best off storing each qubit as is.

In [8] we show how our analysis can be extended to a
more practical model where the honest player’s actions are
also subjected to noise. Our cryptographic model can be
applied to protocols for secure identification scheme such
as [9]. This scheme achieves password-based identification
and is of great practical relevance for banking applications.

Related work.—Precursors of the idea of basing crypto-
graphic security on storage-noise are already present in
[10], but no rigorous analysis was carried through in that
paper. Furthermore, it was pointed out in [11,12] how the
original bounded-quantum-storage analysis applies in the
case of noise levels which are so large that the rank of a
dishonest player’s quantum storage state is reduced to n=4.
In contrast, we are able to give an explicit security trade off
even for small amounts of noise. We note that our security
proof does not exploit the noise in the communication
channel (which has been done in the classical setting to
achieve cryptographic tasks, see, e.g., [13]), but is solely
based on the fact that the dishonest receiver’s quan-
tum storage is noisy. A model based on classical noisy
storage is akin to the setting of a classical noisy channel, if
the operations are noisy, or the classical bounded-storage
model, both of which are difficult to enforce in practice.
Another technical limitation has been considered in [14]
where a bit-commitment scheme was shown secure under
the assumption that the dishonest committer can only
measure a limited amount of qubits coherently. Our analy-
sis differs in that we can in fact allow any coherent de-
structive measurement at the end of the protocol.

Definitions and tools.—We start by introducing some
tools, definitions, and technical lemmas. To define the
security of OT we need to formalize what it means for a
dishonest quantum player not to gain any information. Let
�XE be a state that is part classical, part quantum, i.e., a cq
state �XE �

P
x2XPX�x�jxihxj � �

x
E. Here, X is a classical

random variable distributed over the finite set X according
to distribution PX. The nonuniformity of X given �E �P
xPX�x��

x
E is defined as d�Xj�E� :� 1

2 k1=jXj � �E�P
xPX�x�jxihxj � �

x
Ektr, where kAktr � Tr

���������
AyA
p

. Intui-
tively, if d�Xj�E� � " the distribution of X is "-close to
uniform even given �E; i.e., �E gives hardly any informa-
tion about X. A simple property of the nonuniformity
which follows from its definition is that for any cq state
of the form �XED � �XE � �D, we have

 d�Xj�ED� � d�Xj�E�: (1)

We prove the security of a (sender-)randomized version of
OT (ROT), where Alice does not choose her input strings
herself, but instead two uniformly random strings S0, S1 2

f0; 1g‘ are output to her by the protocol. It is well known
how to convert this variant into regular OT by an additional
classical message using the output strings of ROT as one-
time pads for the inputs of OT [15]. The security of a
quantum protocol implementing ROT is formally defined
in [5] and justified in [16]:

Definition 1.—An "-secure 1–2 ROT‘ is a protocol
between Alice and Bob, where Bob has input C 2 f0; 1g,
and Alice has no input. For any distribution of C:
(i) (correctness) If both parties are honest, Alice gets output
S0, S1 2 f0; 1g‘ and Bob learns Y � SC except with proba-
bility ". (ii) (Receiver-security) If Bob is honest and ob-
tains output Y, then for any cheating strategy of Alice
resulting in her state �A, there exist random variables S00
and S01 such that Pr�Y � S0C� 	 1� " and C is independent
of S00, S01, and �A. (iii) (Sender-security) If Alice is honest,
then for any cheating strategy of Bob resulting in his state
�B, there exists a random variable C0 2 f0; 1g such that
d�S1�C0 jSC0C

0�B� � ".
The protocol makes use of two-universal hash functions

that are used for privacy amplification similar as in QKD.
A class F of functions f:f0; 1gn ! f0; 1g‘ is called two-
universal if for all x � y 2 f0; 1gn and f 2 F chosen
uniformly at random from F , we have Pr�f�x� � f�y�� �
2�‘. E.g., the set of all affine functions from f0; 1gn to
f0; 1g‘ is two-universal [17].

For a measurement M with positive operator-valued
measure elements fMxgx2X let pMyjx � TrMy�xE be the

probability of outputting guess y given �xE. Then
Pg�Xj�E� :� supM

P
x PX�x�p

M
xjx is the maximal average

success probability of guessing x 2 X given the reduced
state �E of the cq state �XE. The following Lemma 1 is
derived from Theorem 5.5.1 in [18] and follows directly
from ([19], Lemma 1); it quantifies how much hash func-
tions can increase the privacy of a random variable X given
a quantum adversary holding �E and function F.

Lemma 1.—Let F be chosen uniformly from a class F
of two-universal hash functions from f0; 1gn to f0; 1g‘,
and let �XE be a cq state. Then, given additional k bits
of classical information D about X, we have that

d�F�X�jFD�E� � 2��‘
k�=2��1
��������������������
Pg�Xj�E�

q
.

Intuitively, the optimal strategy to guess X � x 2
f0; 1gn given a product state �x � �x1 � . . . � �xn for bits
x � x1; . . . ; xn, is to measure each state �xi individually. A
formal proof is given in [8].

The last tool we need is an uncertainty relation for noisy
channels and measurements. Let �0;
 � j0ih0j, �1;
 �

j1ih1j, �0;� � j
ih
j, and �1;� � j�ih�j denote the
BB84 states corresponding to the encoding of a bit z 2
f0; 1g into basis b 2 f
;�g (computational or Hadamard
basis, respectively). Consider the state S��z;b� for some
superoperator S. Let Pg�XjS��b�� denote the maximal
average success probability for guessing a uniformly dis-
tributed X when b � 
 or b � �. An uncertainty relation
for such success probabilities can be stated as
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 Pg�XjS��
�� � Pg�XjS����� � ��S�2; (2)

where � is a function from the set of superoperators to the
real numbers. For example, when S is a quantum measure-
ment M mapping the state �z;b onto purely classical
information it can be argued (e.g., by using a purification
argument and Corollary 4.15 in [11]) that ��M� 
1
2 �1
 2�1=2� which can be achieved by a measurement in
the Breidbart basis, where the Breidbart basis is given by
fj0iB; j1iBg with j0iB � cos��=8�j0i 
 sin��=8�j1i and
j1iB � sin��=8�j0i � cos��=8�j1i.

It is clear that for a unitary superoperator U we have
��U�2 � 1 which can be achieved. It is not hard to show
(see Lemma 3 in [8]) that the only superoperators S :
C2 ! Ck for which Pg�XjS��
�� � Pg�XjS����� � 1 are
reversible operations.

Protocol and Analysis.—We use 2R to denote the uni-
form choice of an element from a set. We further use xjT to
denote the string x � x1; . . . ; xn restricted to the bits in-
dexed by the set T � f1; . . . ; ng. For convenience, we take
f
;�g instead of f0; 1g as the domain of Bob’s choice bit C
and denote by �C the bit different from C.

Protocol 1.—1–2 ROT‘�C; T� [5] (1) Alice picks X 2R
f0; 1gn and � 2R f
;�gn. Let Ib � fi j �i � bg for b 2
f
;�g. At time t � 0, she sends �X1;�1

� . . . � �Xn;�n
to

Bob. (2) Bob measures all qubits in the basis corresponding
to his choice bit C 2 f
;�g. This yields outcome X0 2
f0; 1gn. (3) Alice picks two hash functions F
, F� 2R F ,
where F is a class of two-universal hash functions. At time
t � T, she sends I
, I�, F
, F� to Bob. Alice outputs
S
 � F
�XjI
� and S� � F��XjI�� [20]. (4) Bob outputs
SC � FC�X

0
jIC
�.

Analysis.—We first show that this protocol is secure
according to Definition 1. (i) Correctness: Bob can deter-
mine the string XjIC (except with negligible probability
2�n the set IC is nonempty) and hence obtains SC.
(ii) Security against dishonest Alice: this holds in the
same way as shown in [5]. As the protocol is noninterac-
tive, Alice never receives any information from Bob at all,
and Alice’s input strings can be extracted by letting her
interact with an unbounded receiver. (iii) Security against
dishonest Bob: Our goal is to show that there exists a C0 2
f
;�g such that Bob is completely ignorant about S �C0 . In
our model Bob’s individual-storage strategy can be de-
scribed by some superoperator S �

Nn
i�1 Si that is ap-

plied on the qubits between the time they arrive at Bob’s
and the time T that Alice sends the classical information.
We define the choice bit C0 as a fixed function of S.
Formally, we set C0  
 if

Qn
i�1 Pg�XijSi��
�� 	Qn

i�1 Pg�XijSi����� and C0  � otherwise.
Because of the uncertainty relation for each Si, Eq. (2),

it then holds that
Q
iPg�XijSi�� �C0 �� �

Q
i��Si� � ��max�

n

where �max :� maxi��Si�. This will be used in the proof
below.

In the remainder of this section, we show that the non-
uniformity �sec :� d�S �C0 jSC0C

0�B� is negligible in n for

individual-storage attacks. Here �B is the complete quan-
tum state of Bob’s lab at the end of the protocol including
the classical information I
, I�, F
, F�, he got from
Alice and his quantum information

Nn
i�1 Si��Xi;�i

�.
Expressing the nonuniformity in terms of the
trace distance allows us to observe that �sec �

2�n
P
�2f
;�gnd�S �C0 j� � �; SC0C0�B�. Now, for fixed � �

�, it is clear from the construction that SC0 , C0, FC0 andN
i2IC0

Si��Xi;C0 � are independent of S �C0 � F �C0 �XjI �C0
� and

we can use Eq. (1). Hence, one can bound the nonuni-
formity as in Lemma 1, i.e., by the square root of the
probability of correctly guessing XjI �C0

given the stateN
i2I �C0

Si��Xi; �C0 �. We show in detail in [8] that to guess
X, Bob can measure each remaining qubit individually and
hence we obtain

 �sec � 2�‘=2��12�n
X

�2f
;�gn

� Y
i2I �C0

Pg�XijSi�� �C0 ��

�
1=2

� 2�‘=2��1

�
2�n

Yn
i�1

�1
 Pg�XijSi�� �C0 ���

�
1=2
;

where we used the concavity of the square-root function in
the last inequality. From the bound

Q
iPg�XijSi�� �C0 �� �

��max�
n, it is not hard to see (see [8]) that

 �sec � 2�‘=2��1��max�
� log�4=3�=2�n:

Recall that for essentially any noisy superoperator ��S�<
1. This shows that for any individual-storage attacks there
exists an n which yields arbitrarily high security.

Example 1.—Let us now consider the security in an
explicit example: a depolarizing channel. In order to ex-
plicitly bound ��Si�we allow for intermediate strategies of
Bob in which he partially measures the incoming qubits
leaving some quantum information undergoing depolariz-
ing noise. To model this noise we let Si �N � P i, where
P i is any noiseless quantum operation of Bob’s choosing
from one qubit to one qubit that generates some classical
output. For example, P i could be a partial measurement
providing Bob with some classical information and a
slightly disturbed quantum state, or just a unitary opera-
tion. Let N ��� :� r�
 �1� r��1=2� be the fixed depola-
rizing ‘‘quantum-storage’’ channel that Bob cannot
influence (see Fig. 1). To determine �sec, we have to find
an uncertainty relation similar to Eq. (2) by optimizing
over all possible partial measurements P i, maxSi��Si�

2 �

maxP i
Pg�XjSi��
��Pg�XjSi�����. We can tackle this op-

timization problem for depolarizing noise using the sym-
metries inherent in our problem. In [8] we derive the
following clear-cut theorem: Let N be the depolarizing
channel and let maxSi��Si� be defined as above. Then for
r 	 1=

���
2
p

we have maxSi��Si� �
1
r

2 and for r < 1=
���
2
p

,
maxSi��Si� �

1
2


1
2
��
2
p . Our result shows that Bob’s opti-

mal strategies are the two trivial ones. In the case of high
noise r < 1=

���
2
p

, a direct measurement M in the Breidbart
basis is the best attack Bob can perform in order to max-
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imize the product of the guessing probabilities. For this
measurement, we have ��M��1=2
1=�2

���
2
p
�. If the de-

polarizing noise is low (r	1=
���
2
p

), then our result states
that the best strategy for Bob is to simply store the qubit as
is.

Discussion.—In future work one may consider remov-
ing the assumption about the independence of Bob’s stor-
age procedure, i.e., show security against general coherent
noisy attacks. The problem with analyzing a coherent
attack of Bob described by some superoperator S affecting
all his incoming qubits is not merely a technical one: one
first needs to determine a realistic noise model.

In terms of long-term security, fault-tolerant photonic
computation (e.g., with the KLM scheme [21]) might allow
a dishonest Bob to encode the incoming quantum informa-
tion into a fault-tolerant quantum memory. This implies
that in storage, the effective noise rate can be made arbi-
trarily small. The encoding of a single unknown state is not
a fault-tolerant quantum operation. Hence, even in the
presence of a quantum computer, there is a residual
storage-noise rate due to the unprotected encoding opera-
tion. The question of security then becomes a question of a
trade-off between this residual noise rate versus the intrin-
sic noise rate for honest parties. Intuitively—even in the
long run—things can be arranged in such a way that tasks
of honest players are technically easier to perform than the
ones for dishonest players. We believe that this intrinsic
gap can always be exploited for cryptographic purposes.
This Letter can be appreciated as a first step in this
direction.
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