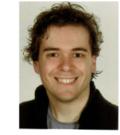
Quantum Homomorphic Encryption for Polynomial-Size Circuits

Christian Schaffner

Joint work with Yfke Dulek and Florian Speelman <u>http://arxiv.org/abs/1603.09717</u>



Institute for Logic, Language and Computation (ILLC) University of Amsterdam **DuSoft** Research Center for Quantum Software

Symposium on the Work of Ivan Damgård Friday, 1 April 2016

Roadmap

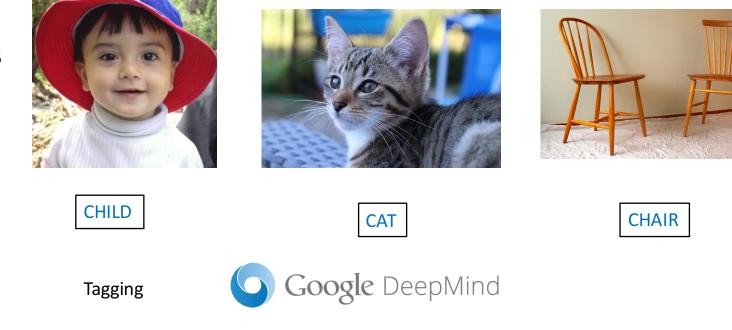
- (Classical) Homomorphic Encryption
- Quantum Homomorphic Encryption
- Computation by teleportation
- Our scheme

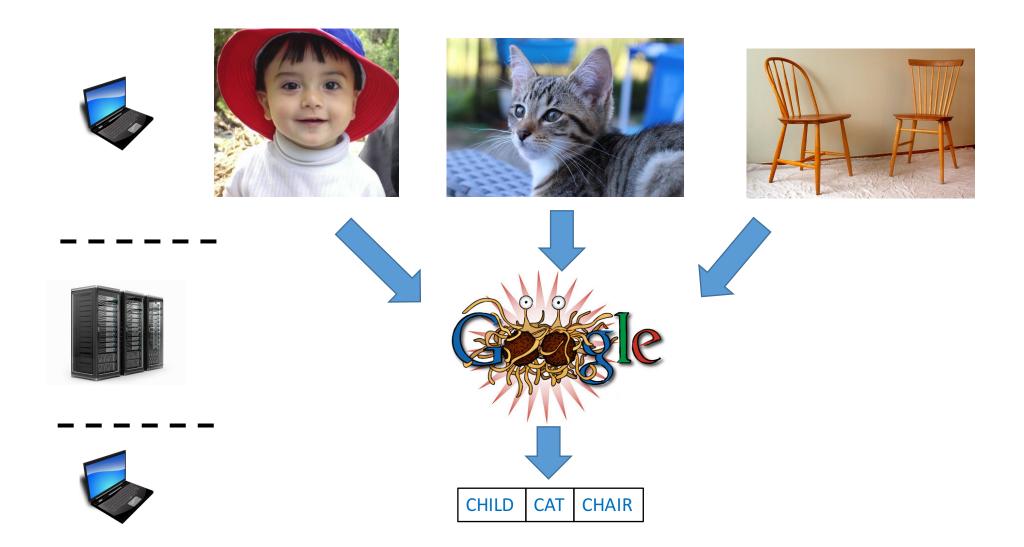
Homomorphic encryption

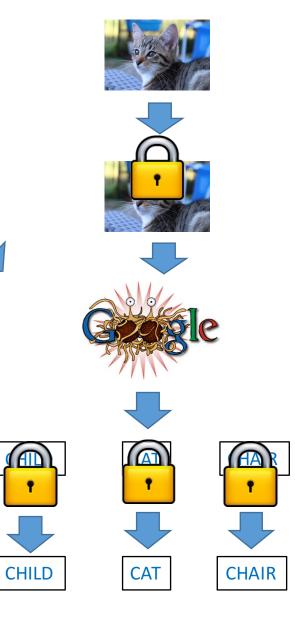
Classical case

 Encrypt data so that another party can perform calculations on the encrypted data

 Many applications







RSA

Multiplicative homomorphic

- Public key: exponent *e* and modulus *N*
- Encryption of a message : $Enc(x) = x^e \mod N$

Given encryptions of messages x and y possible to compute the encryption of the product:

 $(x^e \mod N)(y^e \mod N) = (xy)^e \mod N$

 $\operatorname{Enc}(x)\operatorname{Enc}(y) = \operatorname{Enc}(xy)$

Fully Homomorphic Encryption

- Encrypt data so that another party can perform calculations on the encrypted data
- RSA (and ElGamal) are homomorphic with respect to multiplication
- Other schemes (e.g. Goldwasser-Micali) are additively homomorphic

 $\operatorname{Enc}(x) \cdot \operatorname{Enc}(y) = \operatorname{Enc}(x \oplus y)$

• Universal computation needs **both**

ADD: ADD(Enc(x), Enc(y)) = Enc(x + y)MULT: MULT(Enc(x), Enc(y)) = Enc(xy)while staying compact (complexity of Dec does not depend on evaluation circuit)

• First breakthrough proposal by Gentry 2009, currently multiple candidates

still slow: seconds per bit operation, but some of you know better than I do...

Roadmap

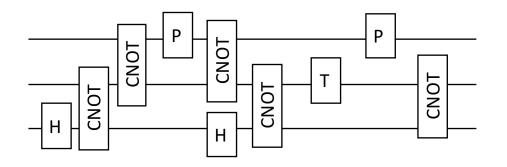
Quantum Homomorphic Encryption

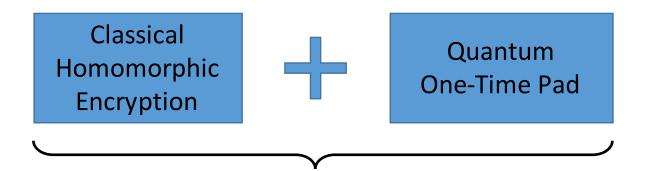
New ingredients – computation by teleportation

Our scheme

Quantum Homomorphic Encryption

- Encrypt quantum state instead of classical data $\rho \rightarrow \mathrm{QEnc}(\rho)$
- Execute quantum circuit on encrypted data





Quantum Homomorphic Encryption for Clifford circuits

Plaintext	<i>n</i> -bit string	$x \in \{0,1\}^n$	
Key	<i>n</i> -bit string	$k \leftarrow \{0,1\}^n$	\leftarrow randomly chosen
Ciphertext	$c = x \oplus k$		

x	0	1	1	0	1
k	1	1	0	0	1
С	1	0	1	0	0

Properties:

Perfectly secure

Key same size as message – each key can be used only once

	A BCDEFGHIJELMNOPQESTUVWXYZ
	ZYXWVUTSRQPONMLXJIHGFEDCBA
	B ABCDEFGHIJKLMNOPQRSTUVWXYZ
	YXWVUTSROPONMLKJIHGFEDCBAZ
LFHHY ZAH BB JRNXK B YNF V KOZAT	C ABCDEFGHIJELMNOPORSTUVWXYZ
	XWVUTSROPONMLKJIHOFEDCBAZY
VRETH JPCSU RUSYO JEKAN ELOEL	D WUUTSBOPONMLKJIHGFEDCBAZYX
	ABCOPFOVIIVIWOBOBOBOTTUVY
	E VUTSROPONMLKJINGFEDCBAZYXW
PODYØ JJLØJ XFSKL HPLGA ZXVZY	A BOODE BOOKY I FI WYO BOD S STUTY V
	F UTSRQPONMLKJIHGFEDCBAZYXWV
TSUIO XBMKI NƏSND HPNPI OZVOZ	G ABCDEFGHIJKLMNOPQESTUVWXYZ
	T S R Q PONMLKJ I HG FEDCBA Z YXWVU
	H ABCDEFGHIJELMNOPQESTUVWXYZ
ETJVV OBXER PRTYT TIKEK KTOPY	SRAPONNIKJIHGFEDCHAZTXWVUT
	I ABCDEFGHIJKLMNOFQBSTUVWXYZ
NHCJK FPNSV BRZZN QQZYN CYSDS	REPONMLKJIHGFEDCHAZYXWVUTS
	J ABCDEFGHIJKLMNOPQRETUVWXYZ
	GPONMLEJINGFEDCBAZYXWVUTSR
YIIUJ TURRI GMRDE YOVRJ NOCSY	K ABCDEFGHIJKLMNOPQESTUVWXYZ
	ABCDEFGHIJKLMNOPORSTUVWXYZ
MALOK NHIIN CAIDY RDTKH ZDZHP	L ABCDEFGHIJKLMNOPQRETUVWXYZ ONMLKJIHGFEDCBAZYXWVUTSRQP
	A BONEFOWT TET WYO BOB C TUNNY T
AT NOS CHART TERVI CAYSO TARHU	M NMLKJING7EDCBAZYXWVUTSROPO
	A B G S F F G W T T W T Y W G S G S S S S S S S S S S S S S S S S
	MLKJIHGFEDCBAZYXWVUTSRQPON
K-SZX OZJIH DBRCY BNUVZ LFBXT	A BODPPOUT IFT WNO BODE TUUTY V 7
	LKJINGFEDCBAZYXWVUTSBQPONM
TI BEIFH INNSF RUVVC UITRN	ABCDEFGHIJKLMNOPQRSTUVWXYZ
	KJIHGFEDCBAZYXWVUTSRQPONML
	A BCDEFGHIJKLMNOPQRSTUVWXYZ
NGONG ZUBZB EPVJI NCZAT PBTEA	JIHGFEDCBAZYXWVUTSRGPONMLK
	R ABCDEFGHIJKLMNOPQRSTUVWXYZ
VEIOE HDVTN GESNE LRZVE UKUQK	IHGFEDCBAZIXWV0IBRGPONALKJ
	S ABCDEFGHIJKLMNOPQRSTUVWXYZ HGFEDCBAZYXWVUTSRQPONMLKJI
BOTRE OFFICE NUTRE DANDA DAINU	ABCDEFGHIJKLMNOPQRSTUVWXYZ
	T GFEDCBAZYXWVUTSRQPONMLKJIH
	I BODDEROWI IVI WYO DO DE MUTUYY
HEING LOTUP HVBNX MMUUK ACPXA	U FEDCBAZYXWVUTSRQPONMLXJIRG
	ABODEFORT INT WNO POPETITYWYY 7
AYEFE ZNEDU SYNYX IYIPO RJCEK	V EDCBAZYXWVUTSROPONMLEJIHOF
	W ABCDEFOHIJKLMNOPQESTUVWXYZ
	DCBAZTXWVUTSRQPONMLEJIHGFE
PROPE JENIO NYLIX ENTRE GOXXH	X ABCDEFGHIJKLMNOPGBSTUVWXYZ
	CAALIAWVUI SRUFURALAJIAUFED
FSGNA UDTLB UNKAN HARNE TZYXN	Y ABCDEFGHIJKLMNOPGESTUVWXYZ
	BAZIXWYCIBRGFORMERJIAGFEDC
	ZABCDEFGHIJKLMNOPORSTUVWXYZ
DEBON JANFT HIONH BEINH DFEST	Z AZYXWVUTSRQPONMLKJIHGFEDCB

One-time pad table (U.S. National Security Agency)

Quantum One-time Pad

- Pauli operators $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
- Self-inverse: $X^2 = \mathbb{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $Y^2 = \mathbb{I}$, $Z^2 = \mathbb{I}$
- Anti-commute: XZ = -ZX, XY = -YX, YZ = -ZY

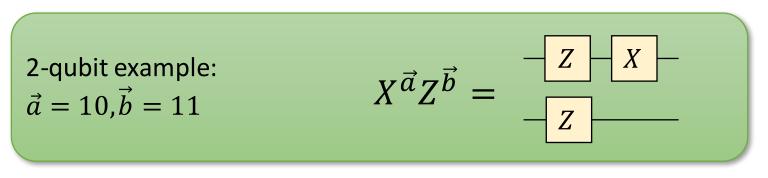
- Flip two random bits $a, b \leftarrow \{0,1\}$, encryption of a qubit ρ : $X^{a}Z^{b} \rho X^{a}Z^{b}$
- Perfect security: not knowing a, b, density matrix becomes fully mixed: $\frac{1}{4}\sum_{a,b} X^a Z^b \rho Z^a X^b = \mathbb{I}/2$

[AMTW00] A. Ambainis, M. Mosca, A. Tapp, and R. De Wolf. Private quantum channels. FOCS'00

Pauli Group on n Qubits $X = X^{Paul}$

Pauli operators
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

• Pauli group $P_n \coloneqq \{\phi X^{\vec{a}} Z^{\vec{b}} : \vec{a}, \vec{b} \in \{0,1\}^n, \phi \in \{\pm i, \pm 1\}\}$

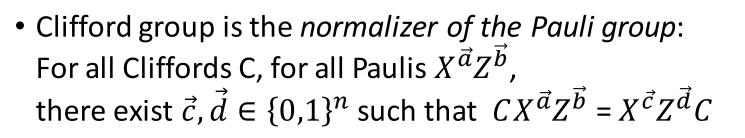


- Encryption of *n* qubits ρ : $X^{\vec{a}}Z^{\vec{b}} \rho X^{\vec{a}}Z^{\vec{b}}$ for random $\vec{a}, \vec{b} \in \{0,1\}^n$
- Perfect security: not knowing \vec{a}, \vec{b} , density matrix becomes *fully mixed*: $\frac{1}{4^n} \sum_{\vec{a}, \vec{b}} X^{\vec{a}} Z^{\vec{b}} \rho X^{\vec{a}} Z^{\vec{b}} = \mathbb{I}/2^n$

[AMTW00] A. Ambainis, M. Mosca, A. Tapp, and R. De Wolf. Private quantum channels. FOCS'00 (based on Stacey Jeffery's slides)

The Clifford group

Pauli operators $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$



• Generated by
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
, $P = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$, $CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

• Examples: HX = ZH, PZ = ZP, PX = XZP

- Not a universal gate set
 - Classical simulation possible

Example interaction with quantum one-time pad: $PX^{a}Z^{b}|\psi\rangle = X^{a}Z^{a \oplus b}P|\psi\rangle$

/1

Δ

Ω

 \mathbf{U}

Quantum Homomorphic Encryption For Clifford circuits

Encryption (of single qubit):

Input state: $|\psi
angle$

Flip random classical bits a, b

Output: $X^a Z^b |\psi\rangle$, Enc(*a*), Enc(*b*)

Circuit Evaluation:

Apply Clifford gate to quantum part Homomorphically update classical keys according to commutation relations Classical homomorphic scheme: Encryption: c = Enc(x)Decryption: x = Dec(x)

Example: evaluation of P gate:

•
$$PX^aZ^b|\psi\rangle = X^aZ^{a\oplus b}P|\psi\rangle$$

homomorphic update
 Enc(b') ← ADD(Enc(a), Enc(b))

State maintains form: $X^{a'}Z^{b'}|\psi'\rangle$, Enc(a'), Enc(b')

Folklore, last formalized by [BJ15] A. Broadbent, S. Jeffery. Quantum Homomorphic Encryption for Circuits of Low T-gate Complexity. CRYPTO 2015

Extending the gate set: T gate T gate (also known as $\frac{\pi}{8}$ or R gate) is given by T = $\begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$ Clifford+T can approximate all quantum operations (universal set)

Trouble: Applying T gate on a one-time-pad encrypted state results in ciphertext: $TX^aZ^b|\psi\rangle = P^aX^aZ^bT|\psi\rangle$, Enc(a), Enc(b) because TZ = ZT, TX = PXT (not Clifford!)

Who can remove this extra P-gate? Evaluator only has **encrypted version of** *a* **and** *b*, while the encrypting party knows the key

Previous Work: Overview

	homomorphic for	compactness	security
Not encrypting	Quantum circuits	yes	no
append evaluation description	Quantum circuits	Complexity of Dec prop to (# gates)	yes
Quantum OTP	no	yes	inf theoretic
Clifford Scheme	Clifford circuits	yes	computational
[BJ15]: AUX	Q circuits with constant T-depth	yes	computational
[BJ15]: EPR	Quantum circuits	Complexity of Dec prop to (#T-gates)^2	computational
Our result	Quantum circuits of polynomial size (levelled fully homorphic)	yes	computational

[BJ15] A. Broadbent, S. Jeffery. Quantum Homomorphic Encryption for Circuits of Low T-gate Complexity. CRYPTO 2015 (comparison based on Stacey Jeffery's slides)

Related Work

- Secure delegated quantum computing
 - Childs 2005; Broadbent, Fitzsimons, Kashefi 2009; Aharonov, Ben-Or, Eban 2010; Broadbent 2015
- Secure 2-party quantum computation
 - Dupuis, Nielsen, Salvail 2010; Dupuis, Nielsen, Salvail 2010
- Perfectly secure quantum FHE not possible with information-theoretic security
 - Yu, Perez-Delgado, Fitzsimons 2014
- Quantum homomorphic encryption with information leakage (not IND secure)
 - Tan, Kettlewell, Ouyang, Chen, Fitzsimons 2014

(based on Stacey Jeffery's slides)

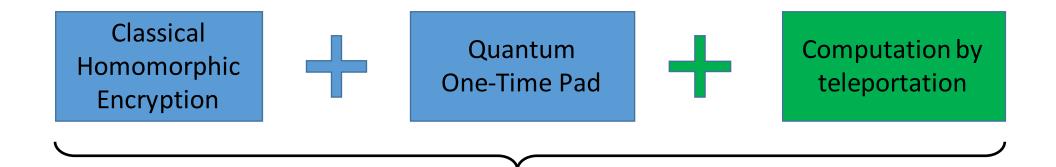
require interaction between encryptor and evaluator

Roadmap

- (Classical) Homomorphic Encryption
- ✓ Quantum Homomorphic Encryption

Computation by Teleportation

Our scheme



Quantum homomorphic encryption for polynomial-sized circuits

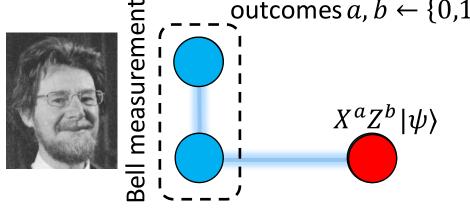
[GC99] Daniel Gottesman and Isaac L. Chuang. Quantum Teleportation is a Universal Computational Primitive. Nature '99

Entanglement and Quantum Teleportation

• Entanglement

EPR pair: $\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$, state can not be written as two separate qubits

• Teleportation transfers a quantum bit using an EPR pair and two classical bits Ξ outcomes $a, b \leftarrow \{0,1\}^2$

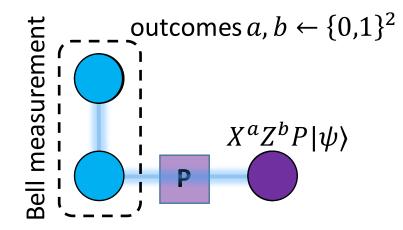


Teleportation of Clifford gates

 $P = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$

P

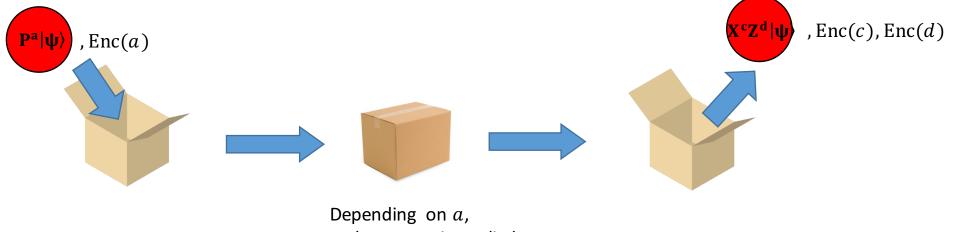
- Start with modified EPR pair: $\frac{1}{\sqrt{2}}|00\rangle + i\frac{1}{\sqrt{2}}|11\rangle$
- Teleportation:



[GC99] Daniel Gottesman and Isaac L. Chuang. Quantum Teleportation is a Universal Computational Primitive. Nature '99

Creating a T-gate gadget

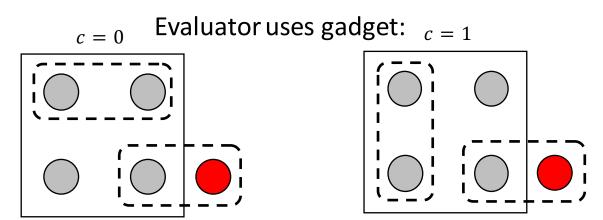
 $TX^{a}Z^{b}|\psi\rangle$ = $P^{a}X^{a}Z^{b}T|\psi\rangle$, Enc(a), Enc(b)Who can remove this extra P-gate? Evaluator only has encrypted version of a, b, while encrypting party knows the key

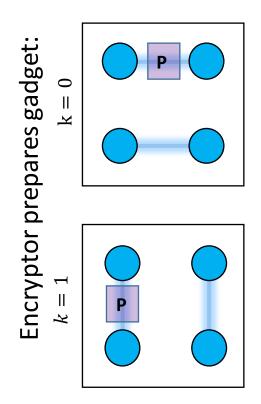


a phase gate is applied

Toy example of gadget

Encrypting party has: $k \in \{0,1\}$ Evaluator has: $c = Enc(a) = a \bigoplus k \in \{0,1\}$ Want to apply a phase gate if $c \bigoplus k = a = 1$



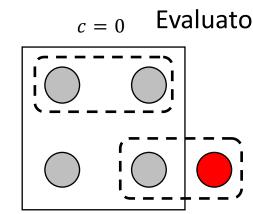


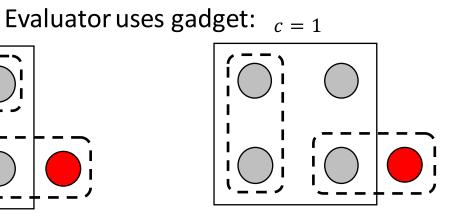
Toy example of gadget

Encrypting party has: $k \in \{0,1\}$ $c = Enc(a) = a \bigoplus k \in \{0,1\}$ Evaluator has: Want to apply a phase gate if $c \oplus k = a = 1$

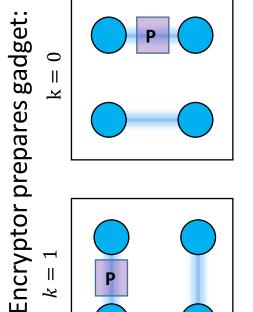
> $\overline{}$ Ш

ĸ

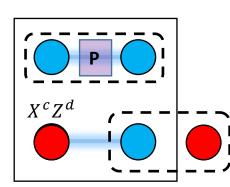


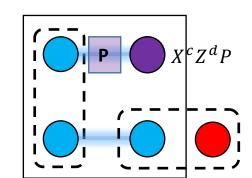


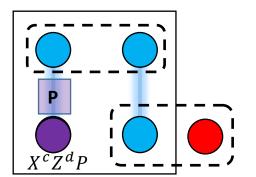
Using a fixed Bell state is insecure, but choice of Bell state can be randomized

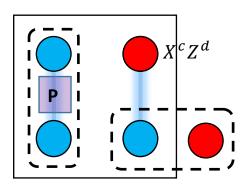


Ρ









Construction of T-gate gadget

- Using **Barrington's theorem**, we can construct gadgets for decryption functions computable in poly-sized log-depth circuits.
- Using techniques from the **garden-hose model**, we can create gadgets for any decryption function computable in log-space.
- Fortunately for us: all known classical homomorphic encryption schemes have a decryption function computable in log-space

[BFSS13] Harry Buhrman, Serge Fehr, Christian Schaffner, and Florian Speelman. The garden-hose model. ITCS '13

Homomorphic decryption

Most current schemes are based on Learning With Errors (LWE)

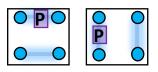
Brakerski-Vaikuntanathan (2011):

Key: $s \in \mathbb{Z}_p^k$ (vector of length k over \mathbb{Z}_p)Ciphertext: $(\boldsymbol{v}, w) \in \mathbb{Z}_p^k \times \mathbb{Z}_p$

Decryption: $m = w - \sum_{i=1}^{k} s_i v_i \pmod{p} \pmod{2}$

Putting the scheme together

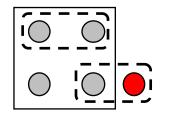
- Encryption:
 - Encrypt qubits using Quantum One-Time Pad
 - Use classical HE to encrypt the key to the one-time pad
 - Create extra helper-gadgets from private key:

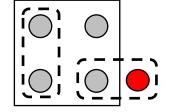


• Evaluation:

- Clifford gates: execute and update keys
- *T* gates: execute and use gadget to correct the state

measurement choices are given by classical encrypted information



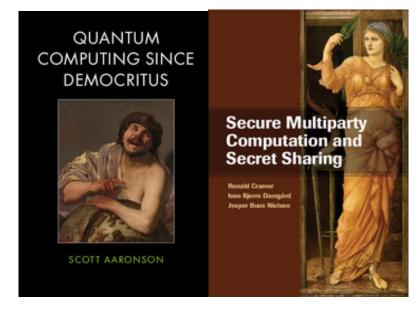


Summary

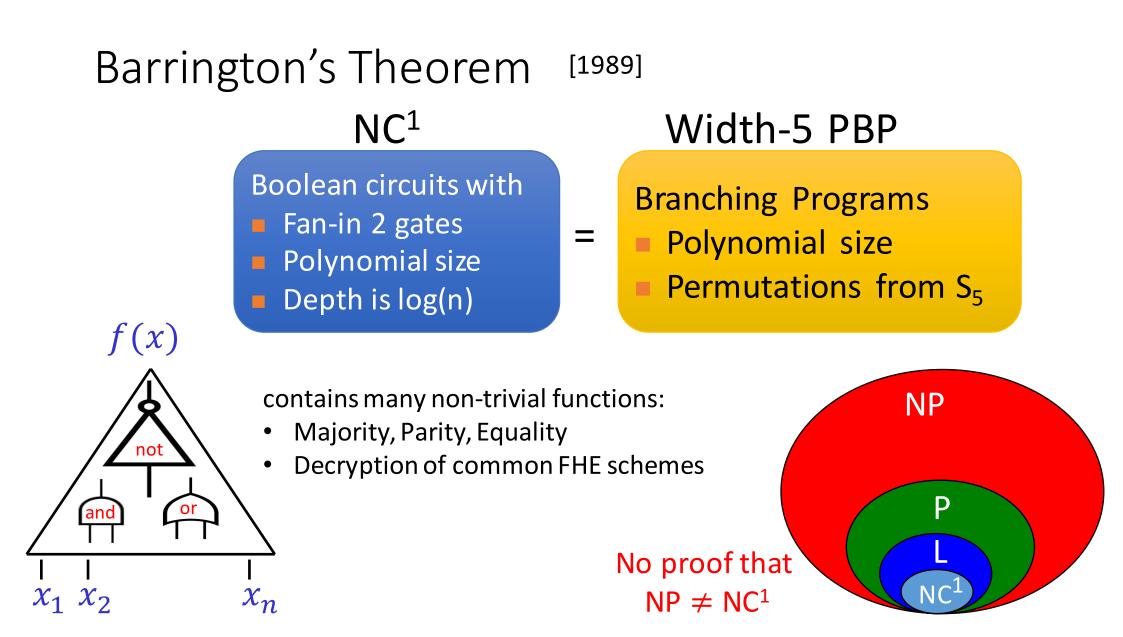
- Scheme for quantum homomorphic encryption
 - Single quantum gadget for every T gate
 - Polynomial-size for all current classical homomorphic schemes
 - We require the computational assumptions of classical scheme
- Main ingredients:
 - Classical homomorphic encryption
 - Quantum one-time pad
 - EPR gadgets (depending on secret key) to conditionally remove errors

Open questions / Future work

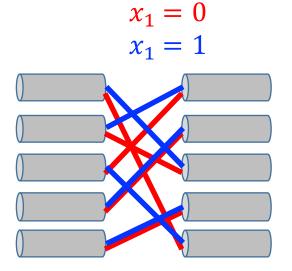
- Quantum Fully Homomorphic Encryption
 - Currently: helper gadgets required for evaluation of each T gate
- Other cryptographic primitives
 - (round-efficient) delegated quantum computation
 - Quantum Multi-Party Computation
 - Quantum circuit obfuscation
 - ...?



Thank you for your attention!

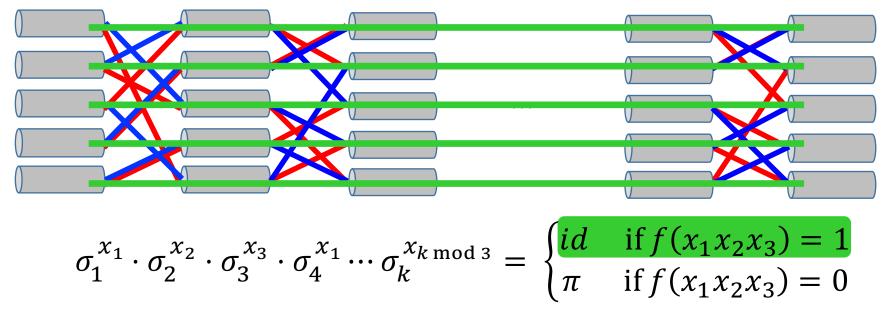


 $\begin{array}{ll} \text{Width-5 Permutation Branching Programs} \\ \text{function: } f: \{0,1\}^3 \rightarrow \{0,1\} & \text{input: } x_1 x_2 x_3 & (\text{this example: } n=3) \\ \text{instructions: } (\sigma_1^0, \sigma_1^1), (\sigma_2^0, \sigma_2^1), (\sigma_3^0, \sigma_3^1), (\sigma_4^0, \sigma_4^1), \dots, (\sigma_k^0, \sigma_k^1) & \sigma_j^i \in S_5 \end{array}$



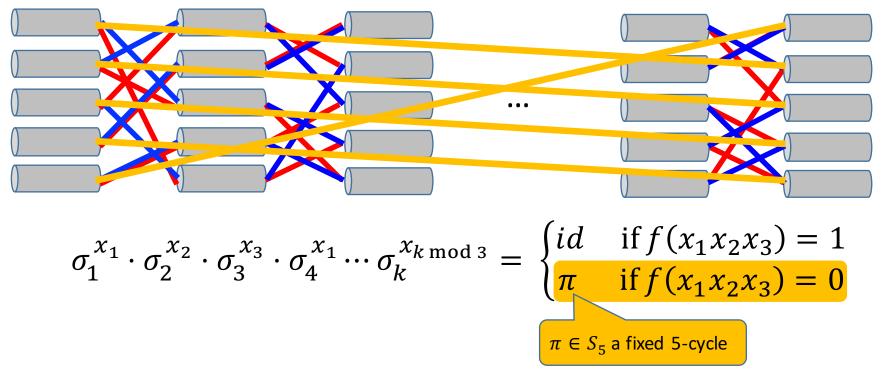
Width-5 Permutation Branching Programs function: $f: \{0,1\}^3 \rightarrow \{0,1\}$ input: $x_1x_2x_3$ (this example: n = 3) instructions: $(\sigma_1^0, \sigma_1^1), (\sigma_2^0, \sigma_2^1), (\sigma_3^0, \sigma_3^1), (\sigma_4^0, \sigma_4^1), \dots, (\sigma_k^0, \sigma_k^1)$

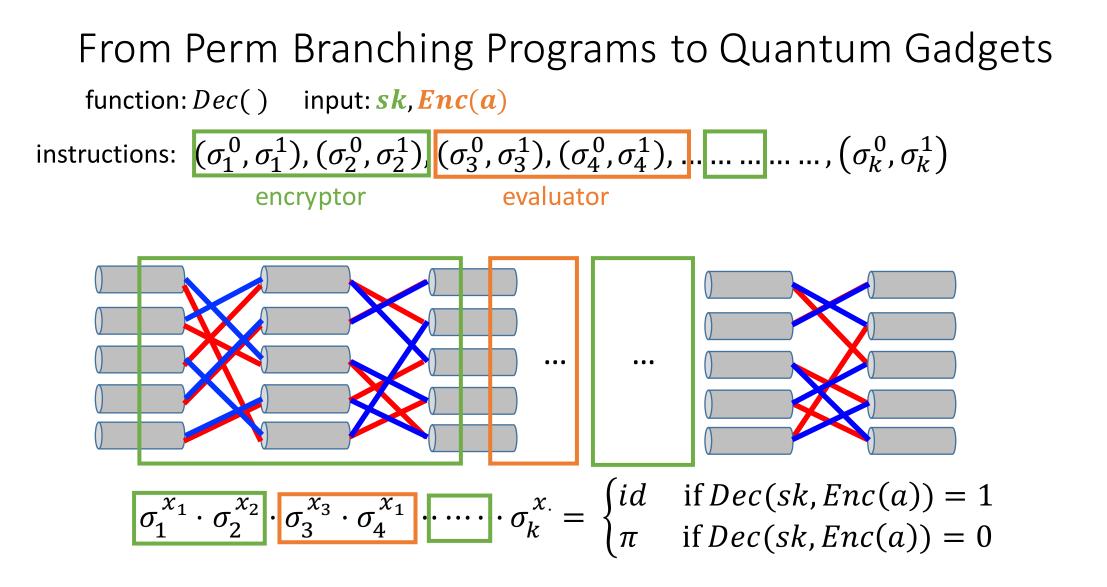
$x_1 = 0$	$x_2 = 0$	$x_3 = 0$	$x_1 = 0$	
$x_1 = 1$	$x_2 = 1$	$x_3 = 1$	$x_1 = 1$	• •

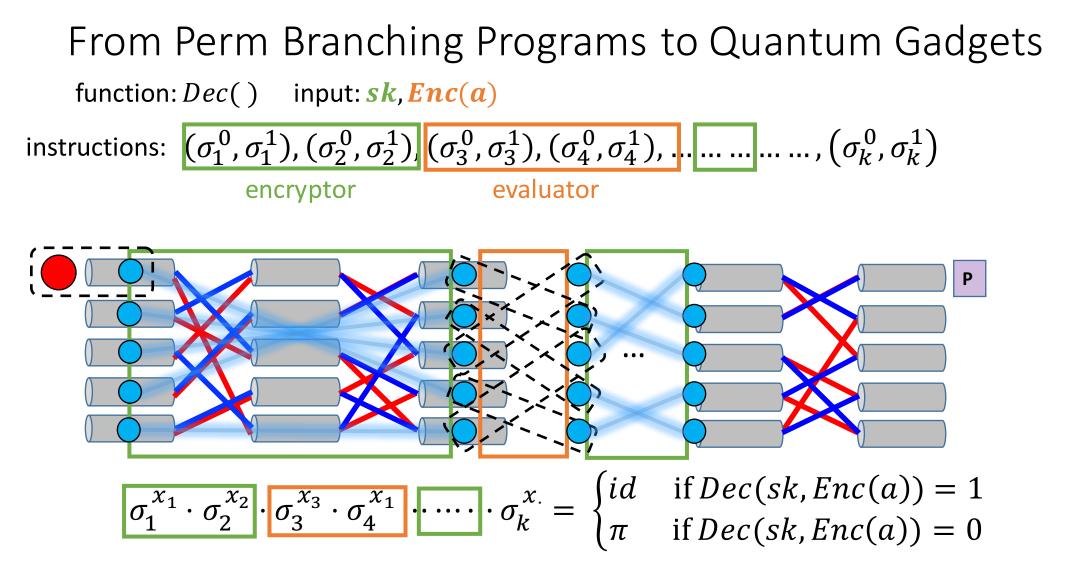


Width-5 Permutation Branching Programs function: $f: \{0,1\}^3 \rightarrow \{0,1\}$ input: $x_1x_2x_3$ (this example: n = 3) instructions: $(\sigma_1^0, \sigma_1^1), (\sigma_2^0, \sigma_2^1), (\sigma_3^0, \sigma_3^1), (\sigma_4^0, \sigma_4^1), \dots, (\sigma_k^0, \sigma_k^1)$

$x_1 = 0$	$x_2 = 0$	$x_3 = 0$	$x_1 = 0$	
$x_1 = 1$	$x_2 = 1$	$x_3 = 1$	$x_1 = 1$	•







• Finally, run all instructions in reverse to get the qubit to a known location