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cuit define a probability distribution, and 
repeated application of the same quan-
tum procedure allows to sample from this 
distribution by simply measuring the final 
quantum state. There is complexity-theo-
retic evidence that it is difficult to sample 
from the same distribution on a classical 
computer [1, 4].

Clearly, such a sampling problem is 
not of great practical interest. However, 
it is well-known since the late eighties 
that large-scale quantum computers can 
solve some important problems far more 
efficiently than classical computers. The 
most well-known example is the problem 
of finding the prime factorisation of an in-
teger N N! . For large problem sizes, the 
fastest classical algorithms have an ex-
pected running time ( )O e( )logN /1 3

 which is 
subexponential in the size of the integer N 
to be factored. In contrast, a quantum al-
gorithm discovered by Peter Shor requires 
only (( ) )logO N 2  quantum operations to 
solve the problem. This time complexity is 
polynomial in the size of N and therefore 
exponentially faster than the best-known 
classical algorithm.

The main high-level idea of Shor’s quan-
tum algorithm is to reduce the factoring 
problem to the problem of period-finding, 
which can be solved efficiently on a quan-
tum computer by exploiting the power of 
the quantum Fourier transform. It turns out 
that also other cryptographically relevant 
problems such as the discrete-logarithm 
problem in finite fields can be reduced 
to period-finding, and hence fall to Shor’s 
quantum algorithm as well, see the box on 
the next page.

called amplitudes of the state. Measuring 
the quantum state | Hz  in basis | , |0 1H H 
yields a classical bit b as outcome. Out-
come b 0=  is obtained with probability 
| | 2a  and outcome b 1=  is obtained with 
probability | | 2b .

Quantum mechanics dictates that the 
state space of n qubits is given by the 
n-fold tensor product H n7 . Remarkably, 
this space has dimension 2n which is expo-
nential in the number of qubits! Therefore, 
the state of a 40-qubit quantum comput-
er can be described by 240 complex am-
plitudes, and a quantum computation on 
such a device can be classically simulated 
by tracking the changes of all these am-
plitudes during the computation. The ex-
ponential size of the state space explains 
why it becomes intractable to classically 
simulate arbitrary quantum computations 
on, say, more than 50 qubits.

One of the most promising proposals by 
the Google group [4] for an experiment which 
demonstrates the superiority of a quantum 
computer over all classical computers is to 
perform the following quantum computa-
tion: initialize a two-dimensional grid of 
7 by 7 qubits in a fixed state, and apply 
a number of random 2-qubit quantum 
gates on any two neighboring qubits. The 
squared amplitudes of the quantum state 
after the application of the quantum cir-

Quantum supremacy
We stand at a special moment in time, 
where the promise of a quantum com-
puter and quantum internet seems to be 
within reach. Large-scale efforts around 
the world by academic and industrial 
players including many heavyweights such 
as Google, IBM, Microsoft and Intel are in 
progress to develop quantum technolo-
gies. The first experiments demonstrating 
‘quantum supremacy’ are expected to be 
carried out possibly as early as at the end 
of 2017. Such experiments will demon-
strate that a quantum computer can solve 
some (probably uninteresting) problem 
faster than any classical supercomputer. In 
order to outperform today’s biggest clas-
sical computers, a quantum computer has 
to work with at least 40 to 50 quantum 
bits (also called qubits). In contrast to a 
classical bit which can take on values ei-
ther 0 or 1, a quantum bit can be in an 
arbitrary superposition between 0 and 1. 
Mathematically, the (pure) state of a sin-
gle qubit can be expressed as unit vec-
tor in a two-dimensional complex Hilbert 
space H , i.e.
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where the two states | , |0 1H H form an or-
thonormal basis of H, and a and b are 
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to attack existing classical schemes, but on 
the contrary, it has been realized already 
in the late sixties by Stephen Wiesner [19] 
that the use of quantum communication 
can lead to new cryptographic applications. 
The most famous example is Quantum Key 
Distribution (QKD) [3, 12] which allows two 
honest parties Alice and Bob to establish 
a classical secret key even in the presence 
of an eavesdropper Eve who has complete 
control over the quantum communica-
tion between Alice and Bob, and who can 
eavesdrop on (but not modify) the classi-
cal communication. It can be proven in an 
information-theoretic sense that no matter 
how much computational power an eaves-
dropper has, her knowledge about the se-
cret key obtained by Alice and Bob can be 
made arbitrarily small. It is quite remark-
able that such an information-theoretical 
key establishment is possible using quan-
tum communication, because for purely 
classical communication, it is excluded by 
Shannon’s impossibility result for perfectly 
secure encryption [16].

On a higher level, quantum key distri-
bution is yet another form of quantum-safe 
cryptography which can be compared to 
the other proposals above. The main ad-
vantage of QKD is the information-theoret-
ic security of the established keys, and the 
fact that an attacker cannot retroactively 
break the security of QKD. An attacker has 
to act at the moment when the key-estab-
lishment protocol is performed, so large-
scale quantum computers developed in the 
future do not change the security of keys 
established today. The main disadvantages 
of QKD are the high deployment costs (be-
cause quantum communication is required) 
and the current distance limit of about 
150 kilometers between Alice and Bob 
(which implies that for larger distances, a 
multi-hop connection is required where the 
middle nodes have to be trusted).

Quantum fully-homomorphic encryption
In recent research [11], we were able to 
develop a new method for securely dele-
gating a quantum computation. In fact, we 
developed the quantum analogue of what 
is classically known as fully-homomorphic 
encryption. Homomorphic encryption is 
a special form of encryption and is best 
motivated by the scenario of secure cloud 
computing, where a user Alice would like 
to outsource a difficult or tedious compu-
tation to an untrusted computing cloud. 

state secrets or medical data, new forms 
of quantum-safe cryptographic protection 
have to be employed already today in or-
der to guarantee the confidentiality of the 
data for the coming decades.

At the moment, large parts of the inter-
national cryptographic research community 
are searching for new public-key schemes 
based on mathematical problems which 
are believed to be hard also for quantum 
computers. The US National Institute for 
Standards in Technology (NIST) has initiat-
ed a project to determine a new standard 
for such quantum-safe scheme, see [14].
(The term ‘post-quantum cryptography’ is 
quite well-established for these quantum- 
safe schemes, but chosen somewhat un-
fortunately, because the research area is 
concerned with cryptography which is still 
secure at the beginning and not after the 
end of the era of large-scale quantum com-
puters.)

The main contenders in terms of as-
sumptions for classical quantum-safe cryp-
tography are the following:

 – lattice-based cryptography (see article 
by Léo Ducas in this issue),

 – multivariate cryptography,
 – hash-based cryptography,
 – code-based cryptography,
 – supersingular elliptic curve isogeny 

cryptography (see article by Mathijs 
Coster in this issue).

In order to evaluate the proposed schemes 
and assumptions, an extensive amount of 
quantum cryptoanalysis will be performed 
over the coming years. The challenge is 
that expertise from very different research 
fields such as cryptography, mathematics 
and quantum computing is required. The 
Quantum Software Consortium, a collabo-
ration of researchers from CWI, QuSoft, TU 
Delft and Leiden university have recently 
obtained a large gravitation grant from 
NWO (18.8 million Euro for ten years). As 
this consortium unites experts from all 
aforementioned fields, it is natural that a 
considerable part of the grant will be spent 
on the quantum cryptanalysis of candidate 
schemes for quantum-safe cryptography. A 
thorough understanding of the capabilities 
of current quantum algorithms and quan-
tum computers is essential to determine 
the correct parameters for which the above 
hardness assumptions hold.

It is important to note that the use of 
quantum technology cannot only be used 

Quantum-safe cryptography
Cryptography is of utmost importance in 
today’s digital world. Cryptographic sys-
tems that use classical communication are 
widely deployed and form the cornerstone 
of digital technologies, ranging from the 
internet to mobile phones. If present-day 
cryptographic systems were broken, we 
could no longer securely perform online 
banking, use mobile devices or the in-
ternet of things, our medical data would 
no longer be protected, et cetera. Almost 
all of the currently employed public-key 
cryptography is based on either the fac-
toring or on the discrete-logarithm prob-
lem. Therefore, these systems can all be 
broken using Shor’s quantum algorithm. 
An example is the widely deployed RSA 
cryptosystem [15]. Forging RSA signatures 
on operating-system updates would allow 
an attacker to gain control of billions of 
computers around the world. 

Crucially, the security of such cryp-
tographic systems can be broken retro
actively by an attacker who obtains a 
large-scale quantum computer in the fu-
ture. Data encrypted today can thus lose 
its confidentiality once a quantum comput-
er becomes available. For the protection of 

Discrete logarithms
For a finite group G of order q, gen-
erated by an element g G! , the dis
cretelogarithm problem is defined 
as follows: Given a uniformly random 
group element h G! , find x such that 
g hx = . For a generic group G (i.e. if one 
can only use the group operation, and 
no additional mathematical structure 
of G), one can prove that any classical 
algorithm must perform ( )qX  group 
operations to compute discrete loga-
rithms [18]. Again, Shor’s algorithm can 
solve the problem even in a generic 
group using a number of quantum op-
erations which is polynomial in ( )log q . 
Popular choices of the finite group G in 
cryptography are Z*p, the multiplicative 
group of integers modulo a large prime 
p (with some additional requirements), 
or the elliptic-curve groups over finite 
fields. The advantage of elliptic curves 
over Z*p is that instance sizes can be 
much smaller while keeping the con-
jectured difficulty of the discrete-loga-
rithm problem at the same level.
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that the quantum server cannot learn any 
information about the computation that is 
performed — with only the client learning 
the output. Our new scheme from [11] re-
duces the number of rounds of interaction 
between client and server, at the expense 
of some extra demands on the quantum 
capabilities of the client.

Currently, we are working on extending 
our scheme so that the client can classi-
cally verify whether the server has carried 
out the correct quantum computation. 
Such a property seems crucial for using 
it as a building block to obtain more ad-
vanced cryptographic primitives such as 
zero-knowledge proofs [8], quantum one-
time programs [6], or quantum obfusca-
tion.

Conclusion
These are exciting times for the active re-
search field of quantum cryptography, as 
quantum computers are becoming a reality 
in the near future. Many challenges await 
us in finding alternatives to the currently 
broken classical public-key cryptosystems, 
and in further exploiting the power of quan-
tum computing to extend cryptographic 
schemes into the quantum domain. s
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momorphic encryption schemes for quan-
tum data. Previous results in this direction 
had serious drawbacks and allowed for 
homomorphic evaluations of only a very 
limited set of operations. Our recent result 
[11] provides quantum encryptions that al-
low homomorphic evaluations of arbitrary 
efficient quantum circuits.

Our quantum fully-homomorphic en-
cryption scheme offers a round-optimal 
solution to the problem of secure dele
gated quantum computation, see Figure 1. 
Pioneering work of Childs [10] and Arrighi 
and Salvail [2] studied this problem for the 
first time. The first practical and universal 
protocol for private delegated quantum 
computation, called ‘universal blind quan-
tum computation’, was given by Broadbent, 
Fitzsimons and Kashefi [5]. In this protocol, 
the client only needs to be able to pre-
pare random single-qubit auxiliary states, 
but does not require quantum memory nor 
a quantum processor. Via a classical inter-
action phase, the client remotely drives a 
quantum computation of her choice, such 

For instance, Alice would like to tag a lot of 
holiday pictures, but instead of doing this 
tedious job manually, she would like to 
delegate the task to an advanced image- 
recognition algorithm in the cloud. As Al-
ice does not trust the cloud with all her 
private images, she can use homomor-
phic encryption to encrypt her pictures 
and send them to the cloud, which can-
not see the contents due to the secrecy 
of the encryption but which can neverthe-
less run its tagging algorithms on the en-
crypted images due to the homomorphic 
property of the encryption. As a result, 
the cloud returns encrypted tags of Alice’s 
pictures, and Alice is the only person who 
can decrypt them. For a long time, cryp-
tographers thought it was impossible to 
construct such homomorphic encryption 
systems, until Craig Gentry showed in a 
seminal article in 2009 how to do this [13]. 
This breakthrough sparked an enormous 
amount of cryptographic research on the 
topic and led in recent years to another 
hot topic of cryptographic research on 
(software) obfuscation.

Given the recent progress building a 
quantum computer, it is very natural to 
consider the scenario of a quantum-com-
puting cloud. In fact, it is rather likely that 
quantum computing will only be available 
at a few quantum-computing facilities in 
the world. As a concrete example, IBM is 
already providing access to a mini quan-
tum-computation cloud by allowing the 
general public to run algorithms on their 
5-qubit computer. Hence, we were wonder-
ing whether it is possible to construct ho-

Figure 1 In early stages of the quantum age, quantum 
computing will only be available in specialized facili-
ties. Secure delegated quantum computation allows to 
outsource a quantum computation to a server in the quan-
tum-computing cloud without revealing the inputs.
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